
Comprehensive Failure Analysis against Soft Errors
from Hardware and Software Perspectives

Yohan Ko∗, Hwisoo So†, Jinhyo Jung†, Kyoungwoo Lee†, and Aviral Shrivastava‡
∗Division of Software, Yonsei University, 1 Yonseidae-gil, Gangwon-do, 26493, Republic of Korea

†Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
‡Arizona State University, Centerpoint, 660, S Mill Ave, Tempe, AZ, 85281, United States

Abstract—With technology scaling, reliability against soft er-
rors is becoming an important design concern for modern
embedded systems. To avoid the high cost and performance
overheads of full protection techniques, several researches have
therefore turned their focus to selective protection techniques.
This increases the need to accurately identify the most vulnerable
components or instructions in a system. In this paper, we analyze
the vulnerability of a system from both the hardware and
software perspectives through intensive fault injection trials.
From the hardware perspective, we find the most vulnerable
hardware components by calculating component-wise failure
rates. From the software perspective, we identify the most
vulnerable instructions by using the novel root cause instruction
analysis. With our results, we show that it is possible to reduce the
failure rate of a system to only 12.40% with minimal protection.

Index Terms—Soft Error, Transient Fault, Fault Injection,
Failure Analysis, Reliability

I. INTRODUCTION

Soft errors, or transient faults, are caused by external
radiation such as alpha particles, thermal neutrons, and cosmic
rays [1]. If the radiation-induced charge is larger than a certain
threshold, known as the critical charge, a soft error can occur
and cause bit flips in the hardware, leading to timeouts, system
failures, or incorrect outputs. Thus, reliability against soft
errors is an essential concern in modern embedded systems [2].

Several techniques have been presented to protect embed-
ded systems against soft errors. Example techniques include
information redundancy schemes [3] and software instruc-
tion duplication [4]. However, these protection techniques
are inappropriate for resource-constrained embedded systems
since they are expensive or inefficient. In order to mitigate
protection overheads, selective or partial protections have been
proposed [5] [6]. However, partial protection methods relied
mostly on heuristics to find the critical parts of the system.

In this work, we have conducted a comprehensive study
to find the microarchitectural components and software in-
structions that are most vulnerable to soft errors. We modified
the cycle-accurate system-level gem5 simulator [7] to perform
extensive fault injection campaigns into benchmarks from the
MiBench [8] benchmark suite. From the hardware perspective,
we injected faults into specific microarchitectural components
to estimate the vulnerability of each component separately.
From the software perspective, we performed the root cause
instruction analysis, a novel technique to find the software
instruction responsible for the system failure. Based on the

results of our experiments, we present protection guidelines
for resource-constrained embedded systems.

II. FAILURE ANALYSIS FRAMEWORK

To study the vulnerabilities of microarchitectural compo-
nents and instructions in a comprehensive manner, we have
developed a failure analysis framework based on the cycle-
accurate gem5 simulator [7]. Our framework includes a fault
injection module to inject single-bit soft errors to an in-
order CPU. The single-bit error is injected to a randomly
selected bit at a randomly selected cycle within the execution
time in one of four main components (register file, pipeline
register, LSQ, and scoreboard) excluding the cache. Then,
our framework runs several iterations of a cross-compiled
benchmark with the fault injections and returns simulation
statistics, program outputs, and simulation trace which is
composed of hardware-level microarchitectural behaviors and
software-level instructions.

We used our framework to perform extensive fault injec-
tion experiments over various benchmarks and calculated the
vulnerability of microarchitectural components and software
instructions. We also used the trace data and logs from the
injection trials for further analyses. If a trial resulted in a
failure, the information was used to pinpoint the root cause of
the failure. Otherwise, we analyzed how the injected fault was
masked from the system’s perspective. Thus, our framework
can act as a toolset for comprehensive investigation on how
soft errors impact the system from the hardware and software
perspectives.

A. Failures in Hardware Components

Injection-based failure analysis from the hardware per-
spective is relatively simple since we can control in which
microarchitectural component to inject the fault. We perform
our analysis in the register file, pipeline register, LSQ, and
scoreboard. We do not inject faults into the cache assuming
that the cache is protected with parity or ECC [6]. otherwise,
the cache would be far more vulnerable than other components
due to its size and density, and we feared that the vulnerability
of the cache would overshadow the differences between the
vulnerabilities of other components.

An error in data caused by an injection propagates when it
is read by the processor. Therefore, our framework keeps track
of the reads and writes on the injected bit after the cycle the

Register A (rA)

…

I1 Read

I2 Read

…

IN Read

IN+1 Write

…

Result:
Failure

Soft error

corrupts rA

instructions

affected by

error

Value of rA is

overwritten

(a) First-level analysis: Find all
instructions that read corrupted
data. In this case, I1 ∼ IN are the
candidate root cause instructions.

Register A (rA)

…

I1 Read

Correct error

I2 Read

…

IN Read

IN+1 Write

…

Result: Non-Failure

Error!Iteration 1

Register A (rA)

…

I1 Read

I2 Read

Correct error

I3 Read

…

IN Read

IN+1 Write

…

Result: Non-Failure

Iteration 2

…

Error!

instructions affected by error

instructions unaffected by error

Register A (rA)

…

I1 Read

…

IM-1 Read

Correct error

IM Read

…

IN Read

IN+1 Write

…

Result: Non-Failure

Iteration M-1 Error!

Register A (rA)

…

I1 Read

…

IM-1 Read

IM Read

Correct error

IM+1 Read

…

IN Read

IN+1 Write

…

Result: Failure

Iteration M Error!

(b) Second-level analysis: Correct the corrupted data after m instructions access the value. m starts from 1 and
is incremented every iteration until system failure occurs. In this case, IM is the root cause instruction since it
is the first instruction to induce system failures.

Fig. 1. Two-level analysis to identify the root cause instructions when faults are injected into the register file

fault was injected. For example, consider the instruction ”load
r1, r2”, which loads the data in the memory address designated
by register r2 to register r1. Injections in the register file leads
to one of two cases. If the data in r2 becomes corrupted, the
processor may access the wrong data or an invalid memory
segment. If the data in r1 becomes corrupted, the error is
overwritten to a correct value and becomes masked. In this
case, our framework ceases to track the reads and writes on
the corrupted bit. Injections in the LSQ lead to similar results.
When the exemplary instruction ”load r1, r2” is executed, the
memory address is first inserted into the LSQ by reading the
data in r2. Then, the LSQ accesses the data cache to load
the data designated by the memory address, and the data is
inserted into LSQ. Finally, r1 is updated using the memory
data in LSQ. Injections in the memory address before the
LSQ accesses the data cache could lead to incorrect memory
access. Injections in the memory data before the update to r1
would corrupt the value of r1. Now consider injections into the
pipeline register. If the injected fault corrupts the opcode, the
”load” instruction could become any other type of instruction
and induce failures. If one of the operands is changed due
to the fault injection, the instruction will read data from an
incorrect register (e.g., load r1, r3) or refer to an incorrect
register as the destination (e.g., load r3, r2). Finally, consider
the case of the scoreboard. Before the instruction ”load r1, r2”
is executed, the destination register index (r1) is logged in the
scoreboard to prevent any violations of data dependency. If the
fault causes the scoreboard to log r0 instead of r1, subsequent
instructions using r1 may not wait for the load instruction to
complete and read the incorrect data of r1 before the update.

B. Failures in Software Instructions

Failure analysis of software instructions is more complicated
than that of hardware components. In injection experiments,
faults are injected into hardware components to imitate the
behaviors of soft errors in the real world. An additional step
must be taken to find the software instructions that are affected
by the injected fault. In some cases, more than one instruction
may access the injected bit, further complicating the issue.

We, therefore, require a method that first finds instructions
affected by the fault, then pinpoints the single instruction
responsible for the failure. This is possible through the novel
root cause instruction analysis technique, which identifies the
first instruction that eventually causes a system failure.

Our framework follows a two-level analysis to identify the
root cause instruction, as shown in Fig. 1. Assume that the data
in register A (rA) becomes corrupted, and the program results
in a system failure. In the first-level analysis, our framework
finds all the candidates of the root cause instruction, which are
the instructions that read data from the corrupted register. If
there is only one instruction, the instruction is designated as
the root cause instruction, and the second-level analysis can
be skipped. In the other case where multiple instructions read
the faulty data, we apply the second-level analysis to find the
root cause instruction.

The core idea of the second-level analysis is to isolate the
effect of the error to one instruction at a time. This involves
multiple iterations of the program with an error correction
function, which we have implemented in our framework. To
illustrate a sample run of the second-level analysis, assume
that a failure-causing fault is injected into register A (rA)
and is read by N instructions, as shown in Fig. 1(a). In the
first iteration, we correct the value of rA immediately after
the first instruction (I1) uses the value. This way, the effect
of the error is isolated to only I1. If the iteration does not
result in a system failure despite I1 reading the wrong value,
then I1 is not the root cause instruction. In this case, we
proceed to the second iteration, in which the error is corrected
after the execution of the second instruction. We repeat this
process of incrementing the number of instructions that read
the erroneous value of rA until an iteration results in a system
failure. Then, the instruction executed immediately before the
correction is responsible for the failure and is labeled as the
root cause instruction. This process is depicted in Fig. 1(b).

With the novel root cause instruction analysis, each injected
fault that causes system failures can be traced back to the
instruction responsible for the failure. Then, the injected
faults can be abstracted out to the software instruction level

without worrying about the details of the underlying hard-
ware. This software perspective analysis can show what kind
of instructions are more vulnerable in each benchmark and
explain which instructions should be protected when selective
protection techniques are applied.

III. FAILURE ANALYSIS AND PROTECTION GUIDELINES

Using our failure analysis framework, we have performed
extensive fault injection campaigns targeting a 32-bit ARM
architecture. For ease of failure analysis, the scope of our
experiments only covers single-bit errors. We do not consider
multiple-bit upsets since the rate of double-bit errors is only
1/100 of the single-bit error rate [9]. Our fault injection cam-
paigns cover 7 benchmarks (matmul, stringsearch, gsm, susan,
jpeg, qsort and bitcount) from the MiBench [8] benchmark
suite, with 10,000 injections per component for each bench-
mark, one injection per trial. From these trials, the failure rate
is calculated as Failure Rate = Number of Failure Cases

Total Number of Trials .
From the hardware perspective, the pipeline register is the

most vulnerable microarchitectural component with over 63%
failure rate, compared to the 40%, 31%, and 5%, of the register
file, LSQ, and scoreboard, respectively. This is mainly because
the pipeline register contains information crucial for correct
execution, such as the operations and operands. To make
things worse, the pipeline register is filled with data to be
used, which makes it experience much less masking compared
to other components. On the other hand, the scoreboard is
the least vulnerable since faults in the scoreboard only affect
data dependency between instructions. If the register indicated
by the injected bit shares no data dependency with other
instructions, the corrupted data in the scoreboard is not used,
and the error is immediately masked.

0 20 40 60 80 100

Data

Address

Failure Rate (in %)

F
ie

ld
s

in
 L

S
Q

Failure Rates of the Fields in LSQ (Address & Data)

Non-Failure Failure

Fig. 2. Detailed failure analysis of the LSQ. The chances of failures are much
higher when faults are injected in the memory data as opposed to the address.

We take a closer look into the LSQ in Fig. 2 to investigate its
relatively low failure rate. In this graph, the x-axis represents
the rate of system failures, and the y-axis shows where the fault
was injected: ”Address” meaning that faults were injected into
the memory, ”Data” meaning that faults were injected into the
data. Interestingly, the failure rate of the memory data is almost
4 times higher than the failure rate of the memory address
(46% compared to 13%). The reason for the low failure rate
of the memory address, and in turn the low failure rate of
LSQ as a whole, is due to the mechanism of the LSQ. For
load instructions, the memory data portion of the LSQ is non-
vulnerable until the data is loaded from memory since the

load will overwrite any errors that may have occurred. After
the memory access is made, the memory address is no longer
needed and becomes non-vulnerable. The memory data and
address for stores also become non-vulnerable as soon as the
memory access is complete. Therefore, in contrast to other
memory components, the bits in the LSQ are vulnerable for
only a limited amount of time. Then the bits that become non-
vulnerable shield the rest of the LSQ through spatial masking,
reducing the failure rate of LSQ to about 30%.

From the software-perspective, we first categorize software
instructions into six types: load, store, arithmetic, logical,
compare, and branch. We then compare the failure rates of
each type of the root cause instruction. Memory instructions
show relatively low failure rates of about 30%(load) and
40%(store). This result agrees with the hardware perspective
analysis, which showed that LSQ had low failure rates due to
spatial masking. On the other hand, control flow instructions
have higher failure rates. Branch instructions are the most
vulnerable with 55% failure rates, and compare instructions,
whose results are most often used as parameters for branch in-
structions, also show high failure rates of 47%. While errors in
other instructions change the output of one instruction in most
cases, incorrect execution of branch instruction can corrupt
the execution flow. Instead of producing one incorrect value,
errors in control flow instructions produce several incorrect
operations, raising the chances of the error propagating to
system failures.

0 20 40 60 80 100

Failure-Inducing

Instructions

Total

Instructions

Distribution (in %)

Distribution of Instruction Types

Branch Compare Logical Arithmetic Load Store

Fig. 3. Distribution of different instruction types. Load instructions take up
about 20% of the system, but are responsible for almost 40% of the failures.

However, the distribution of failure-inducing root cause
instructions suggests otherwise. Fig. 3 summarizes the dis-
tribution of instruction types in the system overall and in
failure-inducing root cause instructions. Branch instructions
and compare instructions, which showed high failure rates of
55% and 47%, are responsible for only 4.5% and 4.0% of the
failures respectively. On the other hand, 37.9% of failures are
caused by load instructions, which showed lower failure rates
of about 30%. This is not only because load instructions occur
much more frequently than branch or compare instructions.
Load instructions take up 19.9% of the total instructions,
which is slightly less than the 20.4% of the branch and com-
pare instructions combined. This implies that load instructions
are much more likely to become root cause instructions, and
should be protected.

In conclusion, it is generally most efficient to apply hard-
ware protection on the pipeline register. The pipeline register

34.34

21.85

12.40

0

10

20

30

40

No Protection Pipeline Register Load Instructions,

Pipeline Register

F
a
il

u
re

 R
a

te
 (

in
 %

)

Applied Protection

Failure Rates depending on Protection Applied

Fig. 4. By protecting one hardware component and instruction type, the failure
rate decreases to 12.40%.

has high failure rates since it holds information crucial to
correct execution and holds almost no useless information.
From the software perspective, load instructions are typically
the most vulnerable due to their dominance in the distribution
of failures. Therefore, by applying a hybrid selective protection
technique to protect the pipeline register and load instructions,
the overall failure rate drops to 12.40%, as shown in Fig. 4.

IV. RELATED WORKS

Several techniques have been proposed to protect proces-
sors against soft errors. Early attempts aimed to protect the
whole system. Examples include shielding the system from
external radiation with a concrete barrier [10], or duplicating
all software instructions and comparing the results between
original and duplicated instructions to detect soft errors [4].
However, the area, cost, and performance overheads induced
by these methods are intolerable for most embedded systems.
Many studies have therefore turned to selective protection.
From the hardware perspective, Naseer et al. [11] suggest
that the register file could be the most vulnerable since errors
in the register file can quickly and easily propagate to other
components. Other candidates include the pipeline register [5],
and the scoreboard [12]. From the software perspective, Reis et
al. [6] saw store instructions as the most critical. Control flow
instructions are also considered vulnerable since an incorrect
control flow can execute incorrect store instructions or omit
the execution of correct store instructions.

Measuring the reliability of a system is another field of
study. One notable method is neutron beam testing [13], which
exposes the target processor to neutron-induced soft errors.
Beam testing experiments are considered highly accurate be-
cause the experimental environment is very similar to how soft
errors actually occur. On the downside, they are expensive to
perform and hard to set up correctly. Fault injection campaigns
have been presented as an alternative to the expensive and
complicated beam testing [14]. Ideally, the failure rate could
be measured by injecting soft errors to all bits in each cycle. As
this is near impossible, most works adopt the idea of statistical
fault injection [15]. The idea is to perform a number of
trials large enough to make the results statistically significant,
but much smaller than the number required by exhaustive
fault injection (number of bits × cycles). For example,

a statistical fault injection experiment may involve 10,000
injections. According to probability theory, this number is
sufficient to achieve 1% margin of error with 95% confidence
level, regardless of the population size.

V. CONCLUSION

Soft errors are important reliability issues at the early
design phase, but protections against soft errors incur severe
overheads in terms of hardware area and performance. Selec-
tive protection techniques have been proposed for resource-
constrained embedded systems, but their resilience needs to
be validated. In this study, we use our framework with our
novel root cause instruction analysis to analyze the most
vulnerable parts of a system from both hardware and software
perspectives. From the hardware perspective, protecting the
pipeline register is the most essential, and from the software
perspective, protecting the load instructions is the most ef-
ficient. Using these ideas, we reduce the failure rate of an
application by over 60%(from 34.34% to 12.40%) on average,
just by protecting the pipeline register and load instructions.

VI. ACKNOWLEDGMENTS

This work was partially supported by funding from Na-
tional Science Foundation Grants No. CNS 1525855, CPS
1646235, CCF 1723476 - the NSF/Intel joint research cen-
ter for Computer Assisted Programming for Heterogeneous
Architectures (CAPA), 2014-3-00035 (High Performance and
Scalable Manycore Operating System, IITP, MSIT), and Sam-
sung Electronics Co., Ltd(FOUNDRY-202108DD007F).

REFERENCES

[1] N. Seifert et al., “Soft error susceptibilities of 22 nm tri-gate devices,”
IEEE Transactions on Nuclear Science, vol. 59, no. 6, 2012.

[2] V. Narayanan and Y. Xie, “Reliability concerns in embedded system
designs,” Computer, vol. 39, no. 1, pp. 118–120, 2006.

[3] R. Baumann, “Soft errors in advanced computer systems,” IEEE Design
& Test of Computers, vol. 22, no. 3, pp. 258–266, 2005.

[4] N. Oh et al., “Error detection by duplicated instructions in super-scalar
processors,” IEEE Transactions on Reliability, vol. 51, no. 1, 2002.

[5] R. Jeyapaul et al., “Systematic methodology for the quantitative analysis
of pipeline-register reliability,” IEEE Transactions on VLSI Systems,
vol. 25, no. 2, 2016.

[6] G. A. Reis et al., “SWIFT: Software implemented fault tolerance,” in
CGO, 2005, pp. 243–254.

[7] N. Binkert et al., “The gem5 simulator,” SIGARCH Computer Architec-
ture News, vol. 39, no. 2, pp. 1–7, 2011.

[8] M. R. Guthaus et al., “MiBench: A free, commercially representative
embedded benchmark suite,” in WWC, 2001, pp. 3–14.

[9] K. Lee et al., “Mitigating the impact of hardware defects on multimedia
applications: A cross-layer approach,” in MM, 2008, pp. 319–328.

[10] A. Lesea et al., “The rosetta experiment: atmospheric soft error rate
testing in differing technology FPGAs,” IEEE Transactions on Device
and Materials Reliability, vol. 5, no. 3, pp. 317–328, 2005.

[11] R. Naseer et al., “Analysis of soft error mitigation techniques for register
files in IBM Cu-08 90nm technology,” in MWSCAS, vol. 1, 2006.

[12] Monferrer et al., “Mechanism for soft error detection and recovery in
issue queues,” 2007, uS Patent App. 11/999,787.

[13] A. Dixit and A. Wood, “The impact of new technology on soft error
rates,” in IRPS, 2011, pp. 5B.4.1–5B.4.7.

[14] K. Parasyris et al., “GemFI: A fault injection tool for studying the
behavior of applications on unreliable substrates,” in DSN, 2014.

[15] R. Leveugle et al., “Statistical fault injection: Quantified error and
confidence,” in DATE, 2009, pp. 502–506.

