
LUCI: Lightweight UI Command Interface
Guna Lagudu

Arizona State University
Tempe, USA

glagudu@asu.edu

Vinayak Sharma
Arizona State University

Tempe, USA
Vinayak.Sharma@asu.edu

Aviral Shrivastava
Arizona State University

Tempe, USA
aviral.shrivastava@asu.edu

Abstract
Modern embedded systems are powered by increasingly
powerful hardware and are increasingly reliant on Artifi-
cial Intelligence (AI) technologies for advanced capabilities.
Large Language Models (LLMs) are now being widely used
to enable the next generation of human-computer interac-
tion. While LLMs have shown impressive task orchestration
capabilities, their computation complexity has limited them
to run on the cloud – which introduces internet dependency
and additional latency. While smaller LLMs (< 5𝐵 parame-
ters) can run on modern embedded systems such as smart-
watches and phones, their performance in UI-interaction and
task orchestration remains poor. In this paper we introduce
LUCI:Lightweight UI Command Interface. LUCI follows a
separation of tasks structure by using a combination of LLM
agents and algorithmic procedures to accomplish sub-tasks
while using a high-level level LLM-Agent with rule-based
checks to orchestrate the pipeline. LUCI addresses the limita-
tions of previous In-Context learning approaches by incorpo-
rating a novel semantic information extraction mechanism
that compresses the frontend code into a structured interme-
diate Information-Action-Field (IAF) representation. These
IAF representations are then used by an Action Selection
LLM. This compression allows LUCI to have a much larger
effective context window along with better grounding due
to the context information in IAF.
Pairing our multi-agent pipeline with our IAF represen-

tations allows LUCI to achieve similar task success rates
as GPT-4Von the Mind2Web benchmark, while using 2.7B-
parameter text-only PHI-2 model. When testing with GPT
3.5, LUCI shows a 20% improvement in task success rates
over the state-of-the-art (SOTA) on the same benchmarks.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
LCTES ’25, Seoul, Republic of Korea
© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-1921-9/25/06
https://doi.org/10.1145/3735452.3735536

CCS Concepts: • Human-centered computing → User
interface management systems; • Theory of computa-
tion → Parsing.

Keywords: LLM, Embedded Systems, System Automation
ACM Reference Format:
Guna Lagudu, Vinayak Sharma, and Aviral Shrivastava. 2025. LUCI:
Lightweight UI Command Interface. In Proceedings of the 26th ACM
SIGPLAN/SIGBED International Conference on Languages, Compilers,
and Tools for Embedded Systems (LCTES ’25), June 16–17, 2025, Seoul,
Republic of Korea. ACM, New York, NY, USA, 10 pages. https://doi.
org/10.1145/3735452.3735536

1 Introduction
In today’s connected technology landscape, embedded sys-
tems play a critical role. Most Internet of Things(IoT) devices
are powered by increasingly capable embedded systems. The
prevalence of these smaller embedded devices, such as smart-
watches and the newly burgeoning field of “smart glasses”,
requires a rethinking of what human-computer interaction
looks like and what next-generation operating systems for
embedded systems may look like. A key challenge here is
the ability to efficiently bridge the gap between interfaces
designed for larger devices that utilize touch or keyboard-
/mouse input and the smaller devices that rely on voice or
minimal gesture and button inputs.

Natural Language Processing (NLP) has been a key build-
ing block in these voice-first user interfaces, such as those
found in smart speakers and smart watches, with digital as-
sistants such as Google Assistant, Siri, and Alexa serving as
the first interfaces for user interaction on voice-only devices.
The advent of large language models (LLMs) has ushered
a new era of voice command-focused devices, such as the
Rabbit R1. We define ‘voice command-focused devices’ as de-
vices whose interface primarily relies on parsing and acting
on voice commands from a user along with any additional
context information such as images. However, while these de-
vices have proved extremely powerful in their limited scope,
they lack the ability to truly interact with the Web and serve
as a true replacement for pure touch and keyboard/mouse
interfaces.

A key challenge in this domain is the ability of an LLM to
convert user prompts into actions. Most tools and websites
have been designed for humans and create challenges for
LLMs to navigate. The first approaches attempted to extend
the coding capabilities of LLMs to work with APIs to per-
form tasks [3]. They adopted a Planner, Actor and Reporter

182

https://orcid.org/0009-0002-1886-2648
https://orcid.org/0009-0009-5633-4003
https://orcid.org/0000-0002-1075-897X
https://doi.org/10.1145/3735452.3735536
https://doi.org/10.1145/3735452.3735536
https://doi.org/10.1145/3735452.3735536

LCTES ’25, June 16–17, 2025, Seoul, Republic of Korea Guna Lagudu, Vinayak Sharma, Aviral Shrivastava

LUCI
Interface

User Confirmation & Feedback

Text-to-Speech
Engine

User
Interaction with

wider internet

Figure 1. LUCI use-case diagram. LUCI would enable embedded devices to interact with a variety of applications and websites
while migitating the limitations of their input mechanisms.

structure to provide the necessary context to the LLMs, i.e.,
grounding, allowing them to interact with the environment
(computer systems). However, API-based methods required
the creation of natural language instructions for the API of
each application, which limited their generalization across
multiple applications. In-Context Learning(ICL) was used to
remedy this by providing the necessary context on relevant
prompts rather than pre-training. However, this was limited
by the context length of the LLMs.
Simultaneously, another avenue of research was LLM

frameworks [4] to manipulate the graphic user interface
(GUI). These focused on teaching LLMs to interact with the
GUI front-end of applications, forgoing the need for specific
APIs and leading to better generalization. Early Reinforce-
ment Learning (RL) on Hypertext Markup Language(HTML)
struggled with the selection of relevant UI elements that re-
quired supervised training. In this work, our aim is to remedy
these challenges and create a lightweight LLM GUI control
framework.
In order to remedy challenges with identifying UI ele-

ments from HTML, a multi-modal model was introduced
that operated on both text and image inputs such as GPT
4V [23]. These models were able to achieve state-of-the-art
performance on the Mind2Web benchmark. However, these
models were limited by their large size and the need for fine-
tuning on a large multimodal dataset. This large size makes
it impossible to run these models locally on current and near-
term embedded systems, leading to internet dependency. A
direct consequence of this dependency are continuous server
costs and latency issues.
We introduce a novel framework - Lightweight UI Com-

mand Interface (LUCI), that enables multi-application GUI-
based orchestration via an ensemble of lightweight LLMs.
The LUCI framework is designed to be modular, hierarchi-
cal, and OS-agnostic, enabling it to work seamlessly across
both native and web interfaces. This is achieved by using
a separation of responsibilities model to decompose tasks
into sub-tasks and recursively solve them with a variety of
LLM and rule-based components. Our approach is based on
the insights of multi-agent based LLM pipelines [8] and the
Mixture of Experts models [14]. LUCI uses a set of fine-tuned

models with specialized prompts to handle different aspects
of the system such as high-level planning, tool selection
and action selection. The information flow between these
models is shown in Figure 2. LUCI adopts an application
centric approach to planning, where the system first iden-
tifies the most relevant application that will be needed to
address the given task prompt. This both greatly simplifies
the planning as well as serves as effective grounding for
downstream tasks. A ‘conversational model’ then generates
sub-tasks for the prompt based on the selected applications.
These subtasks are processed iteratively. Additionally, in or-
der to efficiently parse the front-end code from applications,
we developed a rule-based semantic parser which we refer
to as ‘UI Extractor’. This parser compresses the code into an
intermediate representation known as Information-Action-
Field (IAF) format. This allows LUCI to greatly increase the
effective attention window of the lightweight LLMs. Overall,
the key contributions of LUCI can be summarized as:

1. An application-centric planning framework for fast
and efficient model grounding for adaptable multi-
application task planning.

2. A modular OS-agnostic framework capable of scaling
across native and web interfaces.

3. A rule-based semantic parser for efficient compression
of front-end code into structured IAF representations,
allowing for larger effective attention windows and
better task grounding.

4. A multi-agent framework for task orchestration, en-
abling LUCI to achieve state-of-the-art performance
on the Mind2Web benchmark while using lightweight
LLMs.

Our experiments show that LUCI achieves a 99 + % suc-
cess rate on the MiniWoB++ benchmark. Additionally, LUCI
achieves an upto 31% improvement in Step SR and 24% im-
provement in OP F1 Score over GPT-4V on the Mind2Web
benchmark while using GPT 3.5. When using the 2.7𝐵 param-
eter PHI-2 model, LUCI demonstrates 10% increase in step
SR and 7.9% increase in OP F1 score over GPT 4V while 103
times fewer parameters 1.8- Trillion (GPT 4V) vs 3-Billion
parameters (PHI-2).

183

LUCI: Lightweight UI Command Interface LCTES ’25, June 16–17, 2025, Seoul, Republic of Korea

Figure 2. Architecture of LUCI. Given user instruction and the conversational context, the Tool Selector first selects a tool
from the given GUI toolset and opens the applications. The conversational model then generates a solution outline, which is a
text description of the list of sub-tasks needed to solve the task. Next, the Task Verifier filters redundant tasks in the solution
outline based on action feedback from previously executed tasks and future sub-tasks. Then, a rule-based UI Extractor extracts
UI elements from the GUI application. UI Selector selects appropriate UI elements from the list of UI elements generated by
the UI extractor for the given sub-task. Lastly, the Action Executor performs an action on the selected UI element based on the
type of UI element and generates the action feedback.

2 Related Work
2.1 Building Agents With LLMs
Large language models (LLMs) have offered promising av-
enues for leveraging natural language in decision-making
tasks.Huang et al. [11] showed LLMs can plan and perform
basic domestic activities by mapping embeddings to a prede-
fined list of actions. However, their study lacks specificity for
contemporary activities. Ahn et al. [1] introduced SayCan,
grounding actions by multiplying candidate action probabili-
ties with FLAN [20] and the action’s value function as an in-
dicator of suitability. Huang et al. [12] extended SayCan with
Inner Monologue, adding a feedback loop to select actions
according to the current state. However, Inner Monologue
relies on a pre-trained, robot policy conditioned on language
with limited flexibility, impeding generalization across vari-
ous domains. Zeng et al. [22] combined LLMs conditioned
on a robot policy along with a vision-language model (VLM)
for open vocabulary pick-and-place tasks. Dasgupta et al.
[3] utilized Chinchilla [10] as a planner in PycoLab, requir-
ing RL pre-training for their actor module to follow natural
language instructions. Moreover, previous methods were re-
stricted to the necessity for fine-tuning. Recently, enhancing
LLM effectiveness involves integrating them with APIs for
utilizing external tools like information retrieval systems,
code interpreters, and web browsers [6].

2.2 Automated GUI Tasks
Recent research [9] proposes employing large language mod-
els (LLMs) to read HTML code and vision transformers for
extracting screenshot features, using a few-shot in-context
method yielding promising results without prolonged RL

training. Nonetheless, large volumes of expert demonstra-
tion data are still needed to fine-tune LLMs.
Numerous ongoing initiatives are dedicated to the devel-

opment of computer agents and benchmarks. Among the
sophisticated benchmarks available, such as Mind2Web [4]
and Webshop [21]. Mind2Web [4] offers environments span-
ning diverse domains, websites, and various tasks extracted
from live websites, complete with action trajectory anno-
tations. So, we have chosen Mind2Web for our real-world
evaluation. To solve the Mind2Web benchmark, MindAct
utilized an element-ranking model to extract the top 50 rel-
evant elements as clean observations. It employs MCQ to
recursively query the LLM for action selection from five al-
ternative candidates until either all options are wrong or just
one action is selected. While MCQ-formatted exemplars per-
form better than direct generation, MindAct frequently has
trouble selecting the right element [4]. Another approach
involves the use of language and vision transformers. Recent
works in this works include WebGUM [5] and Gpt-4V [23].
WebGUM [5] fine-tunes Language Multimodal Model (LMM)
with a huge multimodal corpus for web agents, allowing web
agents to observe both HTML and the captured screenshot
but requiring a lot of expert demonstrations for fine-tuning.
Gpt-4V [23] uses LMMs to observe both HTML and captured
screenshots to generate actions but still lacks sufficient visual
perception abilities to serve as an effective agent.

3 LUCI Architecture
The LUCI framework is composed of 7 major components
consisting of both rule-based and LLM components. The flow
of information between these components is highlighted in
Figure 2. The components are as follows:

184

LCTES ’25, June 16–17, 2025, Seoul, Republic of Korea Guna Lagudu, Vinayak Sharma, Aviral Shrivastava

1. GUI Tool Set, which contains a list of GUI tools au-
thorized to be controlled by the LLM.

2. Tool Selector, which selects GUI tools from the GUI
toolset required to accomplish given user instructions.

3. Conversational Model, which is responsible for in-
teracting with users and generating a solution outline
based on the GUI tool selected by the tool selector, user
instruction along its conversational context.

4. Task Verifier, which filters the redundant sub-tasks
in the solution outline using action feedback.

5. UI Extractor, which extracts the information of UI
elements from the selected GUI tool.

6. UI Selector, which selects appropriate UI elements
from the list of UI elements generated by UI extractor
for the given sub-task.

7. Action Executor, which performs an action on se-
lected UI elements based on the type of UI element
and returns the action feedback.

A more detailed exploration of each component is provided
in the following sections.

3.1 Prompt Components
The prompt examples of the various components of LUCI
consist of 5 entites- (1). User Prompt: These are the requests
from the user, (2). System Prompt: these are system generated
pre-formatted prompts used to ground and provide context
to the LLMs, (3). System : algorithmic components used to
call other components of LUCI, (4). System Response: The
responses from other system components, (5). Response: The
response of the LLM to the system prompt. Additionally, the
when passing values to the LLMs, the variables (marked by
$) are passed as values.

3.2 GUI Tool Set (G)
The GUI tool set (G) is the list of applications that LUCI
can access. It is provided to the Tool selector as a set G =

{G1,G2,G3...}. Our tests consider a set of 22 diverse appli-
cations. Additionally, including web browsers expands the
functionality via access to web apps.

3.3 Tool selector (TS)
The Tool Selector is an LLMmodel that selects the set of most
relevant applications from G based on the given user instruc-
tion. The model is inherently grounded due to providing G.
Additionally, the tool selector can return 2 special responses
| (1). “Tool Not Found” when none of the applications can
address the prompt and (2). “No Tool Required” for tasks such
as text summarization which can be handled directly by the
LLM. If duplicate tools exist, user preference is considered.
An example is shown in Prompt Example. 1

Prompt Example: 1. Tool Selector functionality example
using a valid and invalid example

System_Prompt:> GUI Tool Set (G): {Calculator, Notepad,
Browser, Outlook}

User_Prompt:> Send an email to johndoe@gmail.com
System_Prompt:> Given toolset G, select tool to

accomplish "Send an email to johndoe@gmail.com"
Response:> Tool Required: Outlook
User_Prompt:> Order a pizza from dominos
System_Prompt:> Given toolset G, select tool to

accomplish "Order a pizza from dominos"
Response:> Tool Not Found

3.4 Conversational Model (CM)
The Conversational Model(CM) is the plan orchestrator of
LUCI. It uses an LLM to generate a solution outline based
on the selected GUI tool from the Tool Selector, user instruc-
tion, and conversational context. The CM utlizes Chain-of-
Thought prompting to incorporate the relevant information
in the solution outline.

3.4.1 CMOutline Structure. In order to maintain context
across multiple applications, the CM outlines follow a strict
structure. Each response contains 3 fields:

• Tool Required [True/False] : Used to identify if the
sub-task requires a GUI tool. Tasks such as text sum-
marization do not require an application and can be
solved using the inherent capabilities of the CM LLM.

• Tool [Application Used] : The application used to solve
the sub-task. If ‘Tool Required’ flag is false, returns ‘No
tool required’

• Task description [Sub task description] : The instruc-
tion to be executed for the sub-task.

The solution outline is then processedmy the LUCI system,
where sub-tasks are divided into 3 types:

1. Application Launching Tasks: Tasks that open or
switch applications.

2. Application Interaction Tasks : Tasks that manipu-
late the user interface of an application or website.

3. Direct LLM Tasks: Tasks that are directly performed
by the LLM.

Prompt Example: 2. Coversational Model functionality
User_Prompt:> Calculate wages earned for 50 minutes of

work at $10/hr
System:> Query Tool selector for relevant tools and store

in $G
System_Response:> $G = {Calculator}
System_Prompt:> Given toolset G, generate solution

outline for user prompt
Response:>
1. Tool Required:True, Tool: Calculator, Task

description: Open Calculator

185

LUCI: Lightweight UI Command Interface LCTES ’25, June 16–17, 2025, Seoul, Republic of Korea

2. Tool Required:True, Tool: Calculator, Task
description: Convert 50 minutes to hours by
dividing by 60

3. Tool Required:True, Tool: Calculator, Task
description: Press "=" key

4. Tool Required:True, Tool: Calculator, Task
description: Multiply results with 10

5. Tool Required:True, Tool: Calculator, Task
description: Press "=" key

6. Tool Required:True, Tool: Calculator, Task
description: Copy results and return to user

3.5 Task Looper
The system component responsible for extracting each sub-
task from the CM and looping over them. The task looper is
an algorithmic component.

3.6 Task Verifier
The first step in the processing of every sub-task is the Task
Verifier. The Task Verifier uses a fine-tuned LLM to evaluate
if the current sub-task is necessary or redundant based on
previously executed actions and future sub-tasks. Based on
the the context the Task Verifier also emits an ‘execution
feedback’ to further refine the CM.

Prompt Example: 3. Task Verifier example for Example 2
task 2
System:> Fetches Action feedback for executed tasks into

$A, fetches future tasks into $SF and marks current
sub−task as $S

System_Response:> variables $S,$A,$SF and $i
System_Prompt:> Check whether the current sub−task

$S is necessary for the objective based on
previously executed tasks $A and future tasks $SF.

Response:> Answer: Yes, Reason: Converting 50 minutes
to hours is necessary for the objective.

The task verifier is critical in errors caused due to ambi-
guity in certain user interfaces. For example, task 3 from
Example 2 is redundant as the calculator might auto calcu-
late and pressing the "=" might cause the operation to run
again, leading to an error. The task verifier is responsible for
catching such errors. The functionlity of the Task Verifier
is contingent upon the ‘action feedback’ is generated by the
action executor and consists of information about the actions
performed during that sub-task execution.

3.7 UI Extractor
The UI extractor is a rule-based parser that extracts UI ele-
ments fromweb and desktop applications into a ‘Information-
Action-Field(IAF)’ representation. A UI extractor can be cre-
ated for any front-end language such as XML, HTML, etc.
LUCI has 2 existsing extractors for HTML and SwiftUI. The

tree structure of frond-end languages is leveraged to extract
categorize and extact elements based on the following 3
types:

• Information Elements (I): UI elements that contain
only Information. Example: < 𝑝 >, < ℎ1 > − < ℎ6 >

, < 𝑠𝑝𝑎𝑛 >, < 𝑑𝑖𝑣 > e.t.c (in context of HTML).
• Action Elements (A): UI elements which perform can
post and get methods. Examples: buttons, hyperlinks,
submit buttons e.t.c.

• Field Elements (F): UI elements that collect user in-
put. Example: textbox, checkbox, radio buttons e.t.c.

Using these 3 categorizations, we make the following as-
sumptions to further reduce the complexity of the tree struc-
ture:

• User input is sent to the server when a post method
is called. It means every F is associated with a A. For
instance, the submit button comes after the search box.
If there are multiple F’s while parsing through the tree
it is associated with the same A within the branch.
Every F has a corresponding A but A need not have a
F.

• If there is I, it is linked with A either in its child nodes
or child nodes to parent nodes of I to get the context.

• I can contain multiple A. For example, heading and
list of links.

• I can have multiple I’s, each associated with “A”. For
example, a webpage contains a heading, subheading,
and list of links for each subheading.

The front-end is then recursively passed based on these
assumptions to create the IAF representation seen below-
𝐼 [𝐼1, < 𝐴1, 𝐹1 >, 𝐼2, < 𝐴2, 𝐹2 >, 𝐼3, < 𝐴3, 𝐹3 >,]

I1, I2, I3,...... contains all text information in a given node.
< 𝐴𝑛, 𝐹𝑛 > is a set of A and its corresponding F pairs.

3.8 UI Selector
The UI selector is an LLM based component that sections
the appropriate UI element from a set of IAF representations
based on the subtask description. The design of the UI selec-
tor is motivated by recent studies [2, 7] that show training
language models for discrimination rather than generation
is more effective for generalizability and sample efficiency
for grounding tasks.

The use of a discriminative selector grounded to a specific
tasks allows LUCI to improve performance compared to
the one-shot generative approaches of prior models. If a
UI element is not found, a feedback signal is sent to the
conversational model, triggering a revision of the current
sub-task.

Prompt Example: 4. UI Selector example for sub task 2 in
Example 2
System:> Fetches UI element IAFs into $E, fetches the

sub−task description into $T

186

LCTES ’25, June 16–17, 2025, Seoul, Republic of Korea Guna Lagudu, Vinayak Sharma, Aviral Shrivastava

System_Response:> variables $E and $T
System_Prompt:> From the given list of UI elements $E,

select the list of elements required for task $T
Response:> Answer: [5,0,/,6,0,=]

3.9 Action Executor
The action executor is formulated with the purpose of execut-
ing a finite set of actions, including clicking, right-clicking,
text entry and selection. The action executor is a python
program that utilizes information about UI elements, such
as their path, location and size, to execute an appropriate
action based on the type of UI element. In order to enhance
accuracy and reliability, the action executor is incorporated
with a feedback mechanism to ascertain whether an action
is performed or not. Once an action is performed, it gen-
erates action feedback for the next sub-task. Following the
execution of all the sub-tasks, the action executor will send
a message to the conversation model to generate execution
feedback and furnish results to users.

4 Features of LUCI
4.1 Application Centric Architecture
As seen in Figure. 2, the tool selector is the first component
in our architecture. The conversational model generates sub-
tasks based on the selected applications, which simplifies
the problem statement and enables high-quality sub-task
generation. The application-centric approach also enable
multi-application orchestration by separating the se-
lection and orchestration tasks between the Tool Selector
and the Conversational Model.

4.2 Modular OS-Agnostic Agent
The Modular OS-Agnostic Agent represents a foundational
aspect of LUCI’s architecture. The decomposition of the en-
tire architecture into independent and interchangeable com-
ponents, each fulfilling specific functions within the frame-
work, makes LUCI modular. Components such as the Tool
Selector, Conversational Model, Task verifier and UI Selector
are based on LLM’s and are engineered to seamlessly operate
across both native and web interfaces. Employing platform-
independent techniques to traverse the UI hierarchy and
extract relevant information, the UI Extractor within LUCI is
designed to retrieve UI elements from desktop applications
in a specific format, thus contributing to its operating sys-
tem (OS) agnosticism. This design approach ensures LUCI’s
adaptability to diverse environments, facilitating its effec-
tiveness across a range of operating systems and interface
types.

4.3 Novel Tool Selection Mechanism
The Tool Selector embodies a novel tool selection mecha-
nism aimed at identifying relevant tools for multi-application

tasks. At its core, the Tool Selector incorporates a sophisti-
cated mechanism driven by in-context learning, which en-
ables it to discern the most relevant GUI tool from the avail-
able toolset. Unlike traditional selection methods, which may
rely solely on predefined rules or heuristics, the Tool Selec-
tor dynamically adapts its decision-making process based
on the context provided by the user’s instructions and task-
specific requirements. This adaptive approach allows the
Tool Selector to consider various factors when identifying
the optimal GUI tool for a given task. For instance, it may
take into account the nature of the user’s instructions, such
as the specific actions or functionalities requested, as well
as any contextual information provided, such as the current
state of the application or the user’s preferences. By leverag-
ing this contextual awareness, the Tool Selector can make
more informed decisions, ultimately leading to better tool
selections and improved task performance.

4.4 Novel UI Parser
The contribution pertaining to the novel UI parser is exem-
plified by the UI Extractor component within LUCI. This
component employs a novel UI parsing technique to extract
structured IAF representations of both web and desktop in-
terfaces. At its core, the UI Extractor employs a sophisticated
UI parsing technique that allows it to traverse the complex
hierarchy of UI elements present in web and desktop appli-
cations. By systematically categorizing these elements and
extracting pertinent information such as type, location, size,
and description, the UI Extractor generates structured repre-
sentations that can be easily interpreted by the LLM. These
IAF representations sovle the limited context length is-
sue seen in previous methods.

4.5 Hierarchical Control Structure
This contribution is manifested in the hierarchical control
structure implemented within LUCI, facilitating the control
of tasks across multiple applications. At the heart of this
hierarchical control structure lies the collaborative effort of
key components such as the Conversational Model, Task Ver-
ifier, and Action Executor. The conversational model within
LUCI employs in-context learning to understand user in-
structions and adapt its behavior accordingly continuously
refining its understanding of tasks through feedback. Addi-
tionally, the Task Verifier filters redundant sub-tasks based
on future tasks and past actions, minimizing unnecessary
actions without human intervention. These features collec-
tively allow LUCI to autonomously adapt to varying user
needs and preferences without frequent human interven-
tion while contributing to the overall effectiveness of the
framework.

187

LUCI: Lightweight UI Command Interface LCTES ’25, June 16–17, 2025, Seoul, Republic of Korea

5 Experiments and Results
We explore the performance of LUCI using both the GPT-
3.5 and PHI-2 model backends. The performance of GPT-3.5
variant showcases LUCI’s ability to scale and achieve SOTA
performance, while the PHI-2 results demonstrate LUCI’s
efficiency and suitability for embedded systems.

5.1 Testing Methodology
All the tests are conducted on a mix of established bench-
marks (MiniWoB++ [17], Mind2Web [4]) and real world ex-
periments. The benchmarks are used to demonstrate the
efficiency and performance of LUCI compared to other ap-
proaches. In contrast real world tests are used to showcase
the adaptability and robustness of LUCI in real world scenar-
ios comparing fine-tuned and zero-shot results.

For Mind2Web, we utilized GPT-3.5-turbo and PHI-2 with
greedy decoding (i.e., temperature set to 0). Metrics include
Operation F1 (Op. F1) for token-level F1 score for predicted
operation comprised of action and input value, and Step
SR for success rate per task step. Two test sets are used -
Cross-Task, and Cross-Domain to evaluate generalizability
over tasks from the same, and completely unseen domains,
respectively.

5.2 LUCI With PHI-2 Competes With Much Larger
Models

The optimizations and inference pipeline of LUCI allows it to
achieve comparable results to GPT-4V [23] while using the
PHI-2 model that only uses 2.7𝐵 parameters. This is demon-
strated by the performance on the MiniWoB++ Benchmark
(shown in Figure. 3) and the Mind2Web Benchmark (shown
in 1). These results showcase the effectiveness of the LUCI
framework in optimally harnessing the capabilities of LLMs.
An important note from our results is that while Synapse out-
performs LUCI w/ PHI-2 on the highly saturated MiniWoB++
environment, LUCI w/ PHI-2 shows 2× the performance of
Synapse on the Mind2Web. We can attribute this to the older
and simpler nature of MiniWoB++ tasks where most models
achieve high levels of performance compared to the more
complex Mind2Web tasks.
LUCI w/ PHI-2 also outperforms the nearly 100× larger

GPT-4V model on the Mind2Web benchmark. These results
clearly show that LUCI /w PHI-2 can be used as a powerful
on device task orchestrator with performance comparable to
much larger cloud based models. Therefore, LUCI w/ PHI-2
can unlock new possibilities for input constrained embedded
systems such as smartwatches.

5.3 LUCI Scales Up to Achieve SOTA Performance on
Complex Tasks

The efficiency of LUCI also allows it to scale when using a
heavier LLM backend. This can be seen in the results show-
ing that LUCI /w GPT-3.5-turbo can achieve state of the

art (SOTA) performance on both the MiniWoB++ [17] and
Mind2Web [4] benchmarks.

Figure 3.Average performance comparisonwith baselines in
MiniWoB++ environment. LUCIw/ PHI-2 is competitivewith
all other models while using only 2.7𝐵 parameters. When
scaled up to use GPT3.5-turbo LUCI achieves state-of-the-art
performance.

5.3.1 Performance on MiniWoB++ Task Suite. The
MiniWoB++ benchmark consists of simple tasks like click-
checkboxes, and text-complete for computer agents to simu-
late simple human-computer interactions. In our MiniWoB++
experiments, we performed experiments on two LLM’s GPT-
3.5-turbo and PHI-2, running 50 episodes to generate results
for each task. In MiniWoB++ setup, we adopt RCI [15] con-
figurations with action space comprising of click-xpath, type,
press, and click-options. The primary evaluation criterion is
the success rate, reflecting the agent’s effectiveness in com-
pleting the assigned task [15]. The success rate is determined
by the proportion of successful episodes, wherein the agent
receives a positive reward.

To comprehensively demonstrate LUCI’s performance, we
compared it against a variety of baselines across multiple
methodologies. To evaluate against Behavior Cloning (BC)
and Reinforcement Learning (RL) baselines, we used CC-Net
[13] and Pix2Act [16]. WebGUM [5] and WebN-T5 [9] were
used to evaluate the effectiveness against fine-tuned models
trained originally on a large general corpus on text. Synapse
[24], RCI [15] and AdaPlanner [18], were used to evaluate
the effectiveness against in-context learning (ICL) methods.
Additionally, we included human scores from Humphreys et
al. [13] for supplementary benchmarking.
Figure 3 illustrates the average performance of different

methods across Miniwob++ benchmark. LUCI, utilizing PHI-
2 and gpt-3.5-turbo, achieves human-level performance with
mean success rates of 94% and 98.6%, respectively. Notably,
LUCI using gpt-3.5-turbo outperforms all baselines on Mini-
WoB++. LUCI surpasses previous ICL methods by addressing
issues associated with context length, the need for exemplar
memory and human intervention for task adaptability.

188

LCTES ’25, June 16–17, 2025, Seoul, Republic of Korea Guna Lagudu, Vinayak Sharma, Aviral Shrivastava

First, the UI extractor in LUCI compresses the UI into a
structured IAF representation, which solves the limited con-
text length issue seen in previous methods enabling it to
solve tasks such as booking flights that require more context
and were unsolvable by previous methods. Second, LUCI’s
hierarchical control structure and continuous user interac-
tion enable dynamic task execution and adaptation without
relying on exemplar memory, unlike Synapse [24].While
Synapse and LUCI have around 99% success rate on the
simpler Miniwob++ benchmark, LUCI shows nearly 3
times higher performance on Mind2Web benchmark.
Third, the conversational model within LUCI employs in-
context learning to understand user instructions and adapt
its behavior accordingly to continuously refine its under-
standing of tasks through feedback. Additionally, the Task
Verifier filters redundant sub-tasks based on future tasks
and past actions, minimizing unnecessary actions without
human intervention. These features collectively allow LUCI
to autonomously adapt to varying user needs and prefer-
ences without frequent human intervention. The instances
of failure in LUCI are primarily attributed to the inherent
challenges of tasks that cannot be planned ahead. For in-
stance, tasks like tic-tac-toe, where the LUCI has to make
dynamic decision-making at each turn, and the outcome of
the game is contingent on the opponent’s moves. Unlike
other tasks that have deterministic or predictable outcomes,
tic-tac-toe requires adaptability and the ability to react to
the changing state of the game. LUCI cannot accurately plan
ahead because it cannot foresee the opponent’s moves be-
yond the current turn, making the traditional pre-planning
approach less effective.

5.3.2 Performance on Mind2Web. Mind2Web [4] is a
realistic dataset with human demonstrations of open-domain
tasks from diverse 137 real-world websites like Airbnb and
Twitter, for assessing generalization across tasks, and do-
mains.
Table 1. Average performance of different methods on
Mind2Web Benchmark. LUCI w/ GPT-3.5 achieves state-of-
the-art performance.

Baseline Cross-Task Cross-Domain
Op. F1 Step SR Op. F1 Step SR

MINDACT 56.6 17.4 52.8 18.6
Synapse - 30.6 - 26.4
WebGUM 75.9 64.9 77.7 66.7
GPT-4V 80.9 65.7 73.6 62.1
LUCI
w/ GPT-3.5 93.8 86.7 91.7 84.2
w/ PHI-2 82.3 72.8 79.4 69.1

We showcase LUCI’s applicability to real-world scenarios
by testing it on Mind2Web [4]. For baseline comparisons we
usedMindACTwith GPT-3.5,WebGUM [5], Gpt-4V [23]. The

current SOTA in this benchmark is Gpt-4V [23] with oracle
grounding but requires human annotations. It requires LMM
to generate an action and then select the UI element based
on the action. In our experiments, we directly select the UI
element instead of generating action. LUCI with GPT-3.5-
turbo achieves a Step success rate of 86.7 %, 89.1%, and 84.2%
across three test splits, respectively. As demonstrated in Ta-
ble 1, our approach performs significantly better than other
methods across the test splits over every metric. Notably,
it achieves at least 19% more in step success rate improve-
ment over GPT-4(v) in all three settings using GPT-3.5. LUCI
with PHI-2 still performs admirably, demonstrating solid
performance across various scenarios. It outperforms other
models in most categories, showcasing the efficiency of LUCI
with smaller LLMs in handling cross-task, cross-website, and
cross-domain challenges

5.3.3 Performance of LUCI on GUI Applications. Fur-
ther, to evaluate our work on day-to-day tasks we performed
our experiments on 22 GUI applications (including both desk-
top and web applications) shown in Figure 4. To evaluate the
performance of GUI applications, our key evaluation crite-
rion is the success rate, reflecting the agent’s effectiveness in
completing the assigned task. Here, we’ve categorized three
types of failure: tool selection, selection of unwanted UI ele-
ments and task failure. Additionally, an episode is deemed
failed if the agent successfully carries out the created plan but
is unable to complete the assignment and thus not rewarded.
Most of the applications lack an appropriate dataset for com-
prehensive evaluation. To solve this problem, we employed
an approach similar to [19]. We used a set of hand-written
tasks serving as seed examples and then, utilize ChatGPT
to generate more tasks. Unless explicitly stated otherwise,
for these manually curated test sets, human evaluators as-
sess and determine whether the task is considered to be
accurately accomplished.

In this section, we assess the effectiveness of our approach
in empowering the model to autonomously leverage GUI
applications, without the need for additional supervision.
The results of our experiments, depicted in Figure 4, show-
case the performance of LUCI when integrated with GPT-3.5
under both the zero-shot and few-shot in-context settings.
Specifically, under the zero-shot setting, where the language
model relies solely on its pre-existing knowledge to generate
a solution outline, LUCI achieves an average success rate of
58%. In contrast, under the few-shot setting with limited con-
text, the average success rate significantly increases to 76.5%,
with over 60% of applications achieving a success rate of at
least 80%. LUCI exhibits a comparatively lower performance
in PyCharm, primarily attributed to the language model’s
limitations in generating accurate and effective code. LUCI
demonstrates good performance on desktop applications
even under the zero-shot setting when compared to web
applications. However, a significant decrease is observed in

189

LUCI: Lightweight UI Command Interface LCTES ’25, June 16–17, 2025, Seoul, Republic of Korea

Figure 4. Cross application performance of LUCI with GPT-3.5 and PHI-2. LUCI fine-tuned on an application that exhibits
comparable performance on similar unseen applications. LUCI can generalise to unseen environment.

the performance of LUCI with web applications under the
few-shot setting. This disparity may stem from the language
model’s training data, which potentially contains informa-
tion on how to navigate and interact with desktop applica-
tions but lacks comprehensive guidance on web applications.
These findings highlight the LUCI’s adaptability to scenarios
where the model encounters unfamiliar domains with just a
few prompts.

5.4 LUCI Enables Cross-Application Adaptability
In this section, we closely examine the cross-application per-
formance of language models with LUCI. Here we fine-tune
language models on a single application and subsequently
evaluate their success rate on analogous applications within
the same domains and task contexts. The models subjected
to experimentation include GPT-3.5 Turbo and PHI-2. The
objective of this investigation was to discern the adaptability
of these agents when confronted with entirely new desktop
or web applications, albeit within the familiarity of domains
and task contexts they were originally fine-tuned for.
From Figure 4, it is observed that the models fine-tuned

for a particular application exhibit a comparable success rate
when tested on applications from the same domain. Quanti-
tatively, the average deviation in performance is measured
at 3.3 % for the GPT-3.5 Turbo setting and 4.5 % for the PHI-2
setting. This means that fine-tuning for a certain type of
application helps the models do well on other applications
in the same category.

5.5 LUCI Can Utilize Multiple Applications for
Executing Complex Tasks

Another noteworthy aspect of LUCI is its ability to carry out
tasks that require the integration of multiple applications. In
this section, we evaluate LUCI’s proficiency in seamlessly

orchestrating various applications to efficiently execute mul-
tifaceted tasks, showcasing its potential for enhanced produc-
tivity and versatility in diverse user scenarios. To evaluate
LUCI’s capability to manage multiple applications, we cre-
ated a set of hand-written tasks serving as seed examples and
then, utilize ChatGPT to generate more tasks that require the
utilization of one or more GUI applications listed in Figure
4. Then, these tasks with a number of GUI applications re-
quired to complete each task range from 1 to 6. In each case,
at least 21 tasks are evaluated and 30 episodes to produce
the results. Our key evaluation criterion is the success rate
discussed in Section 5.3, reflecting the agent’s effectiveness
in completing the assigned task.
Figure 5, delineates a trend wherein the success rate ex-

hibits a gradual decline from 93.17% for tasks involving a
single application to 79.36% when four applications are con-
currently utilized. This trend underscores LUCI’s commend-
able performance in handling tasks comprising up to four
applications. However, surpassing this threshold, the suc-
cess rates sharply decrease to 58.73%, indicating a substan-
tial challenge for LUCI in managing tasks necessitating the
simultaneous usage of more than five applications. These
findings underscore the diminishing efficacy of LUCI with
an increasing number of applications, implying complexities
in its multitasking capabilities beyond a certain threshold.

5.5.1 Task Ordering. A key observation from our tests
was that the ordering of applications had a tangible impact
on the success rate of the task. When complex applications
such as Keynote were called later in the execution order,
we noted an up to 20% decrease in the success rate. This
effect can be attributed to the long-term attention limita-
tions in LLMs, a fact that is further supported by the fact
that the PHI-2 variant showed a much starker decline in
performance compared to GPT-3.5 Turbo. This implies that

190

LCTES ’25, June 16–17, 2025, Seoul, Republic of Korea Guna Lagudu, Vinayak Sharma, Aviral Shrivastava

Figure 5.Average success rate of LUCI across tasks involving
the use of multiple applications. The trend shows LUCI’s
ability to use at least four applicationswithout losing efficacy.

improvements in context length would directly impact the
number of applications LUCI can orchestrate.

6 Conclusion
In this work, we introduce LUCI, a multi-agent framework
for task orchestration across web and native user interfaces
using lightweight LLMs. LUCI presents a new direction for
embedded system interaction and control using on-device
lightweight PHI-2 models over internet connected heavy
models. This would allow embedded systems to achieve a
higher level of security and privacy while brining down
latency and the dependency on ongoing server compute.
We demonstrated LUCIs abilities to match and surpass

SOTA techniques such as GPT4-V despite only using a much
lighter weight text only model like PHI-2. We additionally
showcased LUCI’s ability to adapt to unknown interfaces in
both cross task and cross application cases.

Acknowledgments
This work was partially supported by funding from National
Science Foundation grants CPS 1645578 and CCF 2436016,
Semiconductor Research Corporation (SRC) project 3154.

References
[1] Michael Ahn et al. 2022. Do as i can, not as i say: grounding language

in robotic affordances. (2022). arXiv: 2204.01691 [cs.RO].
[2] Hyung Won Chung et al. 2022. Scaling instruction-finetuned lan-

guage models. (2022). arXiv: 2210.11416 [cs.LG].
[3] Ishita Dasgupta, Christine Kaeser-Chen, Kenneth Marino, Arun

Ahuja, Sheila Babayan, Felix Hill, and Rob Fergus. 2023. Collab-
orating with language models for embodied reasoning. (2023). arXiv:
2302.00763 [cs.LG].

[4] Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens,
Boshi Wang, Huan Sun, and Yu Su. 2023. Mind2web: towards a
generalist agent for the web. (2023). arXiv: 2306.06070 [cs.CL].

[5] Hiroki Furuta, Kuang-Huei Lee, Ofir Nachum, Yutaka Matsuo, Alek-
sandra Faust, Shixiang Shane Gu, and Izzeddin Gur. 2024. Multimodal
web navigationwith instruction-finetuned foundationmodels. (2024).
arXiv: 2305.11854 [cs.LG].

[6] Amelia Glaese et al. 2022. Improving alignment of dialogue agents
via targeted human judgements. (2022). arXiv: 2209.14375 [cs.LG].

[7] Yu Gu, Xiang Deng, and Yu Su. 2023. Don’t generate, discriminate: a
proposal for grounding language models to real-world environments.
(2023). arXiv: 2212.09736 [cs.CL].

[8] Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei,
Nitesh V. Chawla, Olaf Wiest, and Xiangliang Zhang. 2024. Large
language model based multi-agents: a survey of progress and chal-
lenges. (2024). https://arxiv.org/abs/2402.01680 arXiv: 2402.01680
[cs.CL].

[9] Izzeddin Gur, Ofir Nachum, Yingjie Miao, Mustafa Safdari, Austin
Huang, Aakanksha Chowdhery, Sharan Narang, Noah Fiedel, and
Aleksandra Faust. 2023. Understanding html with large language
models. (2023). arXiv: 2210.03945 [cs.LG].

[10] Jordan Hoffmann et al. 2022. Training compute-optimal large lan-
guage models. (2022). arXiv: 2203.15556 [cs.CL].

[11] Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch.
2022. Language models as zero-shot planners: extracting actionable
knowledge for embodied agents. (2022). arXiv: 2201.07207 [cs.LG].

[12] Wenlong Huang et al. 2022. Inner monologue: embodied reasoning
through planning with language models. (2022). arXiv: 2207.05608
[cs.RO].

[13] Peter C Humphreys et al. 2022. A data-driven approach for learning
to control computers. (2022). arXiv: 2202.08137 [cs.LG].

[14] Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E
Hinton. 1991. Adaptive mixtures of local experts.Neural computation,
3, 1, 79–87.

[15] Geunwoo Kim, Pierre Baldi, and Stephen McAleer. 2023. Language
models can solve computer tasks. (2023). arXiv: 2303.17491 [cs.CL].

[16] Peter Shaw, Mandar Joshi, James Cohan, Jonathan Berant, Panupong
Pasupat, Hexiang Hu, Urvashi Khandelwal, Kenton Lee, and Kristina
Toutanova. 2023. From pixels to ui actions: learning to follow in-
structions via graphical user interfaces. (2023). arXiv: 2306.00245
[cs.LG].

[17] Tianlin Shi, Andrej Karpathy, Linxi (Jim) Fan, Josefa Z. Hernández,
and Percy Liang. 2017. World of bits: an open-domain platform for
web-based agents. In International Conference on Machine Learning.
https://api.semanticscholar.org/CorpusID:34953552.

[18] Haotian Sun, Yuchen Zhuang, Lingkai Kong, BoDai, and Chao Zhang.
2023. Adaplanner: adaptive planning from feedback with language
models. (2023). arXiv: 2305.16653 [cs.CL].

[19] Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A.
Smith, Daniel Khashabi, and HannanehHajishirzi. 2023. Self-instruct:
aligning language models with self-generated instructions. (2023).
arXiv: 2212.10560 [cs.CL].

[20] Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams
Wei Yu, Brian Lester, Nan Du, Andrew M. Dai, and Quoc V. Le. 2022.
Finetuned language models are zero-shot learners. (2022). arXiv:
2109.01652 [cs.CL].

[21] Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan.
2023. Webshop: towards scalable real-world web interaction with
grounded language agents. (2023). arXiv: 2207.01206 [cs.CL].

[22] Andy Zeng et al. 2022. Socratic models: composing zero-shot multi-
modal reasoning with language. (2022). arXiv: 2204.00598 [cs.CV].

[23] Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. 2024.
Gpt-4v(ision) is a generalist web agent, if grounded. (2024). arXiv:
2401.01614 [cs.IR].

[24] Longtao Zheng, Rundong Wang, Xinrun Wang, and Bo An. 2024.
Synapse: trajectory-as-exemplar prompting with memory for com-
puter control. (2024). arXiv: 2306.07863 [cs.AI].

Received 2025-03-13; accepted 2025-04-21

191

https://arxiv.org/abs/2204.01691
https://arxiv.org/abs/2210.11416
https://arxiv.org/abs/2302.00763
https://arxiv.org/abs/2306.06070
https://arxiv.org/abs/2305.11854
https://arxiv.org/abs/2209.14375
https://arxiv.org/abs/2212.09736
https://arxiv.org/abs/2402.01680
https://arxiv.org/abs/2402.01680
https://arxiv.org/abs/2402.01680
https://arxiv.org/abs/2210.03945
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2201.07207
https://arxiv.org/abs/2207.05608
https://arxiv.org/abs/2207.05608
https://arxiv.org/abs/2202.08137
https://arxiv.org/abs/2303.17491
https://arxiv.org/abs/2306.00245
https://arxiv.org/abs/2306.00245
https://api.semanticscholar.org/CorpusID:34953552
https://arxiv.org/abs/2305.16653
https://arxiv.org/abs/2212.10560
https://arxiv.org/abs/2109.01652
https://arxiv.org/abs/2207.01206
https://arxiv.org/abs/2204.00598
https://arxiv.org/abs/2401.01614
https://arxiv.org/abs/2306.07863

	Abstract
	1 Introduction
	2 Related Work
	2.1 Building Agents With LLMs
	2.2 Automated GUI Tasks

	3 LUCI Architecture
	3.1 Prompt Components
	3.2 GUI Tool Set (G)
	3.3 Tool selector (TS)
	3.4 Conversational Model (CM)
	3.5 Task Looper
	3.6 Task Verifier
	3.7 UI Extractor
	3.8 UI Selector
	3.9 Action Executor

	4 Features of LUCI
	4.1 Application Centric Architecture
	4.2 Modular OS-Agnostic Agent
	4.3 Novel Tool Selection Mechanism
	4.4 Novel UI Parser
	4.5 Hierarchical Control Structure

	5 Experiments and Results
	5.1 Testing Methodology
	5.2 LUCI With PHI-2 Competes With Much Larger Models
	5.3 LUCI Scales Up to Achieve SOTA Performance on Complex Tasks
	5.4 LUCI Enables Cross-Application Adaptability
	5.5 LUCI Can Utilize Multiple Applications for Executing Complex Tasks

	6 Conclusion
	Acknowledgments

