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ABSTRACT
As the number of cores increases, cache-based memory hier-
archy is becoming a major problem in terms of the scalabil-
ity and energy consumption. Software-managed scratchpad
memories (SPM) is a scalable alternative to caches, but the
benefit comes at the cost of explicit management of data.
For instance, an instruction SPM needs a code manage-
ment techniques to load code blocks to the SPM. This paper
presents a technique to split functions into smaller functions,
to break away with the fundamental limitations of function-
level code management. Our function-splitting technique is
able to generate more efficient mappings by modifying the
characteristics of functions to be more suitable for function-
level code management. We propose two optimization poli-
cies to improve performance and reduce size respectively.
The performance optimization policy improves performance
by 16% on average, which can only be achieved by using
20% more SPM space if without function-splitting The size
optimization policy can reduce the minimum SPM size re-
quirement by 31% while increasing only 7% execution time.

Categories and Subject Descriptors
D.3.4 [Processors]: Compilers, Memory management, Op-
timization

1. INTRODUCTION
It is becoming more difficult to scale cache-based memory

hierarchy in multi-/many-core processors. As a result, many
processors use scratchpad memories (SPMs) to avoid the
complex and power-hungry circuitry in caches, e.g. tag ar-
rays and lookup logics. While SPMs are more power-efficient
than caches [7], the elimination of these hardware compo-
nents requires SPMs to be managed by software explicitly.

When an SPM is used as an instruction memory, code
management techniques [15, 29, 30, 10, 11, 27, 17, 6, 16, 5,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICCAD’16 November 7–10, 2016, Austin, TX
c© 2016 ACM. ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

20, 25] are required to load code blocks to the SPM. Partic-
ularly, function-level code management [10, 11, 27, 17, 6, 16,
5, 20, 25] uses overlay mechanism to load code blocks at the
granularity of functions. Such an approach divides an SPM
into regions, each of which is a unique address range, and
finds a surjective map of functions to regions. This manage-
ment scheme is similar to direct-mapped caches. A function
is loaded to the SPM as a whole before its execution, by
a direct memory access (DMA) operation, only when it is
not already loaded. Loading a function into a region always
evicts any function currently being in the region.

Loading functions introduces additional overhead to the
execution time of the program, for executing a DMA oper-
ation and waiting for the DMA operation to be completed.
Existing techniques try to generate mapping that will min-
imize such overhead, e.g. separating the caller and called
function of a frequent function call into two regions to pre-
vent them evicting each other at each call. The quality of
mapping can significantly affect the performance of applica-
tions [27, 17, 6, 16, 5, 20].

Regardless of mapping techniques, the quality of map-
ping is fundamentally limited by the sizes of functions and
their call pattern. For example, consider a function call in
which the sum of the sizes of the caller function and the
callee function exceeds the SPM size. Any mapping tech-
nique would have to map two functions to the same region
due to the size limitation. This implies that every time the
function call executes, both functions need to be reloaded,
as the two functions will replace each other in the SPM ev-
ery time. This can cause a significant overhead in a loop.
On the other hand, asymmetry of function sizes easily re-
sults in poor utilization of SPM space. As a region can hold
only one function at a time, a large difference between the
function sizes within a region translates to severe memory
fragmentation.

In this paper, we present a technique that splits functions
to improve the characteristics of functions so that mapping
algorithms can generate better mappings. We propose two
optimization policies: performance optimization and size op-
timization. The performance optimization policy enables
separating two functions with caller-callee relationship in a
loop by splitting out the loop as a separate function. This
can improve performance of several benchmarks in our ex-
periments by 16% on average. To achieve a comparable
performance without using our function-splitting, we would
require 20% larger SPM sizes. On the other hand, the size



optimization policy focuses on reducing the memory size re-
quirement by cutting the largest functions in half repeat-
edly. This reduces the minimum SPM size requirement by
31% overall, with only 7% execution time increased.

2. RELATED WORK
The work proposed in this paper lies in the context of

managing scratchpad memory (SPM). SPM management
has been extensively studied in the literature. The earliest
approaches statically allocate code [2], data [3], or both [28,
31] to reduce the execution time or energy consumption of
a given program. In static management techniques, selected
code or data are allocated in the SPM all at once at load-
ing time and stay loaded during execution. This approaches
have limitations of not being able to exploit localities of large
programs, so SPM management techniques have evolved into
dynamic management. Dynamic management techniques
update the contents of the SPM in run-time to cater different
parts in large programs at a time. While there are dynamic
techniques for managing data [18, 32], our technique is in the
context of dynamically loading code blocks [15, 29, 30], espe-
cially at the granularity of functions [10, 11, 27, 17, 6, 16, 5,
20, 25]. Our function-splitting technique helps function-level
management techniques utilize a given SPM space more ef-
ficiently (with smaller code blocks and less fragmentation)
and overcome its limitation of requiring the largest func-
tion to fit in the SPM (by breaking the largest function into
smaller pieces).

Function-splitting is similar to existing approaches in com-
piler optimization, called function outlining or partial inlin-
ing [34, 22, 26]. These techniques make part of a function
form another function (outlining) so that only the selected
part of the function is inlined (partial inlining) reducing the
code size expansion. Outlining techniques typically try to
extract a rarely-executed part into another function in order
to reduce the overhead of calling outlined functions. In con-
trast, our function-splitting technique aims either to reduce
the memory footprints of functions during the execution of
loops, or to make function sizes as small as possible. Unlike
partial inlining techniques, our technique does not increase
the code sizes of the caller functions.

Function-splitting can be seen as a form of a graph parti-
tioning problem. Traditionally, graph partitioning is stud-
ied in the context of non-iterative data-flow analysis [1] or
parallel data-flow analysis [23, 24]. These approaches find
single-entry regions, called intervals or regions, in a control
flow graph (CFG) of a function. Even earlier than these ap-
proaches, in 70s, the graph partitioning problem has been
studied for page overlay managers. Several approaches have
been proposed to divide a given CFG into subgraphs [4, 19],
each of which is then mapped to a memory page.

More recently, the graph partitioning problem is studied
in the context of on-chip memory management. Whitham
and Audsley [33] presented an optimal graph partitioning
technique for instruction SPM, with a goal of minimizing
the worst-case execution time (WCET) of a given program
as well as keeping the partition sizes smaller than the SPM
size. Hepp and Brandner [14] proposed a function-splitting
technique for Method cache [9], a special type of instruction
cache that loads at the granularity of variable-sized code re-
gions rather than cache blocks of a fixed size. Their objective
is to keep the sizes of partitions smaller than a specified size.
As graph partitioning techniques, all these approaches are
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(a) Graph representa-
tion of a program.
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(b) Two possible mappings, when the
SPM size is 192 KB.

Figure 1: Given a program in (a), there are two possible
mappings shown in (b).

based on CFG traversals, whereas our approach performs a
source-to-source transformation implemented as a compiler
front-end stage. This is intended to be used with function-
level code management techniques that use function overlay
mechanism. This difference makes our approach actually
create new functions and insert function calls to those newly
created functions in the source code. In contrast, in the
previous techniques for on-chip memory management [33,
14] the created partitions are still part of the existing func-
tion; branches at partition boundaries need to be modified to
maintain the original control flow even when the partitions
are loaded to nonconsecutive memory ranges.

This paper is the first approach to break away with the
function-level granularity in such code management tech-
niques. We present two heuristics built on insights either
to increase the memory space utilization or to overcome the
limitations of function-level code management.

3. FUNCTION-LEVEL CODE
MANAGEMENT

Function-level code management uses overlaying that uses
function-to-region mapping [27] to decide where to load each
function of a given program. This mapping can significantly
affect the execution time of the program. Figure 1 shows an
example. In the given graph, the main function calls both F0

and F1 function. The function call of F1 is called in loop1,
which iterates multiple times. Given the function sizes and
SPM size, there can be different mappings, both of which
are shown in the figure.

The overhead of a mapping is measured by interference,
which is the total bytes of data transferred caused by the
contention over an SPM space among functions that are
mapped to the same region. If we assume loop1 in Fig-
ure 1a iterates 5 times, and main first calls F0 before it exe-
cutes loop1, then the control flow proceeds in the following
order: main, F0, main, F1, main, F1, main, F1, main,

F1, main, F1, main. The interference of the first mapping
(the one on the top in Figure 1b) is therefore 128 + 64 +
(64 + 128) * 5 = 1152 KB. The mapping maps main and F1

function to the same region. As a result, they will evict each
other at every iteration of loop1, which consists of most of
the interference. On the other hand, the second mapping
(the one on the bottom in Figure 1b) maps main and F1

into two different regions. This mapping thus successfully
avoids the two functions alternatively evicting each other in
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}
...

}

Region 1 Region 2

caller callee

Region 1 R2

caller g0

callee

caller() {
...
g0()
...

}

g0() {
for {
callee()

}
}

Region 1

caller

callee

Region 1 R2

caller g0

callee

(a) Example of
function-splitting
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(c) Mapping after splitting. The loop
body of caller (g0) and callee are
separated, removing the interference
between them.

Figure 2: Splitting caller enables a better mapping shown
in (c), in which g0 and callee can remain loaded during the
execution of the loop.

each iteration of loop1. The interference becomes 128 + 64
+ 128 + 64 = 384 KB. Therefore, the second mapping is
preferred to the first one for incurring the less overhead of
code management.

4. OUR APPROACH
In this section, we propose a technique that enables a gen-

eration of better mapping by splitting functions. It take two
steps to split a function: i) choose program points for split-
ting, ii) create new functions based on the chosen program
points. Depending on the purpose of splitting functions (ei-
ther for improving performance or enabling code manage-
ment), the first step may vary. Once program points are
given after the first step, we extract the specified code and
create new functions accordingly. Function calls to the new
functions are then inserted in the original caller functions.

We present two different policies of choosing program points
for splitting in section 4.1: performance optimization and
size optimization. The former is used to improve perfor-
mance by splitting functions to better exploit SPM space
and get a more efficient overlaying scheme, while the latter
is used to enable code management when the SPM space is
not large enough to accommodate the largest function. Sec-
tion 4.2 then explains given the identified program points,
how to create new functions while keeping the program se-
mantics unchanged.

4.1 Where-to-split: Choosing Splitting Points

4.1.1 Performance Optimization
The overhead of code management happens around each

function call. Before the function call, the code manage-
ment instructions should check if the called function is in
its region, and load the function if it is not loaded already.
After the called function returns, the code management in-
structions should also check if the caller is still loaded and
load it in case it is evicted during the function call. As a
result, the more frequently a callsite is executed, the more
code management overhead it incurs. We, therefore, target
on function calls within loops, and try to extract the loops
as new functions whenever profitable to performance.

Figure 2 shows how splitting functions help reduce code
management overhead. In Figure 2a, function caller calls
function callee in a loop. Originally, SPM space is barely

Algorithm 1 Performance Optimization

Require:
Sspm: Available SPM size

1: M ′ ← mapping before function splitting
2: C′ ← code management overhead caused by M’
3: L← All the loops that contain function calls
4: while L is not empty do
5: l← select(L)
6: Extract l as a new function from its parent function
7: S ← The overall size of regions after splitting
8: M ← mapping after function splitting
9: C ← code management overhead caused by M

10: if S > Sspm or C <= C′ then
11: Return M ′

12: end if
13: M ′ ←M
14: C′ ← C
15: end while

16: function select(L)
17: minCost← min

l∈L
cost(l)

18: L′ ← {l | l ∈ L, cost(l) == minCost}
19: return the smallest l ∈ L′

20: end function

21: function cost(l)
22: f ← The parent function of l
23: L′ ← {x | x ∈ L and f is called in loop x}
24: if |L′| = 0 then
25: return 0
26: else
27: return max

x∈L′
cost(x)+1

28: end if
29: end function

large enough to map both functions to the same region Re-

gion 1, as Figure 2b shows. As a result, every time be-
fore the function call happens, the callee function must be
loaded into Region 1 in the SPM and evicts caller (which
must have been loaded into SPM earlier before it is called).
Right after the function call returns, caller must be loaded
into Region 1 to resume its execution, which in turn evicts
callee. Such code management overhead happens in every
iteration of the loop. If we can single out the in caller

and make it a new function, then we can generate a new
mapping as Figure 2c shows. The new function, g0, which
the loop now resides in, are mapped to a different region
with the callee function. While the splitting introduces in-
structions for the extra function call (the call to g0), such
mapping avoids the code management overhead caused by
the repeated eviction of caller and caller before caller

is split, and thus can be used to reduce number of mem-
ory transfers and eventually improve performance of appli-
cations.

Algorithm 1 shows the algorithm we use for splitting func-
tions with performance optimization policy. The algorithm
first generates a mapping M ′ given the SPM size Sspm (line
1), and estimates its code management cost as C′ (line 2).
The generation of mapping and the estimation of its over-
head are carried out using the state-of-the-art approach from
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Figure 3: Cost of extracting a loop is related to its maximum
possible nesting level.

[25]. The algorithm collects all the loops that contain func-
tion calls in a set L (line 3). It then singles out an individual
loop of the program (line 5), and split the parent function
of l into two functions—a new function that contains l only,
and another function that contains the leftover of the parent
function with a call to the new function in place of the loop
(line 6). Once the function splitting is done, a new map-
ping M is generated (line 8), as well as the estimation of
the its overhead C (line 9), again using the approach from
[25]. If any of the following two conditions is met, then the
algorithm stops: i) C is smaller or equal to C′, or ii) S is
greater than Sspm (line 10). The first condition implies the
overhead is not reduced by the new mapping, while the sec-
ond condition implies the available space of SPM is used up.
If neither of the above conditions are met, then the algo-
rithm substitutes the new mapping M and its overhead C
for the old mapping M ′ and C′ respectively, and continue
the algorithm until either of the two condition is true.

The order of loops selected in line 5 in Algorithm 1 is spec-
ified by SELECT function defined in line 14. Given a set of
loops L, SELECT(L) finds the loop that incur the minimum
cost to the program (line 15). When a loop is extracted as
a new function, a function call to the new function must
be inserted in place of the loop in its original parent func-
tion. This will incur extra instructions due to function call
overhead and code management for the inserted function
call. Therefore, these instructions should be avoided to the
greatest extent. Function COST defined in line 18 measures
the cost of loop by estimating the maximum possible nesting
levels of the loop. The deeper the loop, the higher the cost.
Figure 3 shows an example of using COST function to mea-
sure the cost of creating a new function out of a loop. The
loop L1 and L3 are not nested within any other loop, so the
cost of them is measured as 0. The parent function of L2,
F2, is called within L1 in F1. Therefore, its cost is measured
as 1. Finally, since L4 can be either executed within L3, or
within L2, which is further nested within L1. The maximum
possible depth is therefore 2, which is reflected in its cost.

4.1.2 Size Optimization
None of the previous function-level code management is

able to generate any code mapping when the size of SPM is
smaller than the largest function, since the largest function
cannot be placed into the SPM. Size optimization policy
aims to enable code mapping in this case, while incurring as
less overhead as possible.

Algorithm 2 shows the algorithm we use for splitting func-
tions with size optimization policy. In each iteration, we
select the current largest function (line 5) and split it using
function SPLIT (line 6). If the overall size of regions after
function splitting is not decreased, then the algorithm fails
to find any mapping with overall size of regions less than

Algorithm 2 Size Optimization

Require:
Sspm : Available SPM size
Sparam ← constant for estimating size overhead of pa-
rameter passing

1: M ′ ← mapping before function splitting
2: S′ ← total size used by regions before splitting
3: F ← all the functions in the program
4: while S′ > Sspm do
5: f ← extract the largest function in F
6: SPLIT(f)
7: S ← the overall size of regions after function splitting
8: M ← mapping after function splitting
9: if S > S′ then

10: Fail to find a solution
11: end if
12: M ′ ←M
13: S′ ← S
14: end while
15: Return M ′

16: function SPLIT(f)
17: n← the number of instruction in f
18: min← size of f
19: k′ ← 0
20: Let ik be the kth instruction of f
21: for k from 2 to n do
22: F0, F1 ← {i1, ..., ik}, {ik+1, ..., in}
23: P ← parameters of F1

24: S0, S1 ← size of F0, size of F1

25: newSizek ← max(S0, S1) + |P | · Sparam

26: if newSizek > min then
27: k′ ← k
28: min← newSizek
29: end if
30: end for
31: split f into {i1, ..., ik′−1} and {i′k, ..., in}
32: Update F
33: end function

the available SPM size (line 9-10). Otherwise, we return
the final mapping when the required SPM size falls below
the available SPM size.

The SPLIT function defined in line 14 finds the program
points to split in the given function f . For each instruction
ik in f , the SPLIT function estimates the change of required
SPM size after splitting the given function f into two smaller
functions, F0 and F1, at the program point right after ik
(line 20). Since the size of required SPM space is decided by
the overall size of all the regions, and the size of each region
is decided by the largest function mapped to the region,
we use the sum of i) the maximum size of F0 and F1 and
ii) the number of parameters/arguments required by F1 to
estimate the change of required SPM space after function
splitting (line 23). Lastly, the function splitting that results
in the minimum SPM space are chosen (line 27).

4.2 Creating New Functions
Once program points are chosen for function splitting, the

code blocks specified by the program points are extracted
from the original functions and new functions are created



1 int arr[LEN]; // arr is global array
2 
3 void f1(const int len) {
4     int sum = 0;
5     int i;
6     for (i = 0; i < len; i++) {
7 sum += arr[i] * arr[i];
8     }
9     printf("square sum of %d integers: %d\n", len, sum);
10 }

1 int arr[LEN]; // arr is global array
2 
3 void f1(const int len) {
4     int sum = 0;
5     int i;
6     __generated__0(i, len, &sum);
7     printf("square sum of %d integers: %d\n", len, sum);
8 }
9 
10 void __generated__0(int i, const int len, int *sum) {
11     int __sum = *sum;
12     for (i = 0; i < len; i++) {
13 __sum += arr[i] * arr[i];
14     }
15     *sum = __sum;
16 }

①②③④⑤⑥

①②③④⑤⑥

①

②

③④

Figure 4: Creating a new function given the program points
to split.

with these code blocks. Function calls to the new functions
are created to call the new functions in the original functions.

Figure 4 shows such an example. Assume the given pro-
gram points specify that the code block of the loop in the
dotted box should be split from function f1. A new func-
tion __generated__0 is then created enclosing the loop. A
call to __generated__0 is inserted in f1 to replace of the
code of the loop. The new function takes as input all the
variables that it accesses (all the variables accessed in the
loop in the original code of f1). However, depending on the
characteristics of their accesses, these variables are passed
as parameters in different way. Any dead variable ( 4©) at
the exit of __generated__0 is passed by value. A variable
is live at a program point if after the program point it may
be read prior to any writes of the variable. Otherwise, the
variable is dead at the program point, either because that
its value is not read or overwritten by another write before
it is read. Therefore, if a variable is dead when __gener-

ated__0 returns, its value at the time of return will not be
used and can be safely discarded. Similarly, any variable
whose value ( 3©) will not be modified in __generated__0

are passed by value, since its value is anyway the same be-
fore and after __generated__0 is called. If a variable is live
at the exit and is modified ( 1©), then a reference to its ad-
dress is passed instead, since the changes must be visible
to the reads after __generated__0 returns by definition of
live variables. In particular, since global variables can be
accessed in any function directly, they do not need to be
passed explicitly as parameters, e.g. the global array arr

( 2©).

5. EVALUATION

5.1 Experimental Setup
We implement our function splitting technique in Clang,

a C front-end for LLVM compiler infrastructure [21]. We
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Figure 5: Size and performance of benchmarks with perf
when compared to using 1-region configuration.

compile benchmarks from MiBench benchmark suite [13]
without and with function splitting respectively (both with
O3 optimization flag enabled), on top of the state-of-the-art
mapping technique CMSM [25]. We then run the generated
binaries and collect the execution statistics on gem5 simu-
lator [8].

We built the SPM as a memory-mapped region in gem5.
The DMA operation is implemented to transfer data be-
tween the SPM and the main memory. The overhead of each
DMA operation consists of two parts: setup time and trans-
fer time. Setup time is the constant time required whenever
the DMA request is initiated. Transfer time is the addi-
tional time proportional to the size of data transferred. We
set 91 nanosecond as the setup time, and 0.075 nanosecond
per byte as the transfer rate. CPU clock frequency is set to
3.2 Ghz. The setup time and transfer rate are about 291 and
0.24 CPU cycles respectively. This setup models the IBM
Cell BE processor [12], which is an SPM-based multicore
architecture.

5.2 Performance Optimization

5.2.1 Comparisons with Typical Configurations
We evaluated the performance optimization policy by com-

paring the performance of benchmarks before and after ap-
plying function splitting with performance optimization pol-
icy. We first measured performance of benchmarks with
code mapping generated by CMSM before function split-
ting under two set of SPM sizes. For ease of discussion, we
refer the two configurations as 1-region and 2-regions re-
spectively. In 1-region, the SPM size for each benchmark is
equal to the code size of the largest function, so that CMSM
maps all the functions to one region. In 2-regions configura-
tion, we increase the SPM size so that CMSM will generate
two regions. We then measure the performance of the same
benchmarks with code mapping generated by CMSM after
applying function splitting with performance optimization
policy. The sizes of the SPM are set to be large enough that
there will be two regions. We refer the configuration as perf.

Figure 5 shows the comparison of performance between
1-region and perf. With the function splitting with per-
formance optimization policy, performance of benchmarks
is improved by 16% performance. The improvement comes
from the reduced communication caused by DMAs. As more
regions are generated after the function splitting, less func-
tions are mapped to each region on average, which effectively
abates the competition of each region. Benchmarks such
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Figure 6: Size and performance comparison between perf
and 2-regions.

as rijndael.decode achieves great improvement of perfor-
mance. These benchmarks follow the same pattern of exe-
cution: DMAs that are issued by calling a large function re-
peatedly in a small loop contributes a large portion of execu-
tion time. The number of DMAs (or the overhead of DMAs)
is then greatly reduced by splitting after the called func-
tion and the new function—extracted from the loop—are
mapped into separate regions. In benchmarks such as ad-

pcm.decode and adpcm.encode, however, computation con-
tributes to most of its execution time, rather than communi-
cation. In these cases, the DMA overhead only contributes
a slight portion, therefore the improvement due to function
splitting is insignificant. However, as the dotted line in Fig-
ure 5 shows, DMA is almost eliminated in all benchmarks,
including those with less significant improvement of perfor-
mance.

While the performance is improved, perf requires more
SPM space than 1-region on average. This is because 1-
region maps all the functions in one region. The required
SPM size is equal to the code size of the largest function.
On the other hand, perf have two regions, with one of the
regions requires as much space as 1-region to hold the largest
function (if it is not the function to split). However, as
Figure 6 shows, when being compared with 2-regions, perf
is able to reduce SPM size requirement by 20%, while still
improving performance by 2.4% on average, up to more than
39%.

Benefits from performance optimization varies depending
on applications. Benchmarks such as (I)FFT and adpcms
show size reduction with negligible overhead since the map-
ping algorithm generated optimal mapping by exploiting
split function. On the other hand, in basicmath, function
splitting gives more choice to trade-off SPM size and per-
formance. In this case, function splitting expands design
space by generating configuration giving slightly worse per-
formance with 25% less SPM usage, compared to 2-regions.

5.2.2 Scalability
Figure 7 shows the performance improvement of the opti-

mization when the SPM size varies. The SPM size is given
as a ratio to the total code size of each benchmark. As de-
picted in the figure, most benchmarks experience the perfor-
mance improvement especially when the SPM size is small.
As the SPM size increases, the improvement slows down.
This is natural since the optimization gives performance im-
provement by relaxing the size requirement to avoid frequent
conflicts. When the SPM size is large enough, high-quality
mapping can be generated without function splitting.

Benchmarks show different sensitivity depending on their
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Figure 7: Performance improvement from function splitting
when various SPM sizes are given. The size in x axis repre-
sents the ratio to the total code size.
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Figure 8: Size and performance overhead after splitting us-
ing size optimization policy when desired number of regions
is 1.

characteristics. Benchmarks depicted in Figure 7a show
improved performance with all SPM sizes. On the other
hand, benchmarks in Figure 7b are generally not sensitive
to the SPM size and function splitting has marginal effects
on them. A third class of benchmarks in Figure 7c shows
the varying performance improvement as the SPM size in-
creases. In these benchmarks, function splitting is beneficial
when the SPM size is small, but its overhead restricts gener-
ation of good mappings when the SPM size is large enough.

5.3 Size Optimization
Figure 8 shows the result of function splitting using size

optimization policy. We compared the size and performance
before and after splitting, when the desired number of re-
gions is 1. The results show the average code size reduction
of 31% with 7% performance overhead. Performance over-
head is 2% on average for all the benchmarks excluding sha

and stringsearch.
We can classify the benchmarks into 3 categories. Each

categories is shown in Figure 8 by number. Benchmarks in



1© ((I)FFT, susans, sha, stringsearch, adpcms, basicmath
and CRC32) have the most suitable structure for the size op-
timization. In these benchmarks, large functions have loops
which call smaller function frequently. Therefore, splitting
large function successfully reduces the requirement of SPM
size but does not introduce many additional function calls.
This policy is also applicable to benchmarks that does not
many function call, such as susans.

On the other hand, two rijndaels in 2© show high perfor-
mance overhead. This comes from their application struc-
ture, where small main driver function calls large computa-
tion function in a loop. They show high reduction in SPM
size since the function sizes are skewed, but also have high
performance overhead. By splitting large function which is
called frequently, the number of function call and manage-
ment overhead from this function increases.

Benchmarks in 3©, adpcms, cannot take advantage of the
splitting. In these cases, there are no large enough functions
to split. Splitting function will actually increase the function
sizes, due to the extra instructions and temporary variables
introduced for new function calls.

6. CONCLUSION
In function-level code management, the quality of function-

to-region mapping determines performance of a program.
Although many researcher have put significant efforts into
finding efficient mappings to improve performance, the qual-
ity of mapping is limited by the sizes of functions and their
call patterns. This paper presents a technique to split func-
tions into smaller functions to break away from this funda-
mental limitation of function-level code management. We
present two different optimization policies; while the perfor-
mance optimization policy tries to minimize management
overhead, the size optimization policy focuses on reducing
the minimum SPM size requirement of a program.

In our experiments with several benchmarks, we observed
that using our function-splitting technique is effective in
improving performance and reducing the size requirement.
With performance optimization policy, execution time can
be reduced by 16% on average. To achieve a comparable
performance without function-splitting, SPM sizes have to
be 20% larger. On the other hand, the size optimization
policy can reduce the SPM size by 31% from the minimum
SPM requirement before splitting, increasing the execution
time only by 7% on average.

We will extend this work by developing an optimal function-
splitting scheme that can find optimal splitting points for
performance while keeping the function sizes within any
given SPM size.
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