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Abstract—As cache-based memory hierarchy is becoming a
primary factor which limits the scalability and power efficiency of
multi-core systems, scratchpad memory (SPM) has been studied
as an alternative to cache. When SPM is used as an instruction
memory, code management techniques are required to load
code blocks on SPM using DMAs. In these techniques, code
blocks are generally loaded on-demand to avoid loading incorrect
block — unlike cache (e.g. tag arrays), SPM does not have
mechanism to detect and recover from faults. While on-demand
loading guarantees no fault, it leads to considerable performance
overhead since it serializes the execution of DMA and CPU. This
paper presents a technique to insert prefetching instructions for
function-level code management to enable overlapping execution
between DMA engine and CPU. Our technique inserts DMA
instructions statically at compile time and does not rely on any
profiling or run-time resources. Our evaluation shows that static
prefetching can reduce CPU idle time due to DMAs by 58.5%
and achieves 14.7% of average performance improvement on the
benchmarks showing high overhead due to DMAs.

Index Terms—Scratchpad Memory, Code Management, Com-
pilers

I. INTRODUCTION

As the number of cores in a system increases, cache-
based memory hierarchy is becoming a primary factor which
restricts the scalability and power efficiency of the system.
Scratchpad memory (SPM) is a software-controlled on-chip
SRAM memory, which can be used as an alternative to cache.
SPMs are more efficient in terms of power and area as well as
more scalable than caches since they lack the power-hungry
hardware for caching (e.g., tag array and address calculation
logic). On the other hand, the elimination of the caching logic
comes at the cost of the explicit data management; data should
be moved between SPMs and memory explicitly by software,
usually via DMA operations.

Different memory areas – heap, stack, global, and code –
are usually managed with their own algorithms since each area
presents unique data access patterns. In this paper, our focus is
on the code management, which has significant impact on the
application performance [1]–[3]. When a SPM is used as an
instruction memory, code management techniques are required
to load code blocks. In particular, function-level management
[1]–[8] has been popular since functions are easily relocatable
at link time, which allows code overlay mechanism. Such an
approach divides the SPM into regions, each of which has

a unique address range, and maps each function to one of
the regions. At run-time, the entire function is loaded on its
region using a DMA operation before the function call, only
if it is required. The newly loaded function evicts the function
previously loaded on that region.

Since each DMA incurs performance overhead (CPU has
to wait until the load finishes), several studies proposed
techniques to find more efficient mappings [1], [2], [4]–[7].
These approaches attempted to minimize the total number of
DMA executions by separating caller and callee of frequently
executed calls (e.g., function calls in a loop) into different
regions. The execution time of a program is significantly
affected by the quality of the mapping [1]–[3].

Although the literature extensively investigated the mapping
algorithms (where to load the code blocks), the issue of when
to load them has not been addressed completely. While there
exist a fair amount of researches on prefetching in cache-based
systems, existing SPM-based code management techniques
generally rely on on-demand loading which is to start loading
the callee right before its call. This is because SPM-based
systems have no mechanism to recover from fault at run-time;
in cache-based systems, incorrect prefetches can be detected
by comparing tags at run-time and the correct code block can
be recovered. On the contrary, prefetching incorrect functions
on SPM makes CPU silently execute incorrect codes and
mostly leads to the crash of the program.

While on-demand loading is safe — free from the possibility
of fetching incorrect code blocks, it brings considerable perfor-
mance overhead since it makes CPU idle during the execution
of the DMA. The overhead becomes more significant as SPM
manages code in larger granularity (i.e. function) than cache in
general — control is blocked until the entire function is loaded.
Indeed, our experimental study shows that the CPU execution
time is wasted on waiting for DMA completions by up to
58.8%. Prefetching techniques can be utilized to efficiently
mitigate this overhead for such a case; however, as discussed,
inserting prefetch instructions is not trivial since prefetch in
SPM-based system can be invoked only when the next callee
is clearly known, rather than in a speculative manner.

In this paper, we propose a compilation technique to stat-
ically insert prefetching instructions for function-level code
management. We present an algorithm to find efficient and safe
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Fig. 1: In function-to-region mapping, SPM is divided into
regions and each function is mapped to one of the regions.

prefetch locations for every call instruction in the program.
Based on the found prefetch locations, we propose intelligent
DMA insertion techniques which insert most efficient manage-
ment functions depending on the context. The contributions of
our technique can be summarized as follows.
• Our technique brings additional performance improve-

ment over the state-of-the-art mapping technique [9]
without need for modifying the mapping algorithms. Our
evaluation shows that our technique reduces the CPU idle
time by 58.5% compared to on-demand loading within
the same mapping and the SPM size. It enables the
improvement of the execution time by 14.7% on average
among the benchmarks having high CPU idle time.

• Our technique only relies on the static analysis of the
program and does not require any profiling information
or run-time data structure. It makes our technique easily
applicable on a new program without any requirement or
dependency. Also, the benefits of SPM-based system (e.g.
power efficiency, scalability, and predictability) can fully
remain since our technique does not require additional
run-time resource.

• Our proposal is orthogonal to the mapping algorithms
and other optimization techniques. Our technique can be
applied to any mapping with the interface of function-to-
region mapping, simultaneously with the optimizations
such as [3] (reducing fragmentation) and [8] (eliminating
unnecessary management functions).

The rest of the paper is organized as follows. In section
II, we introduce the idea of function-level code management
along with the related works. Section III describes detailed
implementation of our static prefetching technique. We present
our evaluation and discussion of our technique in section IV.
Section V concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Function-level Code Management

Function-level code management uses function-to-region
mapping [1] to decide where to load each function of a
program. Figure 1a shows a program example and its mapping:
three functions with two SPM regions where F0 (assigned to a
region R0) calls F1 and F2 (assigned to the same region R1).
Figure 1b illustrates the run-time execution of the program
without prefetching. When F1 is called ( 1©), it should be

loaded via DMA since R1 is initially empty and CPU becomes
idle. On the other hand, when F1 returns to F0 ( 2©), no
DMA is required since F0 is already loaded on the SPM
(region R0). Finally, when F2 is called ( 3©), it should be
loaded by a DMA since currently F1 is loaded on R1. As
mentioned, this conventional approach is safe but distant from
efficiency — CPU is completely blocked while DMA executes.
Our proposal is to bring more efficient code management
by enabling overlapping execution between CPU and DMA
engine through code prefetching (e.g. F1 and F2).

B. Related Work

This work lies in the context of code management on
scratchpad memories. Several studies have proposed code
management techniques at the granularity of a function. Espe-
cially, our work is based on function-to-region mapping [1],
[2], [4] which splits SPM space into regions and maps func-
tions to one of the regions. It is advantageous and distinguished
from other works in two ways: 1) it manages all the data on
SPM (CPU does not need to access main memory) and 2) it
does not rely on any profiling information. Many approaches
require CPU capable of directly accessing memory [6], [7],
[10] or rely on profiling information [7], [10], [11], which
limit the applicability of their techniques.

Several studies have addressed scheduling of DMA in-
structions in a basic form in the area of stack and global
data management. In these works, a program is divided into
sections (or regions), usually based on the loops and functions.
Then, most frequently used data in each section is copied into
SPM before entering the section. However, these techniques
cannot be directly applied on our code management since they
map only subset of data onto SPM [12]–[14]. Other techniques
[9], [15] rely on expensive software caching to manage heap
data, which is sub-optimal for managing data showing much
predictable access patterns such as code.

In the context of compiler-based data prefetching technique
on SPMs, Soliman [16] presented a prefetch-aware data allo-
cation technique to minimize worst-case execution time of a
program. Yang [17] also proposed an array prefetch technique
to overlap DMA and CPU execution over multiple iterations
of a loop. However, these works only focused on prefetching
data and can be applied to limited structure of a program
[17]. Our work exploits the unique access patterns of code so
that the most efficient prefetch methods are inserted for each
function call depending on the context (Section III-C).

In more recent works, Cai [8] and Kim [3] proposed
optimization techniques for function-level code management.
Cai [8] applied cache analysis on the code management with
SPMs to remove unnecessary management codes. Kim [3]
presented a technique that splits functions of the code into
smaller ones so that they can be managed more efficiently
with less fragmentation. These approaches are beneficial since
they reduce the total amount of management functions in a
program and can be applied simultaneously with our tech-
nique. However, they have not addressed the issue of when to
load for the code that still needs the management. It results in
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Fig. 3: The notations used in Section III with an example

a large execution time overhead on some applications where
most of the management functions are necessary thus cannot
be removed.

Finally, our approach can be compared to the works in non-
sequential instruction prefetchers [18]–[21]. Like our tech-
nique, these prefetchers aim to prefetch instructions which are
not in the next cache line, such as codes after function calls
or branches. However, these works are different from ours and
cannot be directly applied to SPM management in two reasons:
first off, most of them rely on the extended hardware to learn
and speculate the next required code block at run-time, except
[19] which proposes software prefetching. Secondly and more
importantly, mis-speculation of the next code is not allowed
in SPM-based management; while prefetching a wrong line in
cache-based architecture just incurs a performance penalty, it
results in an incorrect execution of the function in the system
managed by SPMs.

III. OUR APPROACH

Our technique is to improve the parallelism between DMA
and CPU execution by statically inserting prefetch instructions
for all function calls in the given program. It consists of
three steps shown in Figure 2: CFG modification & Footprint
analysis, Finding load locations, and Inserting DMA opera-
tions. In the first step, we modify the CFGs (Control Flow
Graphs) of the program for the analysis and collect relevant
information for prefetching. In the second step, we find where
to insert prefetch instructions for each function call using
static analysis. Finally, we insert the DMA instructions and
the management functions at the right locations.

Throughout the section, we use the example function main
depicted in Figure 4 to describe our method. The original CFG
of the function is presented in figure 4a. Regions and footprints
(section III-A) of all functions are described in Figure 4b. For
the sake of brevity, instructions other than call, which do not
affect our algorithm, are omitted in the figure. Also, following
notations are used in this section. Figure 3 illustrates these
notations with a simple example.

R(f): the region where the function f is mapped.
Bi: basic-block where the instruction i resides.

callerc: the function having call instruction c.
calleec: the function called by call instruction c.
F (f): set of regions that f may change during its execution.

Detailed description is in section III-A.
L(c): set of basic-blocks that prefetch instructions should

be located for call instruction c. Detailed description
is in section III-B.

A. CFG Modification & Footprint Analysis

1) Basic-block Splitting: To maximize the efficiency of
prefetching, it is desirable to start prefetch the next function
as soon as the region is available. Therefore, it is natural to
insert prefetch instruction right after the call instruction —
when the callee finishes using the region. In this step, we
split basic-blocks of the program at every call instruction. It
makes every basic-block has at most one call instruction, and
if it has, it would be the last instruction before the terminator
(branch or return instruction). This makes the head of
every basic-block the best candidate for inserting prefetch
instruction; whenever call instruction is finished, the control
moves to another basic-block.

Figure 4c shows the CFG after this transformation along
with the split points illustrated with the red dotted lines. An
unconditional branch is inserted after the call instruction and
the remaining instructions form a new basic-block. Note that
the additional branches do not affect the performance of the
final binary. Code generator does not insert unnecessary jump
instruction if the target basic-block has only one incoming
branch.

2) Finding Footprint: When a function f is called, R(f)
is always used to load the code of f . However, calling certain
functions can result in modifying more regions other than
R(f) when f has a call to another function. For example,
if f1 has a call to f2, the region R(f2) can also be modified
with the code of f2 during the execution of f1 if the control
reaches the call instruction. Such information is essential
to guarantee safeness of prefetching — e.g., prefetching for
R(f1) and R(f2) cannot be placed before calling f1 since
both regions can be modified during the execution of f1.

In this step, we find Footprint for every function in the
program. Footprint F (f) is defined as the regions that function
f may change during its execution, by calling other functions.
Using this notation, we can say R(f2) ∈ F (f1) in the case of
the example above. In other words, when a function f is called,
R(f) is always written by f and the regions in F (f) may be
overwritten depending on the execution. It can be defined in
more formal form as follows.

G(f) = { g | g is a function called byf }

F (f) =

{
∅ if G(f) = ∅
{R(g) | g ∈ G(f) } ∪

⋃G(f)
g F (g) otherwise

This information is used to guarantee the safeness of prefetch-
ing: function f can be safely prefetched before the function
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Fig. 4: CFG modification and load location finding on the example function main.

g, if R(f) 6= R(g) and R(f) /∈ F (g) (discussed in more
detail in section III-B). Otherwise, f should be loaded after
the execution of g since g may overwrite R(f) in its execution.

B. Finding Load Locations

We present an algorithm to find where to place prefetch
instructions for every call instruction in the program. We use
notation L(c) for the set of basic-blocks where the DMA issues
should be inserted for a call instruction c. Specifically, L(c)
should satisfy two conditions to guarantee no fault occurs:
i) load should be issued before the execution of c for every
control path and ii) once prefetched, the region R(calleec)
should not be overwritten by a different function before the
execution of c.

To deal with the condition i), we first set target basic-
block Tc which represents the desirable prefetch location. If c
resides in a loop, Tc is set to the predecessor of loop header;
otherwise, it is set to the immediate dominator of Bc. A basic-
block d is a dominator of b if every path from the entry to b
must go through d, where entry is the first basic-block of the
function. Among the dominators, immediate dominator can be
recognized as the closest block from b. Thus, if we put a DMA
instruction on it, every path reaching Bc is affected. Then, the
algorithm walks through the paths from Bc to Tc to guarantee
the condition ii); if a block B′ (located between Bc and Tc)
writes to the region R(calleec), the prefetch instruction for c
should be inserted after B′ executes, instead of Tc.

Algorithm 1 shows a recursive method to find all load
locations of call instruction c. The names and descriptions
of five input parameters – c, current, NEXT , target and
V ISITED – are listed. Initially, we set current = Bc

and NEXT = P where P is a set of predecessors of
Bc. V ISITED should be ∅ since we have not visited any

Algorithm 1 Finding Load Locations
Input:

c: the call instruction the algorithm is working on
current: current basic-block in the walk-through
NEXT : a set of basic-blocks we want to visit next
target: target basic-block Tc

V ISITED: a set of basic-blocks visited in the walk-through

1: function FIND(c, current, NEXT , target, V ISITED)
2: locations← ∅
3: if current = target then
4: return {current}
5: for next ∈ NEXT do
6: if next ∈ V then
7: continue
8: if ∃ call instruction x ∈ next then
9: if R(calleec) = R(calleex) or

10: R(calleec) ∈ F (calleex) or
11: R(calleec) = R(callerx) then
12: locations← locations ∪ {current}
13: continue
14: V ISITED ← V ISITED ∪ {current}
15: P ← predecessors of next
16: locations← locations ∪
17: FIND(c, next, P , target, V ISITED)
18: return locations

basic-block yet; this will be filled as the algorithm proceeds.
Therefore, initial call should be FIND(c,Bc, P, Tc, ∅) and it
returns the load locations L(c).

Starting from basic-block current, the algorithm recur-
sively visits its predecessor next (line 5) until it reaches Tc

(line 3). At each basic-block, it checks whether next violates
the condition ii); if next has a call instruction x, there are
three cases where x overwrites the region of callee (calleec).
In these cases, prefetch instructions cannot be inserted before



x (line 8-11):
• R(calleec) = R(calleex): callee of c and x use the same

region. The region is available only after x is finished
(line 9).

• R(calleec) ∈ F (calleex): in the execution of calleex,
the region R(calleec) may be overwritten (line 10).

• R(calleec) = R(callerx): calleec is mapped to the re-
gion of currently executing function (callerx). It implies
x eventually returns to the callerx and the region is
available only after x returns (line 11).

If one of the above conditions are met, the algorithm
adds the current block current into prefetch locations (line
12). Otherwise, it updates the visited block (line 14) and
proceeds to the predecessor blocks (line 16-17). Note that the
algorithm terminates, because it should either reach target,
which dominates the starting basic-block Bc, or make cycles.
Both cases are covered in the algorithm (line 3 and 6) and
the recursion stops in either cases. For the case of recursive
function calls, we do not add any extra prefetch management
(leave L(c) = ∅); when a function calls itself, it is guaranteed
that the function is already loaded on the SPM.

Figure 4c shows an example for the case of f1, where
Tc = entry. The algorithm goes through two paths since
for.cond has two predecessors. The first path ( 1©- 2©) ter-
minates since it reaches Tc. On the other hand, the second path
( 1©- 3©- 4©) stops at for.body.2 since f2 in the predecessor
block is mapped to the same region R1.

C. Inserting DMA Operations

In this step, we present a procedure to insert the DMA
operations based on the found load locations L(c). Specifi-
cally, we propose two DMA insertion techniques: SFP (Static
Function Prefetching) and A-SFP (Aggressive-SFP). SFP is a
basic prefetch insertion technique consisting of two different
management scenarios. In A-SFP, we propose more aggressive
use of DMA buffer with the extra scenarios and management
functions.

In each technique, we classify basic-blocks in L(c) into
two cases: normal and conflict. Conflict represents the case
that callerc is evicted during the execution of calleec. This
happens when they are in the same region (R(callerc) =
R(calleec)) or the region of the caller is changed during the
execution of the callee (R(callerc) ∈ F (calleec)). This case
should be managed differently since the management code in
the caller itself can be overwritten during the execution of
the callee. The other case — the code of callerc remains
unchanged after calleec returns — will be denoted as normal.

First, we introduce management functions implemented for
our technique and highlights the idea of aggressive buffer
management of A-SFP (section III-C1). In next sections, we
discuss the detailed implementation of SFP (section III-C2)
and A-SFP (section III-C3).

1) Management Functions: The management functions im-
plemented for our technique — load, buffer, drain and
block — are illustrated in Figure 5. As shown in Figure
5a, load(f) makes DMA engine copy the function to its

CPU DMA Buffer SPM

load(f)

block(f)

write to SPM

copy finished
call f

blocked

in execution

𝑅(f) available

(a) load and block

CPU DMA Buffer SPM

buffer(f)

write to SPM

copy finished
call f

drain(f)

block(f)

read from memory

(b) buffer and drain

Fig. 5: Prefetching can be initiated via either load or
buffer (+ drain) management functions.

buffer and write the loaded code on R(f) as soon as the buffer
is filled. Then block(f) keeps the CPU blocked until the
loading of F is finished. In Figure 5b, two other management
functions, buffer and drain, are presented. Unlike load
function, buffer(f) requests the DMA engine to fill its
buffer with the code of f but not to copy the code to SPM
automatically. Instead, the data in the buffer is copied to the
memory after the program calls drain(). Note that all the
required information, such as the address and the size of the
functions, can be obtained from the function f and are already
known at the compile-time.

As Figure 5 implies, using buffer (Fig. 5b) can result
in further parallelization than using load (Fig. 5a) since it
can early-start the memory access, which consumes majority
of DMA execution time. On the other hand, using buffer
requires more aggressive implementation and cannot replace
every instance of load since it holds the DMA buffer and
restricts issuing new DMA invocation (detailed discussions are
in Section III-C3). Therefore, we propose and compare two
DMA insertion techniques: SFP (Static Function Prefetching),
which manages prefetching using mostly load, and its ag-
gressive extension A-SFP (Aggressive-SFP). A-SFP not only
uses load management function but also exploits buffer
whenever it is eligible.

2) SFP (Static Function Prefetching): SFP inserts the man-
agement functions in two different styles depending on the
type of the blocks (normal or conflict). Figure 6 shows DMA
insertion scenarios with different management functions and
conflict conditions. As depicted in gray box, two cases ( a©
and b©) are fall into SFP.

In normal case ( a© in Fig. 6), we directly insert the man-
agement functions on callerc since it will not be overwritten
during the execution of calleec. First, load is inserted on the
heads of basic-blocks b ∈ L(c). Secondly, block is inserted
before the call instruction c to prevent executing callerc before
the load is finished.

On the other hand, in conflict case ( b© in Fig. 6), we
cannot directly insert all the management functions on callerc
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Fig. 6: An example showing DMA insertion scenarios where
c is in BB2 and L(c) = {BB1}. Depending on the techniques
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function _call
(caller, callee, args):

function _a_call
(caller, callee, args):

1 drain() 1 drain()

2 block(callee) 2 block(callee)

3 3 buffer(caller)

4 ret ← callee(args) 4 ret ← callee(args)

5 load(caller) 5 drain()

6 block(caller) 6 block(caller)

7 return ret 7 return ret

Fig. 7: Two wrapper functions used in conflict case.

since the code in R(callerc) would be replaced with another
function when calleec returns. To deal with this problem, we
introduce wrapper functions, _call and _a_call, which
are responsible for bringing back callerc before the control
returns to it. SFP first inserts buffer on L(c) to initiate the
loading of calleec and replaces c with _call wrapper. We
assign a private SPM space for these wrappers so that they
can bring back callerc without the concern of eviction. The
wrappers requires additional ∼150 bytes of SPM space and
can be reused across all the functions in the program.

Figure 7 illustrates the wrapper functions used in conflict
case. SFP only uses _call while _a_call is utilized in A-
SFP. The implementation of _call (left side of the figure) is
straightforward; first, it waits for the load of calleec by drain
and block (line 1 and 2). After the function is called (line
4), it executes load for callerc (line 5) since the caller could
be overwritten by another function while executing calleec.
Once the load of the caller is completed (line 6), the control
returns (line 7).

3) A-SFP (Aggressive-SFP): A-SFP extends SFP with two
additional DMA insertion scenarios depicted in Figure 6 ( c©
and d©), which exploit buffer management function. The
idea behind A-SFP is that 1) DMA transaction consists of two
tasks (memory-to-buffer and buffer-to-SPM) and 2) memory-
to-buffer takes majority of the time since it involves accessing
slow main memory. While standard load executes both tasks

at once, we divide it into two management functions: buffer
(memory-to-buffer) and drain (buffer-to-SPM). By executing
them separately, it is often possible to hide expensive memory
access latency via invoking memory-to-buffer transaction first
while the target SPM region is in use.

Figure 6 c© shows the transformation with the normal case.
In the example, A-SFP places buffer before call G to
execute memory-to-buffer transaction while G is occupying
target region. After G returns, drain is called to copy the
loaded code from buffer to SPM. However, this pattern can
be used only if following two conditions are met: i) the
predecessor of b ∈ L(c) has a call instruction x and ii)
F (x) = ∅. If there is no such x (condition i)), it means there
is no function to overlap execution. On the other hand, the
condition ii) requires that calleex has no DMA issue; if we put
buffer before x where F (x) is not empty, calleex cannot
load other functions since the DMA buffer is held, assuming
standard FIFO buffer. If these conditions are met, A-SFP puts
buffer before x and inserts drain after x as in Figure 6
c©. Also, block is inserted before c to make control wait

until the DMA finishes.
In conflict case ( d© in Fig. 6), the transformation is same

as SFP except that A-SFP uses _a_call instead of _call
wrapper. In the right side of Figure 7, the implementation of
_a_call is presented. The only difference from _call is
that _a_call uses buffer and drain (line 3 and 5) to
overlap loading of callerc with the execution of the calleec.
Like in normal case, _a_call can be used only when calleec
does not call any other function (F (calleec) = ∅).

4) Example: Figure 4d shows the final CFG after inserting
management codes. Especially, four functions in the example
(f1 ∼ f4) represent each different DMA insertion scenarios.
Note that load locations for each function are depicted in
Figure 4c; e.g. L(f1) = {entry,for.body.2}. While
f1 and f2 are correspond to normal case, f3 and f4 are
in conflict case since they are mapped to the same region
as main (R0). Among them, f1 ( 1© in Figure 4d) and f3
( 3©) show the examples of SFP. On the other hand, the cases
of aggressive management of A-SFP are illustrated with the
functions f2 ( 2©) and f4 ( 4©). This example demonstrates that
our technique can insert most efficient management functions
depending on the different contexts. As a result, Figure 4d
shows that most of the program execution can be overlapped
with the DMAs (depicted in red lines).

IV. EXPERIMENTAL RESULTS

A. Setup

We implement the proposed technique as a pass in LLVM
[22] compiler infrastructure. MiBench benchmark suite [23]
are compiled with -O3 flag and used for the experiments. To
find the mapping, CMSM [2] is used, which is recognized
as a state-of-the-art mapping technique. Also, we extend the
gem5 [24] simulator with an SPM and DMA engine. CPU
frequency is set to 3.6 Ghz on a x86 out-of-order execution
and DDR4 model provided by gem5 is used. The size of data
cache is 64kB. Both the data cache and the instruction SPM
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Fig. 8: DMA synchronization overhead of SFP and A-SFP when the number of regions is two, normalized to baseline.
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Fig. 9: Performance improvement and reduction on CPU idle time enabled by A-SFP.

have two-cycle latency. DMA buffer is assumed large enough
for storing any single function in the program (∼2.5kB).

DMA overhead is modeled in two parts: setup time and
transfer time. Setup time is a constant time required for every
startup of DMA calls. This is set to 91 nanoseconds by
referencing IBM Cell BE [25] processor which is a SPM-
based multicore architecture. Transfer time is proportional to
the size of data transferred and set to 0.24 cycles/byte based
on the same reference architecture.

We evaluate our proposal with the baseline configuration,
which starts loading callee right before every call instruction
and waits until the load finishes (no prefetching). We first
evaluate the benefit of aggressive buffer management of A-
SFP in terms of CPU idle time reduction. Next, we present
discussion about the impacts of A-SFP on execution time.
Finally, we show the result about scalability evaluated with
the different number of regions.

B. Effectiveness of Aggressive Buffer Management

In this section, we evaluate and compare the effectiveness
of SFP and A-SFP in terms of CPU idle time reduction. In this
experiment, SPM size for each benchmark is set to have two
regions. Given that the most of benchmarks consist of 2 ∼ 6
functions (Table I), this configuration is general [3], [8] and
can incur all the different management scenarios presented
in section III-C. Figure 8 presents the idle time reduction
of each prefetching techniques, normalized to baseline. On
average, SFP reduces the DMA synchronization overhead by
35.6% compared to the case without function prefetching. A-
SFP further increases the reduction rate to 58.5% by exploiting
aggressive DMA buffer management.

As shown in Figure 8, A-SFP is effective for most of the
benchmarks but notably in IFFT, rijndael.encode, sha
and stringsearch. It is beneficial over SFP especially for
the case when two functions, which are mapped in the same
region, are called sequentially in a short time. For example, in

benchmark stringsearch, function strsearch is called
right after calling init_search. Improvement from SFP
is limited since it can start to load the second function
(strsearch) only after the first function (init_search)
finishes. On the other hand, A-SFP starts to load the second
function before the first function is called. Thus, the DMA
request for the second function can be performed in parallel
with the execution of the first function, which results in the
significant reduction on DMA synchronization overhead.

C. Effectiveness on Execution Time

In this section, we discuss the impact of A-SFP on the over-
all execution time. For this experiment, we study the configu-
ration with one or two regions where most of the benchmarks
show more than 10% of CPU idle time. Table I shows the
detailed information about the benchmarks with their CPU
idle time and the number of regions. Four benchmarks whose
waiting times do not exceed 10% are presented at the bottom.
Given that the SPM size is 52.8% of the entire program size
on average (Table I), we believe this configuration is realistic.
It is also suitable for showing the relevance of A-SFP with the
execution time since our technique is mainly designed for the
environment with considerable amount of DMAs; although A-
SFP works consistently with larger SPMs (section IV-D), the
performance improvement is inherently bounded to the amount
of DMAs and CPU idle time before applying prefetching.

Figure 9 shows the performance improvement in terms of
overall execution time. Considering the benchmarks having
larger than 10% of CPU idle time, the execution time is
improved by 14.7% and idle time due to DMAs is reduced
by 40.0% on average. Among the benchmarks, FFT and
IFFT show the marginal improvement (∼10%). This is mainly
because FFT and IFFT have only one region (only conflict
case). At the same time, the largest function fft_float
in two benchmarks cannot be managed by _a_call since
it calls another function. On the other hand, sha shows



TABLE I: CPU idle time and the number of regions selected for the performance evaluation

Benchmark CPU idle time # Regions # Total Functions # DMAs SPM size / Code size

FFT 17.0% 1 6 8,205 55.0%
IFFT 27.6% 1 6 16,397 55.0%

basicmath 36.3% 2 3 38,013 61.8%
rijndael.decode 58.5% 2 5 38,985 39.8%
rijndael.encode 59.1% 1 5 38,989 39.8%

sha 43.8% 1 4 9,835 50.0%
stringsearch 17.1% 2 3 116 40.0%

CRC32 0.0% 1 2 3 65.7%
adpcm.decode 2.8% 1 2 1,371 66.4%
adpcm.encode 2.7% 1 2 1,371 68.9%

susan 3.7% 1 9 10 37.4%
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Fig. 10: Reduction on CPU idle time from static prefetching with various number of regions.

the largest performance improvement of 27.2% among the
benchmarks even it has one region. This can be explained in
two reasons; first, sha has a large performance improvement
margin since the CPU idle time before applying prefetching is
significant (43.8% in baseline). Secondly, most of the heavy
functions in sha can be managed by buffer and _a_call,
which further improve overlapping execution by exploiting
DMA buffer.

Execution times of the benchmarks having less than 10%
of CPU idle time – CRC32, adpcm, and susan – have
not been improved significantly with our technique. Although
their waiting times are reduced by 43.3% on average, exe-
cution times are changed within the boundary of 4% (1%
improved on average). In adpcm.encode, the performance
is reduced by 1.3%; insertion of management functions affects
the branch predictors and slightly reduces the instruction-level
parallelism.

D. Scalability Evaluation

We evaluate A-SFP on the various SPM sizes to show its
scalability. Figure 10 illustrates the reduced CPU idle time
over the different number of regions. We show the results of
one- and two-region cases separately and present the average
improvement of the cases with more than two regions (labeled
as 3+) — most benchmarks have 3∼6 functions (Table I). The
results of CRC32 and adpcm with 3+ are omitted since they
cannot have more than two regions (have only two functions).

Figure 10 shows that A-SFP effectively reduces DMA
synchronization overhead regardless of the SPM size. Espe-
cially, two-region and 3+ cases show the largest improvement
(58.5 and 59.1%, respectively). All functions in one-region
case fall into conflict case and thus should be managed by
wrapper management functions (_call and _a_call). As
discussed in Section III-C, these wrappers not only consist

of more management instructions than normal case but also
incur additional function call. On average, one-region case still
shows the reduction of 36.0% in the DMA synchronization
overhead.

V. CONCLUSION

In SPM-based system, static code prefetching has not been
extensively studied since such a system lacks a mechanism
to recover from fault (incorrect prefetching). In this paper,
we propose a technique to statically inserts DMA instructions
to prefetch codes on function-level code management. The
algorithm to find safe and efficient prefetch locations is
presented along with the two management methods, SFP and
A-SFP. Our evaluation shows that our technique can reduce
the time waiting on DMAs by 58.5% on average with 2-
region configuration and it is scalable with any number of
regions. Reduction of waiting time results in the performance
improvement of 14.7% on average among the benchmarks
which show high CPU idle time. As a future work, we
would study a mapping algorithm which is aware of the code
prefetching.
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