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ABSTRACT

Limited Local Memory (LLM) architectures are popular scalable memory multi-core

architectures in which each core has a local software-controlled memory, e.g., the IBM Cell

processor. While similar to the scratch pad memories (SPMs) in embedded systems, local

memory architecture is different: instead of being in addition to the cached memory hier-

archy, local memories are a part of the only memory hierarchy of the core. Consequently,

different schemes of managing local memory are needed. The existing circular stack man-

agement is a promising approach, but is only for extremely embedded applications, with

constraints on the maximum stack size, and limited use of pointers. This research presents a

generalized approach to manage the stack data of any application in a constant space on the

local memory. The experimental results on benchmarks from MiBench running on the IBM

Cell processor in Sony Playstation 3, show gains in programmability, and generalization

without much loss of performance.
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I. Introduction

Processor architectures have rapidly moved to multi-core architectures in the recent

years to better deal with the challenges of power consumption, heat dissipation, and limited

instruction level parallelism, at a coarser level of thread and core-level. However, as we

scale the number of cores, scaling the memory hierarchy is becoming an important challenge.

An unified memory architecture, using a traditional cache hierarchy, that is automatically

hardware managed is becoming increasingly infeasible. This is not only because caches

consume significant power, but also ensuring coherency between caches makes them slow

and difficult to scale for large number of cores [7].

Limited Local Memory (LLM) architecture is a promising multi-core platform that

has highly scalable memory design. LLM architectures feature a small memory on the

processor cores. The core can only access it’s local memory, and any transfers between

the global memory and local memory have to be explicitly specified in software as direct

memory access (DMA) request. In other words, LLM architectures have a software con-

trolled memory in the cores. LLM architectures feature in popular modern and futuristic

many-core architectures, e.g., the IBM Cell [11] and the experimental 80-core processor

from Intel [18].

LLM processors are programmed in a multi-threaded manner, with explicit Message

Passing Interface (MPI) style communication between threads. Each of the threads is then

executed on a core. If the entire code and data for a thread can fit into the local memory

of the core, then the application will execute extremely efficiently – and this is indeed the

promise of LLM architectures. However, if that is not the case, then there are two options: i)

the programmer re-partitions and re-parallelizes the application by changing the algorithm

so that the code and data can fit in the local memory. This may be formidable, as changing
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the natural way of parallelization of an application can be counter-intuitive. ii)the other

option is to manage all the thread code data on the limited local memory of the core

without much change in the application. This chief attraction of the second option is that

it keeps programming scalable memory architectures (LLMs) natural and easier.

This goal of this paper is to enable the second option. This requires changing the

application to bring the data before it is needed, and may also include evicting the not-

so-urgently needed data out of the local memory. Two important questions come up in

developing a solution for this. The first is about the granularity of communication, while

the second is about the nature and amount of application changes required. These two

are opposing needs, and this is what makes the problem challenging. For example, one

trivial way of managing application data on the achieving this is by replacing every access

to a variable by a load from the global memory, use, and then store to the global memory.

Although this scheme is simple and automate-able, it results in several small transactions

between the local and the global memory. This is detrimental for performance, but more

importantly, is in complete discordance with the trend of multi-core architectures. Looking

ahead, while the bandwidth of communication between the local and global memory will

increase, the memory latency will only increase with time. What is needed is a scheme

that will cause small number of coarse-grain communications between the global and local

memory. Also if the scheme is not automatable, it should require a small number of intuitive

changes in the application.

While management is needed for all code and data, in this paper we focus only on

stack data management. This is because about 64% of memory accesses in embedded ap-

plications are to stack data [13], and optimizing them is crucial for performance. Kannan et
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al. [13] proposed circular stack management scheme to manage the stack data of a thread in

a constant space on local memory of an LLM processor. Circular stack management essen-

tially keeps the top few frames in the local memory, and moves the older function frames to

the global memory. While effective, this scheme is only applicable for extremely embedded

systems in which the maximum stack size of the application may be known at compile

time. Further it has limitations on the maximum stack size and only allows a limited use

of pointers. Consequently, it is quite restrictive for not-so-embedded applications.

This paper presents a comprehensive scheme to manage stack data of a thread on the

local memory of a core of LLM multi-core. The key contributions of this work are:

• Our technique can manage any amount of stack data in a constant space on local

memory. Consequently, we can run recursive programs with any stack depth. Further,

our technique requires lesser space on the local memory than the previous approach.

• Our scheme resolves all pointer-to-stack accesses. This truly widens the applicability

of our technique.

• Only a small set of simple and intuitive changes to the application are needed. The

API for our stack management technique consists of only 4 functions, and two of them

can be inserted automatically. The other two are extremely simple to use. Finally,

since our stack data management scheme is at coarse granularity, it is efficient and

scalable.
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We apply our stack management technique on benchmarks from MiBench Suite [9] and

measure the runtime on Sony Playstation 3. Experiments demonstrate that our technique

is simple to implement, allows arbitrary stack depths, and manages all pointers to stack

variables without much performance loss.



II. Background

A. Limited Local Memory Architecture

Fig. 1. The Limited Local Memory architecture of Cell BE with 1 main core (Power
Processing Element, or PPE), and 8 execution cores (Synergistic Processing Elements, or
SPEs) is shown. The SPEs can only access the local memory, and transfers between the
local memory and the global memory have to be explicitly specified in the application.

Limited local Memory (LLM) architecture is a distributed memory platform, in which

each cores has access to only a local memory. The Cell processor from IBM [11] is a good

example of a LLM multi-core system. As shown in Figure 1, it includes a on-chip, a Power

Processing Element (PPE) core, and 8 Synergistic Processing Elements (SPE) cores. The

Cell processor has a globally coherent direct memory access (DMA) engine for transferring

data between local memories and the global memory. The SPEs can access only a local

memory of size 256 KB, and do not have any direct access to global memory. They can

only access it through DMA calls, explicitly inserted in the application code. The DMA

calls can be initiated by the PPE or the SPEs.
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Fig. 2. If there is 100 bytes of space to manage the stack data of the application, then
global memory is not needed. However, if there is less space on the local memory, then
some frames need to be evicted out of the local memory to the global memory. This is the
problem of stack memory management.

B. Stack Data Management

Applications are written for LLM architectures in a multi-threaded paradigm with

explicit Message Passing Interface (MPI) style communication between threads. The main

thread executes on the main core (PPE in Cell), and spawns threads on the execution cores

(SPEs in Cell). The objective of data management in each execution core is to efficiently

execute the thread allocated to it, using the local memory present in the core. The space

on the local memory is shared by code, stack, global and heap data. While management is

needed for all kinds of data, it is especially important for stack data. This is because stack

data is dynamic in nature and may not be known at compile time. Without management,

stack data can write onto heap data, global data, or even overwrite the code. In the best

case, the application will crash, but in the worst, it may just result in incorrect output.

If there is enough space on the local memory to fit the whole stack data, then no stack

data management is needed. Figure 2 (a) shows an example of an application thread with

three functions F1, F2 and F3. Figure 2 (b) shows the sizes of each of the function frames.



7

If we have 100 bytes of space on the local memory to manage the stack data, then global

memory is not needed. However, if there is less space, then some of the older function

frames have to be moved to the global memory in order to execute the application – this

is the problem of stack data management.



III. Related Work

Local memories in Limited Local Memory (LLM) multi-core processors are raw mem-

ories that are completely in software control. They are very similar to the Scratch Pad

Memories (SPMs) in embedded systems. Banakar et al. [4] proposed the use of SPMs

when he noted that majority of power in the processor was consumed by the cache hierar-

chy (more than 40% in StrongARM 1110). He demonstrated that this compiler controlled

memory could result in performance improvement of 18% with a 34% reduction in die area.

SPMs are extensively used in embedded processors, e.g., the ARM architecture [1]. Tech-

niques have been developed to manage code [2,6,10,15–17] , global variables [3,12,14–17],

stack [5, 13,17] and heap data [8] on SPMs.

Fig. 3. In the ARM architecture, SPM is in addition to the regular memory hierarchy,
while in the Cell processor, the local memory is an essential part of the memory hierarchy
of the SPE.

In this paper, we deal with managing stack data. Among the stack data management

techniques, [17] works on mapping non-recursive function to SPM and [5] maps recursive

functions, but both are profile-based, and are therefore only applicable for extremely em-

bedded systems.

While all these works are related, they are not directly applicable for local memories in

LLM architecture. This is because, as Figure 3 illustrates, SPMs are present in embedded
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processors in addition to the regular cache hierarchy, while the local memory is a part of the

only memory hierarchy of the core of a LLM processor. Consequently, while “what to map”

is an important question to use SPM in embedded systems, but it is not even an option in

local memories in LLM architectures. The circular stack management scheme in [13] works

for local memories, and is our main comparison point. We describe the circular stack

management scheme in more detail in the next section A, and describe it’s limitations. We

outline our approach in Section V, and then experimentally demonstrate the effectiveness

of our technique in Section B.



IV. Stack Management

A. Circular Stack Management

The circular stack management operates at the level of function frames. The basic

technique is to export function frames to the global memory if there is no more space

on the local memory. Figure 4 illustrates the functioning of circular stack management.

Consider now, that we need to manage the stack data of the application in Figure 2 in only

70 bytes of local memory. The local memory gets full when we call F2, there is no more

space for stack of F3. To make space for F3 the Circular Stack Management scheme evicts

the frame of F1 to the global memory. When F3 returns, it frees up its space on the local

memory. Finally when the execution returns to F1, it’s stack frame is brought from the

global memory to the local memory.

Fig. 4. Circular Stack Management: The stack space can be managed in a circular fashion.
If we have only 70 bytes of space on the local memory to manage stack data, then frame
F1 is evicted to global memory to make space for F3. Before the execution returns to F1,
it must be brought back to the local memory.

The eviction and fetch of frames is achieved by using stack management functions fci

and fco before and after every function call respectively as shown in the code snippet in
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Fig. 5. Pointer Threat: When the frame of F1 is evicted to the global memory and F3
takes its place, the pointer a in F3 which refers a local variable in the frame of F1 cannot
be referenced as the variable does not exist in local memory. This can cause the program
to crash or give wrong results.

Figure 4. fci makes an entry into a Stack Management Table. A function table counter

keeps track of every function that is checked-in. When the function is checked-out using

fco, the information entered for that function is discarded and the count is reduced. Next,

we describe some limitations of this stack management approach.

B. Limitations of Circular Stack Management

B.1. Pointer Threat

The Circular Stack Management scheme above works efficiently for applications that

do not have pointer references to any previous frames. However, if a function frame has

a pointer reference to a variable in the evicted function frame, then there is a problem.

Figure 5 illustrates the pointer threat in detail. Figure 5 (a) shows that a is a local variable

in function F1. It is passed to function F2, and eventually function F3, where it is accessed.

Figure 5 (b) shows that if we use 100 bytes in local memory to manage the stack, then when

function F3 executes, F1 is still in the local memory, and therefore the code will execute

correctly. However, if we use only 70 bytes on the local memory to manage the stack, then
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as Figure 5 (c) illustrates, when F3 is executing, function F1 may have been evicted out of

the local memory, and therefore the access may be erroneous.

Note that one way to solve the pointer problem is to just increase the size of local store

used to manage stack data. Clearly this does not work in general, because the call graph

of an application may not be statically determinable, e.g., in the presence of function

pointers. Even when this works, it may be difficult to determine the minimum space

on the local memory statically due to difficulties in pointer disambiguation. In practice,

pointer safe local memory size may be determined by repeated simulation, or by using local

memory more than the maximum stack space. To conclude, pointers to stack variables of

other functions either make it difficult to run the application, or at the least, increase the

minimum space on the local memory that must be used to manage the stack data.

B.2. Memory Overflow

There are two aspects of memory overflow in the previous approach. One is the overflow

of the stack management table. Previous technique assumes a statically determined size

of the stack management table. For large depths and highly recursive applications, the

number of entries in the stack management table can exceed the space allocated causing an

overflow. The second aspect is the overflow of the memory declared in the global memory

to manage the evicted stack data. Existing technique declares a static array in the global

memory to manage all the stack data. When we need to evict/fetch a function frame

to/from the global memory, we need to know the address in global memory where we

will write/read this function frame. This global memory address can be maintained by

just a variable in the local memory, which initially points to the start of the array in the

global memory, allocated for managing the stack data, and incrementing/decrementing it
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by the function frame size when the function is evicted/fetched to/from the global memory.

However, a statically declared space for managing stack data on the global memory works

only for extremely embedded applications where the maximum stack size of the application

may be known at compile-time.



V. Our Approach

This section outlines our approach to overcome all the limitations of the circular stack

management outlined previously. There are three main aspects of our approach: i) manage

the stack data in the global memory, ii) manage the stack management table in a constant

space in the local memory, and iii) resolve any stack pointers.

A. Dynamic Management of Main Memory

It is clear that for the general case, the stack data in the global memory must be

managed dynamically. This implies that at some point of time, the execution core must

request the main core to allocate more memory. Since this cannot be done by a DMA call,

and some other communication mechanism between the execution core and the main core

must be used. In the Cell processor, we use the mailbox facility for this. The main core

must be listening to memory requests from the execution core. For this, we implement a

new thread on the main core that will continuously listen to requests from the execution

core, and allocate more memory when requested. The main core allocates more memory in

the global memory, and sends the start and the end addresses of the allocated space to the

execution core. This is done so that in most cases, the address translation can be done in

the execution core, and only a direct DMA will be needed.

On the execution core, this functionality is implemented in the fci function. The fci

function first checks if there is space for the incoming function stack on the local memory.

If not, then it also checks if more memory is needed in the main memory. If not, then the

oldest function frames can be evicted to the global memory, otherwise, it sends a request

via the mailbox to the main core to allocate more memory. The memory management

thread in the main core accepts this request, allocates more memory than the request, and

sends the start and end addresses of the newly allocated memory to the execution core,
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Fig. 6. Function check in: fci may request for allocation of more memory from the main
core. In order to reduce the overhead, both the start and end addresses of the newly
allocated memory are send to the execution core. By doing this, the decision of whether
more memory needs to be allocated can be made on the execution core itself, and most of
the times, just a DMA is enough.

which can then use it for further stack management. The functionality of fco is very similar,

except that if the all the functions from a memory block have been brought back to the

local memory, then the memory block is free-ed.

Instead of adding the global memory management functionality in the existing thread

of the main core, keeping this as a separate thread has several advantages. One is that the

code of the main thread does not need to be modified, and the extra threads can be supplied

as a part of the library, and the user just needs to compile their application with it. Finally,

this separate thread solution scales with the number of cores, as just one thread will be

able to manage the memory requirements of all the execution threads on the processor.

Since the memory allocation is managed by the operating system on the main core, the

dynamically allocated buffers never infringe each others space.
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Fig. 7. Thread T2 accesses data from T1 after T1 sends the address of the variable. T1
waits until T2 acknowledges completion of the operation.

For multi-threaded applications, there may be mutual sharing of data among different

threads leading to sharing of stack variables. The communication between two different

threads running on distributed cores, exclusively takes place using DMA and this is handled

by the programmer. Consider a case of a thread T2 running on one local core accessing a

variable of a thread T1 running on a different local core. To perform a DMA fetch operation

,thread T2 needs the address of the variable of T1. Once the variable is fetched, T1 waits

until the modified variable is written back to its stack to ensure coherency. Once it receives

DMA write acknowledgement from T2 , it continues regular execution. The code snippet

of the actual code is shown in Figure 8.

With stack management, the above operation may have a different complexity as the

variable accessed by a different thread may not be present in on the local memory. To
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ensure coherency, we must determine if the function frame that contains the variable is

present in the stack. If the variable is local to a differnt function frame, we can perform fci

operation, to ensure the the variable exists locally on the stack and then pass the address

for the regular inter-tread DMA operation. Once the operation completes, fco brings back

any frames if they were evicted due to fci. This is crucial to ensure coherency for any inter-

thread DMA. As shown in the Figure 8, the function F2 of the thread T1 writes a variable

Fig. 8. Therad T1 is writing into the buffer of T2 in the function F2(). With management,
we must ensure function frame of F1() exists in the memory to ensure coherency

a to thread T2 in the function F2. To ensure that a is present in the local memory, we

must ensure that F1 is in the local memory T1 as well as ensure that the desitination buffer

exits in the local memory of T2. This can be accomplished by determining if source frame

F1 and the destination frame F3 of thread T2 exits in their respective stacks by using fci

before the DMA is executed. The addresses can be exchanged by using mail boxes. Thus

the coherency may be ensured in circular stack management.
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B. Dynamic Management of Stack Management Table

Stack management table is extremely crucial for this dynamic management of stack

data. The stack management table is needed every time a function frame is evicted/fetched

from/to the local memory. It helps in finding out the global address for a local address. In

addition, it also keeps track of the space left in the global memory, and if more space needs

to be allocated. However stack management table occupies space on the local memory, and

enabling unlimited stack depth also requires managing the contents of the stack manage-

ment table. In other words, some part of the stack management table must be evicted to

the global memory to make space for new entries.

Dynamic Management of stack management table is achieved by setting an initial

fixed size of the table and monitoring if the table gets filled. Just like the function frames,

the stack management table can also be managed in a circular fashion in the functions fci

and fco. In fci the table size is checked, if the number of entries equal the fixed size, the

entire table is exported and the table entry pointer is reset. In fco if the table is empty,

one table-full of entries are fetched back to the local memory, and the stack management

table pointer is set to the maximum size. Finally more memory in the global memory may

be required to manage arbitrary depth of recursion. This can be easily implemented in the

same way as we manage the function frames, using the same memory management thread

on the main core.

C. Pointer Resolution

Pointers to stack variables of other functions either make the program unable to ex-

ecute with a constant stack space on the local memory, or in the best case, the minimum

amount of stack space required on the local memory may be too large. We avoid this
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problem by resolving the pointer address, and fetching the variable that is pointed to from

the global memory if needed. Stack pointer resolution works in three steps. First we de-

termine where the pointer points to in the main memory if the function frame has been

exported. Secondly, we bring in the data to the local memory, and perform the pointer

operation. Thirdly, we write it back to the global memory at the exact place from where

it was fetched. This is achieved by two functions local address getVal(local address a) and

local address putVal(global address ga).

The function getVal converts the local address of a variable into the address in the

global memory by first finding the function frame where the pointer can lie by comparing it

with the start and end addresses of the frame. Then it finds the relative displacement from

the end of the frame to the pointer address to get the offset. The address of the variable in

the global memory can then be found by adding the offset to the start of the stack data in

the global memory. If there are multiple memory blocks that have been allocated, then we

must subtract block sizes from the offset. The unit of data transfer in the Cell processor is

16 bytes. Therefore, we must find the address of the 16 byte block containing the address,

and fetch it from the global memory into a buffer in the local memory. This small buffer

in the local memory is managed like a cache. The function returns the new local address

of the data, and all pointer operations can now be performed using this new local address.

Finally the function putVal writes the 16 byte block containing the address back to the

global memory.

The process of address translation from local address to global address of the pointer

a in the example code shown in Figure 5 is illustrated in the Figure 9. Like original, the

stack data is maintained top down, with stack growing towards lower addresses. Suppose
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Fig. 9. Pointers are resolved in the getVal() function. First the offset of the variable is
computed using the stack start address in the local memory and the number of times the
local stack has been flushed. The offset is used to move relatively in the main memory to
reach the pointer location.

the stack top is at address 3100, and the function F1 is at the top, with the variable a

is at address 3060 in the stack frame of function F1. Assuming the total space on the

local memory to manage stack data is 70 bytes, then when function F3 is called, function

F1 is evicted out to the main memory. Suppose the start address of stack data in the

main memory is at 181270, then the global address of variable a in the global memory is

181270 − 40 = 181230. Now function F3 is called with pointer to a as a parameter, it

gets 3060 as the address. From this address, the function getVal has to generate the global

address. This can be simply done by first computing the offset, as 3070−3100+1∗70 = 40,

where 70 is the stack size, and it is multiplied by the number of times the local stack has

been emptied. This offset can then be used to compute the global memory address of the

variable.
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Fig. 10. Stack Management API: the API consists of just 4 functions, and is very intuitive
to use.

D. Programming API

The stack management Application Programming Interface (API) is very simple for

the programmer’s to use, and consists of just 4 functions. Figure 10 illustrates all the

changes that are required in a simple application that uses pointers to stack variables of

other functions. The functions fci and fco are added just before and after a function call.

The functions getVal and putVal are added just before and after a stack pointer access.



VI. Experiments

A. Setup

We demonstrate the need and effectiveness of our approach by experiments on Sony

Playstation 3. We have installed Linux Fedora 9 on the Sony PS3, which gives access to 6 of

the 8 SPEs. We have implemented our approach as a library with the GCC. We compile and

run benchmarks from the MiBench suite [9]. These benchmarks are not multi-threaded;

we have made them multithreaded by keeping all the input and output functionality of

the benchmark in the main thread, which runs on PPE. The core functionality of the

benchmark is however executed on the SPE. Thus each benchmark has two threads, one

running on the PPE and the other on SPE. In our last experiment on scaling, we run

multiple threads of the same functionality on the SPEs. The runtime for the SPEs was

recorded using spu decrementer() function and using mftb() for PPE provided as libraries

with IBM Cell/BE SDK 3.1. To abstract away the variability in timing due to operating

system and other reasons, we run each experiment 60 times, and take the average.

B. Results and Discussion

B.1. Enabling Limitless Stack Depth

To demonstrate the need of our technique we executed a simple recursive function

rcount on the PS3, and plot the runtimes in Figure 11. This simple application requires

8784 bytes for the code and 1200 bytes for global data, and the rest 246 KB can be used

for stack. The function frame size for this application is 64 bytes, and therefore, without

stack management, this application only works for n < 3842.

The interesting thing that Figure 11 shows is that when we apply the previous approach

of stack management, the recursive function only works for n < 2627. This is because as

n increases, the space in the local memory used up by the stack management table also
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Fig. 11. Without stack management, the recursion function only works for n < 3842. Our
technique enables limitless stack depth.

increases, and therefore less space is left for storing function frames. We would like to

make clear that the observation that the previous stack management scheme works for

even smaller programs than without any stack management cannot be generalized and

is therefore a little misleading. This happens only for cases when the function frame is

extremely small, and the stack management overhead is relatively high. In general, previous

approach should/does enable executing applications with larger stack sizes and depths.

Most important observation from the Figure 11 is that our technique has no limitation

on the stack depth that it can support. As compared to previous technique [13], we are

not restricted by the size of the stack management table and the memory allocation in the

global memory. When the number of entries in the table exceed the fixed size we mention,

it is exported dynamically to the PPE. Also our scheme does not need array size on the

PPE to accommodate the stack frames. This is taken care of automatically by the memory

management thread in the PPE.
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B.2. Better performance at smaller space

Another aspect of our technique is that it can manage stack data in a smaller space on

the local memory. The minimum space that the previous approach [13] required on the local

memory is the sum of the largest function and the size of the stack management table. The

stack management table contains one entry for each function instantiation. We manage the

stack management table dynamically between the local memory and the global memory,

and therefore can work with just one entry in the stack management table. As a result not

only we can execute applications with arbitrary stack depths (which we demonstrated in

the last experiment), our technique occupies much less space on the local memory. Using

less space on the local memory is extremely crucial, since the local memory is typically

small, and on top of that, it is shared by global, stack, heap data and the application code.

In order to maximize the flexibility of mapping it is vital to map each individual data in

as little space as possible.

While the conclusion scales for all the benchmarks, due to limited space, we show

graphs for two of the benchmarks, sha and Dijkstra, both from MiBench in Figure 12.

For sha, the previous technique does not work until the space allocated for stack data on

the local memory is 2976 bytes, while our technique starts working with only 2432 bytes

of space. Similarly, our technique can bring down the minimum space on local memory

required to perform stack management from 1344 bytes to just 672 bytes. In both cases

we see that the runtime for the previous and our technique are comparable for the same

stack size. The reason for this is that although our technique is more generic and incurs

more management overhead, we can reduce the space in the local memory used for stack

management table, and increase the number of function frames that can be kept on the
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local memory. This results in less DMA between the local memory and the global memory,

and also less communication between the PPE thread and the SPE thread.

B.3. Wider Applicability

Our technique promises to run any application in the least amount of stack on the

Limited Local Memory architectures. Table 13 shows a range of benchmarks upon which

we have tested our technique. For each benchmark, we find out the size of the largest

function, and also find out the maximum stack depth by running these benchmarks once.

We then run these benchmarks using space on local memory equal to the size of the largest

function plus the maximum size of stack management table. This minimum stack size

is shown in the first column of Table 13. The second column in the Table 13 shows the

runtime of the application, if it ran, CRASHES is printed. It can be noted that several

benchmarks like FFT crash. Our stack management can work with lesser space on the

local memory. The fourth column lists the minimum space on the local memory required

by our scheme, and the fifth column lists the time required to execute the application on

that minimum space.

There are two main observations here. The first is that our technique successfully

resolves the pointer, and therefore works for a wide range of benchmarks. The second

observation is that, as compared to the cases when the previous approach also worked,

our technique may have slightly more runtime, e.g., the runtime for dijkstra small using

previous technique was 882µs, but with our management is 890µs. But this is because we

are using lesser space, and managing using only one entry in the stack management table.

For a fair comparison, we increase the total space occupied by stack data and stack data

management data structures to that of the second column, we achieve at-par performance.
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B.4. Scalability of our technique

Till now all our experiments were on PPE and one SPE. Our approach adds a memory

management thread to the PPE that would service the memory requests from all the cores.

To illustrate the scalability of our approach, we execute identical benchmark on every core.

We run the benchmarks at the least stack and table size possible. This ensures that we

do maximum transfers of the of stack management table and stack frames to the main

memory. Figure 14 plots the runtimes of the application (as measured on the PPE), of the

benchmarks as the number of cores/threads scale. In the case of FFT, the memory traffic

is lesser as there is no recursion and it gives nearly similar runtimes as we scale the number

of SPE’s. However, for other benchmarks, the runtime gradually increases as we scale the

number of cores/threads. This is because, as the number of thread/cores increase, the

number of memory requests increase, and they block the SPEs until the previous requests

are served. Another important observation is that as we scale the number of cores/threads,

at some point (which varies for each application), the runtime suddenly increases. This is

because, as the number of threads/cores increase there is a larger memory traffic and this

causes the overload of the memory bus.
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Fig. 12. Two main observations from these graphs: i) The minimum space required on
the local memory to run the benchmarks was larger than what our technique needs. ii)
When both techniques work, the runtimes are comparable.
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Fig. 13. Two important observations: i) Our technique can manage stack data in a lesser
space on the local memory, and ii) When compared with the previous technique, while using
the same total space for stack data and stack management data structure, our technique
has at-par performance.

Fig. 14. As we scale the the number of cores, runtime increase as there is larger memory
traffic that keep memory management thread in the PPE occupied. The sudden increase is
due to the overloading of the memory bus with increasing evictions from each local memory.



VII. Conclusion, Future Work and Outlook

We propose a novel technique for memory management for the stack for limited lo-

cal memory multi-cores. Our technique scales of any number of cores and ensures stack

management for any arbitrary size of application in least possible size of stack. In addition

our implementation takes into account the space management on the main memory and

allocates eviction-aware memory, thus conserving and benefiting other memory hungry ap-

plications running on the main memory. Our stack management technique is not confined

to limited local memory multi-core architectures but can also be used in general purpose

systems.

Our work foresees further possibilities of research in efficient management of stack.

The work can basically be done in three major areas. Firstly, the main memory manager

thread function can be made to allocate space intelligently, predicting recursion to reduce

the number of allocation requests. Also the total space required for management can

partitioned into the stack management table space and frame space to optimize the number

of DMA transfers caused due to table and function frame eviction. Secondly work can be

done to resolve pointer references at a coarser level. Analysis can be performed to know

when a pointer accesses will need the circular to linear translation as not all frames that

are referenced are exported to main memory. This can be further strengthened by keeping

the pointer references that are frequently accessed in the local memory. Thirdly the stack

management scheme can be improved by evicting only a part of a function frame to the

main memory to accommodate a new function.
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As future architectures are likely to have distributed cores with limited local memory,

scaling general purpose applications becomes a challenge. The ultimate quest is to increase

the performance/watt. If an application can be run in smaller memory requirement, it

eventually means that the memory per core can be reduced freeing up space on the die

which can be used for other purposes like embedding more cores per chip which can increase

the throughput.
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