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Abstract
High-quality compilation of Digital Signal Processing (DSP)

algorithms is crucial for achieving real-time performance and

optimizing resource utilization. Traditional compilers often

struggle to effectively optimize DSP applications since their

optimization passes mainly deal with low-level intermediate

representations. This paper introduces DSP-MLIR – a com-

prehensive framework for DSP application development and

optimization. DSP-MLIR comprises i) a Python-like domain-

specific language (DSL) (named DSP-DSL) for intuitive and

easier programming of DSP applications, ii) a dedicatedMLIR

dialect (named DSP-dialect) with 90+ operations and 16 op-

timizations at the level of DSP operations, and iii) lowerings

to the Affine and standard MLIR dialects for high-quality

compilation flow for DSP applications. The effectiveness of

the proposed DSP-MLIR is evaluated by comparing the run-

times of the binaries generated by the various compilation

flows, including GCC, Clang, Hexagon-Clang, and existing

MLIR passes. Experiments on 20 DSP applications collected
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from various sources demonstrate an average performance

improvement of 12% over state-of-the-art compilation flows

with a 10% reduction in the generated binary size and no

significant variation in compilation time. Further, expressing

DSP applications in the proposed DSP-DSL reduces the code

complexity and development time of DSP applications (as

measured in lines of code (LOC)) by an average of 5x over

their specification in the programming language, “C”.

The DSP-MLIR framework is open-source and available

at: https://github.com/MPSLab-ASU/DSP_MLIR

CCS Concepts: • Software and its engineering → Com-
pilers; Domain specific languages; • Hardware → Emerging
languages and compilers; Digital signal processing.
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1 Introduction
Digital Signal Processing (DSP) applications leverage com-

putational algorithms to manipulate real-world signals such

as audio, video, and sensor data. These techniques enable

improvements in quality, noise reduction, and efficient trans-

mission across domains like telecommunications, medical

imaging, and consumer electronics [33, 48]. DSP is widely
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deployed in systems like microphones, audio amplifiers, and

speech assistants (e.g., Google Assistant, Amazon Echo).

Because many DSP algorithms operate under real-time

constraints and on resource-limited embedded devices (e.g.,

microphones, mobile SoCs), compilation efficiency is critical.

Dedicated DSP processors such as the TI C6000 series [17],
ADI Blackfin/SHARC [1], and Qualcomm Hexagon DSPs are
optimized for such tasks. These vendors provide special-

ized compilers and libraries—e.g., TI’s TI_CGT compiler with

DSPLIB [3, 13], and Qualcomm’s QHL (Qualcomm Hexagon

Libraries) [5]—to exploit hardware capabilities and accel-

erate DSP development. These libraries contain C-callable,

pre-optimized kernels for common DSP operations and can

significantly reduce development time.

However, most traditional compilers—including GCC [4]

and Clang [14, 15]—rely on a single, low-level intermediate

representation (IR), which makes it difficult to detect and

optimize high-level computational patterns. For instance, a

common DSP technique, the window method for FIR filter

design, multiplies the impulse response of an ideal filter with

a Hamming window to yield a realizable symmetric FIR filter.

This is used in applications such as speech enhancement,

seismic data filtering, and audio equalization. As shown in

entry #1 of Table 2, this pattern is defined by:

ℎ[𝑛] = ℎideal [𝑛] ·𝑤 [𝑛]

Since both ℎideal [𝑛] and𝑤 [𝑛] are symmetric, ℎ[𝑛] is also
symmetric, enabling optimizations that compute only half

the values and mirror the result. Traditional DSP libraries,

however, operate at the level of individual kernels and lower

to IR before optimizations, making such cross-operation opti-

mizations infeasible. For example, QHL may treat the ideal

filter and window operations independently, missing oppor-

tunities to eliminate redundant computation by leveraging

their shared symmetry.

DSP-MLIR, the compiler framework proposed in this

work, overcomes these limitations by identifying and ap-

plying such high-level domain-specific optimizations. This

optimization, among others, is detailed in Section 3.

The primary contributions of DSP-MLIR are:

1) DSP-dialect in MLIR: We introduce the DSP-dialect
with 90+ operations covering commonly usedDSP constructs.

These operations are progressively lowered to the affine
and standardMLIR dialects to enable optimization and code

generation via LLVM.

2) DSP-specific Optimizations:We implement 16 optimiza-

tions based on DSP theorems and operation fusion. These are

expressed at the domain level and often cannot be captured

by general-purpose compiler passes.

3)DSP-DSL forRapidDevelopment:APython-like domain-

specific language enables intuitive specification of DSP algo-

rithms. Code written in DSP-DSL is automatically lowered to

DSP-dialect, optimized, and compiled to executable binaries

via MLIR and Clang.

To evaluate DSP-MLIR, we use 20 DSP applications from

benchmarks such as EEMBC [27], MiBench [32], and DSP-

Stone [51]. Without DSP-dialect optimizations, DSP-MLIR

achieves a 43% speedup over GCC and 27% over Clang on

CPUs. With DSP-dialect optimizations, an additional 10%

gain is observed. On the Hexagon v68 DSP processor, DSP-

MLIR initially lags Clang by 8%, but surpasses it by 5% after

applying optimizations, while also reducing binary size and

keeping compile time low. These gains come exclusively

from DSP-dialect-level transformations (Section 3.2), with-

out altering the backend code generation.

In terms of developer productivity, DSP-DSL reduces code

size significantly—requiring 5× fewer lines of code on aver-

age compared to C. The DSP-MLIR framework is portable

across targets via MLIR and LLVM, and is featured on the

official MLIR website [7, 44].

2 Background on MLIR (Multi-Level
Intermediate Representation)

Traditional compiler infrastructures such as GCC and LLVM

operate on a monolithic, single-level intermediate represen-

tation (IR), limiting their ability to express and optimize

programs across diverse levels of abstraction. To address

this,MLIR (Multi-Level Intermediate Representation) frame-

work [8] was introduced to provide a flexible and extensible

compilation infrastructure that supports multiple IRs across

different abstraction levels through the use of dialects.
Each dialect in MLIR defines a namespace encapsulating a

set of operations, types, and attributes that represent compu-

tations at an abstraction level. Compilation in MLIR proceeds

via progressive lowering, wherein a program is transformed

from high-level dialects (close to the source language) to

low-level dialects (closer to the hardware), enabling targeted

optimizations at each stage of the transformation pipeline.

MLIR includes a wide range of dialects tailored to spe-

cific domains and hardware targets. For example, tf1 [43]
and onnx-mlir [11] dialects support TensorFlow and ONNX

frontends for machine learning models; affine [2] dialect
supports polyhedral optimizations for loop nests; nvgpu [9]

and nvvm [10] enable targeting NVIDIA GPUs; scaleHLS [49,
50] and SODA [20–22] are designed for high-level synthesis;

FHE [35] and HECO [47] support compilation for fully ho-

momorphic encryption; and mlir-cgra [42] targets coarse-

grain reconfigurable architectures (CGRAs).

A major strength of MLIR lies in its ability to perform pow-

erful optimizations in intermediate dialects. For instance, the

LinAlg [6] and affine [2] dialects provide rich semantics

for tensor algebra and loop transformations, respectively.

This allows the compiler to detect and optimize patterns

such as redundant tensor transpositions (e.g., eliminating

1
Any text in this format refers to an MLIR keyword
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Figure 1. The compilation pipeline of the proposed DSP-

MLIR framework. DSP-DSL is compiled into the DSP-

dialect and then lowered to affine (whenever possible) or
structured control flow (SCF) and then to LLVM IR. Fi-
nally, code is generated through Clang.

double transposes), enabling both high-level and low-level

performance improvements.

MLIR’s modular and reusable infrastructure has led to

widespread adoption in modern compilation pipelines, in-

cluding those for PyTorch (torch-mlir [39]) and Tensor-

Flow (tf dialect [43]). In this work, we introduce a new

MLIR dialect for easier expression and efficient compilation

of DSP applications.

3 DSP-MLIR Framework
Figure 1 illustrates the compilation flow of the proposed DSP-

MLIR framework. Application developers begin by writing

their programs in a domain-specific language (DSP-DSL)

tailored for DSP workloads. This high-level specification

is then translated into the DSP dialect—a high-level MLIR

dialect designed to closely reflect the semantics of the DSL.

This translation involves representing the application in

terms of DSP dialect operations and data structures. Once

in this form, dialect-specific optimizations are applied to

improve the program’s structure and performance at the high

level. After these initial optimizations, the IR is progressively

lowered to more concrete representations.

Where possible, the intermediate representation (IR) is

transformed into the affine dialect to leverage MLIR’s pow-

erful polyhedral analysis and loop optimization capabili-

ties. However, due to the static nature of the affine di-

alect—which only supports loop nests with constant bounds

and strides—portions of the application that cannot be ex-

pressed in this form are lowered into other standard MLIR

dialects such as memref, arith, math, func, and scf.
Through this staged lowering process, the IR is eventually

converted into the LLVM dialect (MLIR-LLVM), which provides
a direct mapping to the LLVM IR. Finally, the LLVM backend,

typically invoked via clang, is used to generate the target

Table 1. Some of the DSP-dialect operations. A full list of

90+ operations is available in [26].

Operation name Equation

SlidingWindowAvg 𝑦 [𝑛] = 1

𝑁

∑𝑁−1
𝑖=0 𝑥 [𝑛 − 𝑖]

FIRFilterResponse 𝑦 [𝑛] = ∑𝑀
𝑖=0 ℎ[𝑖] · 𝑥 [𝑛 − 𝑖]

MedianFilter 𝑦 [𝑛] =𝑚𝑒𝑑𝑖𝑎𝑛(𝑥 [𝑛 − 1], 𝑥 [𝑛], 𝑥 [𝑛 − 1])
FFT1DReal 𝑋real [𝑘] =

∑𝑁−1
𝑛=0 𝑥 [𝑛] cos

(
2𝜋
𝑁
𝑘𝑛

)
FFT1DImg 𝑋imag [𝑘] = −∑𝑁−1

𝑛=0 𝑥 [𝑛] sin
(
2𝜋
𝑁
𝑘𝑛

)
machine binary. This structured and modular compilation

flow enables both high-level expressiveness and low-level

performance tuning for DSP applications.

3.1 The DSP-dialect
The DSP-dialect offers a comprehensive set of operations

(90+) tailored for expressing digital signal processing (DSP)

applications. A few of the supported DSP-dialect operations

and their mathematical representations are presented in Ta-

ble 1. The full list of the DSP-dialect operations is available

in [26]. DSP-dialect operations are categorized into two pri-

mary groups: Core DSP operations and Auxiliary operations.
Core DSP operations form the backbone of many DSP algo-

rithms. They include signal processing primitives like delay,

transforms such as DFT, IDFT, and DCT, and various fil-

ter designs, including low-pass, high-pass, band-pass, and

band-stop filters. These operations are fundamental building

blocks for constructing sophisticated DSP systems.

Auxiliary operations complement the Core DSP operations,
providing essential functionalities for efficient implemen-

tation. These include helper functions like trigonometric

functions, vector generation, and printing for debugging

purposes. Additionally, auxiliary operations facilitate data

type conversion between different representations, enabling

seamless integration of various DSP components.

The DSP-dialect leverages tensor data type to represent

DSP signals effectively. The tensor data type can accommo-

date a wide range of signals, from one-dimensional signals

to multi-dimensional signals and complex-valued signals. By

employing the tensor data type, the dialect offers a unified

and efficient representation for diverse DSP applications.

3.2 DSP-dialect Optimizations
MLIR’s hierarchical structure provides a unique opportunity

to identify and apply high-level optimizations that are very

hard to implement in single-IR compilers. We broadly cate-

gorize our optimizations into 2 categories: 1) DSP theorem-

based - which contains optimizations based on well-known

DSP theorems and mathematical identities. 2) DSP opera-

tion fusion-based - which contains optimizations that fuse

operations/loops that other MLIR passes (and/or compilers)

148



LCTES ’25, June 16–17, 2025, Seoul, Republic of Korea A. Kumar, A. Khedkar, H. So, M. Kuo, A. Gurjar, P. Biswas, A. Shrivastava

Table 2. A complete list of DSP-dialect optimizations. Some of them are based on well-known DSP theorems and mathematical

identities, and others fuse inter-kernel/operation loops that other compiler passes are unable to optimize.

# Canonical Pattern Optimized Pattern Category

1 Mul(IdealFilter(wc, n), Hamming(n)) FilterHammOpt(wc, n)

DSP

Theorem

2 FilterResponse(FilterHammOpt(wc, n)) FilterResSymmOpt(wc, n)

3 Div(Sum(Add(Sq(DFTReal(ins)), sq(DFTImg(ins)))), len(ins)) Div(Sum(Sq(ins)), len(ins))

4 IFFT1D(Mul(FFT1D(Padding(ins1)), FFT1D(Padding(ins2)))) FIRFilterResponse(ins2, ins1)

5 FilterResponse(ins, ReverseInput(ins)) FilterResponseYSymmOpt(ins)

6 DFT1DReal(FilterResponseYSymmOpt(ins)) DFT1DRealSymmOpt(ins)

7 SlidingWindowAvg(Median(ins)) Median2SlidingOpt(ins)

Operation

Fusion

8 Threshold(FilterResSymmOpt(wc, n), ths) FilterResSymmThresholdOpt(wc, n, ths)

9 Normalize(LMSFilterResponse(ins)) NormalizedLMSFilterResponseOpt(ins)

10 FindPeaks(LMSFilterResponse(ins), h, dist) LMS2FindPeaks(ins, h, dist)

11 Mean(Diff(FindPeaks(in, h, dist), len(peaks)), len(peaks)-1) FindPeaks2DiffMeanOpt(in, h, dist)

12 Gain(LMSFilter(ins)) LMSFilterGainOpt(ins)

13 Max(Correlation(ins)) Corr2MaxOpt(ins)

14 Sq(Sum(Sq(DFTReal(ins)), sq(DFTImg(ins)))) DFTAbsOpt(ins)

15 Threshold(DFTAbsOpt(ins)) DFTAbsThresholdOpt(ins)

16 DFTReal(ins), DFTImg(ins) DFT1D(ins)

fail to optimize. Overall, DSP-dialect provides 16 optimiza-

tions, listed in Table 2. The column Canonical Pattern repre-

sents the pattern of operations and dependency identified

by our compiler and Optimized Pattern showcases the con-

verted/optimized operation(s).

DSP-MLIR leverages DSP theorems to optimize various

operations, such as combining ideal filters and cosine win-

dows, exploiting properties of symmetric filters and noisy

signals, optimizing energy calculations in time and frequency

domains, reducing computations for symmetric inputs, op-

timizing filter response for input patterns, and accelerating

convolution operations using the convolution theorem.

In addition to theorem-based optimizations, our compiler

focuses on fusing operations to reduce computational over-

head. This includes combining filtering and thresholding,

merging sliding window and median filtering, combining

filtering and normalization, fusing filter response calcula-

tion and peak detection, optimizing peak finding algorithms,

combining LMS filter and gain computation, optimizing spec-

trogram calculation, combining spectrogram calculation and

thresholding, optimizing correlation calculations, and fusing

real and imaginary parts of DFT calculations.

To implement these optimizations, we utilize the canoni-

calization approach in MLIR [12]. Canonicalization allows

dialect developers to express program transformations in

terms of pattern matching. MLIR uses a powerful pattern-

matching system to identify specified patterns within the

IR. Once a pattern is recognized, it is replaced with a more

simplified or optimized equivalent. This allows for the elim-

ination of redundant operations, simplification of complex

expressions, and algebraic transformations. Next, we explain

one optimization of each of the DSP theorem-based and DSP

operation fusion-based optimizations.

Example Optimization Based on DSP Theorem - Fil-
ter Response for Symmetric FIR Filter. A typical filter

response operation can be defined by Equation (1). Consider-

ing a symmetric FIR filterℎ[𝑛], whereℎ[𝑖] = ℎ[𝐿−1−𝑖], and
assuming an odd number of filter coefficients, i.e., (𝐿 mod 2 =

1) we can exploit the symmetry property in Equation (1) to

combine the symmetric inputs (equidistant from the cen-

ter) and obtain final Equation (3). By using Equation (3), we

can reduce the number of load instructions for the filter by

almost half [33].

𝑦resp [𝑛] =
𝐿−1∑︁
𝑖=0

ℎ[𝑖] · 𝑥 [𝑛 − 𝑖], 0 ≤ 𝑛 < 𝑁 (1)

= ℎ[0] · 𝑥 [𝑛] + ℎ[1] · 𝑥 [𝑛 − 1] + . . . +
ℎ[𝐿 − 2] · 𝑥 [𝑛 − (𝐿 − 2)]+
ℎ[𝐿 − 1] · 𝑥 [𝑛 − (𝐿 − 1)]

= ℎ[0]{𝑥 [𝑛] + 𝑥 [𝑛 − (𝐿 − 1)]}+
ℎ[1]{𝑥 [𝑛 − 1] + 𝑥 [𝑛 − (𝐿 − 2)]} + . . .

+ ℎ[𝐿 − 1

2

] · 𝑥 [𝑛 − 𝐿 − 1

2

] (2)

=

𝐿−3
2∑︁

𝑖=0

ℎ[𝑖] · {𝑥 [𝑛 − 𝑖] + 𝑥 [𝑛 − (𝐿 − 1 − 𝑖)]}

+ ℎ[𝐿 − 1

2

] · 𝑥 [𝑛 − 𝐿 − 1

2

] (3)

149



DSP-MLIR: A Domain-Specific Language and MLIR Dialect for Digital Signal Processing LCTES ’25, June 16–17, 2025, Seoul, Republic of Korea

for (n=0; n < N-2; n++) //Median(ins)
med[n] = median(x[n], x[n+1], x[n+2]);

for (n=0; n < N-4; n++) //SlidingWindowAvg(Median(ins))
y[n] = (med[n] + med[n+1] + med[n+2])/3;

Pseudo code of median filtering and sliding window

for (n=0; n<N-4; n++) { //Median2SlidingOpt(ins)
med[n] = median(x[n], x[n+1], x[n+2]);
med[n+1] = median(x[n+1], x[n+2], x[n+3]);
med[n+2] = median(x[n+2], x[n+3], x[n+4]);

y[n] = (med[n] + med[n+1] + med[n+2])/3;
}

Optimized median filtering and sliding window

Canonical optimization #7
SlidingWindowAvg(Median(ins)) → Median2SlidingOpt(ins)

Figure 2. Operation Fusion optimization of median filtering

and sliding window average

Example Optimization Based on DSP Operation Fu-
sion - CombiningMedian Filtering and SlidingWindow
Operation. Sliding window and median filtering are gener-

ally used together for applications like signal smoothing. For

the same window sizes, this computation can be combined

into a single filter and significantly reduce the computation

overhead. For example, for a window size of 3, we load 5

elements to calculate the sliding window average as given in

Figure 2. In this figure, 𝑦 [𝑛] is the output signal, 𝑥 [𝑛] is the
input signal and𝑛 is the current sample index. This combined

filter can be effective for noise reduction while preserving

edges, as the average filter smooths out high-frequency noise,

and the median filter helps to remove outliers and preserve

edges. By itself, the loop fusion optimizations are unable to

achieve this since the loop bounds for the following filter

changes to 𝑁 − 𝑙 + 1 where N is the input length, 𝑙 is the

filter length, which affine loop fusion optimization is unable

to recognize and fuse.

3.3 The DSP-DSL
DSP applications have traditionally been developed using

C/C++ or library-based DSLs such as MATLAB
®
[34]. How-

ever, these approaches are often verbose, hard to maintain,

and not well-suited for modern compiler infrastructures. For

example, Figure 3 shows how one might implement a power

spectrum computation in C.

In the absence of a high-level DSL, developers targeting

our DSP dialect in MLIR would need to write code directly in

MLIR. Figure 4 (right) illustrates this by showing the MLIR

representation of a function that computes the power spec-

trum of a signal.

To address these limitations and improve programmability,

we introduce DSP-DSL — a Python-like domain-specific

language tailored for DSP workloads. DSP-DSL provides a

rich set of built-in signal processing operations and offers an

#include<stdio.h>
#include<math.h>
#define PI 3.14159265358

void main() {
    double input[10], reverse_input[10];
    for (int i = 0; i < 10; i++) //getRangeOfVector
        input[i] = 0.0 + i * 1.0;          
    for (int i = 0; i < 10; i++) //reverseInput
        reverse_input[i] = input[10 - 1 - i];
    int conv_length = 2 * 10 - 1;    
    double conv1d[conv_length];
    for (int n = 0; n < conv_length; n++) { //FIRFilterResponse
        conv1d[n] = 0;
        for (int k = 0; k < 10; k++)
            if (n - k >= 0 && n - k < 10)  
                conv1d[n] += input[n - k] * reverse_input[k];
    }

    double fft_real[conv_length], fft_img[conv_length];
    for (int k = 0; k < conv_length; k++) { //dftReal
        fft_real[k] = 0;
        for (int n = 0; n < conv_length; n++) {
            double angle = 2.0 * PI * k * n / conv_length;
            fft_real[k] += conv1d[n] * cos(angle);
        }
    }

 for (int k = 0; k < conv_length; k++) { //dftImag
  fft_img[k] = 0;
  for (int n = 0; n < conv_length; n++) {
   double angle = 2.0 * PI * k * n / conv_length;
   fft_img[k] -= conv1d[n] * sin(angle);
  }
 }

    double sq[conv_length];
    for (int i = 0; i < conv_length; i++)
        sq[i] = fft_real[i]*fft_real[i] + fft_img[i]*fft_img[i];

    for (int i = 0; i < conv_length; i++) //print
        printf("%f ", sq[i]);
}

Figure 3. Function to calculate power spectrum of a signal

in C language

intuitive syntax that enables developers to express complex

DSP computations in just a few lines of code. The left side

of Figure 4 demonstrates the same power spectrum function

written in DSP-DSL. The grammar of the DSP-DSL is an

extension of the language used in the MLIR tutorial, and its

formal specification is presented in Extended Backus–Naur

Form (EBNF) in Figure 5.

The DSP-DSL compiler performs a multi-stage translation

to produce MLIR code in the DSP dialect. First, a lexer con-

verts the DSL source into a stream of tokens. These tokens

are then consumed by a recursive descent parser to construct

an Abstract Syntax Tree (AST), where each module is parsed

into a moduleAST comprising functions and statements. Next,

a second parser, implemented in the mlirGen class, takes the
moduleAST and generates corresponding MLIR operations

based on the structure and semantics of each DSL construct.

This compiler pipeline results in MLIR code that integrates

seamlessly into the broader MLIR ecosystem for analysis,

optimization, and code generation.
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#Power spectrum

def main() {

  var input = getRangeOfVector(0, 10, 1);

  #Get x[-l] ie, reverseInput & get conv1d

  var reverse_input = reverseInput(input);

  var conv1d = FIRFilterResponse(input, reverse_input);

  #Get dft of the conv1d

  var fft_real = fft1dreal(conv1d);

  var fft_img = fft1dimg(conv1d);

  #Get square of the dft

  var sq = fft_real * fft_real + fft_img * fft_img;

  print(sq);

}

DSP domain specific language (DSL) code

module {

  dsp.func @main() {

    %0 = dsp.constant dense<0.000000e+00> : tensor<f64>

    %1 = dsp.constant dense<5.000000e+04> : tensor<f64>

    %2 = dsp.constant dense<1.250000e-04> : tensor<f64>

    %3 = "dsp.getRangeOfVector"(%0, %1, %2) :

          (tensor<f64>, tensor<f64>, tensor<f64>) -> tensor<*xf64>

    %4 = "dsp.reverseInput"(%3) : (tensor<*xf64>) -> tensor<*xf64>

    %5 = "dsp.FIRFilterResponse"(%3, %4) :

                   (tensor<*xf64>, tensor<*xf64>) -> tensor<*xf64>

    %6 = "dsp.fft1dreal"(%5) : (tensor<*xf64>) -> tensor<*xf64>

    %7 = "dsp.fft1dimg"(%5) : (tensor<*xf64>) -> tensor<*xf64>

    %8 = dsp.mul %6, %6 : tensor<*xf64>

    %9 = dsp.mul %7, %7 : tensor<*xf64>

    %10 = dsp.add %8, %9 : tensor<*xf64>

    dsp.print %10 : tensor<*xf64>

    dsp.return

  }

} DSP dialect code

Figure 4. A function to calculate the power spectrum of a signal represented in DSP-DSL (left) and DSP-dialect in MLIR

(right). DSP-DSL allows DSP application developers to write their applications in intuitive syntax and high-level abstractions

of DSP-DSL, rather than in the MLIR in DSP-dialect (right).

program = { function-def } ;

function-def = "def" id "(" ")" "{" { statement } "}" ;

statement = variable-declaration | assignment | function-call |

            print-statement | comment ;

variable-declaration = "var" id [ dim-specifier ] "=" expression ";" ;

assignment = id "=" expression ";" ;

print-statement = "print" "(" expression ")" ";" ;

comment = "#" { any-character-except-newline } newline ;

dim-specifier = "<" integer-literal { "," integer-literal } ">" ;

expression = term { ( "+" | "-" ) term } | array-literal ;

term = factor { ( "*" | "/" ) factor } ;

factor = id | number-literal | "(" expression ")" | function-call ;

function-call = id "(" [ argument-list ] ")" ;

argument-list = expression { "," expression } ;

array-literal = "[" [ expression { "," expression } ] "]" ;

number-literal = [ "-" ] integer-literal | [ "-" ] float-literal ;

integer-literal = digit { digit } ;

float-literal = digit { digit } "." digit { digit } ;

id = letter { letter | digit | "_" } ;

operator = "=" | "*" | "/" | "+" | "-" ;

digit = "0" .. "9" ;

letter = "a" .. "z" | "A" .. "Z" ;

Figure 5. EBNF Form of DSP-DSL.

4 Evaluation Setup
Benchmarks: To evaluate the performance enhancement of

DSP-dialect and the ease of programming with DSP-DSL, we

conducted experiments on a set of 20 real-world DSP appli-

cations from various sources, including AudioMark™ [28] of

EmbeddedMicroprocessor Benchmark Consortium (EEMBC)

suite [27], MiBench [32], and DSPStone [51]. These bench-

marks cover a broad spectrum of DSP applications, from clas-

sical filter design and spectral analysis to audio compression,

biomedical signal processing, and modern communication.

Evaluation Platforms:To rigorously evaluate the perfor-

mance of DSP-MLIR against state-of-the-art DSP compilers,

we benchmarked DSP-MLIR against Qualcomm’s Hexagon-

Clang compiler, specifically developed for Hexagon DSP pro-

cessors (now known as NPUs). Hexagon-Clang is built upon

the widely adopted LLVM open-source compiler framework,

featuring an LLVM backend specifically designed for code

generation on Hexagon processors.

Among available compilers for prevalent DSP architec-

tures such as Texas Instruments (TI) and Analog Devices,

even TI’s latest c7000 compiler continues to rely on a propri-

etary compilation infrastructure maintained since the 1980s,

and it does not utilize modern compiler frameworks like

GCC or LLVM [16]. Consequently, Qualcomm’s Hexagon

compiler (hexagon-clang), leveraging modern compiler re-

search and its open-source nature, was selected as the most

suitable baseline. The Hexagon-Clang compiler is accessible

as part of the Hexagon NPU SDK [5].

Application binaries were generated tomatch the intended

execution platforms. DSP applications typically run on DSP

processors for real-time scenarios or on CPUs for general-

purpose use cases such as WebRTC. To demonstrate DSP-

MLIR’s versatility across both specialized DSP hardware and

general-purpose computing platforms, the generated bench-

mark binaries were deployed and tested on the Qualcomm

Hexagon v68 processor using Qualcomm’s Hexagon Simu-

lator (hexagon-sim version 8.8.06 [5]) and an AMD Ryzen

Threadripper PRO 7955WX CPU.

CPU Compilation Flows: We compare the compilation

flow of the proposed DSP-MLIR against several baselines,

including DSP applications expressed in DSP-DSL and C.

• GCC: DSP applications expressed in C, and compiled

with GCC 11.4.0 using -O3 optimizations.

• Clang: DSP applications expressed in C, and compiled

with Clang-19 using -O3 optimizations.
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• Affine: DSP applications expressed in our proposed

DSP-DSL, compiled to the DSP-dialect, then lowered to

the affine and other standard dialects, apply affine
and other optimizations, and then compile to LLVM-IR,

and then finally binaries are generated using Clang.

(Most of the important optimizations in MLIR are in

LinAlg and the Affine dialect.) This represents the

state-of-the-art in the compilation flow.

• DSP-MLIR (ours): This is the same flow as Affine,

except that after converting the representation to DSP-

dialect, we perform DSP-dialect optimizations defined

in Section 3.2.

Hexagon DSP Compilation Flows: While compiling

and executing on hexagon device, we use the same Clang,
Affine and DSP-MLIR compilation flows as mentioned

above and execute then using hexagon-sim. To evaluate

against hexagon compiler (hexagon-clang) we also com-

pare with the following compilation flows:

• Affine-hexagon: This is the same Affine compilation

flow except after generating llvm for hexagon v68 pro-

cessor, we use hexagon-clang using -O3 optimzations

and hexagon-link linker to generate binary.

• Clang-hexagon: DSP application expressed in C and

compiled with hexagon-clang using -O3 optimizations.

• DSP-MLIR-hexagon (ours): Same flow as Affine-
hexagon except that we enable the DSP-dialect opti-

mizations defined in Section 3.2.

For each compilation flow, we measure the runtime, com-

pilation time, and binary code size.

Execution: We execute the generated binaries of each

application with input signal sizes ranging from 10 to 100

million elements in steps of order.

For the AMD Ryzen, each version (compilation flow, in-

put signal size) is executed 30 times, and we measure the

average execution time to mitigate system-level variations.

We flushed the cache after each run to ensure consistent ini-

tial conditions for subsequent executions. Each application

was limited to single-core execution on the device using the

command taskset -c 0 to set the CPU affinity, ensuring equal

comparison across different compilation methods. However,

the compilers do use the SIMD capabilities of the core using

SSE [45] and AVX [40] instructions.

For the Hexagon v68 processor, we generate llvm instruc-

tions for hexagon v68 using its opensource LLVM backend

and then use hexagon-link linker provided with the Hexagon

SDK to generate an executable binary. Finally, to get the ex-

ecution cycle count, we use hexagon-sim for each variation

of compilation flow.

It is worth noting any performance improvement achieved

by DSP-MLIR is strictly due to the optimizations discusses

in Section 3.2 as the results are normalized with respect to

the Affine compilation flow.

5 Empirical Claims
5.1 The DSP-dialect Optimizations Improve

Performance of DSP Applications by an Average
of 12% Across CPU and DSP Devices

Figures 6 and 7 present the runtime performance of various

DSP applications compiled using different compilation flows

(lower is better). The applications are arranged from left

to right in order of increasing runtime, reflecting growing

computational complexity. For each application, the runtime

achieved by each compilation flow is normalized to that of

the Affine flow, which serves as the baseline due to its status

as the state-of-the-art in compiler optimizations.

5.1.1 AMD Ryzen Processor: In Figure 6, the first bar

for each application is the runtime from the Affine flow and

therefore, has a height of 1. The second and the third bars are

the normalized runtime by the GCC and Clang compilation

flows respectively. The rightmost bar for each application is

the normalized runtime of the proposed DSP-MLIR compi-

lation flow.

GCC and Clang: GCC and Clang demonstrated compa-

rable execution times for most applications, except for Low-

pass Filtering and Speaker Identification applications. For

these applications, Clang outperformed GCC due to its supe-

rior utilization of SSE and AVX vector instructions, enabling

simultaneous processing of multiple elements.

Clang and Affine: Clang and Affine compilation flows

yield comparable performance in 9 applications. This can

be explained by the fact that after optimizing applications

within MLIR, the Affine compilation flow emits optimized

LLVM IR and uses Clang-19 to generate the executable bi-

nary. Clang, being an earlier development and an integral

part of the LLVM project, already incorporates many of the

optimizations available in the affine dialect in MLIR.

However, for FIR Filter Design, Audio Compression and

Target Detection applications Clang performed better than

Affine becauseAffine uses 8-byte alignment tailored for scalar

double-precision floating-point constants while Clang gen-

erates 16-byte alignment optimized for vectorized instruc-

tions. Moreover, Clang uses simplified scalar arithmetic in-

structions and fewer expensive math-function calls. Affine’s
repeated packed operations (mulpd, addpd) and frequent

sin/cos calls create high overhead and slower execution.

Effectiveness of DSP-MLIR: As shown in Figure 6, the

binaries generated by our proposed DSP-MLIR compilation

flow outperform the binaries generated by the Affine com-

pilation flow across all applications and surpass both Clang

and GCC in 19 out of 20 applications, yielding an average

performance gain of 10% across the entire application suite.

The substantial performance enhancement can be primar-

ily attributed to the ease of utilizing DSP domain-specific

properties and theorems at the DSP-dialect level, resulting

in more efficient code generation. The multi-level optimiza-

tion framework provided by MLIR enables the exploitation
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Figure 6. Runtime of the binaries generated by the various compilation flows, normalized to Affine and executed on AMD

Ryzen Processor. Clang outperforms GCC by about 16%. Affine outperforms Clang by about 27%. DSP-MLIR outperforms Affine
by about 10%.
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Figure 7. Runtime of the binaries generated by the various compilation flows, normalized to Affine and executed on Hexagon

v68 Processor. Clang outperforms Affine by about 8%. However, DSP-MLIR outperforms Affine by about 13% and Clang by

about 5%.

of DSP theorem-level optimizations and operation fusion

optimizations that are challenging to implement at other

lowering stages.

For the Target Detection application, DSP-MLIR performs

worse than Clang. This is because the Clang-compiled binary

has many more SIMD instructions but our MLIR-generated

binary uses a lot of memory and branch instructions, reduc-

ing performance.

DSP-MLIR outperforms other benchmarks in various ap-

plications, e.g., Spectral Analysis, which uses Parseval’s the-

orem (#3 in Table 2) to eliminate the FFT computation and

results in almost 5x reduction in runtime over Affine. For

Audio Equalization, DSP-MLIR uses optimization (#1 in Ta-

ble 2) to optimize the filter design calculation for various

filters and result in 2.75x reduction in runtime over GCC and

Clang. For Low-pass Filtering, DSP-MLIR uses optimization

#1 and #2 from Table 2 to reduce the number of computations

and memory load and store operations, which results in an

almost 2.25x and 1.25x reduction in runtime over GCC and

Clang respectively.

5.1.2 Hexagon DSP Processor: Figure 7 represents the
normalized execution cycles for respective compilation flows

on the hexagon processor.
2
For each application mentioned

on the x-axis, the first bar represents Affine compilation flow

and hence has a height of 1, followed by Affine-hexagon,
Clang, Clang-hexagon, DSP-MLIR, and DSP-MLIR-hexagon
compilation flows as explained in Section 4.

2
For the Signal Smoothing benchmark, hexagon-clang failed to compile

the generated LLVM code from the DSP-MLIR framework due to version

mismatches between the LLVM used by hexagon-clang and the one used to

build DSP-MLIR. As a result, we report the same performance numbers for

both Affine-hexagon and DSP-MLIR-hexagon as those obtained with clang,

to maintain consistency and enable comparison.
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Figure 8. Lines of code in C, MATLAB
®
, and DSP-DSL for the various DSP applications. The DSP-DSL representation is about

5x smaller than in “C”.

Affine, Clang, DSP-MLIR and their respective hexagon-

clang compilation flows (e.g. Affine and Affine-hexagon /

Clang and Clang-hexagon) exhibit similar performance with

minor variation in performance. For Speaker Identification

application, Clang-hexagon performs slightly better than

Clang as it generates optimized DSP-specific instructions

(dfmpyfix), efficient memory alignment (.falign), and special-

ized stack allocations for hexagon processors. These opti-

mizations enhance arithmetic throughput and memory effi-

ciency for hexagon DSP architectures.

Clang and Affine: Clang and Clang-hexagon compilation

flows perform significantly better in 12 out of 20 applications

than Affine and Affine-hexagon compilation flows and per-

forms 8% better on average, as the C code compiled version

uses simpler, fewer arithmetic operations and efficient loops.

On the contrary, Affine and Affine-hexagon versions per-

form repeated heavy DSP instructions (dfmpyfix), creating

pipeline stalls and higher computational overhead.

The Clang and Clang-hexagon compilation flows perform

worse for Audio Compression, Vibration Analysis and Spec-

tral Analysis applications due to similar reasons i.e. Clang
andClang-hexagon compilation flows generate complex nested

loops, and excessive intermediate computations resulting in

slower runtime.

Affine andDSP-MLIR:DSP-MLIR andDSP-MLIR-hexagon
performs around 13% better on average as compared toAffine
and Affine-hexagon compilation flow and around 5% better

as compared to Clang and Clang-hexagon compilation flows.

While from the results, it is worth noting that the Spectral

Analysis application benefits the most from DSP optimiza-

tion, excluding the application still shows 9% improvement

over Affine, Affine-hexagon compilation flows and compara-

ble results to the Clang and Clang-hexagon compilation flows.

Notably, as wemove right along the x-axis—corresponding to

applications with longer runtimes—DSP-MLIR shows increas-

ingly significant performance gains over Clang, highlighting
its applicability for more complex workloads.

5.2 DSP-DSL Improves Programmer Productivity by
4x

To assess the productivity benefits of DSP-DSL, we measured

the average number of lines of code (LOC) required to ex-

press DSP application functionality in C, MATLAB
®
, and

our proposed DSP-DSL. Figure 8 presents the LOC compari-

son across these languages, with comments and empty lines

excluded to ensure an accurate measurement.

As shown in Figure 8, C implementations require over 100

lines of code on average due to their low-level nature and

verbosity.MATLAB
®
offers amore concise syntax, averaging

32.95 lines of code, which can accelerate DSP application

development.

In contrast, DSP-DSL achieves the most concise expres-

sion of functionality, averaging only 21.05 lines of code. Be-

yond code brevity, it also delivers improved execution per-

formance, as demonstrated in Figures 6 and 7.

5.3 DSP-DSL Doesn’t Increase Compilation Time or
Binary Size

There is no significant variation in the compilation times of

the various compilation flows, bracketed by GCC at 0.136s

and Clang at 0.152s, and DSP-MLIR at 0.139s. The size of the

binaries generated by Affine is about 20% smaller than GCC

or Clang. The binaries generated by DSP-MLIR are about

10% smaller than Affine. This is primarily because of the

operation/loop fusion optimizations in DSP-dialect.
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6 Related Work
6.1 Domain-specific Languages (DSLs) for DSP
Prior work on domain-specific languages (DSLs) for DSP

applications has focused on functional programming ap-

proaches, like Feldspar [23] and FAUST [37]. Feldspar, based

on Haskell, provides a dataflow-style language that describes

DSP algorithms at a high level, with a backend compiler that

translates them into optimized C code. The optimizations

performed by Feldspar, such as variable elimination and loop

unrolling, primarily occur at the C level, limiting opportu-

nities for application level optimizations. Similarly, FAUST,

a functional DSL tailored for real-time audio processing,

has been widely adopted for web-based DSP applications

but doesn’t allow for the efficient implementation of algo-

rithms requiring multi-rates such as the FFT, convolution

and doesn’t have an imperative programming model familiar

to many DSP practitioners.

As compared to these works, our DSP-DSL closely resem-

bles the popular programming language Python, resulting in

a minimal learning curve for users.

6.2 DSP Compiler Backends
There has been work targeting backend DSP hardware and

C/assembly-level software like DSP processors co-design

with compiler [52] and for generating optimized code for

DSP Processors using SIMD [41], parallelization of C pro-

grams [30], assembly-level optimizer [25], DSP Processors

address optimization [38], enabling auto vectorized code gen-

eration [46], etc. MATLAB
®
[34], a popular framework for

DSP applications, also has Embedded Coder
®
[29], which

automatically generates fast C code for embedded processors

but is closed-source. As opposed to these, our work targets

the compiler front end and may be able to work with and

benefit from these backend approaches.

6.3 Hardware-specific DSP Libraries
DSP processor vendors provide platform-optimized libraries.

For example, Qualcomm provides Qualcomm Hexagon Li-

brary (QHL) and QHL Hexagon Vector eXtensions (HVX),

which support mathematical computations, basic linear al-

gebra operations, and DSP operations for Hexagon DSP pro-

cessors. Texas Instrument provides DSP libraries (DSPLIBs)

for their DSP processors such as TMS320C6000 [13] and

microcontrollers such as MSP430 [19]. Common Microcon-

troller Software Interface Standard (CMSIS) DSP Software Li-

brary [18] supports common DSP functions for ARM Cortex-

M and Cortex-A processors.

While existing DSP libraries such as QHL focus on hard-

ware specific optimizations, the objective of the proposed

DSP-MLIR framework is fundamentally different. DSP-MLIR

introduces a hardware-agnostic domain-specific language

(DSL) and a compiler infrastructure that enables high-level,

inter-kernel optimizations for DSP applications. These high-

level transformations are orthogonal and complementary to

the low-level performance tuning performed by hardware-

specific libraries. Importantly, DSP-MLIR has the potential to

further enhance the performance of library-based DSP codes

by enabling transformations that current library toolchains

cannot express or apply.

For instance, manually applyingOptimization #1 in Table 2

(Mul(IdealFilter(wc, n), Hamming(n)) to FilterHammOpt(wc,

n)) to the FIR Filter Design application using QHL with HVX

results in an additional performance improvement of approx-

imately 80%. However, this optimization is not realized by

hexagon-clang due to its inability to perform inter-kernel

analysis and transformation. By lowering DSP-MLIR’s high-

level operations to invoke optimized CRL (Code Replacement

Library) functions where appropriate, such performance

gains can be automatically unlocked.

This work represents an essential step toward bridging

the gap between high-level algorithmic intent and low-level

hardware efficiency. Rather than replacing hardware-specific

optimizations, DSP-MLIR complements them by enabling a

new class of compiler transformations that are otherwise in-

accessible. Future work can further extend this framework to

automatically lower to existing DSP libraries like QHL, com-

bining the benefits of domain-aware high-level compilation

with mature hardware-specific backends.

7 Conclusion
This paper introduced DSP-MLIR – a framework for optimiz-

ing and simplifying the development of DSP applications.

Experiments on a diverse set of 20 DSP applications demon-

strate performance gains of 12% over state-of-the-art Affine

compilation flows on CPU and Hexagon DSP processor. Ad-

ditionally, DSP-MLIR enables programming simplification

of about 5x over “C” representations.

8 Future Directions
This work lays the foundation for a unified compiler flow tar-

geting both DSP and deep learning (DL) workloads. While

current systems often deploy DSP and DL operations on

separate processors, limiting cross-optimization, this work

anticipates a shift toward unified compute architectures. Re-

cent processor designs such as MxCore [31] and Marsellus
SoC [24] demonstrate this trend by integrating vector, DSP,

and neural processing units into a single, cohesive system. By

enabling domain-specific compilation within a shared MLIR-

based framework, our approach supports future hardware-

software co-design efforts. In particular, it facilitates the

development of hybrid processors with shared memory or

tightly coupled compute units, where compiler-level fusion

of DSP and DL operations can significantly reduce memory

transfers, improve locality, and lower end-to-end latency.

This integration can lead to more efficient deployment of
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real-time, compute-intensive applications across domains

such as audio, radar, communications, and beyond.

Another future direction is developing hardware-specific

lowering passes from DSP dialect to platform-optimized li-

brary functions. As we demonstrated in Section 6.3, the high-

level optimizations in DSP-MLIR have the potential to further

optimize codes that utilize such hardware-specific library

functions. This future work will include lowering optimized

DSP-MLIR workflows to library functions by developing

robust compiler backend to maximize the benefits of the

platform-optimized libraries.

9 Data-Availability Statement
The compiler code, scripts to reproduce the results are avail-

able on Zenodo [36].
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