
A

PICA: Processor Idle Cycle Aggregation for Energy Efficient
Embedded Systems

JONGEUN LEE, Ulsan National Institute of Science and Technology
AVIRAL SHRIVASTAVA, Arizona State University

Processor Idle Cycle Aggregation (PICA) is a promising approach for low power execution of processors, in
which small memory stalls are aggregated to create large ones, enabling profitable switch of the processor
into low-power mode. We extend the previous approach in three dimensions. First we develop static analysis
for the PICA technique and present optimal parameters for five common types of loops based on steady-state
analysis. Second, to remedy the weakness of software-only control in varying environment, we enhance PICA
with minimal hardware extension that ensures correct execution for any loops and parameters and thus
greatly facilitates exploration-based parameter tuning. Third, we demonstrate that our PICA technique
can be applied to certain types of nested loops with variable bounds, thus enhancing the applicability of
PICA. We validate our analytical model against simulation based optimization and also show through our
experiments on embedded application benchmarks, that our technique can be applied to a wide range of
loops with average 20% energy reductions compared to executions without PICA.

Categories and Subject Descriptors: C.3 [Computer Systems Organization]: Special-purpose and appli-
cation-based systems—Real-time and embedded systems

General Terms: Algorithm, Design

Additional Key Words and Phrases: Low power, code transformation, embedded systems, memory bound
loops, processor free time, stall cycle aggregation

ACM Reference Format:
Lee, J. and Shrivastava, A. 2011. PICA: Processor idle cycle aggregation for energy efficient embedded sys-
tems. ACM Trans. Embedd. Comput. Syst. V, N, Article A (January YYYY), 27 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION
Energy consumption may well be the single most important concern in the design of
battery-operated handheld devices. The battery is typically the prime determinant of
the weight, volume, shape, size, charging time, charging frequency, and ultimately the
usability of the portable system. Consequently decreasing the energy consumption of
embedded processors is an important research concern.

Many low power design techniques fundamentally save power when the full per-
formance is not needed. While Dynamic Voltage and Frequency Scaling (DVFS) tech-
niques [Choi et al. 2005] attempt to discover execution intervals when the processor
can be slowed down, Dynamic Power Management (DPM) implemented using clock
gating, power gating, etc. [Gowan et al. 1998] attempt to discover opportunities to stop
the processor, or parts thereof, without hurting the performance. Such DPMs are real-
ized in processors in the form of power states; for instance, the Intel XScale processor

Author’s addresses: Jongeun Lee, School of ECE, Ulsan National Institute of Science and Technology, Ulsan,
Korea; Aviral Shrivastava, Department of CSE, Arizona State University.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 1539-9087/YYYY/01-ARTA $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 Jongeun Lee et al.
0%

10%

20%

30%

40%

50%

60%

70%

80%

0 1 2 3 4 5 6 7 8 9

time (Kcycle)

CPU

Mem

0%

10%

20%

30%

40%

50%

60%

70%

80%

0 1 2 3 4 5 6 7 8 9 10

time (Kcycle)

CPU

Mem

IDLE
State

Prefetch

Higher CPU
& Mem Util

(a) Before aggregation

0%

10%

20%

30%

40%

50%

60%

70%

80%

0 1 2 3 4 5 6 7 8 9

time (Kcycle)

CPU

Mem

0%

10%

20%

30%

40%

50%

60%

70%

80%

0 1 2 3 4 5 6 7 8 9 10

time (Kcycle)

CPU

Mem

IDLE
State

Prefetch

Higher CPU
& Mem Util

(b) After aggregation

Fig. 1. CPU and memory utilization (Percentage of cycles when useful work is done).

has 3 low-power states, IDLE, DROWSY, and SLEEP. However, the time to switch to
even the shallowest low power mode, IDLE, is 180 processor cycles and additional 180
processor cycles to come back from it. Interestingly, our cycle-accurate simulation re-
sult reveals that when the Intel XScale is executing, practically no stall is more than
360 processor cycles, even though the processor may experience memory stalls almost
30% of the time for a particular application. Thus while the total stall time is sig-
nificant, each stall duration is too small to save power by switching the processor to
low-power state. Consequently, most previous techniques attempt to switch the pro-
cessor to low-power states in between applications, or when task deadlines are known
beforehand such as in real-time systems.

Alternatively, the processor stall cycle aggregation approach [Shrivastava et al.
2005] collects several small stalls together to create a large stall in memory-bound
loops. Processor power can be saved during the large stall by switching the processor
to low-power mode. The aggregation technique is a hardware-software cooperative ap-
proach in which the compiler analyzes the application to find out what needs to be
prefetched. It delegates the task of large scale prefetching to a programmable prefetch
engine and switches to low-power mode. The prefetch engine brings data from the
memory to the cache on behalf of the processor, and it wakes up the processor at a
pre-determined time. The processor wakes up and operates on the data in the cache
without any memory stalls.

To illustrate the aggregation idea, Fig. 1 shows the computation and data transfer
rates for a simple loop, before and after applying processor aggregation. The curves
are obtained from cycle-accurate simulation using our simulator1 and represent the
number of useful cycles per every 100 cycles, or in other words, CPU and memory bus
utilization. The two graphs are identical during the first 3 Kcycles, where program ini-

1Details of our simulator is described in Section 8.1

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

PICA: Processor Idle Cycle Aggregation A:3

tialization is performed. Soon afterwards the main loop begins in both cases, and we
observe computation and data rates increasing. However the patterns are quite dif-
ferent. In (a) the computation and data transfer operations are scattered more or less
randomly throughout the loop execution that lasts until about 9 Kcycles, but the graph
in (b) has two distinct regions, one with computation and one without. The one with-
out computation starts first. In this region the processor is idle (actually in the IDLE
state) for about 1 Kcycles, and only data transfer, or prefetch, is performed. The sec-
ond region begins when the prefetch engine wakes up the processor, which can run now
much faster because there is no memory stall. The data prefetch is continued through-
out the second region until both computation and data transfer die out at around the
same time. We observe that the aggregation case has overall higher resource utiliza-
tion and shorter runtime, which is in part due to large scale prefetching employed in
the aggregation technique.

While processor stall cycle aggregation can reduce processor energy consumption
without performance penalty for memory-bound loops, a simple aggregation may face
several problems and limitations. In this paper, we identify a set of necessary exten-
sions and analyses to significantly enhance the aggregation technique both in terms of
applicability and energy efficiency, and call it PICA (Process Idle Cycle Aggregation).

— Previous aggregation approach [Shrivastava et al. 2005] depended on the compiler
to estimate key parameters of aggregation, i.e., wake-up time w, which is the num-
ber of lines that the prefetch engine should fetch before waking up the processor.
However the wake-up mechanism might not work sometimes due to various causes
ranging from non-determinism in the memory to simple misprediction, which results
in deadlocks. In this paper we enhance the aggregation mechanism with hardware
deadlock prevention. A major advantage of our deadlock-free PICA is that it enables
us to determine the PICA parameters by simulation, making PICA applicable to any
memory-bound2 loop.

— The static code analysis to determine aggregation parameters presented in the pre-
vious proposal worked only for a specific kind of loop. We profile several important
applications, classify the kinds of loops present, and present code analysis techniques
for them. Through the combined use of static analysis and exploration-based fine tun-
ing, PICA achieves 20% energy reduction on average on a variety of memory-bound
loops.

— In the previous proposal, PICA can be applied only to simple loops without nesting or
variable bounds. In this paper we demonstrate that PICA can be easily extended for
certain types of multi-nested loops, and applied even to loops with variable bounds.
This makes PICA applicable to a wider class of important applications.

The rest of the paper is organized as follows. In Section 2 we discuss the related
work. In Section 3 we present the basic and deadlock-free versions of the PICA tech-
nique. In Section 4 we present the microarchitecture for PICA. In Section 5 we present
the static analysis framework for PICA optimization and Section 6 provides analytic
solutions to several types of loops. In Section 7 we extend PICA for variable bounds
and nested loops. In Section 8 we present our experimental results and conclude the
paper in Section 9.

2. RELATED WORK
Perhaps the most popular approach to reducing processor energy is DVFS [Azevedo
et al. 2002; Choi et al. 2005]. Especially, [Choi et al. 2005] has some similarity to
our work in that it also exploits memory stall cycles by lowering the CPU frequency

2For computation-bound loops, prefetching may be more appropriate.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 Jongeun Lee et al.

during regions with frequent memory stalls. However, DVFS requires a voltage reg-
ulator which is fundamentally different from a standard voltage regulator because it
must also change the operating voltage for a new clock frequency [Burd and Brodersen
2000]. This and more considerations result in high transition overhead for DVFS. For
instance, the Intel XScale processor has frequency switching time of 20µs or 18,000
processor cycles on a 600 MHz processor [Intel Corporation b]. Consequently, in order
to hide the penalty of voltage regulation, DVFS is applied at the context switching
granularity (tens of milliseconds), typically by the operating system. Our PICA ap-
proach exploits IDLE mode, whose transition time is merely 180 processor cycles.

In contrast, DPM implemented using clock gating, power gating, body biasing,
etc. [Gowan et al. 1998; Rabaey and Pedram 1996; Benini et al. 2000] has relatively low
transition overhead. Stopping parts of the processor, such as power gating of functional
units, has a penalty of about 10 processor cycles, and therefore can be controlled by the
compiler. For instance, fetch throttling [Unsal et al. 2002] throttles the fetch unit in
order to reduce the processor power based on the compiler-generated IPC (Instruc-
tion Per Cycle) information. Similarly, [Gowan et al. 1998] reduces processor energy
by controlling a small part of the processor such as multiplier and floating point unit;
the inactive parts of processor are statically or dynamically estimated, and switched to
a low-power mode. However, stopping the whole processor has much higher overhead,
thus not being exploited by compilers.

Our PICA approach collects small stalls and creates a long stall so that the pro-
cessors can be profitably switched to low-power. This technique is primarily based on
large scale prefetching. Prefetching [Mowry et al. 1992; VanderWiel and Lilja 2000]
has been studied as a means to reduce memory latency in applications exhibiting low-
locality access patterns such as scientific and data-intensive applications. Reducing
memory latency has many benefits even including reducing the energy consumption of
an application. An extensive survey [VanderWiel and Lilja 2000] on data prefetching
mechanisms classifies data prefetching into software and hardware techniques. Soft-
ware prefetching relies on fetch instructions inserted in the instruction stream, where
each fetch instruction can load one or only a small number of cache lines from the lower
memory. Hardware prefetching relies on speculation and thus is more likely to gener-
ate unnecessary memory traffic and increase cache pollution, but it can eliminate the
overhead of fetch instructions and utilize runtime information. All these techniques
fall in the class of small-scale prefetching, which is widely used and an accepted form
of prefetching nowadays.

However, while the issue of when to prefetch is simple in small scale prefetching
mechanisms, for large scale prefetches proper scheduling is very important so as not
to overwrite still-to-be-used data in the cache. Though scratch pad management tech-
niques [Brockmeyer et al. 2003; Issenin et al. 2004; Kandemir and Choudhary 2002]
attempt to solve this problem, they do not consider cache eviction and write-back. In
this paper, we present steady-state analysis of the data in the cache for several kinds of
loops, and increase the applicability and effectiveness of PICA approach by answering
the question of “when to prefetch.”

While there are elaborate analytical models on cache behavior [Ghosh et al. 1997;
Chatterjee et al. 2001; Verdoolaege et al. 2007; Shrivastava et al. 2010], none of them
are widely used today, as they have practical limitations such as high computational
complexity and limited architectural features supported. Moreover, our problem is
more complex than cache modeling, because it also involves hardware prefetching
and multiple processor states. Our approach is to use simple analytical models first
to quickly find the profitability of PICA transformation and then to use simulation-
based fine-tuning of PICA parameters.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

PICA: Processor Idle Cycle Aggregation A:5

1: for (i = 0; i < N; i++) {
2: Statements involving i
3: }

(a) Original loop

1: setPrefetchArray addr, #items,
· · ·

2: startPrefetch
3: for (j = 0; j < N; j += T) {
4: procIdleMode w
5: M = min(j + T, N)
6: for (i = j; i < M; i++) {
7: Same statements

involving i
8: }
9: }

(b) PICA-transformed loop

Data
Bus

Request
Bus

Request
Buffer

Memory

Data
Cache

Processor

Memory
Buffer

Load
Store
Unit

Prefetch
Engine

(c) Architecture

Fig. 2. PICA transformation and architecture.

Table I. How deadlock can happen
(a) Expected line fetch scenario

Tile number 1 2 3 4
#lines fetched during the idle mode 50 50 50 50
#lines fetched while processor is awake 50 50 50 50

(b) Deadlock scenario
Tile number 1 2 3 4
#lines fetched during the idle mode 50 50 50 40
#lines fetched while processor is awake 70 70 70 –

3. PICA APPROACH
PICA is a compiler-microarchitecture cooperative technique exploiting large-scale
prefetching for a very efficient loop execution. Here we present the code transforma-
tion and microarchitecture for PICA. First we describe the basic mechanism and then
present extensions to enhance the applicability and effectiveness.

3.1. Basic Mechanism
Figures 2(a)-(b) illustrate the loop transformation that is required to perform PICA. In
addition to setting up the prefetch engine for the required data before the loop begins
(lines 1–2 in (b)), the original loop, that ran from i = 0 to i = N − 1, has to be tiled
into “tiles” of size T (lines 3 and 5–6). Within each tile, in line 4, the processor is first
put into the low power mode with parameter w. The prefetch continues to transfer
data between the cache and the memory, and after it has made a request for w lines, it
wakes up the processor. When the processor wakes up, it works on the data present in
the cache. But since it consumes data faster than memory can produce, eventually the
prefetched data in the cache will be used up. T is determined such that the tile ends
just when all the prefetched data in the cache is used up and the processor misses
in the cache if it continues anymore. w is determined under the constraint that the
prefetch should not overwrite the still-to-be-used data in the cache.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 Jongeun Lee et al.

Table II. PICA instructions

Instruction Description
setPrefetchArray Add to the prefetch list a new prefetch task (see Section 4.2 for detail). Add

to counter2 the number of additional lines to request.
startPrefetch Start prefetching and start counter2 (decrement it by one for each line

fetched).
procIdleMode w Set counter1 to w and put processor into idle mode only if w ≤ counter2,

otherwise do nothing. Also start counter1 (decrement it by one for each line
fetched; upon reaching zero wake up the processor).

3.2. Enhancement for Deadlock Avoidance
The main task of PICA transformation is to determine the optimal values of parame-
ters w and T . Once these parameters are fixed, the remaining code transformation is
straightforward. However, even after correctly setting up the parameters, the trans-
formed code might not run correctly, but can actually incur a deadlock. Deadlock may
happen because the processor wakeup time is controlled only by software.

To illustrate the problem, let us consider a case where the tile size T is set to one
fourth of N , the number of iterations of the loop, and w is set to 50 lines out of the total
400 lines to be fetched. It works as follows. During the first tile, the first 100 lines are
fetched—50 while the processor is in idle mode and another 50 while the processor is
awake. If the computation rate is exactly twice the data fetch rate, this schedule can
be the perfect PICA execution. The same pattern is repeated for the remainder of the
tiles, and the entire loop is completed in four tiles, as summarized in Table I(a).

This schedule, however, depends too much on the delicate balance between compu-
tation and data transfer rates. Suppose that for some reason data transfer rate is 40%
higher than expected, as compared to computation rate. This change does not change
the second row in Table I(a), but the third row. This is because the processor wakeup
time w controls only the number of lines fetched during the idle mode, but not while
the processor is awake. When the computation finally reaches Tile 4, the processor is
first put into the idle mode, to be waked up after 50 lines are fetched. However, that
never happens because there are not enough lines left to be fetched, resulting in a
deadlock situation.

To prevent deadlock, we add to the prefetch engine a simple hardware logic that
checks whether there are enough lines to fetch before putting the processor to the
idle mode. This should work because the reason for deadlock is simply that there are
less than w lines left to be fetched when the processor goes into the idle mode, which
effectively invalidates the wake-up parameter. Implementation of this logic requires
only one counter for the number of remaining line requests and one comparator.

Now that the prefetch engine knows how many more lines to fetch, it can prevent the
processor from going into the idle mode if the number of remaining lines is less than
w. This enhancement not only makes the PICA technique more robust but also greatly
improves its applicability and effectiveness. In the basic PICA it was the sole respon-
sibility of the compiler to estimate w and T correctly so as to avoid deadlocks, and pes-
simistic estimates by the compiler to guarantee correctness may result in lower energy
reductions. In the enhanced PICA, since the deadlock-free operation is guaranteed, we
can aggressively explore the parameter space to find the optimal PICA parameters w
and T for any memory-bound loop and thus maximize the energy reduction. Further,
this extension greatly enhances the applicability of PICA on complex programs, which
may be out of the reach of traditional compiler analysis.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

PICA: Processor Idle Cycle Aggregation A:7

4. ARCHITECTURAL REQUIREMENTS
4.1. Prefetch Engine
Figure 2(c) illustrates the processor-memory subsystem architecture including the
prefetch engine though the exact implementation of the prefetch engine as well as
its interface may differ for each architecture. The prefetch engine is a small piece of
hardware inside the load store unit of a processor pipeline, and is controlled by the
PICA instructions as described in Table II. The prefetch engine mainly deals with the
prefetching of array data from the memory to the data cache, but also handles PICA-
related processor controls such as putting the processor into the low power mode and
waking it up.

To explain the behavior of the three PICA instructions let us consider the example in
Fig. 2(b). First, the setPrefetchArray instruction programs the prefetch engine to gen-
erate a set of line requests upon initiation. More than one setPrefetchArray instruc-
tions can be used at the same time, and their parameters such as the start address, the
stride, the number of items, etc. follow directly from the reference expressions of the
original code. Second, the startPrefetch instruction simply initiates the prefetch en-
gine, which then keeps prefetching by inserting line requests in the request buffer. The
prefetch engine monitors the request buffer to ensure that the request buffer is full as
long as possible. While the request buffer is full, the activity on the data bus remains
uninterrupted, ensuring maximal data bus usage.3 Third, on entering a new tile the
processor is put into the low power mode by executing the procIdleMode instruction.
In the low power mode the clock to the processor, except the load store unit, can be
frozen, and even powered down. The procIdleMode instruction takes one parameter,
which is the wake up parameter w, or the number of lines to fetch before waking it
up. As soon as the prefetch engine fetches w lines from the memory, the processor is
woken up either with interrupt or by other means. The processor then resumes the
execution through the rest of the tile. The prefetch engine continues its operation even
after waking up the processor. After all the data has been fetched (which should ideally
coincide with the end of the loop), the prefetch engine should disengage itself until it
is re-invoked by the processor for the next loop.

The prefetch engine maintains two counters. The first one, counter1, is used to track
the processor idle period. It is set by a procIdleMode instruction to the wake-up param-
eter w, and decremented by one for every line fetched. As soon as it reaches zero, the
prefetch engine wakes up the processor. The second one, counter2, is used to track the
number of remaining lines to fetch. It is increased by each setPrefetchArray instruc-
tion by the number of lines to fetch, and decremented by one, similarly to counter1, for
every line fetched. Note that the calculation of the number of line requests here does
not have to be exact, but only needs to be consistent with decrements. For instance,
the prefetch engine does not re-fetch data that is already in the cache, which would be
extremely difficult to predict in advance. We resolve this difficulty by decrementing the
counters even for a line that is already in the cache and therefore not fetched. Then
setting up the counter2 parameter for setPrefetchArray instruction does not need to
account for the lines that may be already in the cache.

4.2. Prefetch Parameters
Since the PICA technique relies on prefetch for most of its memory operations, it is
important to clarify the kind of prefetch used in our scheme. While much of the previ-
ous work discusses small-scale prefetch, where one or a few line requests are made in

3The bus and the memory are assumed to be pipelined with separate request and data channels so as to
maximize the throughput. This also makes it easier to find the memory bandwidth in our static analysis.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 Jongeun Lee et al.

advance by the processor [VanderWiel and Lilja 2000], we employ large-scale prefetch.
The prefetch engine is programmed for an entire loop, and once initiated, it operates
autonomously, even controlling the power state of the processor. Moreover there may
be multiple arrays of data that need to be prefetched. Thus the challenge is not only to
specify the memory access pattern for an entire loop, but also to direct the prefetch to
be done in a way that maximizes data reuse in the cache, which is crucial to increase
the energy saving by PICA.

Our setPrefetchArray instruction has four parameters: start address, stride, the
number of items (the unit of prefetch is a cache line), and weight. First note that
our PICA technique does not require every memory access to be prefetched, since
any data that is not found in the cache will trigger a cache miss and be fetched
on-demand (called CPU-generated memory access), but the greater the number of
prefetch-generated memory accesses is, the greater the energy saving also becomes,
as is shown in our experiments. We target sequentially accessed memory accesses,
which are most commonly generated by array references in a loop (e.g., A[i]). The start
address and stride can be easily found from array reference expressions. Calculating
the number of items requires the length of the loop, or the number of iterations. The
number of iterations does not have to be a constant as long as it is fixed and known
before the loop entry.

The last parameter, weight, is needed to balance the speed of prefetch between mul-
tiple array references. For instance, if two memory references A[i] and B[2i] need to
be prefetched, the number of lines needed for each will be different, i.e., two lines of
B[2i] for every line of A[i]. Since we want the two streams of prefetch to end simultane-
ously, we should speed up prefetching B[2i] twice as fast as A[i]. This can be achieved
by employing weighted round-robin scheduling in the prefetch scheduler, by doubling
the weight for B[2i] than for A[i]. In general the weight can be given proportionally to
the reference speed of a reference, where reference speed is more precisely defined in
Section 5.1.

5. ANALYTICAL PICA OPTIMIZATION
Although PICA parameters can be determined through an exploration based approach,
the exploration space is quite large. The upper bound on T is the number of iterations.
An upper bound on w is the minimum of the number of lines in the cache and the total
number of lines programmed to be prefetched. Since exploration based PICA parame-
ter optimization may be time consuming, it is valuable to develop analytical techniques
to optimize PICA parameters. We present our analysis on steady-state optimal PICA
parameters for common types of loops.

5.1. Input
Since our PICA transformation as well as the prefetch engine can support only one-
dimensional loops, we need to consider only one loop level, which may be any in a
loop nest. Accordingly, only one iterator, or loop induction variable, is relevant in our
PICA analysis, with all the other iterators regarded as constants. References to multi-
dimensional arrays can be easily converted to references to single-dimensional arrays
since array dimensions are statically known. While any reference expressions can be
supported in our PICA transformation, our analysis is concerned with only those that
are affine functions of the iterator. An affine function has two parameters, coefficient
and constant, which are used to determine the speed and distance of references as
follows.

The speed or production rate pi of a reference is the average number of cache lines
newly needed by the reference per iteration. This is the rate at which the prefetch
engine needs to produce data ideally. For example, if array A has 4-byte elements and

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

PICA: Processor Idle Cycle Aggregation A:9

Table III. Loop classification

Type AM RM SS Example
1 Multi Single All references A[i] +B[i] + C[i]
2 Multi Single None A[i] +B[2i]
3 Single Multi All references A[i] +A[i+ 10]
4 Multi Multi All references A[i] +A[i+ 10] +B[i] +B[i+ 20]
5 Multi Multi Only references A[i] +A[i+ 10] +B[2i] +B[2i+ 30]

accessing the same array
6 Single Multi None A[i] +A[2i]
7 Multi Multi None A[i] +A[2i] +B[i+ 10] +B[3i+ 15]

the data cache has 32-byte lines, a reference A[i+ k1] will need a new cache line every
eighth (= 32/4) iteration, assuming that the iterator i is incremented by one. Therefore
the production rate of this reference is p1 = 1/8. Let α denote the ratio between the
cache line width and the array element width. In general, the production rate of a
referenceA[a i+k2] is given by min(|a|/α, 1), assuming that the iterator i is incremented
by one. Distance is defined between two references, with the same coefficient, to the
same array, as d|k3 − k4|/αe, where k3 and k4 are the constants. Distance is defined in
terms of cache lines and independent of the coefficients.

In the steady state a write reference is equivalent to two read references with the
same speed in terms of data transfer. Thus we consider only read accesses in our anal-
ysis. For static analysis we assume fully-associative caches and FIFO (First-In-First-
Out) replacement policy.

5.2. Loop Classification
Our assumption of references being affine functions allows us to classify loops into
seven types listed in Table III. We also studied several multimedia and DSP appli-
cations to find out all the memory-bound loops. Most of the loops with compile-time
deterministic access patterns fall into the first five types, for which we analytically
compute the optimal PICA parameters w and T in Section 6. The table classifies loops
based on the multiplicity of arrays in the loop (AM), the multiplicity of references to
each array (RM), and whether (or which) references are required to have the same
coefficient and thus the same speed (SS).

Type 1 is the simplest and a trivial generalization of the only case addressed in [Shri-
vastava et al. 2005]. We earlier presented our analysis for type 4 loops in [Lee and
Shrivastava 2008] but this paper presents the analysis for all five types of loops. Types
3 and 6 are special cases of types 4 and 7, respectively, and can be easier to handle.
Types 2 and 5 allow different arrays to be accessed at different speeds whereas the last
two types allow even references to the same array to have different speeds. In the latter
case, accurate steady-state analysis becomes very difficult, since the distance between
references with different speeds is not well-defined and can be time-varying. In fact
there are two modes—when the distance is short enough the references can be consid-
ered to be overlapping, but when the distance is long they behave just like references
to different arrays. Because the distance changes over time, we cannot determine the
parameter value that is optimal throughout the entire iterations.

5.3. Array-Iteration Diagram
We use array-iteration diagram to capture the data access pattern of references in a
loop, in space and time, as illustrated in Fig. 3. The vertical axis represents the array
elements in terms of cache lines. The horizontal axis represents time in terms of data
transfer iteration, where is the iteration of which the prefetch engine brings the data.
We use data transfer iteration instead of computation iteration, since the latter has no
one-to-one correspondence with time due to processor idle periods. The duration from

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 Jongeun Lee et al.

a
rr

a
y
 e

le
m

e
n
ts

Iw Ip

p i

iteration

DAP PCP

c i+k1

0

L

Fig. 3. Array-iteration diagram for a single reference.

0 to Ip(= T) represents a tile of a loop. We define production as bringing data from
the memory into the cache for a speculative use, performed by the prefetch engine,
and consumption as the use of data by the processor with no expected reuse of the
data in the near future. There are two lines in the diagram. The one with slope p
is a production line, for data prefetch. The one with slope c is a consumption line,
mapping each array element to the iteration at which the array element is last used
by the processor. Thus an array element is present in the cache and useful from the
production line until the consumption line. The area bounded by the two lines (shaded
area in the figure) represents the number of useful cache lines at each iteration, and its
height being maximum at Iw signifies that the utilization of the cache is maximized at
Iw. Iw is the data transfer iteration of the moment when the processor is woken up, and
divides a tile into two phases: DAP (Data Accumulation Phase) and PCP (Production-
Consumption Phase).

The ratio γ between the production rate and the consumption rate is the same for all
the references in a loop, and is determined by the ratio of Iw and Ip. Since the amount
of production during Ip should be equal to the amount of consumption during (Ip− Iw),
the following relationship holds: γ = ci/pi = Ip/(Ip − Iw) > 1.

Finding the optimal PICA parameters can be viewed as an optimization problem
with an objective and a constraint. (Objective) In order to maximize the processor
idle time stretch for the given data production and consumption rates, we need to
make the most use of the cache. This means that the number of useful cache lines at
Iw should be as close to the cache size as possible. (Constraint) At the same time
we have to make sure that the cache evicts only those lines that have become useless,
or have been consumed by the processor, since otherwise there will be unnecessary
memory accesses, resulting in a significant increase in both runtime and energy. We
refer to the constraint as no eviction of useful cache lines. Since our assumption is that
the cache, whenever necessary, blindly evicts the oldest lines, the utilization of the
cache may have to be sacrificed to some degree to satisfy the constraint. In the next
section we derive the PICA parameters that maximize the objective while meeting the
constraint.

5.4. Memory Speed
Suppose that a loop has N references to prefetch and each reference has production
rate pi, which can be easily found by program analysis. Then this loop makes on aver-
age

∑
i pi line requests every iteration. Using cycle-per-line measure (CPL), which is

the average number of cycles that it takes to bring in one line of data into the cache, the

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

PICA: Processor Idle Cycle Aggregation A:11

for (i = 0; i < 1000; i++) {
A[i+32] = A[i+16] + A[i]
B[i+512] = B[i]
}

Fig. 4. A simple loop.

number of data transfer cycles per iteration (D) can be represented4 as D = CPL
∑

i pi.
The number of computation cycles per iteration (C) can be easily found5 through sim-
ulation for a perfect cache. Then the relationship between Ip and Iw is as follows.

γ = Ip/(Ip − Iw) = D/C = CPL
∑
i

pi/C

Memory-boundness means that this ratio should be greater than 1. Once the optimal
value of Iw is determined, the two PICA parameters w and T can be easily determined:
w = Iw

∑
i pi and T = Ip = Iw · γ/(γ − 1). Hence, our solutions in Section 6 are given

only in terms of Iw.

5.5. Overlapping vs. Separate References
Consider the example loop in Fig. 4 and assume that the cache has 64 lines and α = 8.
Also assume that Iw = 240; that is, the processor is woken up after the data transfer
finishes prefetching data for 240 iterations. In this scenario, the lines that are accessed
in the first Iw computation iterations of each tile by the references of array A are
overlapping while those accessed by the references of array B are not.6 We call same-
speed references to an array overlapping if the lines accessed by them in the first Iw
computation iterations of each tile are overlapping. The other case is called separate. If
two or more references to an array are separate, they can be considered as references to
different arrays for the purpose of our analysis, since there is no reuse between them.
Hence our static analysis needs to show how to handle same-speed references that are
overlapping; the other case, viz., separate references, is trivial.

This definition of overlapping references has one problem that it requires Iw to be
fixed first. Once we know Iw, it is very easy to check the correctness of the decision, but
without the correct decision we cannot arrive at the optimal value of Iw. The problem
of determining whether two or more references to the same array are overlapping can
be solved as follows. Consider this example: A[a1 i] +A[a1 i+ c1] +B[a2 i] +B[a2 i+ c2],
where i is the iterator incremented by one and α = 8. The distance dA between the
two references to A is dc1/8e, and similarly dB = dc2/8e for array B. Let the production
rates for A and B be pA and pB , respectively. Ultimately we want to estimate the
number of lines that are accessed by each reference. Let LA and LB be the number
of lines used by references to A and references to B, respectively, and L be the total
number of cache lines. In the steady state, Li ∝ pi. Therefore if all the references are
separate, it should be that Ls

i = Lpi/(2pA + 2pB) and Ls
i ≤ di. If all the references are

overlapping, it should be that Lo
i = (L − dA − dB) pi/(pA + pB) and Lo

i ≥ di. Similar
inequalities can be made for mixed cases. For example, if only references to A are

4D can also be represented using architectural parameters, as D = Wline · rclk/(Wbus U)
∑

i
pi, where

Wline and Wbus are the widths of the cache line and the bus, respectively, rclk is the ratio of clocks between
the bus and the processor core, and U is a positive number between 0 and 1 representing the memory bus
utilization.
5Alternatively, C can be computed as C = Ninstr · CPI, where Ninstr is the number of instructions in the
loop body and CPI is the cycle-per-instruction, for a perfect cache, of the processor.
6During the first Iw iterations the two references of B access B[512] ∼ B[751] vs. B[0] ∼ B[239], which do
not overlap even at the cache line size granularity.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 Jongeun Lee et al.

a
rr

a
y
 e

le
m

e
n
ts

Iw Ip

p1 i

iteration

DAP PCP

c1 i+k1

Δi

0

L1

L2

p2 i

c2 i+k2

Array A

Array B

Fig. 5. Array-iteration diagram for type 2: two references with different speeds.

separate, it should be that Lm
i = (L − dB) pi/(2pA + pB) and Lm

A ≤ dA and Lm
B ≥ dB .

Note that not all those cases can be true and all but one will be self-contradicting. Thus
the one that is not self-contradicting must be the correct one. In case there are more
than one cases that are not self-contradicting, we take any randomly. This exhaustive
search to find out whether some references are overlapping has an exponential time
complexity, but only in the number of same-speed references minus the number of
unique arrays accessed by them, which is typically very small. Therefore we do not
attempt to improve this further.

Array a is accessed by three references, whose access patterns differ only in the con-
stant part. There may exist overlaps between the accesses of the three references. In
the case of array a, for instance, the lines requested for one reference may be partially
reused by another reference that overlaps with the first one. In contrast, array b is
accessed by two references, whose access expressions differ by a large constant. In this
case there might not be any overlap within a tile between the accesses unless the cache
is very large. Depending on the value of the constant offset, together with other param-
eters such as cache size, the amount of overlap may vary, which changes the optimal
values of the tile size and the wait time. To have a more detailed look at the array
prefetch and use together with the iterations and tiles, we introduce array-iteration
diagram.

6. ANALYTICAL SOLUTIONS
We now present our analytical solutions for the first five types of loops. Type 5, which is
the most general of the five types, has two components that make the analysis difficult:
different speed and line reuse. We discuss different speed in type 2 (which also covers
type 1), and line reuse is discussed in types 3 and 4. Combining types 2 and 4, we can
easily derive the optimal solution for type 5.

6.1. Different Speed: Type 2
Example 6.1. A[a1i] +B[a2i], where a1 6= a2.

Type 2 allows only one reference for each array but each reference may have a differ-
ent speed. The array-iteration diagram for a type 2 loop is illustrated in Fig. 5, which

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

PICA: Processor Idle Cycle Aggregation A:13

a
rr

a
y
 e

le
m

e
n
ts

Iw Ip

p i

p i+k2

d

iteration

DAP PCP

c i+k3

Δi

0

L

Reused

in next tile

Fig. 6. Array-iteration diagram for type 3: two same-speed references to one array.

has two pairs of production and consumption lines. Production and consumption for
one array are independent of those for the other, since we assume that there is no
cache conflict (other than capacity misses) or aliasing between different arrays. We
approximate the cache behavior by assuming that the number of cache lines used by
each reference is proportional to its production rate. Therefore each reference is given
the following number of cache lines: Li = Lpi/

∑
j pj , where L is the total number of

cache lines and pi is the production rate of reference i. Then Iw can be easily computed
from the diagram as Iw = Li/pi = L/

∑
i pi.

Using the array-iteration diagram we can also show that there is no eviction of useful
cache lines for type 2. During the DAP phase (data transfer iterations 0 to Iw) the cache
will evict only those lines used in the previous tile, since the cache size is enough for
the newly fetched lines (shaded area in the figure). Consumption starts at Iw. During
the first ∆i iterations of a PCP phase, pj∆i lines are brought into the cache for each
array (where j is A or B), requiring the same number of lines to be evicted. At the
same time cj∆i lines become useless, which are the oldest ones not only among the
lines for the same array but also in the entire cache. The reason is as follows. From the
array-iteration diagram the time when the first cj∆i lines (thick red line segments in
the figure) were brought is between 0 and cj∆i/pj = γ ·∆i, which is the same for all the
references. Therefore all the (

∑
j cj)∆i lines that are now useless were brought before

γ ·∆i and thus are the oldest lines in the entire cache. Since pj < cj (i.e., more useless
lines than the new lines), it is guaranteed that no useful cache lines are evicted during
∆i iterations. Since ∆i can be any arbitrary integer between 1 and (Ip − Iw), there is
no eviction of useful cache lines in the PCP phase. Type 1 is a special case of type 2
and the same formula applies to type 1 as well.

6.2. Line Reuse with a Single Array: Type 3
Example 6.2. A[a i] +A[a i+ k1]

Figure 6 illustrates the array-iteration diagram with two overlapping references.
The cache lines accessed by the leading reference A[a i + k1] are also accessed after
some iterations by the trailing reference A[a i], assuming k1 > 0. Therefore there are
only one production line (the lower one) and only one consumption line for the two
references. Let d be the distance between the two references, which is defined in terms

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 Jongeun Lee et al.

a
rr

a
y
 e

le
m

e
n
ts

Iw Ip

d
1 iteration

DAP PCP

d
2

c i+k4

0t1
t2

Array A

Array B

Δi

p i

p i+k3

p i

p i+k5

c i+k6

Previous Period

L/2

L/2

Fig. 7. Array-iteration diagram for type 4: four references accessing two arrays all at the same speed.

of lines. At the beginning of DAP there are d useful lines in the cache, which are reused
from the previous tile, and production is performed according to the production line.
Consumption starts when the number of useful lines reaches L. Therefore from the
diagram the optimal value of Iw is given as Iw = (L− d)/p.

To show that this value of Iw does not violate the constraint, we consider two cases.
(i) PCP phase: During the first ∆i iterations of a PCP phase p∆i lines are newly
fetched, forcing the same number of lines to be evicted. At the same time the c∆i
oldest lines become useless. Since p < c, all the lines evicted during the PCP phase
are useless. Thus there is no eviction of useful lines in PCP. (ii) DAP phase: We have
to guarantee that all the d reused lines are preserved (not evicted) between succes-
sive tiles until it reaches Iw. This holds true if and only if the d reused lines are the
newest at the beginning of DAP, since by the end of DAP all from the previous tile
except d number of lines are evicted. We see from the diagram that the d reused lines
are indeed the most recently fetched ones in the previous tile (see the thick red line
segment). Thus there is no eviction of useful lines in the DAP phase.

6.3. Line Reuse with Multiple Arrays: Type 4
Example 6.3. A[a i] +A[a i+ k1] +B[a i] +B[a i+ k2]

Though type 4 is a simple extension of type 3, unlike in type 3, we cannot fully utilize
the cache at Iw. Figure 7 illustrates the array-iteration diagram of a type 4 loop, where
there are two arrays each accessed by two references. Since all the references have the
same speed, the production lines have one slope (p) and the consumption lines have
another (c). The distance between the references of an array is denoted by di and we
can assume without loss of generality that d2 be greater than d1 as indicated in the
figure.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

PICA: Processor Idle Cycle Aggregation A:15

At Iw the number of useful lines is the maximum: d1 + d2 + 2p Iw. For the maximal
use of the cache we would like this value to be equal to the total number of cache lines;
however, this cannot be done unless d1 = d2. The problem occurs in the DAP phase. In
DAP the question is whether all the di lines reused from the previous tile can remain
in the cache until Iw. Let t1 be (−d1/p) and t2 be (−d2/p). All the useful cache lines
at Iw have been fetched between t2 and Iw iterations, and can be classified as follows,
where negative iterations mean iterations into the previous tile.

— During t2 ∼ t1: p(t1 − t2) = d2 − d1 lines fetched from array B
— During t1 ∼ 0: p(−t1) = d1 lines each from arrays A and B
— During 0 ∼ Iw: p Iw lines each from arrays A and B

It is obvious that all the lines fetched after t1 will remain in the cache until Iw, since
there are only 2d1+2p Iw lines that are fetched after t1, which is less than d1+d2+2p Iw.
However, in order to make the (d2 − d1) lines from array B fetched between t2 and t1
remain in the cache until Iw, we have to make the same number of lines from array A
remain in the cache as well (the area filled in yellow)—there is no distinction between
the two arrays from the cache’s perspective. This is why we cannot fully utilize the
cache at Iw; we have to keep (d2 − d1) useless lines from array A as well. Thus the
optimal value of Iw is given as Iw = (L/N −maxi(di))/p = L/Np−maxi(di/p), where L
is the number of cache lines and N is the number of arrays in the loop.

To see that there is no eviction of useful lines in the PCP phase, consider the ∆i
iterations after Iw. During this time 2p∆i new lines are brought into the cache, forcing
the same number of lines to be evicted. Since in the steady state the two arrays are
symmetrical in the sense that the cache holds exactly the same number of lines from
each array, the cache will evict the oldest p∆i lines from each array. Since there are
at least c∆i lines that have become useless by then, all the evicted lines are indeed
useless. This proves that there is no eviction of useful cache lines in PCP.

6.4. Combining Different Speed with Line Reuse: Type 5
Example 6.4. A[a1 i] +A[a1 i+ k1] +B[a2 i] +B[a2 i+ k2]

Type 5 is the combination of type 2 and type 4. For the same reasons as in type 4 we
cannot fully utilize the cache at Iw for type 5 loops. To see exactly how many useless
lines must be added, let us consider two arrays and two references accessing each
array, as illustrated in Fig. 8. The production and consumption rates are p1 and c1 for
array A, and p2 and c2 for array B, respectively. The distance between the references
to each array is denoted by di. Let ti be (−di/pi) and tm be the minimum of t1 and
t2. Then the lines that remain in the cache at Iw are those and only those that were
fetched during tm and Iw. Therefore the number of lines at Iw is (Iw − tm)(p1 + p2),
which should be equal to the total number of cache lines. Thus the optimal value of
Iw is given as Iw = L/

∑
i pi + tm = L/

∑
i pi − maxi(di/pi), which is also the general

solution for all the five types.
It is not difficult to see that there is no eviction of useful lines in the PCP phase as

well. During ∆i iterations after Iw there are (
∑

j pj)∆i lines evicted from the entire
cache. The oldest pj∆i lines from each array have been brought into cache between tm
and tm+∆i iterations (regardless of the array) and already become useless, since there
are at least cj∆i lines from each array that have become useless. Therefore those pj∆i
lines will be evicted from each array and there is no eviction of useful lines in PCP.

7. FURTHER ENHANCEMENTS
In this section we extend the PICA technique in two significant ways, which makes
PICA applicable to a wider variety of important applications.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 Jongeun Lee et al.

a
rr

a
y
 e

le
m

e
n
ts

Iw Ip

d
1

iteration

DAP PCP

d
2

c1 i+k4

0t2
t1

Array A

Array B

Δi

p1 i

p1 i+k3

p2 i

p2 i+k5

c2 i+k6

Previous Period

Fig. 8. Array-iteration diagram for type 5: four references accessing two arrays, same speed for same array.

1: for (i = 0; i < X; i++) {
2: A[i] = A[i] + B[i]
3: }

Fig. 9. A simple loop with variable bounds, where “X” is a variable.

7.1. Variable Bounds
So far we have assumed that the bounds of a loop are constants, to make it easier to
derive our static analysis. However they are often variables in reality, as illustrated in
Fig. 9. Here we show that the PICA technique can be applied to certain types of loops
with variable bounds.

The variable “X” in our example is needed in two places for PICA transformation:
first to set up the prefetch engine, and second to determine the best code transforma-
tion for the loop. First, the prefetch engine needs to know exactly how many items of
each array to bring. In this example this issue can be resolved easily, since by the time
the program reaches the beginning of the loop, the variable “X” should be known, and
therefore this value can be used to program the prefetch engine. In general, however,
variable bounds may only be fixed later during the loop execution (e.g., “X” is modified
in the loop body), in which case the prefetch engine cannot be programmed correctly.
Thus we require that the bounds should be known before loop entry.

Second, variable bounds make it more challenging to find code transformations. Note
however that in our static analysis the two parameters needed to transform a loop (the
tile size and the wake-up parameter) are determined independently of the number of
iterations, assuming “X” is large enough. Different values of “X” affect only the number
of tiles, and not the tile size itself. This is because the tile size and the wake-up param-

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

PICA: Processor Idle Cycle Aggregation A:17

1: for (k = 1; k < NTIMES; k++) {
2: for (j = 0; j < 4; j++) {
3: avgtime[j] = avgtime[j] + times[j][k]
4: mintime[j] = MIN(mintime[j], times[j][k])
5: maxtime[j] = MAX(maxtime[j], times[j][k])
6: }
7: }

(a) Original loop copied from the Stream benchmark

1: setPrefetchArray times, #items, · · ·
2: startPrefetch
3: for (t = 1; t < NTIMES; t += T) {
4: procIdleMode w
5: M = min(t + T, NTIMES)
6: for (k = t; k < M; k++) {
7: for (j = 0; j < 4; j++) {
8: avgtime[j] = avgtime[j] + times[j][k]
9: mintime[j] = MIN(mintime[j], times[j][k])

10: maxtime[j] = MAX(maxtime[j], times[j][k])
11: }
12: }
13: }

(b) PICA can be applied to an outer loop
Fig. 10. PICA transformation for a loop nest.

eter are determined by the memory speed (memory access pattern) and the computa-
tion speed, and how long the loop is, is largely irrelevant. But since our scheme does
not allow variable parameters (e.g., variable wake-up time), the loop bounds should
be constant throughout one loop execution though different executions may assume
different sets of bounds.

It is worth mentioning that the same cannot be said about the basic PICA ver-
sion [Shrivastava et al. 2005]. This is because in the original PICA version, a loop
is divided into three sections—prolog, kernel, and epilog—and only the kernel is tiled.
This is to avoid a wrong wake-up parameter being used in the epilog, which could cause
a deadlock. The new PICA is robust, and even if a wrong wake-up parameter is used
in the last tile or epilog, it does not cause a deadlock, and that is why our PICA has
only the kernel part and does not need prolog or epilog, and also why we do not really
need the number of iterations of a loop in deriving PICA parameters.

In summary, to apply PICA it is required that the loop bounds must be fixed through-
out each loop execution and known before loop entry. The actual length of the loop is
irrelevant in making PICA transformations, but profitability requires that the loop be
long enough.

7.2. PICA for Nested Loops
So far we have considered the PICA transformation only for the innermost loop in a
loop nest. This was motivated by the much greater difficulty of large scale prefetching
as the number of loop levels increases. For instance, to prefetch an array that is ac-
cessed through multiple iterators in a loop nest, the prefetch engine should be able to
handle complex memory access patterns generated by various expressions involving
the multiple iterators. Even if we limit the array index expressions to be linear, it can

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 Jongeun Lee et al.

still include many different types of access patterns, which means more complicated
set up for the prefetch engine and more complex prefetch engine hardware.

Thus if we are constrained to a single loop level, the obvious choice would be the
innermost loop. However, it is not the only one, and applying PICA to an outer loop may
prove more effective. Consider the loop in Fig. 10(a), which is copied from the Stream
benchmark [McCalpin 1995]. The loop nest has two loop levels but the innermost loop
has only four iterations, which is simply too short for PICA. Consequently if we look
for innermost loops only, we will certainly miss the opportunity to apply PICA to this
kernel.

However, if we consider outer loops as well, the kernel turns out to be a perfect ex-
ample for PICA, as illustrated in Fig. 10(b). The code transformation used for the outer
loop in this example is not very different from the one for innermost loops, and indeed
they are the same except that the inner loop is treated like a single statement.7 How-
ever, applying PICA to an outer loop requires more caution due to the limitations the
prefetch engine may have. In our example, the “times” array is accessed sequentially
throughout the loop nest, which makes it trivial to set up the prefetch for it, as is the
case with the other three arrays. But in general an array access pattern may be more
complex (e.g., trapezoidal), and thus may be difficult or very inefficient to prefetch, re-
ducing the profitability of PICA. In summary, PICA can be applied to any loop level in
a loop nest as long as its inner-loops, if any, have constant bounds so that the PICA
parameters can be fixed. This is because a loop with constant bounds is effectively
the same as a sequence of statements. Again the loop level to which PICA is applied
does not have to have constant bounds as long as it is sufficiently long and the bounds
are fixed and known before the loop entry. The profitability of PICA transformation is
largely determined by the portion of memory accesses that are offloaded by prefetch, or
of the arrays sequentially accessed in the loop level where PICA is applied and below.8

An alternative method to apply PICA to the loop nest in Fig. 10(a) is first to switch
the order of loops and then to apply PICA to the inner loop. However that solution
changes the memory access pattern and therefore may have significant performance
impact. In our example the transposed loop has to perform four times as many memory
accesses as the original loop (once for each j), and therefore the runtime and energy
consumption will greatly increase. Applying PICA directly to an outer loop does not
interfere with memory access pattern optimizations that the compiler may have.

8. EXPERIMENTS
We now present our experimental results on the proposed PICA technique. We first de-
scribe our evaluation methodology. Next we demonstrate how PICA works through our
detailed simulation results, followed by experiments to validate our analytical model,
for steady-state as well as transient cases. Further we present our experimental re-
sults applying PICA technique to various kernels and nested loops, demonstrating
the effectiveness of our technique in reducing the energy of system for memory-bound
loops.

8.1. Experimental Setup
To evaluate the performance and energy consumption of PICA technique we use our
internally developed and validated XScale simulator. We have modeled this simulator
after the 80200 XScale Evaluation Board [Intel Corporation a], which is a full system,

7The example in Fig. 10(b) shows the prefetch of “times” array only (line 1), but the other three arrays can
be prefetched as well.
8We validate the claim on the correlation between profitability and the portion of prefetched memory ac-
cesses, through our experiments in Section 8.5.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

PICA: Processor Idle Cycle Aggregation A:19

Table IV. Energy per activity summary

Activity Energy or Power
Processor power at Run state 450 mW
Processor power at MyIdle state 50 mW
Bus energy per transaction 9.46 nJ
Memory energy per transaction 32.5 nJ

encompassing not only an XScale processor core and caches, but also an AMBA bus
and an SDRAM main memory. We have modeled the entire system at the cycle level,
up to the behavior of each pipeline stage, and validated it against the 80200 board
to be accurate within 7% on average in our cycle count measurements. Our model-
ing is done in C++ and very extensive, including almost all architectural components
such as all functional units, architectural and status registers, all 7 pipeline stages
and 12 pipeline latches, dynamic branch predictor, and I- and D-caches with their sub-
structures, plus AMBA bus and memory controller FSM. Our simulator also generates
energy estimation for the processor, bus, and memory subsystem. For our study we
have extended the simulator to model the prefetch engine and to handle the new PICA
instructions.

Another critical element in our evaluation methodology is the XScale compiler,
which we have generated from the industry-standard GCC compiler collection ver-
sion 3.1 [GNU] along with accompanying binary utilities and C library. We have only
modified the assembler, which is extended to support the PICA instructions.

For each application we perform PICA transformation manually by adding PICA in-
structions in inline assembly. Then we compile both the original and the transformed
code with high optimization option (“-O3”). The configuration of the system we sim-
ulate is as follows. XScale L1 data cache is configured to be 32-way 32K bytes with
32-byte lines unless noted otherwise. The instruction cache has the same architectural
parameters. The cache employs the write-back and first-in-first-out policy. The mem-
ory bus is 64-bit wide and connected to a single-data-rate SDRAM. We assume the
processor-memory clock ratio of 8.

Table IV lists our energy model parameters. The XScale processor can be in either
Run state9 or MyIdle state. A transition between the two states takes 180 cycles, dur-
ing which the processor is assumed to dissipate an equivalent of the Run state power
(450 mW). The MyIdle state is identical to the XScale’s IDLE state except that the
data cache and the prefetch engine remain active. As in our earlier work [Shrivastava
et al. 2005], we assume the data cache power and the prefetch engine power to be 28
mW and about 1 mW, respectively, the latter of which we obtained from our synthesis
results of the prefetcher. Thus, together with XScale’s memory clock power of 13 mW,
the MyIdle power becomes 42 mW, but we conservatively take it for 50 mW. In addi-
tion to the processor power we consider memory access energy, which is (9.46+32.5) nJ
per every transaction, or per every cache line. While we look at dynamic power only,
including leakage power will only increase power savings by our technique.

8.2. Simulation Based PICA Exploration
Our deadlock-free PICA technique enables exploration-based optimization of the PICA
parameters, T and w. Here we present exploration results to search for the optimal
value of T for a fixed value of w.

Figure 11 shows variations in the energy consumption (in mJ) of a type 1 loop with
three read references, as T is varied from 50 to 325 iterations. The energy consump-
tion is shown separately for the system, the memory and bus, and the processor core.

9If the processor stalls in the Run state, it consumes only 112.5 mW.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 Jongeun Lee et al.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

50 75 100 125 150 175 200 225 250 300 325

E
n

er
g

y
 (

m
J

)

Total

Mem+bus

Proc

Fig. 11. Energy consumption for different values of T .

0

2

4

6

8

10

12

14

16

50 75 100 125 150 175 200 225 250 300 325

T
h
o
u
sa

n
d
s

Miss

Pending

Hit

Fig. 12. Cache statistics for different values of T .

Table V. Calculation of optimal parameters

Type pi; di
∑

pi D C γ Iw w T
1 1/2, 1/2, 1/2 1.5 48 9 5.3 150 225 184
2 1/4, 1/2, 1 1.75 56 8 7 128 225 150
3 1; 64 1 32 8 4 217 217 289
4 1, 1; 32, 64 2 64 13 4.9 104 209 131
5 1/2, 1; 32, 64 1.5 48 14 3.4 142 213 200

The system energy is minimized at T = 175, which is the optimal parameter for this
loop from the energy perspective. Compared to the non-PICA case (execution without
PICA) the optimized PICA technique reduces the system energy by 47% from 0.79 mJ
(not shown) to 0.42 mJ. What is interesting here is that the energy consumption in sub-
optimal PICA cases can be significantly higher than that of the non-PICA case. This
is because in suboptimal PICA cases, the number of external memory accesses can
be increased due to some cache lines evicted too early and brought back again on the
processor’s request. This can be clearly seen in the cache access breakdown in Fig. 12.
While the number of total data cache accesses remains the same, the hit and miss
ratio varies greatly with different values of T . The increased cache misses translate
to increased runtime and energy, which explains the increased energy in the memory
and bus subsystem for non-optimized PICA cases.

8.3. Validation of Analytical Model (Steady-State)
We perform the validation comparing analysis-predicted results against exploration-
found results. Based on the problem classification we generate a loop for each of the
first five types. References included in those loops are read-only. Table V lists the main

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

PICA: Processor Idle Cycle Aggregation A:21

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

50 75 100 125 150 175 200 225 250 300 325

E
n

er
g

y
 (

m
J

)

7168

6144

5120

4096

3072

2048

1024

T (iterations)

Fig. 13. Energy for different T (type 5).

Table VI. Exploration (with asterisk) vs. analysis results. Energy in mJ.

Type T ∗ T E∗ E E0 (E − E∗)/E∗

1 175 184 0.577 0.596 1.106 3.3%
2 150 150 0.674 0.674 1.312 0.0%
3 250 289 0.383 0.399 0.884 4.2%
4 125 131 0.786 0.813 1.470 3.4%
5 175 200 0.594 0.623 1.121 4.9%

parameters of the five loops and their predicted optimal values of w and T using our
analytical model. Then we also perform extensive parameter exploration on T using
simulation. The reason why we chose to perform parameter exploration only on T and
not on w is that in many cases the optimal values of w can be found trivially—the
number of available cache lines minus, if any, the number of reused lines—and does not
vary much depending on the application (see Table V). For the validation experiments
we use a smaller cache with only 256 lines to reduce the search space for exploration.
Out of the 256 lines we assume that only 225 lines are available to the PICA technique.
But since we use the same values of w both in the analysis and in the exploration,
it does not invalidate our experiments. To see the stead state effect we also vary the
number of iterations from 1024 to 7168.

Figure 13 plots the system energy consumption (in mJ), which is the sum of proces-
sor energy and bus and memory energy, for different values of T and iteration count
(N) for type 5. Other results are similar to the type 5 results, and runtime results are
also similar to energy results. Table VI compares the exploration-found results with
analysis-predicted values for all the five cases. Through exploration we first find the
optimal parameters (T ∗) and their system energy (E∗). Then the analytically computed
parameters (T) are used in a simulation to find the system energy for those parameters
(E). E0 is the system energy without PICA. These comparisons are made for N = 7168.
In all these cases we observe that in the steady state analytically found values are
relatively close to experimentally found values (the largest difference is 39 for type 3).
More importantly, the difference in the energy is very small, all less than 5%, and far
less than the differences from E0. This demonstrates that our analytical model can
predict with accuracy the steady-state optimal PICA parameters for the five classes
of loops. For more complicated loops (such as those with conditionals inside the loop
body) we can employ simulation-based exploration, even when our analytical model
can be used to determine the starting point as well as to reduce the search space.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 Jongeun Lee et al.

Table VII. Validation results varying N to see transient effect

N #line req. w T Tact w∗ T ∗ T ∗
act

48 54 54 (86) 48 50 (50) 48
96 108 108 (173) 96 100 (100) 96

192 216 216 (346) 192 160 (200) 192
384 432 256 (410) 384 240 (390) 384
768 864 256 410 410 240 480 480

1536 1728 256 410 410 220 520 520

Note: Tact is the minimum of T and N . Asterisk indicates explo-
ration results.

Table VIII. Kernel description

Name Description Array Dimension Type
Matrix Matrix multiplication Multi 2
LMS Least Mean Square Single 4

Swim1 Weather prediction Multi 4
Swim2 Weather prediction Multi 4
Swim3 Weather prediction Single 1
SNR Signal-to-Noise Ratio Single 1

LowPass Image low pass filter Multi 3
GSR Gauss-Seidel Relaxation Multi 5

Laplace Edge enhancement Multi 4
Compress Image compression Multi 3

SOR Succ. Over-Relaxation Multi 4
Wavelet Image compression Single 3

8.4. Transient Effect for Smaller N
While our analytical model can predict optimal parameters for the steady state, loops
in real applications may not reach the steady state. To study the effect of small N , we
apply PICA to a matrix multiplication loop and vary the iteration count along with the
array size, both of which are denoted by N . We use data cache with 256 lines. Table VII
compares the parameters predicted by our model with exploration results. Column 2
lists the maximum number of line requests that can be made per iteration, which is the
upper bound of w. Another upper bound of w is the number of cache lines. Since our
analytical model does not make use of the iteration count information, the T values
may be predicted to be greater than N though any T that exceeds N is effectively
reduced to N . Tact denotes the reduced value. Through exploration we find the optimal
parameters, denoted by w∗ and T ∗. Again, T ∗ greater than N should be taken to mean
N , which is denoted by T ∗

act. Comparing w and Tact with their asterisk-ed versions
indicates that the discrepancy between our analytical model and exploration results
is quite limited, even for smaller N . Also, our experimental results confirm once again
that analytically found parameters can be good starting points for exploration-based
fine tuning.

8.5. Benchmark Results
To demonstrate the usability of our enhanced PICA technique we apply PICA to
memory-bound kernels in various benchmarks. We use kernels from DSPstone [Zivo-
jnovic et al. 1994], SPEC 2000 [SPEC 2000], and multimedia applications. The
deadlock-free mechanism allows the PICA technique to be applied to various loops
and complex array reference patterns as listed in Table VIII. Eight of them use mul-
tidimensional arrays in a non-trivial way. More interestingly, all the kernels we take
indeed belong to the first five types in our loop classification as shown in the table, al-
though for this classification we have to exclude the memory accesses that are beyond
the scope of prefetching, such as writes, irregular memory accesses, and arrays that
are already in the cache before loop execution.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

PICA: Processor Idle Cycle Aggregation A:23

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

(a) System energy reduction

0%

20%

40%

60%

80%

100%

120%
CPU PFE

(b) Memory access profile

Fig. 14. PICA can significantly reduce the energy consumption of various kernels.

For each kernel we optimize the PICA parameters for system energy, using both an-
alytic method and exploration-based fine-tuning together. It took about 1 ∼ 2 hours of
manual work to analyze each application and instrument the code for PICA optimiza-
tion, and the exploration-based fine-tuning took typically less than one hour, thanks to
the reduced search space by our analytical method.

Figure 14(a) shows the system energy reduction by our PICA technique over when
PICA is not used. The reported system energy includes all the memory accesses (e.g.,
irregular memory accesses and writes), and we also report the ratio between prefetch
engine-issued accesses vs. CPU-issued (e.g., irregular) in Fig. 14(b). The experimen-
tal results indicate that (1) our PICA technique is applicable to many memory-bound
loops with consistent system energy improvement, (2) when the parameters are fully
optimized, using exploration our PICA technique can reduce the system energy up to
42% (on average 21%) compared to without PICA.

While energy improvement depends on a number of factors including γ (= D/C),
cache size, and iteration count, Matrix kernel suggests that γ is very important. In
Matrix, where two 2D arrays are multiplied, one array has to be accessed on the higher
dimension. This greatly increases D since for every iteration at least one line of cache
has to be fetched from memory, which is very rare in other applications. Thus if these
memory accesses can be delegated to the prefetch engine, CPU will be relieved of much
of its work and the processor energy, as well as the system energy, can be reduced
considerably.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 Jongeun Lee et al.

0

0.2

0.4

0.6

0.8

1

1.2

Original Unroll LI

w/o PICA w/ PICA

0

0.2

0.4

0.6

0.8

1

1.2

Original Unroll LI

w/o PICA w/ PICA

(a) stream (b) applu

1.0 0.9

6.1

0.6 0.6

5.1

0

1

2

3

4

5

6

7

Original Unroll LI

w/o PICA w/ PICA

(c) bwav

Fig. 15. System energy reduction of nested loops by PICA.

Figure 14(b) plots the memory access profile with our PICA technique, i.e., how
many accesses are generated by the prefetch engine (PFE) vs. by the CPU. The scale
is normalized to the number of memory accesses generated without PICA (measured
in transactions). Thus in the graph every total being near 100% means that the total
number of memory accesses generated is roughly the same irrespective of PICA. With
PICA, however, the more memory accesses the PFE does, the larger the energy saving
will be. Indeed we see a strong correlation between energy reduction in Fig. 14(a) and
the PFE portion of memory access profile in Fig. 14(b).

8.6. Nested Loop Results
To evaluate the effectiveness of PICA for nested loops we use multiple kernels from
the Stream [McCalpin 1995] and SPEC benchmarks. First, Fig. 15(a) shows our simu-
lation results comparing the system energy of the original vs. transformed versions of
the stream loop, which are listed in Fig. 10. The y-axis is normalized to the energy con-
sumption of the original loop. Compared to the original (the left-most bar), our PICA
transformation (the next one) can achieve about 25% system energy reduction in this
case. This reduction is very valuable because if PICA were confined to innermost loops
only, the original loop nest wouldn’t even have been considered for PICA as it has only
four iterations in the innermost loop.

While the innermost loop of Fig. 10 may not be a good candidate for PICA, it certainly
is one for loop unrolling. Thus we apply loop unrolling to the original loop (3rd bar in
the graph) and compare it with the PICA version (the next bar). Whereas loop unrolling
improves energy consumption by 11% in this case, further applying PICA gives 34%
energy reduction over the original version.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

PICA: Processor Idle Cycle Aggregation A:25

We also apply loop interchange to the original loop nest, which gives an energy re-
duction (5th bar) that is even greater than that of applying loop unrolling only, and
similar to that of applying nested-loop PICA to the original loop. After loop inter-
change the loop nest has a new inner loop with a very high trip count, allowing for
PICA transformation. Applying PICA further reduces the energy consumption. Com-
bining loop interchange and PICA gives the highest energy reduction of 50% in this
case. However, this is not always the case as shown in the other examples.

Fig. 15(b) and (c) show the results of applying the same set of transformations to
applu (from SPEC 2000) and bwav (from SPEC 2006), respectively. Applu has a very
similar access pattern as the stream loop, but they display very different energy re-
sults when loop transformations are applied. One major reason behind their opposite
behavior is that whereas the number of data cache misses in stream is almost the
same before vs. after loop interchange, in the case of applu, loop interchange increases
data cache misses by about 13%—this is all in the absence of PICA transformation.
Such different outcomes are very difficult to predict without elaborate analysis or sim-
ulation. In all these cases, however, PICA manages to reduce the system energy. This
is because PICA, through its own loop restructuring and prefetching, can effectively
rearrange the memory accesses in a way that maximizes data reuse in the cache. The
last example, bwav, shows an even starker difference. In this case loop interchange
destroys data reuse, greatly increasing both execution time and energy consumption
of the application, although PICA still manages to reduce system energy consistently
compared to without PICA.

As demonstrated by the above experimental results, loop transformations can some-
times worsen the memory access pattern and it is not always obvious to correctly pre-
dict what is the best set of loop transformations. Thus although loop transformations
can increase the scope of innermost-loop PICA in general, nested-loop PICA further
increases the scope and effectiveness of PICA beyond that of innermost-loop PICA.

9. CONCLUSION
In this paper we presented the PICA approach. PICA is a compiler-microarchitecture
cooperative technique that can effectively utilize the memory stalls of a processor to
achieve low power with little performance overhead. Our enhanced PICA greatly im-
proves the robustness and applicability of processor stall aggregation based energy
reduction techniques. First our enhanced PICA guarantees functional correctness for
any set of parameters, which facilitates exploration-based parameter optimization.
This allows us to fine tune optimal PICA parameters for any memory-bound loop, thus
greatly improving applicability of the technique. Second, since exploration based PICA
parameter optimization may be time consuming, we developed static analysis for most
common types of loops. Third, we extend PICA to multi-nested loops and loops with
variable bounds. We discuss the conditions for eligible loops. This makes PICA appli-
cable to a wider class of important applications.

Being based on large scale prefetching, our work can provide the basis to study the
effect of cache pollution in large scale prefetching, which we intend to further optimize.
We also intend to research into multi-dimensional prefetch and PICA transformations,
which will become necessary in multi-nested loops with complex memory access pat-
terns.

ACKNOWLEDGMENT

This work was supported in part by Basic Science Research Program through the National Research Foun-
dation of Korea (NRF) funded by MEST, under grant 2010-0011534, and in part by funding from National

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 Jongeun Lee et al.

Science Foundation grants CCF-0916652, CCF-1055094 (CAREER), NSF I/UCRC for Embedded Systems
(IIP-0856090), Raytheon, Intel, Microsoft Research, SFAz, and Stardust Foundation.

REFERENCES
AZEVEDO, A., ISSENIN, I., CORNEA, R., GUPTA, R., DUTT, N., VEIDENBAUM, A., AND NICOLAU, A. 2002.

Profile-based dynamic voltage scheduling using program checkpoints. In DATE ’02: Proceedings of the
conference on Design, automation and test in Europe. IEEE Computer Society, Washington, DC, USA,
168.

BENINI, L., BOGLIOLO, A., AND MICHELI, G. 2000. A survey of design techniques for system-level dynamic
power management. IEEE Transactions on VLSI Systems 8, 3, 299–316.

BROCKMEYER, E., MIRANDA, M., CORPORAAL, H., AND CATTHOOR, F. 2003. Layer assignment techniques
for low energy in multi-layered memory organisations. In Proc. 6th ACM/IEEE Design and Test in
Europe Conf. Munich, Germany, 1070–1075.

BURD, T. D. AND BRODERSEN, R. W. 2000. Design issues for dynamic voltage scaling. In ISLPED ’00:
Proceedings of the 2000 international symposium on Low power electronics and design. ACM, New York,
NY, USA, 9–14.

CHATTERJEE, S., PARKER, E., HANLON, P. J., AND LEBECK, A. R. 2001. Exact analysis of the cache behav-
ior of nested loops. SIGPLAN Not. 36, 286–297.

CHOI, K., SOMA, R., AND PEDRAM, M. 2005. Fine-grained dynamic voltage and frequency scaling for precise
energy and performance tradeoff based on the ratio of off-chip access to on-chip computation times.
IEEE Transactions on Computer-Aided Design of Circuits and Systems 24, 1, 18–28.

GHOSH, S., MARTONOSI, M., AND MALIK, S. 1997. Cache miss equations: an analytical representation of
cache misses. In Proceedings of the 11th international conference on Supercomputing. ICS ’97. ACM,
New York, NY, USA, 317–324.

GNU. GNU Compiler Collection. GNU. [Online]. Available: http://gcc.gnu.org/.
GOWAN, M. K., BIRO, L. L., AND JACKSON, D. B. 1998. Power considerations in the design of the alpha

21264 microprocessor. In Design Automation Conference. 726–731.
Intel Corporation. Intel 80200 Processor based on Intel XScale Microarchitecture. Intel Corporation. [Online].

Available: http://www.intel.com/design/iio/manuals/273411.htm.
Intel Corporation. Intel XScale(R) Core: Developer’s Manual. Intel Corporation. [Online]. Available:

http://www.intel.com/design/intelxscale/273473.htm.
ISSENIN, I., BROCKMEYER, E., MIRANDA, M., AND DUTT, N. 2004. Data reuse analysis technique for

software-controlled memory hierarchies. In Proc. of Design, Automation and Test in Europe. 202–207.
KANDEMIR, M. AND CHOUDHARY, A. 2002. Compiler-directed scratch pad memory hierarchy design and

management. In ACM/IEEE Design Automation Conference. 690–695.
LEE, J. AND SHRIVASTAVA, A. 2008. Static analysis of processor stall cycle aggregation. to appear in ACM

CODES+ISSS. Also available: http://www.public.asu.edu/~ashriva6/papers/pica.html.
LEE, J.-E., KWON, W., KIM, T., CHUNG, E.-Y., CHOI, K.-M., KONG, J.-T., EO, S.-K., AND GWILT, D.

2005. System level architecture evaluation and optimization: an industrial case study with AMBA3
AXI. Journal of Semiconductor Technology and Science 5, 4, 229–237.

MCCALPIN, J. D. 1995. Memory bandwidth and machine balance in current high performance computers.
IEEE Computer Society Technical Committee on Computer Architecture (TCCA) Newsletter, 19–25.

MOWRY, T. C., LAM, M. S., AND GUPTA, A. 1992. Design and evaluation of a compiler algorithm for
prefetching. In International Conference on Architectural Support for Programming Languages and Op-
erating Systems. Vol. 27. 62–73.

RABAEY, J. AND PEDRAM, M., Eds. 1996. Low Power Design Methodologies. Kluwer Academic Publishers,
Norwell, MA.

SHRIVASTAVA, A., EARLIE, E., DUTT, N., AND NICOLAU, A. 2005. Aggregating processor free time for en-
ergy reduction. In CODES+ISSS ’05: Proceedings of the 3rd IEEE/ACM/IFIP international conference
on Hardware/software codesign and system synthesis. ACM, 154–159.

SHRIVASTAVA, A., LEE, J., AND JEYAPAUL, R. 2010. Cache vulnerability equations for protecting data in
embedded processor caches from soft errors. ACM SIGPLAN Notices 45, 4, 143–152.

SPEC 2000. Standard Performance Evaluation Corporation. SPEC, http://www.spec.org/.
UNSAL, O. S., KOREN, I., KRISHNA, C. M., AND MORITZ, C. A. 2002. Cool-fetch: Compiler-enabled power-

aware fetch throttling. IEEE Computer Architecture Letters 1.
VANDERWIEL, S. P. AND LILJA, D. J. 2000. Data prefetch mechanisms. ACM Computing Surveys 32, 2,

174–199.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

PICA: Processor Idle Cycle Aggregation A:27

VERDOOLAEGE, S., SEGHIR, R., BEYLS, K., LOECHNER, V., AND BRUYNOOGHE, M. 2007. Counting integer
points in parametric polytopes using Barvinok’s rational functions. Algorithmica 48, 1, 37–66.

ZIVOJNOVIC, V., MARTINEZ, J., SCHLÄGER, C., AND MEYR, H. 1994. DSPstone: A DSP-oriented bench-
marking methodology. In Proc. of ICSPAT ’94.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

