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ABSTRACT

Traditional Digital Signal Processing (DSP) compilers operate at a low level, such

as C and assembly. Lowering from a high-level representation to low-level ones often

results in a loss of high-level information, which is critical for optimizations based on

DSP-specific theorems and properties. Consequently, traditional DSP compilers miss

many optimization opportunities available at a high level. The MLIR (Multi-level

Intermediate Representation) framework, an emerging multi-level compiler infras-

tructure, supports specifying optimizations at a higher level. This paper introduces

a DSP Dialect within the MLIR framework to perform domain-specific optimizations

based on DSP theorems and properties at a high level. Additionally, a domain-specific

language (DSL) is proposed to facilitate the development of DSP applications. Ex-

perimental results demonstrate that domain-specific optimizations of the DSP dialect

can improve the execution time of DSP applications by up to 10x compared to im-

plementations in C and affine levels.
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Chapter 1

INTRODUCTION

Digital Signal Processing (DSP) is a crucial technology for signal processing that is

useful in many areas including audio processing, speech processing, image process-

ing, digital communication, and medical applications Wikipedia contributors (2024);

Holton (2021). Many modern applications combine DSP with other computational

tasks, such as deep learning, i.e., different domains. For example, speech recognition

systems like Google Assistant, Siri, and Amazon Echo require audio preprocessing

and deep learning. In medical imaging, filtering MRI scans and using deep learning

for tumor detection Rasool and Bhat (2024) is crucial.

However, traditional compilers struggle to optimize DSP applications and diverse

tasks combined with DSP, since they are hard to utilize domain-specific informa-

tion at a high-level. The lowering process of the compiler from high-level to low-

level programming languages, i.e., object code or machine code, loses the high-level

domain-specific abstractions in the domains of DSP and other tasks, which are use-

ful for optimizations. Existing compilers based on traditional compiler frameworks

such as GCC (GNU Compiler Collection) GNU (2023) and LLVM (Low-level virtual

machine) Lattner and Adve (2004) are more closely related to low-level languages.

Hence, they cannot utilize such abstractions for optimizations.

MLIR (Multi-Level Intermediate Representation) Lattner et al. (2020), an emerg-

ing compiler infrastructure under the LLVM umbrella, overcomes the limitation of

traditional compilers by supporting representations of multiple levels of instruction

representation (IR) from close to the source language down to machine-level IR.

This abstraction enables optimizations at the desired level of abstraction by utiliz-
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ing domain-specific information in various domains such as quantum computing Mc-

Caskey and Nguyen (2021), machine learning models Jin et al. (2020); LLVM (2024);

Hu et al. (2022), and hardware description languagesCIRCT (2024). In addition,

MLIR supports representations of different IRs in the same infrastructure, which

enables unprecedented cross-domain optimizations as well Mart́ınez et al. (2022).

In this paper, we propose DSP-MLIR framework, which fully supports high-level

representation and optimizations for DSP applications under MLIR infrastructure.

This paper delivers a comprehensive compiler for DSP in MLIR, with a frontend

language to develop DSP apps using supported DSP operations and a set of dialect-

specific optimizations which would automatically optimize the code if one of the

patterns matches giving better performing code. This approach not only enhances

the performance of DSP applications but lays down a foundation for future cross-

domain integrations. The main features of DSP-MLIR framework are as follows:

• This paper presents a novel MLIR Dialect for DSP and implements lowering

routines to existing built-in MLIR dialects. The dialect includes operations

covering a wide range of functionalities commonly used in DSP applications.

Whenever possible, in order to make use of the powerful optimizations present

in the Affine dialect, we lower the DSP operations to the Affine dialect. When

not possible, we lower to structured control flow (SCF) dialect.

• This paper introduces DSP-Dialect-specific optimizations. All of the optimiza-

tions are based on the well-known theorems and properties in the DSP domain,

which are straightforward to implement but unavailable in traditional compilers.

• This paper also provides a DSL (Domain-Specific Language) for writing DSP

applications. Even though simple, this allows programmers to express their DSP

applications in a programming language style (rather than writing in MLIR IR

2



format). The programs written in this DSL are converted to our MLIR DSP

dialect, optimized, and lowered to Affine or SCF dialects.

By utilizing DSP-Domain Specific properties/theorems at our dialect level, we

were able to achieve up to 10x performance improvement which would have been

difficult for traditional compilers to achieve, i.e., at C-level.

The rest of this paper is organized as follows. Section 2 presents the background

about MLIR and previous work for DSP compiler and MLIR dialects. Section 3

introduces DSP-MLIR framework consists of DSP dialect, DSP-specific optimizations,

lowering for DSP dialect to Affine or SCF dialects, and domain-specific language

(DSL) to develop DSP applications. Section 4 presents our experimental setup and

evaluation strategy . Section 5 presents our experimental results for various DSP

applications. Finally, we conclude our paper by discussing future work in sec 6.
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Chapter 2

BACKGROUND AND RELATED WORK

MLIR, an emerging compiler infrastructure and a project under LLVM umbrella

introduces multi-level Intermediate Representation and its IR structure is powerful

enough to represent Graph IR (Tensorflow) , Affine (C-like) to lower levels IRs like

LLVM IR. The mechanisms to engage with MLIR infrastructure are Dialects and

there are dialects for different levels like tf for Tensorflow, onnx-mlir for onnx , affine

for polyhedral optimizations, nvgpu for Nvidia GPUs. Dialects act as namespace for

defining operations (to define functionality), types (to define datatype) and attributes

(to get compile time information ex-constant data about operation) and in this work,

we will introduce a new dialect for DSP domain and define set of operations required

for signal processing applications.

There has been previous work in designing DSL for DSP like Fieldspar Axelsson

et al. (2010) (which provides dataflow style of algorithm description based on Haskell

and the backend compiler produces C code and the optimizations (variable elimina-

tion, loop unrolling) are done at C-level) and FAUST Letz et al. (2018) , another

functional programming based language developed for audio processing for the Web.

There has been work targetting backend DSP hardware and C/assembly-level soft-

ware like DSP Processors co-design with compiler Zivojnovic et al. (1996) and for

generating optimized code for DSP Processors using SIMD Lorenz et al. (2004) ,

Parallelization of C programs Franke and O’Boyle (2003), assembly-level optimizer

de Dinechin et al. (2000), DSP processors address optimization Leventhal et al. (2005),

enabling auto vectorized code generation Thomas and Bornholt (2024), etc while our

work targets the frontend for DSP. Matlab , a popular framework for DSP Applica-
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tions also has embedded coder Elrajoubi et al. (2017) which automatically generates

fast C code for embedded processors but is closed-source.

There have been recent works to utilize MLIR for various domains like Quantum

Computing (Quantum MLIR) McCaskey and Nguyen (2021), machine learning mod-

els (Onnx MLIR Jin et al. (2020), torch-mlir LLVM (2024)), and hardware description

languages (Circt CIRCT (2024)) through specific dialects. Our work showcases an-

other domain-specific (DSP) computations utilizing the MLIR framework.
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Chapter 3

PROPOSED DSP MLIR FRAMEWORK

Legend
New

component
Existing
dialect

New
dialect

External
to MLIR

New
lowering
Existing
lowering

DSP Language

DSP
Dialect

DSP
Ops 

Auxil.
Ops 

scf

MLIR
-LLVM

LLVM-IR

Clang

Memref Arith Affine Math Func

O
ptim

ization

Figure 3.1: The compilation pipeline of the proposed DSP-MLIR framework. The
DSP language is first compiled into the DSP dialect, and then lowered to Affine
(whenever possible) or structured control flow (SCF), and then to LLVM IR and
Clang.

DSP Framework consists of following components - A Dialect , a DSL , Lowering

and Optimizations. The compilation pipeline for our framework can be seen as Fig

3.1.
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The DSP Dialect

DSP Dialect provides two set of operations - one for DSP specific blocks [like signal

operations (like delay), transforms (like dft , dct , idft), filter operations (like low-

pass filter design, response)] and other for auxiliary operations (like sin, cos, vector

of given size generation and print) for development of DSP applications as shown in

Fig 3.1 . DSP applications here represent a set of various DSP operations combined

to realize applications like audio compression, low-pass noise filter etc. Sample list

of Operations and Applications are provided in Table 3.1. MLIR already supports

tensor types which is sufficient to represent DSP datatypes which are mostly one-

dimensional (we will demonstrate our work on one-dimensional applications although

we support multi-dimensional inherently because of tensor type which may be required

for image-processing etc.) hence we use tensor type directly.

Figure 3.2: DSP Dialect[left] and Corresponding DSL[right]

Domain Specific Patterns -Dialect Optimizations

In this section, we introduce the optimizations/patterns that we do at our dialect

level. MLIR provides pass infrastructure to perform transformation or optimization,

and the pass infrastructure includes the pass manager, PassManager, which is respon-
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SN OpName Syntax Equation Description

1 Delay delay(input, n) ->

output

y[n] = x[n− k] Delays the input signal by k sam-

ples.

2 FIRFilterResponse FIRFilterResponse(input,

coeffs) -> output

y[n] =
∑M

i=0 h[i] · x[n− i] Applies a Finite Impulse Re-

sponse filter to the input signal.

3 SlidingWindowAvg slidingWindowAvg(input,

window) -> output

y[n] = 1
N

∑N−1
i=0 x[n− i] Computes the average of the in-

put signal over a sliding window

of size N .

4 FFT1DReal fft1dreal(input) ->

real

Xreal[k] =
∑N−1

n=0 x[n] cos
(
2π
N
kn

)
Computes the real part of the 1D

Fast Fourier Transform of the in-

put signal.

5 FFT1DImg fft1dimg(input) -> imag Ximag[k] =

−
∑N−1

n=0 x[n] sin
(
2π
N
kn

) Computes the imaginary part of

the 1D Fast Fourier Transform of

the input signal.

6 LowPassFIRFilter lowPassFIRFilter(input,

coeffs) -> output

ylpf[n] =
wc

π
· sinc

(
wc

(
n− N−1

2

))
,

for n ̸= N−1
2

ylpf[n] =
wc

π
,

for n = N−1
2

Applies a low-pass FIR filter to

the input signal using the given

coefficients.

7 LMSFilter lmsFilter(input,

desired, mu) -> output

e[n] = d[n]− y[n]

y[n] =
∑M−1

i=0 wi[n]x[n− i]

wi[n+ 1] = wi[n] + µe[n]x[n− i]

Adaptive filtering using the Least

Mean Squares algorithm.

Table 3.1: Sample List of DSP Dialect Operations

sible for organizing and executing passes at the different levels like dialect, module

and function. There is also a specific kind of transformation aimed at simplifying

operations (operation being the main unit of abstraction and transformation) called

Operation Canonicalization in MLIR, which derives from the base pass manager. In

this work, we utilize operation canonicalization to write our patterns/optimizations.

There are two mechanisms for defining canonicalizations on operations - Rewrite

Patterns and Fold. Fold mechanism is powerful mechanism and powerful at simplying

operations at constant input or known properties but don’t allow new operation

creation. Rewrite pattern in MLIR allows for different types of canonicalizations as

well as new operation creation so we use this for defining our dialect specific patterns.

Patterns (Optimizations) in DSP dialect can be defined as replacing a group of

8



DSP Patterns

II. Loop AnalysisI.Property/Theorem III. Inverse Nature

Pattern [1-5] Pattern [6-7] Testing/Simulation

Figure 3.3: 3 Categorizations of DSP Patterns: Category I are the ones that are
useful properties used in real world apps. Category II are loop analysis ones which
aren’t currently available with MLIR framework. Category III are the ones not useful
in real world apps but useful for simulation purposes.

computationally expensive dsp operations with cheaper operations. These patterns

can be categorized into three categorizes as shown in Fig. 3.3. The first two cate-

gorizes are useful in real world applications while the third category is only useful

for simulation/testing purposes and we use them to test our operations as well. The

first category directly comes from DSP-Domain theorems and properties and we will

discuss it in details in the next section. The second category patterns are those which

are currently not supported by affine optimizations and can be done by affine trans-

formations in the future by complex analysis, but we do these quite easily at our

dialect level. We will now dive in details of each of these optimizations :

Optimization 1 - Ideal filter and Cosine-Window Multiplication:

When designing a window-based filter, a common method is to multiply ideal low

pass filter (3.1) with cosine-window (3.2) to obtain desired filter (3.3). As both of

them are symmetric about mid-point, the multiplication will also be symmetric and

hence we have the opportunity to reduce the number of calculations to half by just

9



Opt
Pattern

Name

Base

OP

Old

Pattern

New

Pattern

1
Symmetric

Filter
MulOp

[IdealFilter,

Hamming, Mul]
[FilterHammOpt]

2

Symmetric

Filter

Response

FilterRespOp
[FilterHammOpt,

FilterResponse]
[FilterResSymmOpt]

3

Filter Response

at Input

and Reverse

FilterRespOp
[ReverseInput,

FilterResponse]
[FilterYSymmOpt]

4

DFT Response

at Symmetric

Input

DFT1DRealOp
[FilterResponse,

DFT1DReal]
[DFT1DRealSymmOp]

5
Parsevaal’s

Theorem
DivOp

[DFT1D, Square,

Sum , Div]
[Square , Sum]

6
DFTReal and

DFTImg Fusion
DFTImgOp

[DFTReal,

DFTImg]
[DFT1D]

7
LMSFilter and

Gain Fusion
GainOp [LMSFilter, Gain] [LMSFilterGainOpt]

Table 3.2: Pattern corresponding to DSP Optimizations: Here, we provide canoni-
calization pattern on BaseOp and match OldPattern and replace it with NewPattern
. Example: For row 1 , when the operands for Mul is IdealFilter and HammingWin-
dow , we replace the 3 operations (shown in col - OldPattern) with single operation
FilterHammOpt (shown in col - NewPattern).

calculating the first as shown in the below equation (3.4). Rest half is just same as

first half i.e., h[n] = h[L− 1− n].

ylpf[n] =


ωc

π
· sinc

(
ωc

(
n− L−1

2

))
, if n ̸= L−1

2

ωc

π
, if n = L−1

2

(3.1)

ham[n] = 0.54− 0.46 · cos( 2πn

L− 1
), 0 ≤ n < L (3.2)

h[n] = ylpf [n] ∗ ham[n], 0 ≤ n < L (3.3)

10



h[n] = h[L− 1− n] = ylpf [n] ∗ ham[n], 0 ≤ n <
L+ 1

2
(3.4)

Optimization 2 - FilterResponse at Noisy signal and Symmetric filter:

Filter response operation can be defined as (3.5). When the filter is symmetric,

ie, h[i] = h[L − 1 − i] then we use the symmetry property on (3.7) to combine the

beginning and end terms to obtain final (3.8). By using (3.8) , we reduce the number

of load instructions for the filter and we get performance benefits.

y[n] =
L−1∑
i=0

h[i] · x[n− i], 0 ≤ n < N (3.5)

= h[0] · x[n] + h[1] · x[n− 1] + . . .+

h[L− 2] · x[n− (L− 2)] + h[L− 1] · x[n− (L− 1)] (3.6)

= h[0]{x[n] + x[n− (L− 1)]}+

h[1]{x[n− 1] + x[n− (L− 2)]}+ . . .

+ h[
L− 1

2
] · x[n− L− 1

2
] (3.7)

=

L−1
2∑

i=0

h[i] · {x[n− i] + x[n− (L− 1− i)]}

+ h[
L− 1

2
] · x[n− L− 1

2
] (3.8)

Optimization 3 - FilterResponse/Conv1D Property at input and reverse input:

According to filter response property, we know that when the inputs are vector

and reverse vector ie, h[l] = x[−l]or, h[l] = x[L − 1 − l] then the output of filter

response will be symmetric about its mid-point ie, L+1
2

so we check the pattern for

the operands of filter response and if the inputs are reverse of each other, we calculate

the output for first half only as shown in the below equation (3.10) and for the second

half, we use y[n] = y[N − 1− n]. Hence we achieve performance benefit by reducing

the number of loop iterations.

11



y[n] =
L−1∑
i=0

h[i] · x[n− i], 0 ≤ n < N (3.9)

y[n] = y[N − 1− n] =
L−1∑
i=0

h[i] · x[n− i], 0 ≤ n <
N + 1

2
(3.10)

Optimization 4 - DFT Response at Symmetric Input:

According to DFT Property , when the input is real and symmetric , then the real

part of DFT will be symmetric and the imaginary part will be conjugate symmetric

as shown in (3.13) and (3.14) so this also gives an opportunity to reduce the outer

loops to half. Here, the symmetry happens after the first element.

X[k] =
N−1∑
n=0

x[n]e−j 2π
N

nk, k = 0, 1, 2, . . . , N − 1 (3.11)

= Xreal[k] + jXimg[k] (3.12)

Xreal[k] = Xreal[N − k], k = 1, 2, . . . ,
N − 1

2
(3.13)

Ximg[k] = −Ximg[N − k], k = 1, 2, . . . ,
N − 1

2
(3.14)

Optimization 5 - Parsevaal’s Theorem:

According to Parseeval’s theorem as shown in (3.15), energy of a signal is equal

in time as well as frequency domain. So, whenever there is a pattern in which energy

is calculated in frequency domain, we can replace the same with that in time domain

which means if we find a code in which there is sum of square of real and imag part

of DFT is calculated ( as shown in Table 3.2 (Opt 5) ) , we replace it with sum of

square of the input.
N−1∑
n=0

|x[n]|2 = 1

N

N−1∑
k=0

|X[k]|2 (3.15)

12



Optimization 6 - Loop fusion for DFTReal and DFTImg Part:

Currently, with our DSL just supports returning a single result so we calculate

DFTReal and DFTImg part separately according to (3.16) and (3.17) respectively.

When the inputs to both the operations are same, affine loop fusion should fuse the

operations into one but we observe it is unable to do so. Hence, we write our own

pattern to fuse these operations into one , overall saving loop iterations.

Xreal[k] =
N−1∑
n=0

x[n] cos

(
2π

N
kn

)
, 0 ≤ n < N (3.16)

Ximg[k] = −
N−1∑
n=0

x[n] sin

(
2π

N
kn

)
, 0 ≤ n < N (3.17)

X[k] = Xreal[k] + jXimg[k] (3.18)

Optimization 7 - LMSFilter and Gain:

LMS Filter is an adaptive filter that aims to minimize the mean square error

between the desired signal d(n) and the output signal y(n). The filter is widely

used for applications such as hearing aid, noise cancelling and echo cancelling among

others. LMS Filter can be represented as the following equations:

1. Output Signal:

y(n) = wT (n)x(n) (3.19)

where

• w(n) = [w0(n), w1(n), . . . , wM−1(n)]
T is the weight vector at time n.

• x(n) = [x(n), x(n− 1), . . . , x(n−M + 1)]T is the input vector at time n.

• M is the number of filter taps.

2. Error Signal:

e(n) = d(n)− y(n) (3.20)
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where

• d(n) is the desired signal at time n.

3. Weight Update:

w(n+ 1) = w(n) + µe(n)x(n) (3.21)

where

• µ is the step size (learning rate) parameter.

As seen from the above equations, the calculation of LMSFilter weights is a two-

dimensional nested loop while gain operation is a one-dimensional loop computation.

LMS and Gain blocks are used together for hearing aid application where the gain

can be fused with LMSFilter as follows:

Weight Update with Gain:

w(n+ 1) = w(n) + µGe(n)x(n) (3.22)

where µ is the step size (learning rate) parameter and G is the gain applied to the

error signal.

However traditional compilers such as affine optimization fails to see this oppor-

tunity which we exploit in our dialect.

Table 3.2 shows the patterns with dsp operations corresponding to each of these

optimizations and the corresponding new pattern.

Here, first 5 patterns are the category one patterns directly coming from DSP

Domain property/theorem. Pattern 6 and 7 are category two patterns. The cat-

egory three patterns are the patterns like upsampling followed by downsampling ,

transforms followed by its inverse(like fft, ifft , dct, idct ) which are mostly used for
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testing and simulation of dsp operations but would have really difficult to do at C or

lower-levels.

The DSP Dialect Lowering

Once the MLIR compatible IR is obtained, the next step is to define the lower-

ing of operations defined in DSP-Dialect, which means the actual implementation of

operations. For DSP operations, the implementation will require loop-based compu-

tations hence the choices in MLIR Framework are either affine dialect or scf dialect.

Affine dialect in MLIR promises powerful polyhedral optimizations like loop fusion,

ScalarReplacement hence we choose this dialect for lowering. But this dialect has

certain restrictions like it requires constant value for loop-indices and symbols which

is not applicable in certain scenarios like dynamic index value calculation, then the

lowering is done to scf loop directly. For implementation, we need to have under-

standing of affine IR structure and syntax and the corresponding affine C++ API

for our framework development. MLIR framework is still in its early phase and is

emerging and the C++ APIs are evolving and hence the development and testing can

be quite slow for the developers. For example, there are multiple ways to implement

same functionality through C++ API for ex- there are api’s for implementing for

loop in affine like affine::buildAffineLoopNest and affine::AffineForOp. The second

one affine::AffineForOp is more powerful in expressing affine loops and which one to

choose needs well-documented programmer’s guide which is currently lacking from

MLIR side. Similarly, for binding affine references, one may either use bindDims() or

the references can be obtained directly by PatternRewriter.getAffineDimExpr() and

which one to use requires proper documentation from framework developers. Mlir is

also evolving and certain feature usage like returning multiple value types from con-
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trol block needs more complex analysis ie, scf::IfOp block using TypeRange{floatType

, indexType} and we need to reiterate affine-IR for another simpler code and this

can lead to longer development time. Overall, the development of mlir C++ code

is harder, hence we need an approach for our lowering so that the development is

smoother.

We developed an approach using multiple stages to make our development smoother

as shown in Fig 3.4 where the stages are C-level, Affine-level IR and affine C++ code.

The complexity level increases as we go down the stages hence we need to validate

each stage so that our implementation is functionally correct. For each stage, we de-

velop the code and compare the output with standard libraries like numpy/Matlab.

The validation at each stage also makes our debugging easier which gets harder as we

go to lower stages. The first stage is C-level code which is quite easy to develop and

can be easily compiled & tested with corresponding dsp libraries. The second stage is

Affine-level IR and it is C-like but with slight differences and restrictions so if our C-

code can’t be expressed as affine loop iterations , we again move to stage first and try

another C-code resolving those restrictions like SSA restrictions, constant index etc.

We try C-code iteration till we can express our c-code in terms of Affine-IR then this

Affine-level IR can be tested with mlir-opt which is available from MLIR framework

and validated against desired output. Once the output of this stage matches with that

of standard libraries, we can go for our final C++ development which is hardest (as

C++ API is very dynamic and can change a lot) but this is needed for our framework

development. In this stage, we check the existing api (through corresponding C++

definition ) and get the corresponding usage ( through MLIR source code APIs and

other existing lowering ) and develop the proper C++ code and use mlir->dump()

for matching against second-stage output. This final stage output can be obtained

by emitting affine-IR from the our framework and we match against the output of
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std library (or, the second stage Affine-IR not shown in the fig 3.4 for simplicity) .

C-Code

Match?

Affine IR

Match?

Affine IR C++ Code

Match?

Done

C-Compiler

Expression
possible?

Lib (Numpy / Matlab)

Yes

Yes

Yes

MLIR-DSP

Yes

MLIR-opt

No

No

No

No

Figure 3.4: Approach for Developing Mlir C++ Lowering : There are 3 stages-
C-code (easiest), Affine IR and finally C++ code (hardest). We develop C-code ,
match against std library , then develop Affine IR , and if IR can’t be expressed with
C-code, go back to developing C-code. Once IR output matches with std library, we
move to final stage of C++ code development until output matches.

Once the lowering is done, the rest of the lowering is done using built-in MLIR

lowering passes. MLIR framework provides lowering from affine/scf loops to mlir-llvm

(a dialect in MLIR). We use this and then there is a conversion pass which translates

the mlir-llvm IR to LLVM IR. Once this LLVM IR is obtained , clang tool is used to

convert this LLVM IR into executable as shown in the fig 4. This executable is run

and validated against desired output.
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The DSP Domain-Specific Language

Using the lowering and clang-17, DSP applications can be developed and tested

but in MLIR, dialects have to be written at MLIR IR level and is not user-friendly

as shown in Fig 3.2 and hence affects productivity from a programming perspec-

tive. Hence, we introduce a simple user interface language, DSP DSL to ease the

development. The grammar for DSP DSL Language consists of simple syntax rules

[like statement ending with semicolon] and tokens [like keywords(def , main, var),

arithmetic operators(+,-,*,/), braces , square bracket for tensors ]. An example ap-

plication for calculating power spectral density of a signal is shown in Fig 3.2 - right

part. As demonstrated in the Fig 3.2, this code is simple but robust enough to ease

the programming and testing of DSP dialect operations. The conversion steps are

usual as any standard compiler stages :a) Lexer produces the token/symbols which

are then used by recursive Parser to generate AST (Abstract Syntax Tree). Parser

parses the module (source file) , which is made of functions and function is made of

statements and produces moduleAST. Then, there is another Parser (mlirGen class)

which takes the moduleAST as input and generates corresponding operation based on

statement types from DSL AST which will generate the final MLIR IR as an output,

which can be easily fed into MLIR system for further processing/analysis.

18



Chapter 4

EVALUATION SETUP

SN AppName DSP Ops Sequence Optimizations Opt

1
Filter

Design

[Ideal LowPass Filter

→ Hamming → Mul]
[Symmetric Filter] [1]

2
LowPass

Filtering

[Input + Noise → Filter Design

→ Filter Response]

[Symmetric Filter

and FilterResponse]
[1,2]

3
Energy

of Signal

[Input → DFT →
Square → Sum]

[Parsevaal’s Theorem] [5]

4
Spectral

Analysis

[Input, Reverse → Conv1D

→ DFT → Square]

[Filter Response

and DFT Symmetric]
[3,4]

5
Audio

Compression

[Input → DFT → Threshold

→ Quantization → RunLenEncoding]
[DFT Loop Fusion] [6]

6
Hearing

Aid

[Input, Ideal LMS → LMSFilter

→ Gain → LMSFilter Response]

[LMSFilter

and Gain Fusion]
[7]

7
Audio

Equalizer

[Input, LowPass, BandPass, HighPass

→ Gain for Bands

→ FilterResponse → Sum]

[Symmetric Filter

and FilterResponse]
[1,2]

Table 4.1: Sample DSP Apps and sequence of the DSP operations in the app and
the optimizations applied to them.

We evaluate DSP-MLIR framework on sample DSP Apps (here, an application is

input, set of DSP blocks/operations and output ) which are representative of Audio

signal processing but can be easily applied to other digital signal processing as well.

The test applications were executed on a machine having AMD Ryzen 5700u ,

8 physical cores, 16 Logical Cores, 16 GB RAM. Code version of LLVM base was

19.0.0git and version of clang was 17.0.6. We used two criterias for the evaluation

- i) Functional Correctness, ii) Execution Time Measurement. For the first criteria

ie, functional correctness, we developed similar application in numpy and since it

had graphical support, we plotted the graph to make sure the desired output was
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as expected (ie, not only the output numbers matching but the actual application

producing the desired output For example - the output signal having no ripples for

low-pass filtering application ). Wherever the plots weren’t applicable, we matched

with the corresponding numpy output. This helped in verifying the correct sequence

of the dsp operations (and the individual operations were also tested), and hence

correctness of the application.

For the second criteria of measuring the execution time , we had to compare our

optimizations against C/affine-level optimizations ( C/affine-level is where traditional

compilers provide most optimizations) for which we enabled affine-level optimizations.

For measuring the execution time of our optimizations, we also used the following

methods to obtain our time - a) Took average of 5 iterations to take out system

effect, b) Flushed out cache after any run so that we see same effect for every run , c)

we printed out single element at random index (not the whole vector which would be

an expensive operation and would increase the total time of application dramatically).
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Chapter 5

RESULTS

Figure 5.1: Normalized Performance with canonical optimizations in DSP-MLIR

In the evaluation, we ran three versions of the code - 1) without any optimization,

2) with affine optimization (AffineLoopFusion and AffineScalarReplacement) and 3)

lastly with affine plus our dsp-specific optimizations for all the test apps. Table 4.1

lists all the test apps and the optimizations applied on them. Fig 5.1 shows the

normalized execution time versus the input size for all the applications. Here, the

baseline is No Optimization (execution time = 1) and the blue and green bars are

affine and affine + dsp specific optimizations respectively.

Our DSP lowerings and Optimizations yield much better-performing code

As evident from the figure 5.1, utilizing the dsp domain specific properties/theorems

are much easier at dsp dialect level which yields much better performing code. This is

because we are able to exploit the dsp theorem level optimizations at our dialect level

which is not possible at any other lowering, performing these canonical optimizations
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yields around 2x performance improvement as compared to Affine optimization.

DSP DSL reduces programming complexity with respect to C-code

Figure 5.2: Lines of Code C-Code vs Our DSL for Sample Apps

By utilizing the DSP dialect, it is easier for a signal processing engineer or compiler

developer to develop and utilize DSP operations either by directly using the DSP

dialect or the DSL provided within this framework. As seen from 5.2, while it may

take an average of 3.5x more lines of code to write such DSP applications in C

language, it is much easier and faster to implement DSP applications in our DSL.

DSP Domain-Specific optimizations are easier to perform at domain (high-level)

One of the major contributions of this research is the high-level optimizations

that exploit DSP theorems and patterns to compile efficiently. These optimizations
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are best implemented at much higher abstraction, like a DSP dialect in MLIR. For

example, for implementing the symmetric filter property at C-level in Table 3.2 ( Opt 1

), this would require complex polyhedral (mathematical abstractions) analysis which

would lead to complex code implementations while we do this simply by utilizing

the domain knowledge about the filters. Even for loop fusion Table 3.2 ( Opt 6

) , we were able to do this quite easily while affine dialect - AffineLoopFusion and

AffineScalarReplacement optimizations were not able to fuse this double nested loops.
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Chapter 6

CONCLUSION AND FUTURE WORK

In this work, we have developed a Domain specific compiler for DSP in MLIR and

utilized the multi-level IR property to specify domain specific optimizations which

was difficult to represent at lower-level IR (C/assembly). We ran these optimizations

on some sample applications and obtained significant performance improvement using

these optimizations with respect to affine-level optimizations.

Future Work: Existing DSP Compilers like Matlab, Scilab have graphical interfaces

(like graph, 3D plots) which is quite useful in signal processing domain. Our compiler

being modular can be easily integrated as the backend for these by just providing the

corresponding language AST to MLIR conversion. Another interesting work will be

integrating with Deep Learning blocks through available dialects like torch-mlir and

look for inter-dialect optimizations and also apply in real-world applications.
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