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Soft error is one of the most important design concerns in modern embedded systems with aggressive tech-
nology scaling. Among various microarchitectural components in a processor, cache is the most susceptible
component to soft errors. Error detection and correction codes are common protection techniques for cache
memory due to their design simplicity. In order to design effective protection techniques for caches, it is
important to quantitatively estimate the susceptibility of caches without and even with protections. At the
architectural level, vulnerability is the metric to quantify the susceptibility of data in caches. However,
existing tools and techniques calculate the vulnerability of data in caches through coarse-grained block-level
estimation. Further, they ignore common cache protection techniques such as error detection and correction
codes. In this article, we demonstrate that our word-level vulnerability estimation is accurate through in-
tensive fault injection campaigns as compared to block-level one. Further, our extensive experiments over
benchmark suites reveal several counter-intuitive and interesting results. Parity checking when performed
over just reads provides reliable and power-efficient protection than that when performed over both reads
and writes. On the other hand, checking error correcting codes only at reads alone can be vulnerable even
for single-bit soft errors, while that at both reads and writes provides the perfect reliability.
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1. INTRODUCTION

Soft errors are increasingly becoming a critical design concern in embedded computing
systems [Ferreira et al. 2016]. Soft errors are transient bit flips due to the electrical
noise, external interference, cross-talk, radiation, and the like. The majority of soft
errors in modern embedded systems occur due to charge-carrying particles on the
processor. With technology scaling, even low-energy neutron particles (10meV–1eV)
can cause soft errors [Slayman 2010]. Critical charge is generally defined as the
minimum amount of charge to change the bit value in a semiconductor device. Critical
charge also decreases significantly due to shrinking feature size and decreasing supply
voltage [Dixit and Wood 2011]. Thus, the soft error rate is going to increase especially
in low-power and tiny embedded systems [Ko et al. 2016].

In a processor, the cache is one of the most susceptible microarchitectural compo-
nents to soft errors [Mittal and Vetter 2016]. Mitra et al. [2005] note that soft errors in
caches (unprotected static random access memory (SRAM)) contribute to around 40%
in processors, and Shazli et al. [2008] have shown that 92% of machine checks are trig-
gered by soft errors at the level 1 and 2 caches. This is not only because caches occupy
the majority of the chip area, but also because they have high transistor density and
operate at low-voltage swings [Naseer et al. 2007]. Since data in caches are frequently
accessed by central processing unit (CPU) and written back to lower-level memory in
case of write-back caches, some of erroneous bits can be propagated to the lower-level
memory or used by CPU. However, not all the soft errors in the cache memory can cause
system failures (i.e., vulnerable) during all the execution time mainly due to several
masking effects. Thus, there is a necessity to quantify the susceptibility of caches in
order to know how many bits and how long cache data can be vulnerable.

In order to accurately calculate susceptibility of microarchitectural components, the
particle beam testing [Kudva et al. 2007] and emulated fault injection campaigns
[Entrena et al. 2012] have been proposed. However, they are not only expensive but
also challenging to set up correctly. Architectural vulnerability factor (AVF) is an alter-
native metric to estimate the susceptibility of data in microarchitectural components
[Mukherjee et al. 2003]. AVF is essentially the average number of bits in a microar-
chitectural component that are susceptible to soft errors over time. Existing methods
to estimate the AVF of cache, which we call cache vulnerability factor (CVF), have two
main problems. Firstly, existing vulnerability modeling is based on block-level cache
behaviors [Zhang 2005a], although the basic unit of cache access is a word, not a block.
Secondly, there is no method to estimate cache vulnerability in the presence of protec-
tion techniques. Thus, they cannot provide the accurate vulnerability modeling with
and without protection techniques.

Architectural Vulnerability generally used to denote the reliability of a single archi-
tecture component, while Vulnerability is used to denote that of the entire processor.
In this article, we use the term Vulnerability to denote the architectural vulnerability
of the cache since we only analyze the cache reliability. Cache vulnerability estimation
at a block-level granularity is quite inaccurate since the basic unit size of data accesses
in caches is a word, not a block. For instance, the specific cache word is vulnerable
when just a single word of a block is read by CPU. However, block-level vulnerability
estimation defines the whole block as vulnerable, not just the specific word. The av-
erage inaccuracy of block-level estimation is 37% as compared to our more accurate
word-level one. Note that our word-level vulnerability estimation includes byte-level
granularity since we analyze word-level cache behaviors for vulnerability estimation.
The average inaccuracy is not significant, but the actual wrong decision based on block-
level behaviors can be more severe. It is because the difference is aggregated statistics
of entire cache blocks during the entire execution time. First off, block-level analysis
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can underestimate or overestimate vulnerability as compared to the word-level one,
but the inaccuracy only can show the difference between the underestimation and over-
estimation. Secondly, the error of each block can be much larger than the average error
of all the blocks. For example, the error of a specific block is up to 5,700%, while the
average error of all the blocks is only 121% for the same benchmark, basicmath.

Existing cache vulnerability estimation schemes ignore protection techniques even
though several techniques have been presented for reliable cache memory. These tech-
niques span across the design spectrum from the circuit, microarchitecture, software,
and even hybrid level. In practice, parity and error correction code (ECC) are the
most popular cache protection techniques due to their design simplicity. Parity-based
methods allow the error recovery by bringing data from lower-level memory as long
as cache data is not updated by the processor (i.e., clean state). ECC-based techniques
provide the error recovery regardless of the clean or dirty state. However, it can in-
cur up to an additional 50% hardware area, more than five times power consumption,
and about 115% runtime overheads as compared to unprotected cache [Sadler and
Sorin 2006]. Parity protection is preferred for higher-level (e.g., level 1) caches while
lower-level caches (e.g., level 2 or other lower-level caches) are protected by ECC in
common processors. There are several design choices when we implement parity and
ECC protection, for example: When should we check for parity-bit and ECC-bits—at
read, write, or both read and write? At what granularity should we have parity-bit and
ECC-bits? At what granularity should we have dirty-bit?

In order to correctly answer these questions, we definitely need techniques to quan-
titatively and accurately estimate the susceptibility of cache data to soft errors with
or without protection techniques. We have validated the accuracy of our word-level
estimation by comprehensive fault injection experiments. The logic to estimate vul-
nerability at a word-level granularity with the presence of protection techniques is
much more involved than the logic to estimate vulnerability at a block-level granular-
ity without considering protections. The main source of complexity comes from the fact
that (i) the access time to each word should be logged for word-level estimation while
the access time for a block is needed for block-level estimation; and, (ii) vulnerability
estimation at a word-level granularity may not be independent of the accesses of the
other words in the same block.

The main contributions of this work are accurate word-level modeling and aware-
ness of protection techniques. First off, we have modeled more accurate word-level
vulnerability modeling than the previous block-level one since the basic unit of cache
accesses is a word, not a block. And, we have also validated our vulnerability mod-
eling against exhaustive fault injection campaigns. Secondly, we have modeled cache
vulnerability estimation without and with common protection techniques such as er-
ror detection codes (parity) and error correction codes. We explore the design space
of parity and ECC protection with various protection configurations based on accu-
rate word-level vulnerability estimation. Our analysis reveals several interesting and
counter-intuitive results.

—Checking parity at reads provides better level of protection than checking parity
at both read and write. This is surprising, since it is more intuitive to believe that
checking parity at both occasions will provide better protection mainly due to more
redundancy. The implication is that better protection can be achieved by simpler
hardware and less overhead of parity-checking power.

—In order to achieve higher levels of protection, both parity-bit and dirty bit should be
implemented at word-level of granularity. It can reduce the vulnerability by 60% as
compared to the vulnerability without protections. However, only either parity-bit
or dirty-bit at a word-level granularity does not protect caches effectively, i.e., it can
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reduce the vulnerability by just 15% on average as compared to unprotected caches
in spite of additional hardware overheads.

—Checking block-level ECC-bits only at reads can still be vulnerable because of other
words’ behaviors in the same block. About 10% of vulnerability comes from unpro-
tected caches’ remains with checking at reads, while checking at both reads and
writes provides zero vulnerability. If the perfect reliability is required for caches,
ECC should be checked at both reads and writes or ECC-bits should be implemented
at a word-level granularity.

2. BACKGROUND AND RELATED WORK

Soft errors are transient faults in the semiconductor devices caused by external energy
such as alpha particles, cosmic ray, thermal neutron, and inductive cross-talk. Caches
are one of the most vulnerable microarchitectural components in processors against soft
errors. It is not only because caches occupy lots of area in processors, but also because
that cache data is frequently accessed by CPU and quickly propagated to lower-level
memory. In order to improve the reliability of cache memory without area cost, Li et al.
[2004] proposed early write-back policy. Early write-back policy combines the perfor-
mance efficiency of write-back with the reliability of write-through policy by exploiting
the least recently used algorithm or dead-time–based approaches. Manoochehri et al.
[2011] proposed the correctable parity protected cache (CPPC) to correct errors, which
can be detected by parity. CPPC corrects soft errors including spatial multi-bit errors
at the dirty state by multi-dimensional parity without the severe overhead in terms
of hardware area and performance. However, they can still be vulnerable for tempo-
ral multi-bit upsets and errors in the cache tag array and status-bits such as dirty
bits.

Soft errors on variables do not induce system failures due to the software masking
effects, e.g., errors on multimedia data in a program can degrade the quality of ser-
vice, but they do not result in system failures. Partially protected cache (PPC) [Lee
et al. 2006] improved the reliability with the comparable performance overheads by
enhancing the software masking. PPC only protects failure-critical data such as control
variables based on data profiling at the compile time. On the other hand, they do not
protect multimedia data since errors on multimedia data cause loss in quality of ser-
vice instead of system failures. Smart cache cleaning [Jeyapaul and Shrivastava 2011]
protects specific cache blocks at specific periods by applying the hardware-software
hybrid methodology. At the software level, we can protect data efficiently by software-
based or hybrid-based selective protection, but the decision of importance in data is an
extremely complex task.

In order to mitigate the reliability analysis overheads of cache memory and to provide
the accurate reliability reflecting various masking effects, CVF is proposed based on
cache access patterns [Zhang 2005b; Asadi et al. 2005]. Data in a write-back cache
is vulnerable if it will be read by the processor or will be written back (e.g., eviction
of a dirty cache line) into the memory. If it is overwritten or simply discarded (e.g.,
eviction of a non-dirty cache line), then it is not vulnerable. In a system, the reliability
metric – vulnerability, is a measure of the probability of soft errors during the time
period when data is exposed in the cache which is predominantly dependent on the
data access pattern of the program. Vulnerability estimation of a cache block can be
implemented at two granularity levels: (a) block-level—when every access to a word
in the cache-block is considered to be an access to the whole block or every word in the
cache-block has the same data access; (b) word-level—when every access to a word
in the cache-block is considered as an access to each respective word in the block. In
a cache-block composed of multiple words, the total vulnerability of the block is an
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accumulation of the vulnerabilities of the individual words in the block, which is based
on the data access patterns of the words in the cache-block.

However, how can we accurately measure the reliability of caches without protec-
tions? How much do these protection techniques afford as compared to the reliability
without protections? Thus, there is a necessity to quantify the susceptibility of caches
against soft errors without protection or even with protection techniques.

3. ACCURATE VULNERABILITY ESTIMATION AT A WORD-LEVEL GRANULARITY

In order to accurately estimate the cache vulnerability, we have developed vulnera-
bility estimation tools with protections for caches, named gemV-cache [Ko et al. 2015]
by modifying the gem5 simulator [Binkert et al. 2011]. We have named our cache
vulnerability modeling frameworks “gemV-cache” due to two following reasons. First
off, “V” of gemV-cache stands for both vulnerability and Roman numeral 5 (5 from
gem5). Secondly, “cache” from gemV-cache is named since we have modeled cache vul-
nerability, not all the microarchitectural components. In modeling of gemV-cache, we
consider single-bit soft errors throughout a program execution in caches for simplicity.
Vulnerability of a cache block is the sum of vulnerable periods in cycles of all cache
words from incoming through eviction. Thus, the vulnerability of a cache is the sum of
vulnerabilities of all cache blocks during a program execution and the unit of cache vul-
nerability is byte × cycle. We have performed extensive experiments with gemV-cache
over benchmarks from MiBench [Guthaus et al. 2001] and SPEC CPU2006 [Henning
2006] suites. We use the ARM v7a processor architecture with default L1 cache configu-
ration as direct-mapped 4KB with 64 byte block size. This is just one set of parameters
for our simulation studies. Our gemV-cache is configurable as is gem5 simulator. For
instance, we can also configure ISAs and number of cores, which are not directly related
with cache configurations. We have compiled our suite of benchmarks using gcc cross-
compiler for ARM (ver. 4.6.2), run them on gemV-cache in system emulation mode, and
gathered vulnerability statistics in just one simulation.

In a system, the reliability metric, vulnerability, is a measure of the probability of soft
errors during the time period that data is exposed in the cache, which is predominantly
dependent on the data access patterns of the program as shown in Figure 1. First off,
data is brought into cache memory (incoming). If data is written by write operations
after incoming, it is not vulnerable as shown in Figure 1(a) since it does not affect system
behaviors. If cache data is overwritten by write operation after write or read operations,
it is not vulnerable since the soft error induced data can be overwritten. Based on this
vulnerability definition, write operations always make periods non-vulnerable from
the last behavior to the current write operation as shown in Figure 1(b) and (c), since
it overwrites the corrupted data (no impact on system behaviors and propagation) if a
soft error occurred. If cache data is simply discarded (e.g., eviction of a non-dirty cache
line), it is also not vulnerable as shown in Figure 1(d). Since cache data is identical to
the data in lower-level memory, it does not update lower-level memory.

On the other hand, cache data is vulnerable if it will be read by a processor since
it can affect system behaviors. If cache data is read after incoming, it is vulnerable
since reading corrupted data affects system behaviors as shown in Figure 1(e). Read
operations always make periods vulnerable from the last behavior to the current read
operation as shown in Figure 1(f) and (g), since the corrupted data is read by processor
execution, affecting the system behavior, i.e., inducing the high possibility to change
the original system behaviors and to result in incorrect outputs or even system crashes.
Data in a write-back cache can be also vulnerable if it will be written back into the
lower-level memory since it propagates corrupted data to system memory. If cache data
is written back at the dirty state, it is defined as vulnerable as shown in Figure 1(h).
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Fig. 1. Example demonstrating the vulnerability of a data, over different data accesses.

CVF is the probability that a single-bit error in cache will result in a system fault or
failure. CVF is calculated as vulnerable bytes and their periods, vulnerability in byte
× cycles, over the total cache size, and access time as described in Eqation (1). The
denominator of the CVF equation is the same for block-level and word-level vulnera-
bility estimation. The denominator of CVF is the product of cache size in bytes and
total execution time in cycles, and it is not different for vulnerability modeling between
block-level and word-level. Indeed, the difference between block-level and word-level
vulnerability modeling is numerator and vulnerability, as shown in Figure 2.

CVF = vulnerability (byte × cycles)
cache size (byte) × total execution time (cycle)

(1)

3.1. Vulnerability Estimation at a Block-Level Granularity Is Quite Inaccurate

We have estimated the vulnerability at a word-level granularity since the basic unit
of data access in cache is a word, not a block, in order to achieve the vulnerability
accurately. Figure 2 clearly shows differences of vulnerabilities (shaded region) between
word-level and block-level estimations under a simple scenario where a block (Block)
containing two words (WORD0 and WORD1) is brought at t0, and evicted at t4. We
consider two cases. The data stored in WORD0 is read at t1, t2, and t3 in Case 1, while
they are written in Case 2. A single-bit soft error for the entire scenario is assumed in
write-back cache, and each period (ti, ti+1) is considered as one cycle for brevity’s sake.
We also assume that each word contains one byte data.

It is much more complex to estimate the vulnerability based on word-level vulnera-
bility estimation than the block-level vulnerability modeling. The access information
per word in a block is required and analyzed for word-level modeling, while the only
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Fig. 2. Block-level and word-level vulnerability estimation examples without protection techniques.

access information per block for block-level modeling is required. Figure 2 shows two
examples where previous block-level vulnerability modeling cannot provide the accu-
rate modeling as compared to our word-level one. At both cases, one BLOCK contains
two words such as WORD0 and WORD1, and read and write operations occur at the
word-level while incoming and eviction happen at the block-level. Also, note that each
time interval between tn and tn+1 is assumed to one cycle and the word size to one
byte for simplicity. Case 1 consists of three consecutive read operations of WORD0 at
t1, t2, and t3 after the incoming at t0, and the eviction at t4. Case 2 consists of three
consecutive write operations of WORD0 at t1, t2, and t3 after the incoming at t0, and the
eviction at t4.

In Case 1, the read operations at t1, t2, and t3 make the period from t0 to t3 of WORD0
vulnerable according to the vulnerability definition. Note that the read operations of
corrupted data can affect the system behaviors, i.e., vulnerable. The interval (t3, t4)
of WORD0 and (t0, t4) of WORD1 are not vulnerable due to the eviction at the clean
state at t4. Note that the cache data is not written back to the lower memory, i.e.,
no propagation of corrupted data and non-vulnerable, if it is clean under the write-
back policy. Thus, our accurate word-level modeling estimates 3 as the vulnerability of
this BLOCK under Case 1 where vulnerabilities of WORD0 and WORD1 are 3 and 0
byte × cycles, respectively. However, block-level estimation models these word access
behaviors, i.e., read operations of WORD0 at t1, t2, and t3 as block access ones (two
bytes of block for three cycles) and it estimates the vulnerability as 6 byte × cycles
(= 3 cycles × 2 bytes) as shown in Figure 2 (left one). Thus, block-level vulnerability
overestimates, i.e., Vulblock (6 byte × cycles) is larger than Vulword (3 byte × cycles)
which is correct in Case 1.

In Case 2, the write operations at t1, t2, and t3 make the period from t0 to t3 of
WORD0 non-vulnerable according to the vulnerability definition. Note that the write
operations onto the corrupted data can erase the impact of induced soft errors, i.e.,
non-vulnerable. However, the eviction at dirty state at t4 makes (t3, t4) of WORD0
and (t0, t4) of WORD1 vulnerable. Note that the corrupted data will be propagated
to lower-level memory at the eviction if it is dirty under the write-back policy. Thus,
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Fig. 3. Inaccuracy of block-level CVF estimations. Block-level vulnerability estimation is up to 121% inac-
curate for the benchmark basicmath.

our accurate word-level modeling estimates five as the vulnerability of this BLOCK
under Case 2 where vulnerabilities of WORD0 and WORD1 are 1 and 4 byte × cycles,
respectively. However, block-level estimation models these word access behaviors, i.e.,
write operations of WORD0 at t1, t2, and t3 as block access ones (two bytes of block for
three cycles) and they are all non-vulnerable. Thus, it just estimates the vulnerability
as 2 byte × cycles (= 1 cycle × 2 bytes) as shown in Figure 2 (right one). Thus, block-
level vulnerability underestimates, i.e., Vulblock (2 byte × cycles) is smaller than Vulword
(5 byte × cycles) which is correct in Case 2.

Figure 3 plots L1 data CVF without protection over benchmarks with our gemV-
cache. In Figure 3, the x-axis represents benchmarks sorted in the ascending order
of CVF and the y-axis represents CVF. The dark bars show the CVF at our word-
level granularity, while the light bars for each benchmark show the CVF when the
vulnerability is estimated at a block-level granularity. We make several interesting ob-
servations from this graph. The difference between CVF estimations at word-level and
block-level granularity varies with benchmarks. The maximum inaccuracy is 121% for
basicmath benchmark, while the average is 37%. Even though the average inaccuracy
is not much, the maximum inaccuracy is quite significant. Therefore, only block-level
estimation can be significantly erroneous although block-level estimation is easier to
understand and implement. More detailed analysis and breakdown of the differences
will be in Section 3.2.

We also find that the block-level CVF is almost always (except for the lbm benchmark)
larger than word-level CVF in Figure 3. This is because of two important reasons. The
first reason is that a read to a word is considered as a read to the whole block with block-
level vulnerability estimation. The accesses to a cache block are not evenly distributed
among words in the cache block. CPU will read some specific words more often than
other words in common. For example, in basicmath benchmark, only 4 bytes out of 64
bytes in a cache block are read by the CPU for about 98% of the whole time. Moreover,
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80% of cache operations are read operation. In this case, block-level estimation always
updates the vulnerability of the whole block (which is inaccurate) while word-level
estimation only updates the vulnerabilities of the specific words (which are accurate).
The second reason comes into play when a clean cache block is evicted. For example,
about 77% of cache blocks that are evicted are at the clean state in the basicmath
benchmark. Block-level estimation calculates that the interval from the last behavior
of a block to its eviction is non-vulnerable. However, word-level estimation calculates
that each interval from the last behavior of each word to the block’s eviction is non-
vulnerable. The sum of the non-vulnerable periods of each word in word-level CVF is
clearly larger than the non-vulnerable period of the block in block-level CVF, which is
why block-level CVF can be larger than word-level CVF in most cases. However, word-
level CVF is larger than block-level CVF for the benchmark lbm. The main reason is
that data evicts at the dirty state rather than the clean state. In case of eviction at the
dirty state, block-level estimation decides the interval between the last behavior of that
block and the block’s eviction as vulnerable. However, accurate word-level estimation
decides the interval between the last behavior of each word to the block’s eviction in
that case. Thus, the sum of vulnerable periods in each word can be larger. Indeed, 81%
of evictions occur at the dirty state for the lbm benchmark, while 34% on average occur
at the dirty state for other benchmarks.

Another interesting observation from Figure 3 is that CVF varies quite significantly
among the benchmarks. Benchmark mcf has CVF of just 0.17, but for lbm benchmark,
the CVF is about 0.86. Namely, only 17% of lifetime is vulnerable in the benchmark
mcf , while almost 90% of lifetime is vulnerable for lbm. CVF depends on several factors,
including temporal locality of accesses. For instance, if a block is read several times
in quick succession and not accessed after that, then it will be less vulnerable, than a
block that is read intermittently over a long duration of times. In fact, CVF calculation
is quite complex, and therefore, we need a detailed algorithm to estimate it. If several
factors have strong co-relations with CVF, then we can exploit this information to
estimate the vulnerability for further purposes, e.g., dynamic protection at runtime.

The dirty state duration of cache blocks is one of the main factors that affect CVF
over benchmarks. Dirty state duration is defined as the sum of dirty states’ time over
the execution time in percentage. Thus, the dirty state duration of each cache block is
the interval between the first write operation to the eviction. When a cache block is
dirty, it needs to be written back to the lower-level memory at its eviction, which can
propagate the errors if they occurred. Thus, the larger portion of dirty state duration
in the lifetime of cache blocks can increase the vulnerability as shown in Figure 4. In
Figure 4, benchmarks are in an ascending order of CVF, and the dirty state duration
follows this pattern in general. Therefore, cache vulnerability can be reduced if we can
minimize the dirty state duration by protection techniques such as write-through or
early write-back [Li et al. 2004] policies. Some benchmarks, however, such as crc, gsm,
and susan do not follow this trend. In order to analyze the reason, we classify two
CVFs: (i) Read CVF and (ii) Eviction CVF. Read CVF is defined as CVF when reads
make the interval vulnerable at either the clean or dirty state, and Eviction CVF is
when an eviction makes the interval vulnerable at the dirty state.

Note that only reads and evictions at the dirty state can make the interval vulnerable
without protections. Figure 4 depicts Read CVF and Eviction CVF over benchmarks,
and Eviction CVF takes up most portions of CVFs in benchmarks that follow the
trend of dirty state durations in general. Interestingly, benchmarks crc, gsm, and
susan present relatively larger portions of Read CVF such as 86%, 63%, and 56%,
respectively, in CVFs. In crc and susan, the dirty state duration is much smaller than
CVF and it means that these benchmarks have large portions of Read CVF at the
clean state. Indeed, 96% and 97% of read CVFs occur at the clean state in benchmarks
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Fig. 4. CVF based on word-level modeling is proportional to the dirty state in general since vulnerability
mainly comes from eviction at the dirty state.

crc and susan, respectively. However, Read CVF also takes up many portions of CVF
in gsm, but the dirty state duration is much larger than CVF in that case. On the
contrary to other benchmarks, gsm shows that relatively small portions of dirty state
durations are vulnerable (e.g., writes at the dirty state happen often to make long time
periods non-vulnerable). Indeed, only 55% of dirty state durations are vulnerable in
gsm, while more than 90% of dirty state durations are vulnerable on average for the
other benchmarks.

3.2. Dig Deeper into Inaccuracy of Block-Level CVF

From Figure 3, we note that CVF estimation at block-level granularity can be inaccu-
rate by 37% on average and by up to 121%. However, this is just the tip of the iceberg
– this is just the inaccuracy in the aggregate vulnerability statistics over all the data
cache blocks. When we consider the vulnerability of a particular block or inaccuracy
of vulnerabilities over specific time, the inaccuracy is even more dramatic. Figure 5
shows significant inaccuracy of block-level CVF when the CVF of each cache block is
evaluated. The light bars show block-level CVF and the dark bars show word-level
CVF for all 64 blocks in the 4KB direct-mapped cache with a benchmark, basicmath.
A block (block number 1) shows up to 0.92 difference, and the average difference is
about 0.36, which is even higher than the difference of the aggregate CVF (0.28). It
is important since researchers have proposed partial protection techniques [Jeyapaul
and Shrivastava 2011; Lee et al. 2006] to protect selected blocks, rather than all the
blocks in caches, against soft errors due to high overheads. If they implement block-
level estimation to select blocks for partial protections, they would select wrong blocks
causing no improvement of reliability. Assume that the most vulnerable three blocks
in data cache are completely protected by ECC or other protection techniques for the
benchmark basicmath in Figure 5. Blocks 18, 29, and 35 are selected and protected
by block-level estimation since they have the highest block-level CVF (0.97, 0.98, and
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Fig. 5. Dramatic difference of block-level and word-level CVF for each block. If the vulnerability of a cache
block is estimated based on block-level modeling, it can be 5,700% inaccurate as compared to the accurate
word-level one.

0.98). However, it only reduces the vulnerability by just 1.8% as compared to the
vulnerability without protection since word-level vulnerabilities of block 18, 29, and
35 are just 0.06, 0.08, and 0.09, respectively. Blocks 61, 62, and 63 are selected for
protection based on our word-level estimation since their word-level vulnerabilities
are 0.83, 0.90, and 0.90. In addition, vulnerability can be reduced by 18% as compared
to no protection by protecting just 3 blocks out of 64 blocks.

Figure 6 shows the realistic accuracy of our word-level estimation as compared to
block-level estimation. In Figure 6(a), we have estimated cache vulnerability based on
word-level and block-level modeling under a simple scenario where a block (BLOCK)
containing two words (WORD0 and WORD1) is brought at t0 (incoming) and evicted
at t5. The data in WORD0 is read at t1 and t4, and they are written at t2. The data in
WORD1 is written at t3. A single-bit soft error for the entire scenario is assumed in
write-back cache, and each period (ti, ti+1) is considered as one cycle for brevity’s sake.
We also assume that each word contains one byte data. Read operations at t1 and t4
make periods (t0, t1) and (t2, t4) of WORD0 vulnerable according to the vulnerability
definition. Note that the read operations of corrupted data can affect the system be-
haviors, i.e., vulnerable. The interval (t1, t2) of WORD0 is not vulnerable due to write
operation t2, and (t0, t3) of WORD1 is also not vulnerable due to write operation t3. Note
that the write operations onto the corrupted data can eliminate the impact of induced
soft errors, i.e., non-vulnerable. However, the eviction at dirty state at t5 makes (t4, t5)
of WORD0 and (t3, t5) of WORD1 vulnerable. Note that the corrupted data will be prop-
agated to lower-level memory at the eviction if it is dirty. Thus, our accurate word-level
modeling estimates six as the vulnerability of this BLOCK where vulnerabilities of
WORD0 and WORD1 are 4 and 2 byte × cycles, respectively. On the other hand, block-
level estimation models these word access behaviors, i.e., read operations at t1 and t4 of
WORD0 as block operations, and (t0, t1) and (t3, t4) are all vulnerable. In case of write
operations at t2 of WORD0 and at t3 of WORD1, make the whole block non-vulnerable.
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Fig. 6. SAD (Sum of Absolute Difference) is the sum of overestimation and underestimation of inaccu-
rate block-level estimation as compared to the accurate word-level estimation. SAD can show the realistic
inaccuracy of block-level estimation.

Eviction at t5 makes this block vulnerable because of the dirty state. Thus, block-level
modeling also estimates the vulnerability as 6 byte × cycles (=3 cycle × 2 bytes).

Interestingly, both block-level and word-level modeling results in the same vulner-
ability (6 byte × cycle) as shown in Figure 6(a). However, block-level vulnerability
estimation is still inaccurate due to overestimation and underestimation even though
aggravated vulnerability is the exactly same. For the interval (t0, t1), block-level
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modeling (2 byte × cycle) overestimates the vulnerability as compared to word-level
one (1 byte × cycle). On the other hand, block-level modeling (0 byte × cycle)
underestimates the vulnerability as compared to word-level one (1 byte × cycle) for
(t2, t3). Thus, we can compute word-level vulnerability by using overestimation and
underestimation (vulword = vulblock - overestimation + underestimation). For instance,
word-level vulnerability can be calculated as 6 (=6 − 1 + 1) in Figure 6(a).

Inaccurate block-level estimation can overestimate or underestimate cache vulnera-
bility as shown in Figure 6(a), but the entire CVF can just show the relative difference
between overestimation and underestimation. The Sum of Absolute Difference (SAD)
is the sum of incorrectly estimated CVF between block-level and word-level estima-
tion. In Figure 6(a), the CVF of block-level and word-level modeling is 0.6, so their
relative difference is zero. However, SAD between block-level and word-level vulner-
ability estimation is 0.2, and it shows the realistic accuracy of block-level modeling.
In Figure 6(b), the x-axis represents a set of benchmarks, and the y-axis represents
the sum of overestimation and underestimation between block-level and word-level
modeling. The upper light one at each bar in Figure 6(b) represents the portion that
is vulnerable at word-level estimation even though block-level estimation considers it
non-vulnerable (underestimation), and the lower dark one is opposite (overestimation).
Hence, the upper one can cause the under-protection, and the lower one can cause the
over-protection if hardware architects implement the protection technique for caches
based on block-level estimation. On an average, the SAD (overestimation + underesti-
mation) is about 0.2 and it can reach up to 0.39 for a benchmark, bitcount. Interestingly,
relative difference for the benchmark cactusADM is just 0.07 as shown in Figure 3, but
their SAD is 0.20 as shown in Figure 6(b).

3.3. Validation with Fault Injections

In order to validate our vulnerability models and the implementation of the vulner-
ability estimations in gemV-cache, we have performed fault injection experiments on
a cycle-accurate simulation infrastructure. Exhaustive fault injection experiments are
infeasible. For example, to exhaustively validate the failure rate of a 256 byte direct-
mapped cache with 128bit cache-block, and a benchmark running for 1 million cycles,
we will have to perform 128 × 1 million simulation runs. Clearly, since such exhaus-
tive fault injection campaigns for the entire cache is not feasible, we perform exhaus-
tive validation on some randomly selected cache blocks on a few benchmarks from
Livermore Loops [McMahon 1986] and Matrix Multiplication. We have implemented
an in-house Matrix Multiplication benchmark for exhaustive fault injection. We have
chosen simple benchmark suites in order to exclude software-level masking effects. We
have injected single-bit faults at a specific block during a specific interval and com-
pared its output to the correct one that the benchmark returns without faults. It is
declared as a failure if they are different or a system crashes. Otherwise, it is a success.
Assuming a single-bit fault model, we have run millions of simulations, and compute
the Failure Rate Equation (2):

FailureRate = Num. of Simulations that f ailed
T otal Num. of simulations

(2)

For validation, the failure rate should match CVF as defined in Equation (1). Table I
compares the failure rate from fault injection and CVF computed from gemV-cache for
the respective programs. We can see that the failure rate and word-level CVF match
perfectly, thus validating our vulnerability models and implementation. For the block-
level vulnerability estimation, it can be up to 300% inaccurate for block number 8 for
the benchmark Livermore Loops 12. On average, block-level vulnerability modeling is
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Table I. Validation of Our Models and Implementation of Word-level
Vulnerability Estimation

Benchmark Matrix Multiplication
Block Number 4 9 10

Number of Simulations 1,084,544 107,136 914,048
Failure Rate 97.54 96.35 94.83

Word-level CVF 97.54 96.35 94.83
Block-level CVF 97.51 95.82 87.06

Inaccuracy 0.03 0.56 8.19

Benchmark Livermore Loop 5
Block Number 1 11 12

Number of Simulations 44,672 53,504 115,968
Failure Rate 99.64 96.76 3.07

Word-level CVF 99.64 96.76 3.07
Block-level CVF 99.43 94.79 9.69

Inaccuracy 0.22 2.04 215.61

Benchmark Livermore Loop 8
Block Number 0 1 3

Number of Simulations 12,895,872 2,977,152 700,672
Failure Rate 46.27 93.84 4.80

Word-level CVF 46.27 93.84 4.80
Block-level CVF 47.72 91.86 8.79

Inaccuracy 3.13 2.10 83.06

Benchmark Livermore Loop 12
Block Number 0 8 15

Number of Simulations 452,096 118,912 53,376
Failure Rate 23.28 0.70 97.54

Word-level CVF 23.28 0.70 97.54
Block-level CVF 24.58 2.80 96.40

Inaccuracy 5.56 300.00 1.17

Benchmark Livermore Loop 18
Block Number 2 3 5

Number of Simulations 19,280,640 1,448,704 1,534,592
Failure Rate 96.20 55.61 52.15

Word-level CVF 96.20 55.61 52.15
Block-level CVF 92.38 92.07 8.66

Inaccuracy 3.97 65.55 83.40
Note: For all the selected words, we can get the perfectly matched vulnera-
bility as compared to the exhaustive fault injection campaigns.

52% inaccurate as compared to failure rate from fault injection campaigns even for
these simple set of benchmarks.

3.4. gemV-cache Implementation

In order to implement gemV-cache [Ko et al. 2015], we have developed algorithms that
consider every behavior at the word-level in cache blocks and calculate the vulnerability
accordingly. algoECV describes how to calculate vulnerability of cache without protec-
tion (Vulnp) and with block-level parity protection (Vulbp). In this algorithm, curTick
and recentTick represent the current tick and the tick of the most recent access to a
block, respectively. History is a data structure which stores the last behavior such as in-
coming, read, write, and eviction and the most recent tick. In history, we use uncertain
tick variable to postpone the decision of its vulnerability to being recorded. Accessed
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ALGORITHM 1: algoECV (Estimate Cache Vulnerability)

algoECV returns vulnerabilities of cache without protections (Vulnp) and with block-level parity
protection (Vulbp). Based on our algorithm, we can get vulnerabilities with and without protec-
tions by just one simulation.
01: curtick ←current tick;
02: recentTick ←tick of the most recent access of block;
03: switch Operation do
04: case INCOMING:
05: clear dirty-bit of the block
06: for all history h in the block do
07: h.tick ← curTick
08: end for
09: case WRITE:
10: set dirty-bit of the block;
11: for all history h in the block do
12: if h ∈ Accessed then
13: h.tick ← curTick;
14: h.uncertain ← 0;
15: else
16: h.uncertain += curTick − recentTick;
17: end if
18: end for
19: case READ:
20: for all history h in the block do
21: if block is dirty then
22: Vulbp += curTick − recentTick;
23: if h ∈ Accessed then
24: Vulbp += h.uncertain;
25: h.uncertain ← 0;
26: Vulnp += curTick − h.tick;
27: h.tick ← curTick;
28: end if
29: else if h ∈ Accessed then
30: Vulnp += curTick − h.tick;
31: h.tick ← curTick;
32: end if
33: end for
34: case EVICTION:
35: for all history h in the block do
36: if block is dirty then
37: Vulbp += curTick − recentTick + h.uncertain;
38: Vulnp += curTick − h.tick;
39: end if
40: end for
41: end switch
42: return Vulbp, Vulnp;

is another data structure containing all the History information of CPU requested
words.

According to each operation such as Incoming, Write, Read, and Eviction, algoECV
handles these tick values and associated data structures, and estimates the vulnera-
bility of caches as shown in Algorithm 1. In case of Incoming, it clears the dirty-bit
of the block (line 05) and saves the current tick to each word’s h for every History in
the block (line 07). In case of Write operation, it sets the dirty-bit of the block (line
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10) and stores the current tick to h and resets the uncertain (line 13 and 14) if it is
accessed. Otherwise, the difference between the current tick and the most recent tick
(the uncertain duration for the other words due to the write operation to the word in
the same block) is added to the uncertain tick (line 16). A write access to word(s) in the
block can affect the other words’ vulnerability estimation and this time period from the
last behavior for the other words needs to be kept uncertain since the next behavior
is going to make it vulnerable or not. Indeed, uncertain becomes non-vulnerable if the
next behavior to this word is a write operation (line 14) while it becomes vulnerable
if it is a read operation (line 24) or eviction (line 37) when this block is dirty. It is
why we accumulate these intervals in history and reflect these effects in vulnerability
calculation to deal with uncertain periods according to the neighbor word’s behaviors.
In case of Read operation, no protection can simply accumulate the time period from
the last behavior to the vulnerability, Vulnp, and saves the current tick in History (lines
26, 27, 30, and 31).

To the contrary, the block-level parity protection can recover the corrupted data if
it is clean, which means non-vulnerable. However, if it is dirty, the difference between
the current tick and the most recent tick needs to be added to the vulnerability, Vulbp,
(line 22) and further uncertain ticks need to be added (line 24) if it is in Accessed. In case
of Eviction, the difference between the current tick and the tick in History is added
to the vulnerability for no protection (line 38) while their difference and uncertain in
History need to be added to the vulnerability for parity protection (line 37), similar
to the Read operation. Of course, these ticks are ignored to add up the vulnerabil-
ity if it is clean. At last, algoECV returns Vulnp and Vulbp for a block and the sum
of all vulnerabilities of all the blocks in a cache is the vulnerability for a program.
Similarly, we have developed algorithms to estimate the vulnerabilities for word-level
parity protections by modifying configurations of status-bits and cache parameters.
For instance, the word-level parity protection returns the same vulnerability as that
of no protection except for the impacts of read operations at the clean state (line 30)
since the word-level parity clears all the vulnerabilities at reads if cache is in the clean
state.

In gemV-cache, we have implemented vulnerability estimation with various cache
configurations such as protections (ECC or parity) and the granularity (dirty-bits and
parity- and ECC-bits). Further, all of these different protection schemes can be re-
turned at once, i.e., just one simulation with our gemV-cache. Our word-level vulnera-
bility estimation on gemV-cache is much more complex than the traditional block-level
vulnerability modeling due to the following reasons. First off, many more state vari-
ables are needed for bookkeeping at the word-level modeling, as opposed to that at
the block-level. The access information per word, in a cache block needs to be recorded
and is analyzed for word-level estimation. For instance, block-level modeling consid-
ers each word-access (read and write) as a block-level operation in case of unprotected
caches and makes the whole block vulnerable when read. However, word-level modeling
makes each word vulnerable or non-vulnerable according to their respective word-level
accesses, and thereby estimates cache vulnerability accurately.

Secondly, the behavior of one word, affects the perceived vulnerability of the other
words in the same block, which becomes a more important and complex factor when
cache protection modeling is involved at the fine-grained granularity. The vulnerability
of one word in a cache-block can depend on the read and write accesses on a neighboring
word. For instance, if one word in the cache-block is written, then all the words in the
same block become dirty (since they share the same dirty-bit on a block). Even if the
other words are not accessed, they become vulnerable. It is because they will be written
back into the memory and not discarded during eviction in a write-back cache.
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Lastly, the protection granularity makes it more complicated to estimate cache re-
liability through word-level vulnerability modeling. If we assume that the parity is
encoded at every write operation (no decoding), it is decoded to check whether an er-
ror occurred or not both at every read operation and at eviction. For instance, parity
protection can be implemented at the word-level (a parity-bit per word) or block-level
(a parity-bit per block), and our algorithm needs to log every word’s time. On the
other hand, different granularities of protections always return the same vulnerability
statistics based on block-level vulnerability modeling.

4. TRICKY PROTECTION TECHNIQUES

Most existing vulnerability estimation toolsets only allow modeling the vulnerability
of unprotected caches. However, we need a vulnerability estimation toolset when pro-
tections are introduced to caches since soft errors are becoming a real threat. Our
gemV-cache is able to estimate the vulnerability of caches with parity and ECC protec-
tions as described in Section 3.4. One very simple and power-efficient cache protection
technique, widely implemented in the cache architecture of most existing commodity
processors (e.g., ARM [Phelan 2003], Intel [Demshki and Shiveley 2010]), available in
the market today, is parity-bit based protection against single-bit errors. And, another
effective method to protect the cache memory against soft errors is applying ECC to
the entire cache memory. In this article, we model data cache vulnerability of a parity-
protected and ECC-protected cache at the word-level granularity in our gemV-cache
toolset. And, we also study the impact of the design parameters on the protection
achieved.

4.1. Incomplete Parity Checking Achieves Efficient Protection

The key hardware component involved in the design of parity-bit based protection in
the cache, is the Parity-Generator/Checker, which generates the 1-bit parity for the data
stored in a cache block and also updates the parity-bit when any data update occurs on
the respective cache block. The same hardware component will also be used to detect
errors by comparing the current parity-bit value with the stored parity-bit value in the
stored data. For instance, (i) on only read access (P-R), the parity-checker is accessed to
verify the parity-bit (PowerQUICC III [Semiconductor 2007] and ARM1156T2S [ARM
2007]); (ii) on only write access (P-W), the parity-checker is accessed to verify the parity-
bit; and, (iii) on both read and write access (P-RW), the parity-checker is accessed to
verify the parity-bit (ARM Cortex A8 [ARM 2014] and AM3359 [Texas Instruments
2011]). Note that parity-bit is checked (decoded) before read or write operations.

Figure 7 depicts the vulnerability estimation according the parity checking configu-
rations. We assume that a block, which is composed of two words (WORD0 and WORD1)
in this scenario for Figure 7, has one parity-bit. And, parity-bit can be checked at read
operations (P-R/incomplete read parity checking), at write operations (P-W/incomplete
write parity checking), and at both read and write operations (P-RW/complete read and
write parity checking). Data is brought at t0 and evicted t5 in this block. Data stored
in WORD0 is read at t1 and written at t2 and t4, and data stored in WORD1 is written
at t3. Without protections, (t0, t1) of WORD0 is vulnerable due to read operation, and
(t4, t5) of WORD0 and (t3, t5) of WORD1 is vulnerable as shown in Figure 7(a).

With complete read and write parity checking, it has zero vulnerability in case of
clean state as shown in Figure 7(d). If errors are detected at clean state, clean data
in the lower-level memory can be brought to the cache to correct errors. However, it
is always vulnerable after first write operation at t2 since soft errors can be detected
but there is no identical data in the lower-level memory in case of the dirty state. In
P-RW, parity check during the first write at t2 can detect and recover an error while
it cannot recover after then (such as at t3, t4, and t5). We can correct soft errors if we
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Fig. 7. Vulnerability estimation scenarios with diverse parity checking protocols.

have additional recovery mechanism such as checkpoint and rollback [Wang and Patel
2006]. However, we do not consider the additional protection techniques except parity
and ECC in this article. On the other hand, with incomplete read parity checking, it has
the least vulnerability among these checking configurations as shown in Figure 7(b).
The periods (t2, t4) of WORD0 and (t2, t3) of WORD1 are not vulnerable since errors in
these periods can be overwritten due to the write operations at t3 and t4. Note that
parity-bit is decoded before read (P-R) and before read and write (P-RW) operations.
Interestingly, P-W is more vulnerable than unprotected cache even with the additional
redundancy as shown in Figure 7(b). In P-W, read at the clean state makes vulnerable
periods since it does not check the parity-bit.

Figure 8 clearly shows the efficacy of parity protections with incomplete read parity
checking with benchmarks. In Figure 8, the x-axis represents benchmarks and the
y-axis represents the normalized vulnerability of each parity checking configuration
to that of no protection. Complete parity checking reduces the vulnerability by only
5%, while incomplete read parity checking reduces it by 15% on average. However, the
vulnerability is worsened by 56% with incomplete write parity checking as shown in
Figure 7(b). It is interesting that incomplete read parity checking is the most effective
way to reduce the vulnerability among parity checking protocols in spite of the lesser
checking overhead in terms of hardware and power consumption, as shown in Figure 9.
The effectiveness of parity techniques with incomplete read parity checking depends on
the characteristics of benchmarks such as cache access patterns. For instance, parity
protection with incomplete read parity checking for crc can decrease the vulnerability
by 82% as compared to that of no protection. We have observed that the efficacy of
parity protection is affected by the amount of vulnerable periods at the clean state.
Note that parity protections cannot bring data from the lower-level memory at the
dirty state. In our experiments, more than 80% of vulnerable periods occur at the clean
state in the benchmark crc in case of no protection, as stated in Section 3.2, and these
intervals can be effectively corrected by parity protections. With the same reason (high
portion of the clean state), parity is also effective for the benchmark, susan. On the
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Fig. 8. Incomplete read parity checking (checking only at reads) achieves the highest reliability among
various parity checking protocols. Complete parity checking is more vulnerable than incomplete read parity
checking even with the additional redundancy.

Fig. 9. In the design of a parity-protected cache, the power overheads caused by parity checking at reads
are 30% lower than that when parity is checked on both reads and writes.
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other hand, vulnerable periods at the clean state are only 7% in the benchmark gsm
and thus it is less effective and even up to 71% worse, as shown in Figure 8.

Figure 9 plots the relative power overheads incurred by the parity-checking config-
urations for 4KB cache architecture across benchmarks. The y-axis in Figure 9 rep-
resents the normalized power consumption to that of unprotected cache. To estimate
power consumption, we compute the read/write power of this parity-checking protocol
implementation in the cache by manipulating CACTI 5.0 [Thoziyoor et al. 2008] for
45nm technology node. We have designed the unit for this cache, synthesized it in 45nm
technology, and obtained power numbers using PowerMill[Huang et al. 1995] in order
to estimate the power of the parity generation/checking hardware logic. We can observe
that when checking the parity-value on both reads and writes (P-RW), P-RW incurs
a power overhead of around 103% for only 5% cache protection. On the other hand,
an implementation of parity-checking on only reads (P-R) incurs a power overhead of
only 71% for around 15% improved cache protection, achieving power-efficient cache
protection. It should be noted that parity is implemented at the block-level granularity.
The power overhead that comes from P-W is the least (39%) among parity checking
protocols, but it increases the vulnerability by 56% on average as compared to no
protection.

In short, parity-checking when performed over read accesses alone provides the
better level of parity protection (avg. 15% and max. 82%) to the cache at 30%
lower-power overheads compared with parity-checking when performed over both read
and write accesses. We have run several simulations varying in cache size and cache
associativity and observe that the power-efficient protection achieved through the P-R
parity-checking protocol is consistent across cache configurations.

4.2. Fine-Grained Status-Bits Maximize the Achieved Parity Protection

Another key design parameter involved in the design of a parity-protected cache is
the configuration of the status-bits (parity-bit and dirty-bit), which adds to the hard-
ware overhead. In addition, the vulnerability definition of the parity-protected cache
is dependent on the status-bit configurations. In a parity-protected cache, a parity-
bit can be implemented at the block-level (Itanium 2 [McNairy and Soltis 2003])
and word-level (PowerQUICC III [Semiconductor 2007], Cortex R4 [ARM 2010], and
CPPC [Manoochehri et al. 2011]), and the dirty-bit can be also implemented for
block-level (Cortex R4 [ARM 2010]) and word-level (CPPC [Manoochehri et al. 2011]).
Figure 10 demonstrates the vulnerability definition of a cache block composed of two
words (WORD0 and WORD1). In Figure 10, data is brought in the cache at t0 and
evicted at t4. Data in WORD0 is read at t1 and written at t2, and WORD1 data is read
at t3. In case of unprotected cache, (t0, t1) of WORD0 and (t0, t3) of WORD1 is vulnerable
due to read operations, and (t2, t4) of WORD0 and (t3, t4) of WORD1 are also vulnerable
because of eviction at dirty state, as shown in Figure 10(a).

We have implemented with the P-R (parity-check on reads only) protocol for the
following status-bit configurations:

Parity Per Block and Dirty Per Block (PBDB): Coarse-grained status-bits –
Since the entire cache-block is configured with one parity-bit, a read access on
any one word (in non-dirty blocks) can trigger recovery of the entire cache-block,
since the single parity-bit cannot identify the exact word that is erroneous as
shown in Figure 10(b). In addition, since the entire cache block is configured with
one dirty-bit, a write access on any one word makes the entire cache block dirty,
thereby rendering every word of the block unrecoverable (vulnerable) on read
accesses thereafter, as described in algoECV.
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Fig. 10. Vulnerability estimation examples with diverse status-bit configurations. Note that the granularity
of dirty-bit does not affect the vulnerability if a parity-bit is implemented on block-level.

Parity Per Block and Dirty Per Word (PBDW): Medium-grained status-bits
– In this configuration, though each word in the block is configured with its
respective dirty-bit, the vulnerability definition does not differ from that of the
PBDB configuration as shown in Figure 10(b). If any one word of a cache-block
is dirty (based on its respective dirty-bit), the entire cache-block will have to be
considered dirty, because the single parity-bit cannot know which word in a cache
block has corrupted values.

Parity Per Word and Dirty Per Block (PWDB): Medium-grained status-bits
– If a parity-bit is associated with every word in the cache-block, parity-checks
on read accesses can identify single-bit errors and also trigger targeted recovery
of the erroneous word in case of clean state. Owing to this targeted recovery
mechanism, vulnerability of the neighboring words during read accesses are not
affected. For instance, we see that the vulnerability of WORD0 and WORD1
are defined by the read/write accesses on the respective words only as shown in
Figure 10(c). Since the entire cache block is configured with one dirty-bit, a write
on any one word renders the entire cache block dirty, and therefore an updated
word in the cache block cannot be identified. This affects the recovery mechanism
and therefore renders the entire cache block vulnerable.

Parity Per Word and Dirty Per Word (PWDW): Fine-grained status-bits – If
every word in the cache block is associated with its respective dirty-bit and parity-
bit, the fine-grained status-bit configuration helps achieve increased parity-based
protection. Since each word has its respective parity-bit, targeted recovery is pos-
sible during read accesses in case of clean state. In addition, since each word has
its respective dirty-bit, the updated words can be identified accurately, thus as-
sisting in the targeted recovery mechanism. In Figure 10(d), we see that WORD1
is non-vulnerable from incoming to eviction, because the WORD1 has never
been updated by the program, and only the words that have been updated are
vulnerable.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 4, Article 93, Publication date: May 2017.



93:22 Y. Ko et al.

Fig. 11. Fine-grained parity with block-level dirty-bit reduces the vulnerability by only 2% as compared to
block-level parity and dirty-bits. Fine-grained dirty-bit along with parity-bit per word is the best in terms of
vulnerability (60% reduction).

Figure 11 shows the effectiveness of parity protections by varying the granularity
and configuration of the status-bits (parity-bit and dirty-bit) which can induce hard-
ware overhead in a parity-protected cache implementation. In Figure 11, the x-axis
represents benchmarks and the y-axis represents normalized vulnerability of each
status-bits granularity and configuration by the vulnerability without protections. The
coarse-grained PBDB configuration reduces the vulnerability by 15% on average. In-
terestingly, medium-grained PBDW configuration (as in ARM Cortex R4 [ARM 2010])
reduces only 17% on average even though it needs parity-bit per every word in cache
blocks. The fine-grained PWDW reduces the vulnerability 60% and it achieves the
maximum level of protection.

In short, it is interesting that the granularity of parity-bits does not affect the vulner-
ability much without fine-grained dirty-bits. It is mainly because it cannot locate which
word is dirty or clean. Hence, hardware architects have to change the granularity of
both parity-bits and dirty-bits in order to reduce the vulnerability effectively.

4.3. ECC Protection Can Be Vulnerable for Single-Bit Flips

We need to consider two kinds of key hardware components of ECC-based protection
in the cache—ECC checking protocol and the granularity of status-bits, especially
ECC-bits. In ECC protections, dirty-bit does not affect the protection efficacy since
it can correct soft errors regardless of dirty status. First off, Figure 12 depicts the
vulnerability estimation according the ECC checking configurations. In Figure 12,
we assume there are ECC-bits implemented per single block, i.e., block-level ECC
protection. In Figure 12, a block is composed of two words (WORD0 and WORD1), and
cache data is brought at t0 and evicted at t4. And, cache behavior is exactly the same
with Figure 10.
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Fig. 12. Vulnerability estimation examples with diverse status-bit configurations. Note that checking ECC-
bits at read operations is more vulnerable than that at both read and write operations.

ECC checking at both read and write operations (complete read and write ECC
checking or E-RW) provides the complete reliability, which means zero vulnerability.
In case of ECC-protection, it can correct soft errors regardless of dirty status if detected.
Since ECC-bits are checked at every behavior in E-RW, it can detect and correct all the
single-bit soft errors as shown in Figure 12(d). In incomplete write ECC-checking or
E-W, read operations always make vulnerable periods as shown in Figure 12(c) since
it does not check ECC-bits at read operations.

Interestingly, ECC checking at reads (incomplete read ECC checking or E-R) is still
vulnerable even for single-bit flips as shown in Figure 12(b), while incomplete read
checking provides better vulnerability than complete read and write checking in case
of parity protection. ECC checking at read operations can be vulnerable due to the
behaviors of other words in the same block. As depicted in Figure 12(b), the period
(t1, t2) of WORD1 is vulnerable since a write operation of WORD0 at t2 generates new
check bits for the whole block. In addition, the erroneous data could be included if an
error occurred (t1, t2) at WORD1; and, this erroneous data can be propagated to CPU
due to the read operation at t3. It is interesting that incomplete ECC protection such
as E-R and E-W cannot guarantee the perfect fault coverage (zero vulnerability) even
for single-bit flips according to the ECC checking protocols.

Figure 13 shows CVF with complete and incomplete read ECC protections as com-
pared to CVF of no protection. ECC protection may provide the perfect error recovery
against soft errors regardless of the cache state. However, it is interesting that in-
complete block-level ECC protections do not completely remove the vulnerability. On
average, incomplete read ECC and incomplete write ECC reduce the vulnerability by
90% and 25%, respectively, over benchmarks. In case of ECC protections, the frequency
of write accesses affects the effectiveness of vulnerability reductions. For instance, only
1% of total accesses in susan are the write operation and its vulnerability can be effec-
tively reduced into almost zero by the block-level ECC protection with the incomplete
read checking protocol.

Another key design parameter to the design of ECC-protected cache is the configu-
ration of status-bits, especially ECC-bits. Figure 14 shows the vulnerability estimation
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Fig. 13. Incomplete read ECC checking does not remove the vulnerability completely, while complete ECC
checking provides zero vulnerability.

with varying the granularity of ECC-bits under a sample scenario. Note that ECC-
bits are checked at only read operations since ECC-checking at both read and write
operations makes vulnerability zero. In Figure 14, a block is composed of 4 words
(WORD0, WORD1, WORD2, and WORD3) in order to separate ECC-bits per half-block
and ECC-bits per word. Cache data is brought into this block at t0 and evicted at t5. Data
stored in WORD0 and WORD2 is written at t1 and t3, respectively. Data in WORD1
and WORD3 is read at t2 and t4, respectively. Without protections, (t1, t5) of WORD0,
(t0, t5) of WORD1, (t2, t5) of WORD2, and (t0, t5) of WORD3 are vulnerable as shown in
Figure 14(a).

With block-level ECC protection or EB, write operation of other words in the same
block can make vulnerable periods as shown in Figure 14(b). For instance, (t1, t2) of
WORD0 and (t0, t2) of WORD1 are vulnerable due to the write operation of WORD2
at t2. However, (t1, t2) of WORD0 and WORD1 are not vulnerable with half block-level
ECC protection or EHB as shown in Figure 14(c). In EHB, WORD0 and WORD1 are
protected by ECC protection, and their vulnerability estimation is not affected by other
words such as WORD2 and WORD3. However, (t0, t1) of WORD1 is still vulnerable even
with half block-level ECC protections due to write operation of WORD0 at t1. In case
of word-level ECC protection or EW, there are no vulnerable periods as shown in
Figure 14(d).

Figure 15 shows CVF according to the granularity of ECC-bits with the incomplete
read ECC checking protocols. As we described before, 10% of lifetime is still vulnerable
by the block-level ECC protection when we check ECC-bits only at reads. CVF can
be decreased by 38% by two sets of ECC-bits per block as compared to ECC per one
block. We have used 64 bytes as a single block, so we apply ECC-bits per 32 bytes
as ECC-bits half block (EHB) implementation for our environments. ECC protection
with ECC-bits per word can eliminate the entire vulnerable periods, but it requires
ECC-bits per each word. Thus, there are two methodologies in order to protect cache
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Fig. 14. Vulnerability estimation examples with diverse status-bit configurations on ECC protection. Note
that ECC-bits are checked at just read operations.

memory perfectly by ECC protection—complete read and write ECC checking and fine-
grained ECC-bits. The former checks ECC-bits more frequently than the latter due
to the additional checking at write operations. And, the later can incur larger area
overhead than the former since the later requires ECC-bits per each word, not a block.
interAptiv [Imagination 2012] processor has ECC-bits per word, and it checks ECC-bits
at both read and write operations. However, we do not have to check ECC-bits at both
reads and writes if there are ECC-bits per word for the single-bit flips.

In short, we need to be careful in the implementation of parity and ECC protections
on caches. We can think that parity should be checked for write and read operations
to improve the reliability of cache memories. It is, however, interesting that parity
implementations of additional checks at writes (decoded and encoded as well) can even
increase the vulnerability. Over benchmarks, fine-grained protections (parity-bit and
dirty-bit at a word-level granularity) with checks at read operations (incomplete read
parity protection) can decrease the vulnerability by about 15%, while those with checks
at both read and write operations (complete parity protection) can only decrease the
vulnerability by about 5%. It is also interesting that block-level ECC checks at both
read and write operations (complete ECC protection) can make the vulnerability zero,
while ECC checks at read operations only (incomplete read ECC protection) do not
bring the vulnerability down to zero.
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Fig. 15. CVF with ECC protections are affected by the granularity of ECC-bits.

5. CONCLUSION

Soft errors are becoming a real threat to modern embedded systems. Caches are the
most susceptible to soft errors and several protection techniques based on parity and
ECC have been presented. However, no existing scheme can accurately estimate how
effective these protection techniques are in terms of vulnerability. To this end, we pro-
pose a protection-aware vulnerability estimation by gemV-cache at the fine-grained
word-level modeling. Our experiments with gemV-cache find out several interesting
results: (i) block-level modeling and estimation are quite inaccurate as compared to
word-level one, (ii) parity protection is not a good option in case of the early dirtiness,
(iii) parity checking at only read operations is more effective in terms of vulnerability
and power consumption than that at both read and write operations, (iv) the gran-
ularity of either only parity-bit or dirty-bit does not affect the vulnerability mainly,
(v) introduction of both parity-bit and dirty-bit per word can significantly improve the
efficacy of parity protections, and (vi) ECC protection can be vulnerable if block-level
ECC-bits are checked only at read operations, not at both read and writes.

Our future works will consider multiple bit soft errors in cache memory since the
error rate of multi-bit soft errors is becoming larger for modern embedded systems.
Further, our future works also include tradeoff study of various protection techniques
in terms of power and performance with vulnerability, fine-grained modeling, and
estimation of vulnerability for other hardware components in embedded processors,
and further investigation of vulnerability reduction techniques.
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