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Abstract—Research in building agents by employing Large
Language Models (LLMs) for computer control is expanding,
aiming to create agents that can efficiently automate complex
or repetitive computational tasks. Prior works showcased the
potential of Large Language Models (LLMs) with in-context
learning (ICL). However, they suffered from limited context
length and poor generalization of the underlying models, which
led to poor performance in long-horizon tasks, handling multiple
applications and working across multiple domains. While initial
work focused on extending the coding capabilities of LLMs to
work with APIs to accomplish tasks, a new body of work focused
on Graphical User Interface (GUI) manipulation has shown
strong success in web and mobile application automation. In
this work, we introduce LUCI: Large Language Model-assisted
User Control Interface, a hierarchical, modular, and efficient
framework to extend the capabilities of LLMs to automate
GUIs. LUCI utilizes the reasoning capabilities of LLMs to
decompose tasks into sub-tasks and recursively solve them. A
key innovation is the application-centric approach which creates
sub-tasks by first selecting the applications needed to solve
the prompt. The GUI application is decomposed into a novel
compressed Information-Action-Field (IAF) representation based
on the underlying syntax tree. Furthermore, LUCI follows a
modular structure allowing it to be extended to new platforms
without any additional training as the underlying reasoning
works on our IAF representations. These innovations alongside
the ‘ensemble of LLMs’ structure allow LUCI to outperform
previous supervised learning (SL), reinforcement learning (RL),
and LLM approaches on Miniwob++, overcoming challenges such
as limited context length, exemplar memory requirements, and
human intervention for task adaptability. LUCI shows a 20%
improvement over the state-of-the-art (SOTA) in GUI automation
on the Mind2Web benchmark. When tested in a realistic setting
with over 22 commonly used applications, LUCI achieves an
80% success rate in undertaking tasks that use a subset of these
applications. We also note an over 70% success rate on unseen
applications, which is a less than 5% drop as compared to the
fine-tuned applications.

Index Terms—Computer Agent, Automation, GUI applications,
Structured UI representation, Multi-application Orchestration.

I. INTRODUCTION

Automation and assisted computer interaction have been
a significant area of investment for researchers and industry
professionals. Digital assistants such as Siri and Google As-
sistant [36] have enabled the creation of the Internet of Things
(IoT) devices and the home automation space. They also
play a critical role in the accessibility domain, enabling users
with disabilities [20] to interact with computers and mobile
devices. Today these virtual assistants are regularly used to
automate a variety of simple tasks [24] such as setting alarms
and reminders, controlling music playback, etc. However, they
have always struggled with more complex tasks and require
specific language based on keywords to function correctly.

A key breakthrough in this domain was the advent of
Large Language Models (LLMs), which worked directly with
natural language and displayed strong reasoning and planning
capabilities [43]. This allowed them to create a more capable
and user-friendly interface for human-computer interaction
(HCI) [5]. Applications such as ChatGPT and Google Gemini
proved the promise of the underlying models which are now
set to become the backbone of the aforementioned assistants.
While LLMs proved to be effective in interacting with the
user, their ability to interact with computer systems and use
tools was still limited and needed to be augmented. The
first approaches attempted to extend the coding capabilities
of LLMs to work with APIs to accomplish tasks [41, 31].
These systems adopted a Planner, Actor, and Reporter [3] to
ground the LLMs (restrict the response to relevant domains
not part of the LLM’s trained knowledge) and allow them to
interact with the environment(computer systems). While they
were initially successful, API-based LLM automation systems
struggled with generalization across multiple applications due
to the need for creating natural language instructions for
the API of each application. These methods [1, 9] tried to
leverage In-Context Learning (ICL), to improve the gener-

Fig. 1. An illustrative execution trace of LUCI creating a presentation to satisfy the given instruction: ”Create a presentation on Recycling with Q & A
slide at the end and Add Image ”Recycling.svg” to last slide from Images folder in Downloads”. First LUCI opens the Keynote Application and creates a
presentation on Recycling. Then, open the Images folder from the Downloads directory and select ”Recycling.svg” file. Finally, LUCI adds the image to the
last slide of the presentation. This showcases LUCI’s ability to execute tasks involving multiple applications.
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alization of the underlying models by forgoing training and
instead placing relevant information in the context for prompts.
However, the limited context lengths of these models led to
poor performance in long-horizon tasks and handling multiple
applications.

This led to the development of Graphical User Interface
(GUI) LLM frameworks[4, 19]. These systems focused on
manipulating applications via the User Interface(UI) instead
of relying on APIs which may or may not exist. The ear-
liest versions used Reinforcement Learning (RL) to train an
agent to mimic user clicks on inputs containing Hyper Text
Markup Language(HTML) Document Object Model (DOM)
elements. However, they struggled with with selection of
relevant UI elements requiring supervised training. Gur et
al [14] demonstrated the difficulty in training LLMs with
purely HTML due to the low information density and high
noise in RAW HTML. Zeng et al [45] incorporated the multi-
modal learning capabilities of GPT4 to address the grounding
of UI elements by proving the images of webpages to the
model. This approach revolves around understanding the visual
aspects of rendered web pages and generating precise plans
in text format for various websites and tasks. However, this
method did not scale beyond HTML and was hence limited
to web applications. Additionally, these systems cannot utilize
multiple applications or websites to accomplish a single task.

In this work, we introduce LLM-assisted User Control Inter-
face (LUCI), a novel framework that extends the capabilities
of LLMs to automate GUIs. LUCI is designed to enable LLMs
to orchestrate multiple applications and execute complex tasks
by interacting with the GUI. We accomplish this by adopting
an application-centric approach to task planning where a Tool
Selector element (Section. III-B) selects the most relevant
applications from a given set to solve a task. These are
then used as the central focus when decomposing a given
instruction into sub-tasks. Each sub-task is then mapped to a
novel intermediate compressed structured representation based
on Information-Action-Field (IAF) pairs via a”UI Extractor”
(Section. III-E) and a ’UI Selector” (Section. III-F). This
structured representation allows the LLM to effectively interact
with the GUI applications and execute the sub-tasks. The
LUCI framework is designed to be modular, hierarchical, and
OS-agnostic, enabling it to work seamlessly across both native
and web interfaces. Additionally, we augment the performance
of our conversational model with a Task Verifier (Section.
III-D) to filter redundant sub-tasks and improve efficiency.
The limited scope of the Task Verifier allows it to focus on
the relevance of a given sub-task, effectively reducing the
generative task of the conversational model into a simpler
decision task. The structure of these elements and how they
interact with each other is shown in Figure ??.

When combined these components allow LUCI to solve
complex multi-step and multi-application tasks across web and
native interfaces without the need for additional multi-modal
context. An example of this capability is shown in Figure 1,
where LUCI creates a presentation on Recycling with a Q & A
slide at the end and adds an image ”Recycling.svg” to the last
slide from the Images folder in Downloads. This showcases
LUCI’s ability to execute tasks involving multiple applications.

The main contributions of LUCI can be summarized as:
1) An application-centric approach to task planning, where

the selection of relevant applications is the basis of sub-
task generation.

2) A modular OS-agnostic agent capable of functioning
seamlessly across both native and web interfaces.

3) A novel tool selection mechanism is implemented to
identify relevant tools for tasks involving multiple ap-
plications, enhancing adaptability and effectiveness.

4) A novel UI parser is designed to extract the web and
desktop interfaces into a compressed and structured
representation based on Information-Action-Field (IAF)
pairs, thereby facilitating efficient orchestration by large
language models (LLMs).

5) A hierarchical control structure within LUCI, enabling
effective management of tasks across multiple applica-
tions, thereby empowering LLMs with comprehensive
control in diverse environments.

Our experimental results support our claim. We note that
LUCI achieves a greater than 99% success rate on the Mini-
WoB++ benchmark. LUCI also achieves up to 31% improve-
ment in Step SR and up to 24% improvement in OP. F1
Score over GPT4V on the Mind2Web benchmark. When we
tested the generalization capability we noted a less than 5%
drop in accuracy, indicating strong generalization. Finally, our
experiments show that LUCI maintains a 75% average success
rate when using 4 applications simultaneously. We believe that
the application-centric design proposed in LUCI presents a
promising direction for future research in GUI automation and
multi-application orchestration.

II. RELATED WORK

A. Building Agents with LLMs

Large language models (LLMs) have offered promising
avenues for leveraging natural language in decision-making
tasks. One approach involves enhancing LLMs with executable
actions [27]. Huang et al. [18] showed LLMs can plan and
perform basic domestic activities by mapping embeddings to a
predefined list of actions. However, their study lacks specificity
for contemporary activities. Ahn et al. [1] introduced SayCan,
grounding actions by multiplying candidate action probabil-
ities with FLAN [40] and the action’s value function as an
indicator of suitability. Huang et al. [17] extended SayCan with
Inner Monologue, adding a feedback loop to select actions
according to the current state. However, Inner Monologue
relies on a pre-trained, robot policy conditioned on language
with limited flexibility, impeding generalization across various
domains. Zeng et al. [44] combined LLMs conditioned on
a robot policy along with a vision-language model (VLM)
for open vocabulary pick-and-place tasks. Dasgupta et al. [3]
utilized Chinchilla [15] as a planner in PycoLab, requiring RL
pre-training for their actor module to follow natural language
instructions. Moreover, previous methods were restricted to
the necessity for fine-tuning.

Recently, enhancing LLM effectiveness involves integrating
them with APIs for utilizing external tools like information
retrieval systems, code interpreters, and web browsers [10, 31].
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Integrating APIs with LLMs is done using 4 main techniques
:

1) pre-training/fine-tuning the model with API-enabled
examples [35, 31]. This approach has limited API space.

2) Few-shot in-context learning of LLMs with APIs [1,
9]. This approach is limited by context length.

3) Reinforcement learning with human feedback to
enhance API usage [28, 25].

4) Creating natural language documents (NLD) or
structured programs to instruct the model [37, 30].

The NLD approach is extremely sensitive to the quality of
the API documentation [25], requiring developers to maintain
comprehensive and well-structured documentation. Alongside
the issues with poor generalizability across different API docu-
ments for zero-shot usage and the limitations mentioned above,
there has been a recent shift towards GUI-based methods.

B. Automated GUI tasks

P Pursuing the goal of interaction between humans and
the computer, significant efforts have been dedicated to devel-
oping autonomous computer agents capable of understanding
language instructions and efficiently carrying out tasks on a
computer [13, 7, 25]. To evaluate the models for human-like
computer interactions, MiniWoB++ extending the MiniWoB
benchmark [33, 26], serves as a standard benchmark. Early
researchers utilized reinforcement learning and imitation learn-
ing to solve MiniWoB++ challenges [26, 13, 21, 12], but
reaching human-level performance necessitates a large amount
of expert demonstration data (6,300 hours) [19].

Recent research [14, 7] proposes employing large language
models (LLMs) to read HTML code and vision transformers
[6, 16] for extracting screenshot features, using a few-shot in-
context method yielding promising results without prolonged
RL training. Nonetheless, large volumes of expert demonstra-
tion data are still needed to fine-tune LLMs. WebGPT [28]
and WebShop [42] demonstrate LLMs automating web tasks
with custom commands, but they are restricted in scope and
don’t address general computer tasks requiring keyboard and
mouse inputs.

RCI [22] achieves a 90.6% success rate in 54 MiniWoB++
tasks using recursive self-correction, yet its reliance on task-
specific examples restricts generalization to new scenarios. In
contrast, our proposed method works well without relying on
self-correction. AdaPlanner [34] achieved a 92.9% success
rate in 53 tasks by leveraging environment feedback for
self-correction, but faced similar generalization challenges as
RCI. Pix2Act [32] addressed 59 MiniWoB++ tasks through
tree search and BC, based on 1.3 million demonstrations.
WebGUM [8] fine-tunes Language Multimodal Model (LMM)
with a huge multimodal corpus for web agents, allowing web
agents to observe both HTML and the captured screenshot but
requires multiple samples of expert demonstrations for fine-
tuning. Synapse [46] uses structured prompts with an LLM
and achieves human-level performance. However, the perfor-
mance is largely dependent on the quality of examples passed
through prompts. On the other hand, our proposed method
uses few-shot in-context learning with structured prompts and

structured representation of UI elements on a browser making
the agent independent of the quality of examples. Moreover,
our approach excels in addressing open-domain tasks on a
large scale.

Numerous ongoing initiatives are dedicated to the devel-
opment of computer agents and benchmarks. Among the
sophisticated benchmarks available, such as Mind2Web [4],
Webshop [42], and WebArena [47]. WebArena [47] generates
website simulations in a sandbox environment across four
popular categories, replicating functionality and data from
real-world equivalents. In contrast, Mind2Web [4] offers en-
vironments spanning diverse domains, websites, and various
tasks extracted from live websites, complete with action tra-
jectory annotations. So, we have chosen Mind2Web for our
real-world evaluation. To solve the Mind2Web benchmark,
MindAct utilized an element-ranking model to extract the top
50 relevant elements as clean observations. It employs MCQ
to recursively query the LLM for action selection from five
alternative candidates until either all options are wrong or
just one action is selected. While MCQ-formatted exemplars
perform better than direct generation, MindAct frequently
has trouble selecting the right element [4]. Another approach
involves the use of language and vision transformers. Recent
works in this works include WebGUM [8] and Gpt-4v [45].
WebGUM [8] fine-tunes Language Multimodal Model (LMM)
with a huge multimodal corpus for web agents, allowing web
agents to observe both HTML and the captured screenshot
but require lot of expert demonstrations for fine-tuning. Gpt-
4v [45] uses LMMs to observe both HTML and captured
screenshots to generate actions but still lack sufficient visual
perception abilities to serve as an effective agent.

III. LUCI ARCHITECTURE

In this work, our goal is to enable large language model to
use various GUI tools to extend its capabilities. The primary
architecture of LUCI comprises of 7 key components, namely

1) GUI Tool Set, which contains list of GUI tools autho-
rized to be controlled by the LLM.

2) Tool Selector, which selects GUI tools from GUI tool
set required to accomplish given user instruction.

3) Conversational Model, which is responsible for inter-
acting with users and generating a solution outline based
on GUI tool selected by the tool selector, user instruction
along with its conversational context.

4) Task Verifier, which filters the redundant sub-tasks in
the solution outline using action feedback.

5) UI Extractor, which extracts the information of UI
elements from the selected GUI tool.

6) UI Selector, which selects appropriate UI elements from
the list of UI elements generated by UI extractor for the
given sub-task.

7) Action Executor, which performs action on selected UI
elements based on type of UI element and return the
action feedback.

The overall architecture of LUCI is shown in Figure 2.
The primary process within this architecture is the LLM’s
capability to execute action in response to user instructions.
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Fig. 2. Architecture of LUCI. Given user instruction and the conversational context, the Tool Selector first selects a tool from the given GUI toolset and
opens the applications. The conversational model then generates a solution outline, which is a text description of the list of sub-tasks needed to solve the task.
Next, the Task Verifier filters redundant tasks in the solution outline based on action feedback from previously executed tasks and future sub-tasks. Then, a
rule-based UI Extractor extracts UI elements from the GUI application. UI Selector selects appropriate UI elements from the list of UI elements generated
by the UI extractor for the given sub-task. Lastly, the Action Executor performs an action on the selected UI element based on the type of UI element and
generates the action feedback.

This approach takes 4 inputs: large language model’s param-
eters, represented as θ; GUI tool set, denoted as G; the user
instructions, designated as I, along with the conversational
context, referred to as C. Utilizing these inputs, the LLM
generates a set of actions, designated as A, to execute and
fulfill the user’s instruction. This procedure can be defined as
follows:

A = LLM(θ,G, I, C) (1)

Further, LUCI is employed with RLHF learning mechanism
[29] to improve the task planning and task verification. Here,
in addition to human feedback, we also employ execution
feedback, this combined feedback is denoted by F . The Loss
function of the learning mechanism is parameterised by,

L = L(LLM(θ,G, I, C),F) (2)

A. GUI Tool Set

The GUI tool set is a primary element in this framework,
the tool set G = G = {G1,G2,G3.....}, which contains a
collection of different GUI application names. The GUI tool
set contains a list of all desktop application names (For
instance, a weather application on your personal computer)
that the agent is allowed to work on. In this work, we have used
22 GUI based desktop applications as shown in Figure 8. In
this work web applications are accessed through a browser like
Safari, Google Chrome or Microsoft Edge, which gives more
flexibility for navigation and using multiple GUI applications.

B. Tool selector

The main objective of the tool selector is to select a most
appropriate GUI tool from the GUI tool set that aligns with
the given task requirements. The tool selector is a language
model that uses in-context learning to select a GUI application
Gs from the set of GUI tools G = {G1,G2,G3.....} based on
given user instruction I, as shown below. The output of the

language model is grounded to application names in the GUI
tool set.

The tool selector in our study facilitates the use of multiple
GUI tools based on user instructions as shown in Example
Query 2 in Figure 3. If a specified GUI tool is incapable
of performing a task, ”Tool Not Found” is chosen as shown
in Example Query 3. For tasks that solely require language
model capabilities, ”No tool required” is selected as shown
in Example Query 4. In cases of duplicate functionality, the
user’s specified tool takes precedence, or the tool is selected
alphabetically or based on previous user selections.

C. Conversational Model
The conversational model is a LLM, which acts as a “brain”

for this framework by understanding user intentions from the
current instructions and past conversations to generate a set
of sub-tasks (solution outline) needed to use the selected GUI
application. To generate a Solution outline, we employed the
Chain-of-thought (CoT), as it has shown significant improve-
ment in performance across various tasks including arithmetic
reasoning, commonsense reasoning, and symbolic reasoning
[39, 23]. An example of a solution outline generated for using
a calculator is shown below.

To facilitate the utilization of multiple GUI tools, we have
specified a field called “Tool Name” for each sub-task along
with sub-task description within the generated solution outline.
The generated solution outline, consists of 3 types of sub-
tasks:

1) Sub-tasks that contain description of opening an appli-
cation. In our work, the GUI application is opened right
after the tool selector selects an application name from
the tool set and is not considered as a sub-task.

2) Sub-tasks that can be directly performed by the conver-
sational model, such as text summarization (Sub-task 9
in the Example Query 5), will not trigger any action on
GUI application.
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Fig. 3. Illustrative of examples of Tool Selector in selecting a GUI application from a given GUI Tool set. Example Query 1 shows the ability of Tool selector
to select a GUI application. Example Query 2 shows the ability of Tool selector to select multiple GUI application. Example Query 3 shows the ability of
Tool selector to notify the conversation model that given tasks cannot be performed with given GUI applications. Example Query 4 shows the ability of Tool
selector to to notify the conversation model that given tasks can be solved without GUI application.

Fig. 4. Illustrative example of solution outline from Conversation model to solve a task which involves integration of two applications, Calculator and Text
Edit

3) Sub-tasks that contain action descriptions to be per-
formed on GUI applications as seen in Sub-tasks 2-7
and 10 in the Example Query 5 in Figure 4.

From above categorization, to distinguish sub-tasks
requiring GUI interaction, a boolean field ”Tool Required”
is introduced in the Solution outline, preventing unnecessary
execution of subsequent steps for tasks not involving tool
interaction. The final output format of each sub-task in the
solution outline is shown below:

<Tool Required: True/False, Tool: GUI Application Name,
Task description: Sub task description
>

When ”No tool required” is chosen, the conversational
model directly responds to user instructions, such as sum-
marizing a text, and provides feedback in cases where ”Not
Found” is selected by the tool selector.

D. Task Verifier

Before executing each sub-task in the generated solution
outline, it should be evaluated for 2 things to remove redundant
tasks and improve efficiency:

1) Whether the sub-task is necessary or not based on future
tasks.

2) Sub-task is already executed or not based on previous
tasks.

In the response of Example Query 5, after converting 50
minutes to hours, there is no need to press “=” key, one can
directly multiply this with the hourly earnings. Also, there
might be a chance of pressing ”=” key after dividing 50 by
60 in Sub-task 3 is valid, but doing so in Sub-task 4 leads to
an error due to redundant division by 60. To prevent errors
and redundant sub-tasks, we introduced Task verifier. The
main aim of the Task verifier is to identify and remove the
unnecessary sub-tasks in the solution outline.

Task verifier is a language model which takes current sub-
task, future sub-tasks, and action feedback from previous sub-
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Fig. 5. Illustrative example of Task verifier in deciding whether a task is redundant or not by reasoning.

Fig. 6. Illustrative example of UI selector selcting a list of UI elements.

tasks to decide whether to proceed with execution or not by
reasoning as shown in Example Query of Figure 5. The action
feedback is generated through the analysis of interactions with
user interface (UI) elements and the resulting changes in the
user interface. This feedback mechanism informs the task
verifier about actions performed in the past and reduces the
execution of redundant actions in subsequent sub-tasks. At the
end of execution, action feedback is combined to generate the
execution feedback used in RLHF for model improvement.

E. UI Extractor

We developed a rule-based UI element extractor to extract
UI elements from desktop applications and its parameters like
type of UI element, allowed actions, location, size, description,
value (if any) from GUI tool. In any desktop application, the
graphical interface is based on hierarchy / tree structure. We
can use accessibility tools provided by Windows and MAC
OS to extract this tree structure. In this tree based structure,
we divide the UI elements into 3 categories :

• Information Elements (I): UI elements that contain only
Information. Example: < p >,< h1 > − < h6 >,<
span >,< div > e.t.c (in context of HTML).

• Action Elements (A): UI elements which perform can
post and get methods. Example: buttons, hyperlinks,
submit buttons e.t.c.

• Field Elements (F): UI elements that collect user input.
Example: textbox, checkbox, radio buttons e.t.c.

Based on these 3 categorizations, we assume the following:
• User input is sent to server when a post method is called.

It means every F is associated with a A. For instance
the submit button comes after the search box. If there
are multiple F’s while parsing through the tree it is

associated with the same A within the branch. Every F
has a corresponding A but A need not have a F.

• If there is I, it is linked with A either in its child nodes
or child nodes to parent nodes of I to get the context.

• I can contain multiple A. For example, heading and list
of links.

• I can have multiple I’s, each associated with ‘A’. For
example, a webpage contains a heading, subheading and
list of links for each subheading.

Based on the above assumptions, we parse through the tree
structure using a bottom-top approach and the tree structure
can be broken into:
I[I1, < A1, F1 >, I2, < A2, F2 >, I3, < A3, F3 >, ........]
I1, I2, I3,...... contains all text information in a given node.
< An,Fn > is a set of A and its corresponding F pairs.

F. UI Selector
Recent studies [2, 11] propose training language models

for discrimination rather than generation, as it enhances gen-
eralizability and sample efficiency for grounding tasks. We
adopt this approach by transforming UI element selection
into a multi-choice question-answering problem. The language
model is trained to select from a list of options instead of
generating the complete target element. Once the UI elements
are extracted, the UI elements required for a sub-task are
selected by using an LLM as shown in Example Query 7 of
Figure 6. If a UI element is not found, a feedback signal is
sent to the conversational model, triggering a revision of the
current sub-task.

G. Action Executor
The action executor is formulated with the purpose of

executing a finite set of actions, including clicking, right-
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clicking, text entry and selection. The action executor is a
python program that utilizes information about UI elements,
such as their path, location and size, to execute an appropriate
action based on the type of UI element. In order to enhance
accuracy and reliability, the action executor is incorporated
with a feedback mechanism to ascertain whether an action is
performed or not. Once an action is performed, it generates
action feedback for the next sub-task. Following the execution
of all the sub-tasks, the action executor will send a message
to the conversation model to generate execution feedback and
furnish results to users.

IV. NOVEL CONTRIBUTIONS OF LUCI

A. Application-Centric Architecture

As seen in Figure. 2, the tool selector is the first component
in our architecture. The conversational model generates sub-
tasks based on the selected applications, which simplifies the
problem statement and enables high-quality sub-task gener-
ation. The application-centric approach also enable multi-
application orchestration by separating the selection and
orchestration tasks between the Tool Selector and the Con-
versational Model.

B. Modular OS-Agnostic Agent

The Modular OS-Agnostic Agent represents a foundational
aspect of LUCI’s architecture. The decomposition of the entire
architecture into independent and interchangeable components,
each fulfilling specific functions within the framework, makes
LUCI modular. Components such as the Tool Selector, Con-
versational Model, Task verifier and UI Selector are based on
LLM’s and are engineered to seamlessly operate across both
native and web interfaces. Employing platform-independent
techniques to traverse the UI hierarchy and extract relevant in-
formation, the UI Extractor within LUCI is designed to retrieve
UI elements from desktop applications in a specific format,
thus contributing to its operating system (OS) agnosticism.
This design approach ensures LUCI’s adaptability to diverse
environments, facilitating its effectiveness across a range of
operating systems and interface types.

C. Novel tool selection mechanism

The Tool Selector embodies a novel tool selection mecha-
nism aimed at identifying relevant tools for multi-application
tasks. At its core, the Tool Selector incorporates a sophisticated
mechanism driven by in-context learning, which enables it
to discern the most relevant GUI tool from the available
toolset. Unlike traditional selection methods, which may rely
solely on predefined rules or heuristics, the Tool Selector
dynamically adapts its decision-making process based on the
context provided by the user’s instructions and task-specific
requirements. This adaptive approach allows the Tool Selector
to consider various factors when identifying the optimal GUI
tool for a given task. For instance, it may take into account the
nature of the user’s instructions, such as the specific actions or
functionalities requested, as well as any contextual information
provided, such as the current state of the application or the

user’s preferences. By leveraging this contextual awareness,
the Tool Selector can make more informed decisions, ulti-
mately leading to better tool selections and improved task
performance.

D. Novel UI Parser

The contribution pertaining to the novel UI parser is
exemplified by the UI Extractor component within LUCI.
This component employs a novel UI parsing technique to
extract structured IAF representations of both web and desktop
interfaces. At its core, the UI Extractor employs a sophis-
ticated UI parsing technique that allows it to traverse the
complex hierarchy of UI elements present in web and desktop
applications. By systematically categorizing these elements
and extracting pertinent information such as type, location,
size, and description, the UI Extractor generates structured
representations that can be easily interpreted by the LLM.
These IAF representations sovle the limited context length
issue seen in previous methods.

E. Hierarchical Control Structure

This contribution is manifested in the hierarchical control
structure implemented within LUCI, facilitating the control
of tasks across multiple applications. At the heart of this
hierarchical control structure lies the collaborative effort of key
components such as the Conversational Model, Task Verifier,
and Action Executor. The conversational model within LUCI
employs in-context learning to understand user instructions
and adapt its behavior accordingly continuously refining its
understanding of tasks through feedback. Additionally, the
Task Verifier filters redundant sub-tasks based on future tasks
and past actions, minimizing unnecessary actions without
human intervention. These features collectively allow LUCI
to autonomously adapt to varying user needs and preferences
without frequent human intervention while contributing to the
overall effectiveness of the framework.

V. EXPERIMENTS AND RESULTS

In this section, we evaluate the performance of LUCI
and demonstrate that: (1) LUCI outperforms previous ap-
proaches on executing complex tasks (Section V-A), LUCI
enables cross-application adaptability (Section V-B) and
LUCI can utilize multiple applications for executing com-
plex tasks (Section V-C).

A. LUCI outperforms previous approaches on executing com-
plex tasks

The performance of LUCI in executing complex tasks stands
out prominently, especially when evaluated against other
methodologies. Our comprehensive examination involved test-
ing LUCI across two benchmarks Miniwob++ [33] and
Mind2Web [4], to allow for fair comparisons with baselines.
The MiniWoB++ task suite, designed to simulate real-world
human-computer interactions [33, 26], poses simple tasks like
click-checkboxes, and text-complete for computer agents. In
our MiniWoB++ experiments, we performed experiments on
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TABLE I
AVERAGE PERFORMANCE OF DIFFERENT METHODS ON MIND2WEB BENCHMARK. LUCI W/ GPT-3.5 ACHIEVES STATE-OF-THE-ART PERFORMANCE.

Baseline Cross-Task Cross-Website Cross-Domain
Op. F1 Step SR Op. F1 Step SR Op. F1 Step SR

MINDACT 56.6 17.4 48.8 16.2 52.8 18.6
Synapse - 30.6 - 29.1 - 26.4
WebGUM 75.9 64.9 75.3 62.5 77.7 66.7
GPT-4v 80.9 65.7 83.7 70 73.6 62.1
LUCI

w/ GPT-3.5 93.8 86.7 96.3 89.1 91.7 84.2
w/ Phi2 82.3 72.8 84.9 77.3 79.4 69.1

two LLM’s GPT-3.5-turbo and Phi-2, running 50 episodes to
generate results for each task. In MiniWoB++ setup, we adopt
RCI [22] configurations with action space comprising of click-
xpath, type, press, and click-options. The primary evaluation
criterion is the success rate, reflecting the agent’s effectiveness
in completing the assigned task [22]. The success rate is
determined by the proportion of successful episodes, wherein
the agent receives a positive reward.

Mind2Web [4] is a realistic dataset with human demon-
strations of open-domain tasks from diverse 137 real-world
websites like Airbnb and Twitter, for assessing generalization
across tasks, websites, and domains. For Mind2Web, we
utilized GPT-3.5-turbo and Phi-2 with greedy decoding (i.e,
temperature set to 0). Metrics include Operation F1 (Op. F1)
for token-level F1 score for predicted operation comprised of
action and input value, and Step SR for success rate per task
step. This dataset is divided into three test sets: Cross-Task,
Cross-Website, and Cross-Domain, evaluating generalizability
over tasks from the same, similar and completely unseen
domains, respectively. We include a set of examples in the
prompts.

Further, to evaluate our work on day-to-day tasks we
performed our experiments on 22 GUI applications (includ-
ing both desktop and web applications) shown in Figure 8.
To evaluate the performance of GUI applications, our key
evaluation criterion is the success rate, reflecting the agent’s
effectiveness in completing the assigned task. Here, we’ve
categorized three types of failure: tool selection, selection
of unwanted UI elements and task failure. Additionally, an
episode is deemed failed if the agent successfully carries out
the created plan but is unable to complete the assignment and
thus not rewarded. Most of the applications lack an appropriate
dataset for comprehensive evaluation. To solve this problem,
we employed an approach similar to [38]. We used a set
of hand-written tasks serving as seed examples and then,
utilize ChatGPT to generate more tasks. Unless explicitly
stated otherwise, for these manually curated test sets, human
evaluators assess and determine whether the task is considered
to be accurately accomplished.

1) Performance on MiniWoB++ Task Suite: We per-
formed comprehensive experiments to assess LUCI’s perfor-
mance in comparison to state-of-the-art (SOTA) approaches
on MiniWoB++. For baseline comparisons using Behavior
Cloning (BC) and Reinforcement Learning (RL), we employed
CC-Net [19] and Pix2Act [32], which leverage large-scale BC
and RL techniques. Regarding fine-tuning baselines, we eval-
uated against WebGUM [8] and WebN-T5 [14], two language

models fine-tuned on a substantial number of demonstrations.
In the realm of in-context learning (ICL) methods, our base-
lines comprised Synapse [46], RCI [22] and AdaPlanner [34],
both incorporating self-correction mechanisms. Additionally,
we included human scores from Humphreys et al. [19] for
supplementary benchmarking.

Figure 7 illustrates the average performance of different
methods across Miniwob++ benchmark. LUCI, utilizing PHI2
and gpt-3.5-turbo, achieves human-level performance with
mean success rates of 94% and 98.6%, respectively. Notably,
LUCI using gpt-3.5-turbo outperforms all baselines on Mini-
WoB++. LUCI surpasses previous ICL methods by addressing
issues associated with context length, the need for exemplar
memory and human intervention for task adaptability.

First, the UI extractor in LUCI compresses the UI into
a structured IAF representation, which solves the limited
context length issue seen in previous methods enabling it to
solve tasks such as booking flights that require more context
and were unsolvable by previous methods. Second, LUCI’s
hierarchical control structure and continuous user interaction
enable dynamic task execution and adaptation without relying
on exemplar memory, unlike Synapse [46]. While Synapse
and LUCI have around 99% success rate on the simpler
Miniwob++ benchmark, LUCI shows nearly 3 times higher
performance on Mind2WEB benchmark. Third, the con-
versational model within LUCI employs in-context learning to
understand user instructions and adapt its behavior accordingly

Fig. 7. Average performance comparison with baselines in MiniWoB++
environment. LUCI w/ GPT-3.5 achieves state-of-the-art performance and
LUCI w/ PHI-2 is the first model to achieve human-level performance with
LLM less than 3B parameters.
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Fig. 8. Average success rate of LUCI in using GUI Applications with GPT-3.5 under zero-shot setting and Few Shot Setting.

to continuously refine its understanding of tasks through
feedback. Additionally, the Task Verifier filters redundant sub-
tasks based on future tasks and past actions, minimizing un-
necessary actions without human intervention. These features
collectively allow LUCI to autonomously adapt to varying user
needs and preferences without frequent human intervention.
The instances of failure in LUCI are primarily attributed to
the inherent challenges of tasks that cannot be planned ahead.
For instance, tasks like tic-tac-toe, where the LUCI has to
make dynamic decision-making at each turn, and the outcome
of the game is contingent on the opponent’s moves. Unlike
other tasks that have deterministic or predictable outcomes,
tic-tac-toe requires adaptability and the ability to react to the
changing state of the game. LUCI cannot accurately plan ahead
because it cannot foresee the opponent’s moves beyond the
current turn, making the traditional pre-planning approach less
effective.

2) Performance on Mind2Web: We showcase LUCI’s ap-
plicability to real-world scenarios by testing it on Mind2Web
[4]. For baseline comparisons we used MindACT with GPT-
3.5, WebGUM [8], Gpt-4v [45]. The current SOTA in this
benchmark is Gpt-4v [45] with oracle grounding but requires
human annotations. It requires LMM to generate an action
and then select the UI element based on the action. In our
experiments, we directly select the UI element instead of
generating action. LUCI with GPT-3.5-turbo achieves a Step
success rate of 86.7 %, 89.1% and 84.2% across three test
splits, respectively. As demonstrated in Table I, our approach
performs significantly better than other methods across three
test splits over every metric. Notably, it achieves at least 19%
more in step success rate improvement over GPT-4(v) in all

three settings using GPT-3.5. LUCI with Phi2 still performs
admirably, demonstrating solid performance across various
scenarios. It outperforms other models in most categories,
showcasing the efficiency of LUCI with smaller LLMs in han-
dling cross-task, cross-website, and cross-domain challenges

3) Performance of LUCI on GUI Applications: In this
section, we assess the effectiveness of our approach in empow-
ering the model to autonomously leverage GUI applications,
without the need for additional supervision. The results of our
experiments, depicted in Figure 8, showcase the performance
of LUCI when integrated with GPT-3.5 under both the zero-
shot and few-shot in-context settings. Specifically, under the
zero-shot setting, where the language model relies solely on its
pre-existing knowledge to generate a solution outline, LUCI
achieves an average success rate of 58%. In contrast, under the
few-shot setting with limited context, the average success rate
significantly increases to 76.5%, with over 60% of applications
achieving a success rate of at least 80%. LUCI exhibits a com-
paratively lower performance in PyCharm, primarily attributed
to the language model’s limitations in generating accurate
and effective code. LUCI demonstrates good performance on
desktop applications even under the zero-shot setting when
compared to web applications. However, a significant decrease
is observed in the performance of LUCI with web appli-
cations under the few-shot setting. This disparity may stem
from the language model’s training data, which potentially
contains information on how to navigate and interact with
desktop applications but lacks comprehensive guidance on web
applications. These findings highlight the LUCI’s adaptability
to scenarios where the model encounters unfamiliar domains
with just a few prompts.
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Fig. 9. Cross application performance of LUCI with GPT-3.5 and PHI-2. LUCI fine-tuned on an application that exhibits comparable performance on similar
unseen applications. LUCI can generalise to unseen environment.

B. LUCI Enables Cross-Application Adaptability

In this section, we closely examine the cross-application
performance of language models with LUCI. Here we fine-
tune language models on a single application and subsequently
evaluate their success rate on analogous applications within
the same domains and task contexts. The models subjected
to experimentation include GPT-3.5 Turbo and Phi-2. The
objective of this investigation was to discern the adaptability
of these agents when confronted with entirely new desktop or
web applications, albeit within the familiarity of domains and
task contexts they were originally fine-tuned for.

From Figure 9, it is observed that the models fine-tuned for
a particular application exhibit a comparable success rate when
tested on applications from the same domain. Quantitatively,
the average deviation in performance is measured at 3.3 %
for the GPT-3.5 Turbo setting and 4.5 % for the Phi-2 setting.
This means that fine-tuning for a certain type of application
helps the models do well on other applications in the same
category.

C. LUCI can Utilize Multiple Applications for Executing
Complex Tasks

Another noteworthy aspect of LUCI is its ability to carry
out tasks that require the integration of multiple applications.
In this section, we evaluate LUCI’s proficiency in seamlessly
orchestrating various applications to efficiently execute multi-
faceted tasks, showcasing its potential for enhanced productiv-
ity and versatility in diverse user scenarios. To evaluate LUCI’s
capability to manage multiple applications, we created a set of
hand-written tasks serving as seed examples and then, utilize
ChatGPT to generate more tasks that require the utilization
of one or more GUI applications listed in Figure 8. Then,
these tasks with a number of GUI applications required to
complete each task range from 1 to 6. In each case, at least
21 tasks are evaluated and 30 episodes to produce the results.
Our key evaluation criterion is the success rate discussed in

Section V-A, reflecting the agent’s effectiveness in completing
the assigned task.

Figure 10, delineates a trend wherein the success rate
exhibits a gradual decline from 93.17% for tasks involving
a single application to 79.36% when four applications are
concurrently utilized. This trend underscores LUCI’s com-
mendable performance in handling tasks comprising up to
four applications. However, surpassing this threshold, the
success rates sharply decrease to 58.73%, indicating a sub-
stantial challenge for LUCI in managing tasks necessitating
the simultaneous usage of more than five applications. These
findings underscore the diminishing efficacy of LUCI with an
increasing number of applications, implying complexities in
its multitasking capabilities beyond a certain threshold.

Fig. 10. Average success rate of LUCI across tasks involving the use of
multiple applications. The trend shows LUCI’s ability to use at least four
applications without losing efficacy.

1) Task Ordering: A key observation from our tests was
that the ordering of applications had a tangible impact on the
success rate of the task. When complex applications such as
Keynote were called later in the execution order, we noted an
up to 20% decrease in the success rate. This effect can be
attributed to the long-term attention limitations in LLMs, a



11

fact that is further supported by the fact that the PHI2 variant
showed a much starker decline in performance compared to
GPT-3.5 Turbo. This implies that improvements in context
length would directly impact the number of applications LUCI
can orchestrate.

VI. FUTURE WORK

LUCI is designed to simplify the creation and evaluation of
versatile agents optimized for GUI tools. These agents show
great potential in improving the accessibility and usability
of GUI tools, especially for those who are unfamiliar with
information technology or have impairments that may make it
difficult to navigate complex tools or applications. Despite its
potential benefits, there remain significant concerns and limits
regarding present data gathering approaches, system design,
and the necessary safety precautions for deployment in real-
world circumstances.

Representation in Data: Our data and methodology
have undergone evaluation for English instructions and user
interfaces containing English text. In future, we would expand
to different languages.

Use of Multimodal Information: LUCI, focuses on
modeling the GUI environment into textual context from
underlying hierarchy, neglecting other information such as
images, videos e.t.c. This makes LUCI vulnerable to performs
actions based on information other than text. Leveraging this
multimodal information holds promise for enhancing model
performance.

Tolerance to Noise: In LUCI, a solution outline is generate
ahead of execution based on previous knowledge. Deviations
of desktop or web application from the original user interfaces,
often triggered by Pop-ups and Ads, result in errors as LUCI
struggles to adjust to unexpected scenarios.

Safety Concerns: The development of general-purpose
action agents holds the potential to enhance efficiency and user
experiences but requires careful consideration of safety con-
cerns. Key issues include managing sensitive actions, privacy-
related activities, and the risk of breaching security measures.
Amid these challenges, action agents pose a significant risk of
breaching security involving authentication and authorization
processes, including CAPTCHA, and may be exploited for
malicious activities. A comprehensive approach is needed
for responsible deployment, urging proactive cybersecurity
research to develop preemptive protective measures.

VII. CONCLUSION

In this work, we introduced LLM assisted User Control In-
terface (LUCI), a computer agent that leverages the reasoning
capabilities of LLMs, such as GPT-3.5 and PHI-2, to interact
and control wide range of desktop and web applications to
execute repetitive actions and solve complex tasks. LUCI
addresses context-length issues as seen in previous methods by
using IAF representations for UI elements across both native
and web interfaces. This extends the capabilities of previous
single platform approaches. Additionally, LUCI leverages a
hierarchical structure enabling multi-application control. LUCI
accomplishes all this while maintaining similar or up to

20% better performance on the benchmarks like MiniWoB++,
Mind2Web.
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