
WCET-Aware Stack Frame Management of
Embedded Systems using Scratchpad Memories

Yooseong Kim1, Mohammad Khayatian2, Aviral Shrivastava3
1Synopsys, Inc., 2,3Arizona State University
Corresponding author2: mkhayati@asu.edu

Abstract—Scratchpad memories (SPMs) provide a time-
predictable alternative to caches but requires explicit manage-
ment in the code. When the call stack is stored in the SPM, stack
frames need to be evicted to and restored from the main memory
to avoid stack overflow. We propose a technique to find optimal
locations in the code to perform stack management operations
such that the worst-case execution time (WCET) is minimized.

I. INTRODUCTION

In embedded systems with hard real-time constraints, task
must finish execution before their deadlines to ensure correct
system behavior [1]. It is, therefore, important to determine
the worst-case execution time (WCET) of a task. Scratchpad
memories (SPMs) are promising alternatives to caches in such
systems, because caches often make WCET analysis compli-
cated and pessimistic [2]. SPMs are raw onchip SRAMs ex-
plicitly controlled by executing direct memory access (DMA)
instructions at the runtime. This explicit control provides the
much needed time predictability and facilitates static analyses
to obtain a safe WCET estimates.

Since SPMs are typically only a few megabytes in most
embedded processors, programs running on an SPM-based
processor may face stack overflow issue. Most previous stack
data management techniques either divide the stack data into
two parts (one to be stored in the main memory and the other in
the SPM) and accessed by using two stack pointers, or allocate
the SPM space for only selected stack variables. In contrast,
we keep once stack in the SPM. The stack frames are evicted
to main memory temporarily before calling a function and
then brought back later before it returns. These management
operations happen only at selected call sites, and we select the
optimal set of call sites to perform such operations to minimize
the WCET. Please refer to [2] for more details.

II. OUR APPROACH

Our stack management works in two steps. First, we select
the optimal set of call sites to perform stack management,
using the ILP formulation. Then, we perform code trans-
formation as shown in Fig. 1.a at selected call sites. All
stack frames stored in the SPM at the moment are evicted
before the call and restored after the return. Fig. 1.b illustrates
that the evicted stack frames are stored in a virtual stack
in the main memory. The depth of the virtual stack in the
main memory at a program location depends on its execution
context (function call history). An execution context can be
represented as a unique path on a call graph. We use a

special control flow graph (CFG) that explicitly exposes every
possible execution path in a program, called inlined CFG [2],
[3] to calculate the virtual stack depths at compile-time. Let
G = (V,E, vs, vt, F, fn) be an inlined CFG. V is the set of
basic blocks. The set of edges is defined as E. vs and vt
represent the starting and terminal basic blocks respectively. F
is the set of functions in the program, and mapping fn : V→F
states that fn(v) is the function that v belongs to. We take an
inlined CFG G, the SPM size, stack frame sizes, and the loop
bounds as input1. Wv is the WCET of the code starting from
the basic block v to the final basic block. The objective is to
minimize the WCET of the whole program.

minimize Wvs (1)

Let nv be the execution frequency of the basic block v, and
tv be the time it takes to execute instructions in v once in the
worst case. Then, v contributes to the WCET with the sum
of its computation cost (nvtv) and any management cost Cv

(defined later). For Wv to be an upper bound of the WCET
starting from v, Wv has to be greater than or equal to the sum
of the contributions of v and its successor w as follows.

∀(v, w) ∈ E, Wv ≥Ww + nv · (tv + Cv)

Wvt = nvt · (tvt + Cvt)
(2)

Let C⊂V be the set of all basic blocks containing a function
call. Also, let R ⊂ V be the set of all basic blocks that
immediately follow a return, which is the first caller basic
blocks after returning from the callee.

A basic block v ∈ C has a management cost only if a
management code block is inserted at v, which is denoted
by a binary decision variable Mv . The management cost at
v ∈ R depends on the management operation before its

1We remove all back edges, assuming that G is reducible to make G acyclic

DMA_store(); // DMA stores the stack in main memory
Sp_reset(); // reset the stack pointer

Foo(); // call a function

DMA_load(); // DMA loads the stack from main memory
Sp_restore(); // restore the stack pointer

Inserted code before a call

Inserted code after a call

CPU
SPM

Evict/Restore

stack frames by

DMA

Stack

Previously

evicted stack

frames
Main Memory

(a) (b)

Fig. 1. a) Code modification to perform management operations, which b)
move stack frames between SPM and main memory using DMA transfers.

corresponding function call (Mcl(v)) because any evicted stack
frame must be restored before returning to the caller function.

∀v ∈ C, Cv =

moc(Sv) if Mv = 1

0 if Mv = 0
(3)

∀v ∈ R, Cv =

mor(Sv) if Mcl(v) = 1

0 if Mcl(v) = 0
(4)

where Sv is the variable to calculate the stack size at v
(defined later), and moc(x) and mor(x) are the management
overhead to evict and restore the stack, respectively, when the
size of the stack is x bytes. These are linear equations that
evaluate the sum of the time to execute the additional code
for management, a constant DMA setup time, and a transfer
time proportionate to x. Please refer to [2] for how we linearize
the if-then-else conditions between variables.

The stack size at basic block v depends on i) the stack
size at the parent function who called fn(v) and ii) whether
the stack had been evicted before the call to fn(v). If the
stack was evicted before fn(v) was called, the stack at v will
only have the stack frame of fn(v). Let p(v) denote the basic
block in which a call to fn(v) appears. The starting function
(fn(vs)), e.g. main, has no parent function. In the following,
Vmain denotes the set of all basic blocks in main.

∀v ∈ Vmain, Sv = szfn(vs) (5)

∀v 6∈ Vmain, Sv =

szfn(v) if Mp(v) = 1

Sp(v) + szfn(v) if Mp(v) = 0
(6)

∀v ∈ V, Sv ≤ SPMSIZE (7)

where szf denote the stack frame size of function f and
SPMSIZE is the size of the SPM. Eq. (6) says that stack size
at node v (Sv) is equal to i) the stack frame size of function
fn(v) if the stack of caller was evicted before (management
operations are inserted) or ii) the summation of previous stack
size and fn(v)’s frame size if the caller’s stack remains in
the SPM. Eq. (7) ensures that the stack size is always smaller
than the size of the SPM. The solution for the above ILP is
an optimal set of call sites, represented by Mv variables.

III. EVALUATION

We compare our approach with two previous approaches:
SSDM (Smart Stack Data Management) heuristic by Lu
et al. [4] and a WCET-optimizing stack frame allocation
technique by Liu and Zhang [5]. Our benchmarks are from
Mälardalen WCET suite, compiled for ARMv4 ISA. As Lu
et al.’s approach assumes cache access also, we use standard
cache analysis technique [6] to predict cache miss/hit in the
worst case, assuming 2-way set associative caches with LRU
replacement policy. All memory accesses other than stack data
accesses are assumed to take zero latency.

Please refer to [2] for detailed architectural parameters and
assumptions on memory access latency. Fig. 2 shows the
reduction in WCETs (calculated by static analysis) and in the
number of cycles spent in memory access out of the WCETs.
We use two memory configurations, (1) min+0.5× (max−

0%

20%

40%

60%

80%

100%

a
d

p
c

m

b
s

o
rt

1
0

0

c
n

t

c
o

m
p

re
s

s

c
rc

e
x

p
in

t

ff
t1

lm
s

lu
d

c
m

p

m
a

tm
u

lt

m
in

v
e

r

q
u

rt

s
ta

te
m

a
te

R
e

d
u

c
ti

o
n

 i
n

 C
y

c
le

s
 (

%
)

COMPARING WITH LU ET AL.
(MEMORY CONFIG 1)

Reduction in WCET

Reduction in Memory access overhead

0%

20%

40%

60%

80%

100%

a
d

p
c

m

b
s

o
rt

1
0

0

c
n

t

c
o

m
p

re
s

s

c
rc

e
x

p
in

t

ff
t1

lm
s

lu
d

c
m

p

m
a

tm
u

lt

m
in

v
e

r

q
u

rt

s
ta

te
m

a
te

R
e

d
u

c
ti

o
n

 i
n

 C
y

c
le

s
 (

%
)

COMPARING WITH LU ET AL.
(MEMORY CONFIG 2)

Reduction in WCET

Reduction in Memory access overhead

(a)

(b)

-20%

0%

20%

40%

60%

80%

100%

a
d

p
c

m

b
s

o
rt

1
0

0

c
n

t

c
o

m
p

re
s

s

c
rc

e
x

p
in

t

ff
t1

lm
s

lu
d

c
m

p

m
a

tm
u

lt

m
in

v
e

r

q
u

rt

s
ta

te
m

a
te

R
e

d
u

c
ti

o
n

 i
n

 C
y

c
le

s
 (

%
)

COMPARING WITH LIU AND

ZHANG (MEMORY CONFIG 1)

Reduction in WCET

Reduction in Memory access overhead

-20%

0%

20%

40%

60%

80%

100%

a
d

p
c

m

b
s

o
rt

1
0

0

c
n

t

c
o

m
p

re
s

s

c
rc

e
x

p
in

t

ff
t1

lm
s

lu
d

c
m

p

m
a

tm
u

lt

m
in

v
e

r

q
u

rt

s
ta

te
m

a
te

R
e

d
u

c
ti

o
n

 i
n

 C
y

c
le

s
 (

%
)

COMPARING WITH LIU AND

ZHANG (MEMORY CONFIG 2)

Reduction in WCET

Reduction in Memory access overhead

(c)

(d)

Fig. 2. WCET and memory access overhead reduction

min) and (2) min + 0.7 × (max −min), where min is the
largest stack frame size and max is the maximum stack depth.

Fig. 2.a and b show that SSDM finds exactly or almost the
same solution as our technique for benchmarks with simple
call patterns without nested calls, e.g. bsort100, expint,
and statemate. Often times, however, SSDM suffers from
its greedy characteristics and gets stuck in local optima. In
cnt, matmult, and qurt, SSDM leads to significantly
longer WCETs for the larger SPM size. This is because
quite counter-intuitively, the larger memory made the SSDM
heuristic method to get stuck into a local optimum. Fig. 2.c
and d show that the technique by Liu and Zhang [5] has a
very little overhead when most stack frames can be entirely
allocated in the SPM (e.g. bsort100, crc, expint, and
matmult) but greatly suffers from the long latencies of
offchip main memory accesses in most cases. Results show
that our approach can greatly reduce the memory access
overhead in most benchmarks, which result in the WCET
reduction of up to 48%.

REFERENCES

[1] A. Shrivastava et al., “Time in Cyber-physical Systems,” in Proceedings
of the Eleventh IEEE/ACM/IFIP International Conference on Hardware/-
Software Codesign and System Synthesis. ACM, 2016, p. 4.

[2] Y. Kim, “WCET-Aware Scratchpad Memory Management for Hard Real-
Time Systems,” Ph.D. dissertation, Arizona State University, 2017.

[3] Y. Kim et al., “WCET-aware Dynamic Code Management on Scratchpads
for Software-Managed Multicores,” in RTAS. IEEE, 2014, pp. 179–188.

[4] J. Lu, K. Bai, and A. Shrivastava, “SSDM: Smart Stack Data Management
for Software Managed Multicores (SMMs),” in Proceedings of the 50th
Annual Design Automation Conference, 2013, pp. 149:1–149:8.

[5] Y. Liu and W. Zhang, “Scratchpad Memory Architectures and Alloca-
tion Algorithms for Hard Real-Time Multicore Processors,” Journal of
Computing Science and Engineering, pp. 51–72, June 2015.

[6] C. Cullmann, “Cache Persistence Analysis: Theory and Practice,” TECS,
vol. 12, no. 1s, p. 40, 2013.

