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CUDA has successfully popularized GPU computing, and GPGPU applications are now used in various em-
bedded systems. CUDA programming model provides a simple interface to program on GPUs, but tuning
GPGPU applications for high performance is still quite challenging. Programmers need to consider numer-
ous architectural details, and small changes in source code, especially on memory access pattern, can affect
performance significantly. This makes it very difficult to optimize CUDA programs. This paper presents
CuMAPz, which is a tool to analyze and compare the memory performance of CUDA programs. CuMAPz can
help programmers explore different ways of using shared and global memories, and optimize their program
for efficient memory behavior. CuMAPz models several memory-performance related factors: data reuse,
global memory access coalescing, global memory latency hiding, shared memory bank conflict, channel skew,
and branch divergence. Experimental results show that CuMAPz can accurately estimate performance with
correlation coefficient of 0.96. By using CuMAPz to explore memory access design space, we could improve
the performance of our benchmarks by 30% more than the previous approach[Hong and Kim 2010].
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1. INTRODUCTION

The computational power of modern Graphics Processing Units (GPUs) has been
rapidly increasing, and has now reached teraFLOP scale. Traditionally, GPGPU (Gen-
eral Purpose computation on GPUs) programming required a high level of expertise
and proficiency, but NVIDA CUDA [NVIDIA 2010b] and OpenCL [OpenCL ] have suc-
cessfully lowered the entry barrier of writing GPGPU codes. GPGPU applications are
now used in various embedded systems, including military, aerospace and medical ap-
plications [GE Intelligent Platforms ; TechniScan ]. Recently, GPGPU has gained much
attention in mobile systems due to its high power efficiency. Low power GPUs such as
ARM Mali [ARM ] and NVIDIA ION [NVIDIA b], support OpenCL or CUDA, invigo-
rating GPGPU applications in embedded systems.

In spite of high compute power of GPUs, fully utilizing the potential of the hard-
ware is challenging. Even if the application is compute-intensive, the performance is
significantly affected by memory performance, because GPGPU applications typically

Authors are with the Compiler Microarchitecture Lab at Arizona State university, Tempe, AZ 85281. Au-
thor’s email addresses: yooseong.kim@asu.edu

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© 2010 ACM 1539-9087/2010/03-ART39 $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.




39:2 Y. Kim et al.

have large data sizes '. Massive parallel architecture and complex memory hierarchy
of GPUs have introduced several performance optimization considerations [NVIDIA
2010a; Ryoo et al. 2008; Ruetsch and Micikevicius 2009]. Many of these factors are
related to the way of using shared memory and global memory, such as how to access
global memory, what to be fetched in shared memory, shared memory buffer size. Pro-
grammers need to consider all of these performance-critical factors carefully since a
slight change in source code might result in much slower, or faster, execution time.
Furthermore, programmers have to decide numbers of parameters regarding memory
access pattern, such as loop structure, array index requested by each thread, data to
be fetched in shared memory, the shared memory array size, etc. To try all of the op-
tions is inefficient and often infeasible because writing a different version of a kernel
is still complicated work and space of optimization to be explored is too large [Ryoo
et al. 2008]. We cannot impose programmers this heavy burden of considering all of
detail factors at the same time while writing a massively parallel program.

In this paper, we focus on the problem of improving application performance by us-
ing shared memory. Shared memory is an explicitly-managed scratchpad memory of
a small size (e.g. 16KB in Tesla[NVIDIA a]). Using shared memory is vitally impor-
tant in optimizing CUDA programs, because the global memory is not cached and is
bandwidth-constrained. On the other hand, shared memory is as fast as registers, and
is the only fast memory where both read and write accesses are enabled. Other mem-
ories, such as texture memory and constant memory, are read-only 2. Even in this
small subset of the problem, optimizing program performance is not trivial. For exam-
ple, traditional data reuse analysis for explicitly managed scratchpads is not enough
for shared memory in GPUs. This is because slow global memory can often become
a bottleneck when there is uncoalesced accesses or partition camping [Ruetsch and
Micikevicius 2009], leading to counter-intuitive results. Shared memory access pat-
tern is also an important factor to be considered since it can cause bank conflicts or
branch divergence. Even a slight change in source code can create a bottleneck, and
result in drastic changes in the performance. To address this problem, we present a
tool: CuMAPz (CUDA Memory Access Pattern analyZer), which estimates the memory
performance of a CUDA program. Since our approach can quantify the performance
impact of each of performance critical factors, programmer can find a possible bottle-
neck and try to improve the corresponding part of the code. Programmers can also
use our approach to explore different ways of using shared and global memories, and
optimize their programs for memory performance.

This is a comprehensive approach to analyze the memory performance of programs,
covering all the well-known factors such as the degree of data reuse, global memory
latency hiding, global memory access coalescing, shared memory bank conflict, chan-
nel skew, and branch divergence. Our experiments on benchmarks from [Kolson et al.
1996] and Rodinia benchmark suite [Che et al. 2009], and kernels from CUDA SDK
show that CuMAPz can accurately predict the relative performance of various ways to
use shared and global memories, with average correlation coefficient of 0.96. By using
CuMAPz to explore shared and global memory use design space, we could improve the

1Computational performance still affects the overall performance, and there have already been researches
on it [Hong and Kim 2010; Ryoo et al. 2008]. This work, on the other hand, focuses on memory performance
which has not been studied as much.

2There is also local memory, which is the same as global memory and only used for register spilling and
local arrays. Local memory data is private to each thread, so local memory accesses are always coalesced
[NVIDIA 2010b] and thus efficient. A programmer or a compiler cannot control the local memory access
behavior except the size of local memory data usage per thread. Therefore, we do not consider local memory
in this paper.
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performance of our benchmarks by 30% more than the previous approach[Hong and
Kim 2010].

2. BACKGROUND

NVIDIA Compute Unified Device Architecture (CUDA) and its programming mode
have evolved over generations. In this paper, we focus on the NVIDIA GT200 architec-
ture, which has compute capability version [NVIDIA 2010b] of 1.3. This does not harm
the generality of our work, since the same or similar approach as ours can be applied
to different generations.

2.1. CUDA Program Execution Model

CUDA programming model is basically an extended version of C designed to help pro-
grammers write kernels relatively easily with an abstraction of hardware. In CUDA
programming model, serial code executes on CPU while parallel code executes on GPU.
Code running on GPU is written as functions, called kernels. CPU code launches one
kernel at a time for its execution on GPU and transfers data for input and output to
and from GPU.

CUDA architecture is massively parallel in that a kernel is executed by thousands of
threads. In NVIDIA GT200 architecture, there is a grid of streaming multiprocessors
(SMs), and each SM has eight scalar processors (SPs). Each SM can have thousands
of threads in-flight. Threads are grouped into thread blocks. Each thread has its own
thread id to represent the relative location in a block, and thread blocks also have ids
for themselves. Combining the block id and the thread id, each thread is assigned a
unique id.

Each thread block is assigned to SM to be executed, so the basic unit of scheduling
in SMs is a thread block. The actual execution of threads on SPs is done in groups of
32 threads, called warps. All threads in thread blocks assigned to one SM are grouped
into warps, and thread id’s in a warp are consecutive. SPs execute one warp at a time,
and the execution of a warp is in SIMD manner, so threads in the same warp are
executed in lock-step, which means all SPs in one SM execute the same instruction at a
time. This lock-step execution introduces a lot of overhead in the execution of branches
because every path has to be serialized, which means every cores must execute both
branch paths.

The number of in-flight threads in one SM is affected by many factors, such as the
number of thread blocks and threads assigned to the SM, the number of used registers,
and the size of shared memory buffers. Since threads are scheduled in a granularity
of a thread block, the number of in-flight threads can be much less than the maximum
possible. Occupancy [NVIDIA 2010b] denotes the ratio of the number of current active
threads to the maximum number of active threads, which basically means how busy
the program makes the cores.

2.2. Global Memory and Shared Memory

CPU code can only transfer data to this off-chip memory, called global memory, so
basically all data resides in global memory. Global memory is not cached in devices
of compute capability 1.x, and the latency of accessing global memory is hundreds
of cycles. However, this latency can often be hidden with the help of having a large
number of threads in-flight (thread level parallelism) and subsequent independent
instructions (instruction level parallelism). Thus, the independent instructions of this
warp or other warps can be executed instead of just waiting for the 10 operation to
be done in a warp. What is more crucial for performance is the bandwidth utilization.
Even though the bus between global memory and the SMs is quite wide (e.g., 512 bit
wide for Tesla C1060 [NVIDIA a]) the massively parallel execution can easily saturate
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int row = blocklIdx.yx*blockDim.y+threadldx.y;

int col = blockIdx.xxblockDim.x+threadldx.x;

if (col >= MAX-2) /! array boundary check
return;

out[rowsxMAX+col] = in[rowxMAX+col] x
in[row+*MAX+col +1] =
in[row+«MAX+col +21];

Fig. 1. A simple CUDA program which does not use shared memory. We will optimize this program to use
shared memory. bldx, bDim, and tldx are respectively abbreviations for blockIdx, blockDim, and threadldx.
in[] and out|] are two dimensional arrays with size MAX*MAX. Array element type is float for both arrays.
MAX is defined as 16384%16384.

the bandwidth, and this often becomes the performance bottleneck in CUDA programs.
Global memory access coalescing and channel skew, so called partition camping in
[Ruetsch and Micikevicius 2009], are dominant factors in bandwidth utilization. The
details of memory coalescing and channel skew will be discussed in Section 5.

Shared memory is on-chip memory, with latency equal to that of registers. It is an
software-controlled memory which is often used as a local buffer for fast retrieval of
data. Similarly to scrachpad memory [Issenin et al. 2004], it is important to keep fre-
quently accessed data in the shared memory. Thus, the degree of data reuse is an im-
portant performance consideration but not the only. All data are first present in global
memory, so data must be prefetched from global memory to shared memory. Since
prefetching data to shared memory must incur global memory accesses which can be
very slow as fore-mentioned, the global memory load instructions for prefetching data
often dominate memory performance. Shared memory is on-chip, the bandwidth is not
a performance limiting factor, but bank conflicts can often slow down a program. We
will discuss more details about this in Section 5.

3. MOTIVATING EXAMPLE

In this section, we start from a very simple CUDA program shown in Figure 1 and
try to optimize its performance by using shared memory. We show that performance
optimization of CUDA programs is not trivial, and can be counter-intuitive — mainly
because there are many factors that affect memory performance, and the effect of all
of them need to be considered simultaneously.

3.1. Question 1: What to fetch into shared memory?

Shared memory is a fast local buffer, and therefore intuition suggests that keeping the
most frequently used data in the shared memory should improve performance. In fact,
higher data reuse should imply better performance. In the CUDA example in Figure 1,
there are three memory references, row*xMAX+col, row*MAX+col+1, and row*MAX+col+2.
Table I shows that if we fetch row*MAX+col+1 to the shared memory (code shown in Fig-
ure 2), then out of a total 805208064 accesses to the array in[], 771670016 accesses are
found in the shared memory. Table I shows that among the three options for fetch func-
tions, the reference row*MAX+col+1 has the largest reuse. This should imply that fetch-
ing row*MAX+col+1 should achieve the best performance. However, this is not the case.
The third column in Table I shows the execution time (in ms) of prefetching the ref-
erences on NVIDIA Tesla C1060. It shows that prefetching the reference row*MAX+col
is best. Even the last case with smallest data reuse is slightly faster than the second
case. This counter-intuitive result is mainly caused by global memory access coalesc-
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blocklIdx .yxblockDim.y+threadldx.y;
blockIdx .x+blockDim .x+threadldx.x;

int row
int col

float t1, t2, t3;

__shared__ float s_in[BLKDIM][BLKDIM];
s_in[tldx.x][tIdx.y] = in[rowxMAX+col +1];
__syncthreads ();

if (tIdx.x == 0) // this part not prefetched
tl = in[rowxMAX+col ];

else
tl = s_in[tldx.x—1][tldx.y];

t2 = s_in[tldx.x][tIdx.y];

if (tIldx.x == bDim.x—1) // this part not prefetched
t3 = in[rowxMAX+col +2];

else
t3 = s_in[tldx.x+1][tIdx.y];

out[rowxMAX+col] = t1*t2xt3;

Fig. 2. Some data is fetched into a shared memory buffer. Now, data that can be read from the buffer is read
from shared memory to exploit data reuse. BLKDIM denotes the block dimension which is 16 here.

ing. Global memory access coalescing is the phenomenon in which hardware automat-
ically combines accesses to contiguous memory to a fewer number of large memory
access. We model the effects of global memory coalescing in our performance estima-
tion.

Table |. Prefetching Different Data into Shared Memory

Data reuse | Execution time (in ms)
not using shared mem - 78.15
row*xMAX+col 754925568 61.11
row*MAX+col+1 771670016 64.86
row*MAX+col+2 754876416 63.77

We can improve the performance around 20% by using shared memory,
but counter-intuitively, the case with highest degree of data reuse, which
is shown in the second column as the number of times fetched elements
in buffer are read, exhibits the worst execution time.

3.2. Question 2: How to access shared memory?

How data is stored to and read back from shared memory also significantly affects
performance. In Figure 2, data is accessed in a column-wise manner, as shown at Line
4,9, 11, and 16. Another option would be to store and accesses in a row-wise manner
(i.e., s_in[tIdx.y] [tIdx.x]). The second and third columns in Table II compares the
execution time of the two options, and shows that row-wise access performs better.
The fourth column shows that similar affect is achieved by skewing the access pattern
in the form: __shared__ float s_in[BLKDIM] [BLKDIM+1]. These variations in execution
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Table Il. Changing the Way to Access Shared memory

Execution time (in ms)

Column-wise | Row-wise | BLKDIM+1
rowxMAX+col 61.11 45.06 44 .98
row*MAX+col+1 64.86 54.75 53.69
row*MAX+col+2 63.77 55.25 54.39

Changing the way to access shared memory turns up more improve-
ment about 26% in the best case shown at the top row. Note that the
performance improvement is limited in other cases where the obser-
vation from the Section 3.1 works as a bottleneck.

time are because of shared memory bank conflicts. Shared memory bank conflicts occur
if there are multiple requests to different addresses in the same bank. In this case, the
requests are serialized. CuMAPz models this effect.

3.3. Question 3: How to access global memory?

Here we present another example of a small change in code causing a significant differ-
ence. A programmer might have designed the global memory write reference at Line
18 in Figure 2 to be in a column-wise manner as in out [col*MAX+row]. This would have
resulted in disastrous performance as shown in Table III. This unexpected slowdown
is caused by channel skew. Channel skew is the ratio of the number of concurrent ac-
cesses to the most used channel to the least used channel. CuM APz models this effect
also.

Table Ill. Changing the Way to Access Global Memory

Execution time (in ms)

Row-wise | Column-wise
not using shared memory - 3938.08
rowxMAX+col 46.06 3933.88
row*MAX+col+1 54.75 3936.23
row*MAX+col+2 55.25 3937.56

A slight change in a way to access global memory unexpect-
edly brings drastic performance degradation. Note that there
is hardly any benefit of using shared memory. Shared memory
accesses kept the same in a row-wise manner as we changed in
the Section 3.3.

4. RELATED WORK

Traditional data reuse analysis, such as [Issenin et al. 2004] is no longer the answer
for finding better ways to use shared memory in GPUs since there are many other
factors that affect performance significantly. To understand the details of architecture
better and help programmer optimize applications, there have been many researches
on developing analytical performance models. Ryoo et al. [Ryoo et al. 2008] modeled
the amount of parallelism employed in a program and the efficiency of a single ker-
nel execution in a thread. However, they did not consider memory performance and
their analysis is only for compute intensive benchmarks. Hong and Kim [Hong and
Kim 2010] proposed an analytical performance model that includes the effect of paral-
lelism to hide global memory access latency. Their model, however, does not take into
account branch divergence. This means that data reuse cost caused by prefetching
only part of accessed data and global memory access coalescing effect caused by taking
serialized execution paths cannot be modeled. Latency hiding, shared memory bank
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Fig. 3. CuMAPz comprehensively analyzes the performance critical factors in the architecture: (a) Branch
divergence in SIMD cores and latency hiding, (b) Data reuse, (c¢) Shared memory bank conflict, (d) Global
memory coalescing and latency hiding, and (e) Channel skew.

conflicts and channel skew are not considered either. More recently, Zhang and Owens
[Zhang and Owens 2011] presented an quantitative performance model which models
the throughput of instruction execution, shared memory access, and global memory
access by considering occupancy, memory access pattern, and types of instructions.
This work however cannot model more detailed performance issues caused by memory
access pattern such as latency hiding, channel skew and branch divergence.

While the previous researches have done extensive work on analyzing instruction
execution performance, only little attention has been paid to memory performance.
We focus on comprehensive memory performance analysis. Since we do not consider
instruction execution performance, it is not possible to use our model to compare per-
formance of different kernels. However, as a detailed analysis of memory performance,
our approach can analyze all performance critical factors and identify the bottleneck
of a kernel. Then, programmer can try different ways to optimize the given program,
such as different buffer size, different memory references, different block ordering, etc..
Thus, our approach can identify the best design choice for performance among many
optimization choices.

As a more aggressive solution to relieve the burden on programmers, there have
been efforts to automate optimization of GPGPU applications. Ueng et al. [zee Ueng
et al. 2008] first presented a tool which optimizes a program automatically. However, it
required programmers’ annotations on source code in a specific format to find out any
possibility of optimization. Baskaran et al. [Baskaran et al. 2008] proposed a compiler
framework which automatically explores better program design and transforms a pro-
gram to the more desirable structure. They presented a source to source compiler in
more recent work [Baskaran et al. 2010]. Later, another work [Leung et al. 2010] also
presented a source-to-source compiler with a few improvements such as weighted cost
model that balances parallelism and locality, exploring more beneficial tile size and
thread block size, local buffer size. However, in both approaches, data reuse in shared
memory can only be employed when the corresponding global memory accesses can-
not be coalesced. The serialized execution by branch path divergence or channel skew
is not considered as well. Yang et al. [Yang et al. 2010] presented another optimizing
compiler. Their approach takes into account most of the factors that we consider in this
paper except for the branch divergence.
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Fig. 4. Overview of CuMAPz analysis. Using information about the input program, CuMAPz generates a loop
structure that emulates memory accesses of the program. Examining the addresses and the order of accesses
of each warp, CuMAPz analyzes the memory performance of the given program on the target hardware.

In all of the above work, an optimizing compiler can only find the worst case scenario
for each performance factor they consider and just avoid it. On the other hand, we can
quantify the performance impact of each of factors, which enables to even detect the
case when it deteriorates performance slightly. Moreover, our analysis can analyze the
combined effect of all factors. For example, there are cases where the best performance
can be achieved when some factors are affecting performance favorably while others
are not. We can estimate the performance impact considering all factors together.

5. OUR APPROACH

Figure 3 summarizes the analyses of CuMAPz. It covers all performance-critical effects
in the architecture: a) branch divergence in SIMD cores incurred by shared memory us-
age and latency hiding by simultaneous multithreading, b) data reuse of data fetched
in shared memory buffer, ¢) bank conflicts in shared memory accesses, d) coalescing in
global memory accesses, and e) channel skew in global memory accesses.

Figure 4 shows an overview of how CuMAPz works. Given a program, programmer
gives information about the program: thread and grid dimension; memory references
in the program; loops and branches that have memory references; and shared memory
references. The detailed information about the target hardware, such as number of
channels, channel width, and number of banks, is also needed, which can be obtained
from the device specification sheet.

Using the given thread block size and grid size information, CuMAPz constructs a
loop structure that exactly follows the execution of each warp in a block. If there are
loops or branches that contain memory references in, they are also included to emulate
the execution of threads on hardware. Then, memory references, which are functions
of block index, thread index, and loop indices, are plugged in the loop. We essentially
generate a trace of all memory addresses accessed in each warp.

For shared memory usage, we take two kinds of references as input: data fetch ref-
erences and access references. Data fetch references are the global memory references
to fetch data from global memory to shared memory buffers, and access references
are shared memory references. For example, the right hand side of Line 7 in Figure 2
shows a data fetch reference, and the left hand side an access reference. This pair cre-
ates a mapping between global memory addresses and shared memory addresses. Each
buffer will have the mapping information. As CuMAPz generates memory addresses
that are accessed using the loop and global memory references, it checks whether the

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



Memory Performance Estimation of CUDA Programs 39:9

addresses are buffered in shared memory. If so, it generates shared memory addresses
using the mapping. Data fetch reference is always paired with an access reference.
Some shared memory arrays are not used as buffers for global memory but as tem-
porary storage. These arrays will not have data fetch references and only have access
references. Using these access references that are not paired with data fetch refer-
ences, CuMAPz can directly generate shared memory addresses without using global
memory references first.

Then, examining the addresses accessed in each warp and the order of accesses,
CuMAPz analyzes 1) how many times data in shared memory is accessed (data reuse),
2) if global memory latency can be hidden, 3) how global memory accesses are coa-
lesced, 4) if global memory accesses are not skewed to some of memory channels, 5) if
shared memory accesses generate any bank conflict, and 6) if the use of shared mem-
ory introduces a branch. All these factors are explained in detail in next section. It is
possible that the same analysis can be done by some static analysis, but we leave this
as future work.

For a given program, CuMAPz will output a performance estimation with all quanti-
fied performance impact of each of the above factors. From the quantified performance
impact, the user can find which part of program needs to be improved. For example, a
program shows a very poor bandwidth utilization and shared memory access efficiency,
then the programmer will try to change global memory references and shared mem-
ory access references to change the corresponding behavior. Also, when a programmer
already has a clear picture about how the program will be with several design choices
about memory access, CuMAPz can be used to instantly compare performance of all
choices without actually writing or modifying the program. This is because CuMAPz
does not take a whole program or a PTX code as input but the parametrized input on
memory access shown in Figure 4.

5.1. Data Reuse Profit Estimation

For any global memory access, we check whether the corresponding access is buffered
in shared memory or not. This can be done by using the mapping created by shared
memory data fetch reference and access reference given as input. The corresponding
shared memory address can be obtained by the mapping. CuMAPz maintains a counter
to count the number of times shared memory buffers are accessed. During the iteration
of the loop for each warp shown in Figure 4, if a global memory address accessed by a
global memory access references is already mapped to one of buffers within the same
block, then the counter is increased. The degree of data reuse is represented in a term,
data_reuse, which can be modeled as follows:

bytes_shmem
bytes_buffered’

where bytes_buffered and bytes_shmem are defined as the following.

o)

data_reuse =

bytes_buffered = Z Z bytes_tr,

beB weW

bytes_shmem = Z Z Z bytes_shmem,

reRbeBweW

where R, B and W denote the set of all global memory references, the set of all buffers,
and the set of all warps, respectively. bytes_tr,, represents the bytes transferred while
fetching data from global memory in warp w. bytes_shmem, denotes the bytes read
from (or written to) shared memory buffer for data required (or written) by global
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memory reference r, during the execution of warp w. The concept of the bytes trans-
ferred in the term bytes_tr is detailed in Section 5.3.

5.2. Latency Hiding Profit Estimation

Global memory latency is hundreds of cycles, but both instruction level parallelism and
thread level parallelism can help hiding the latency. Instead of stalling until data ar-
rives, the cores can switch to other warps or the subsequent independent instructions.
Thread level parallelism can be simply modeled by occupancy [NVIDIA 2010b]. For
instruction level parallelism, we consider the number of load instructions for shared
memory data prefetch, i.e. the number of data fetch references for shared memory
buffers. Obviously, load instructions for shared memory data prefetch are all indepen-
dent, and executing them in a row can hide some of the latency of global memory ac-
cesses. 3 All dependent instructions will start after data is loaded into shared memory.
For example, the code snippet shown below, excerpt from matrix multiplication kernel,
has two prefetch functions. While the data for the first shared memory buffer sA is
being delivered, the load instruction for the buffer sB can be executed for all active
warps.

__shared__ float sA[BLK_SIZE] [BLK_SIZE];
__shared__ float sB[BLK_SIZE] [BLK_SIZE];

sA[threadIdx.y] [threadIldx.x] = A[a + wA*threadIdx.y + threadIdx.x];
sB[threadIdx.y] [threadIldx.x] = B[b + wB*threadIdx.y + threadIdx.x];
__syncthreads();

It is generally known that once occupancy reaches 50%, there is no more perfor-
mance benefit [NVIDIA 2010a]. Therefore, we only model the negative impact when
occupancy is less than 50%. The degree of latency hiding is modeled as follows:

MIN (Occupancy, 50)
50

where Occupancy is the occupancy in percentile, and n_shmem _load denotes the num-
ber of load instructions for shared memory data fetch. Both the number of shared
memory buffers and the number of data fetch references for each buffer should be
taken into account. The square-root of n_shmem _load is taken empirically by curve-
fitting. However, this can be changed for different generations of architecture where
the importance of instruction level parallelism is much more important. [Volkov 2010]

lat_hiding = - n_shmem load"/?, 2)

5.3. Coalesced Access Profit Estimation

When address accessed by a global memory reference is not mapped to any buffer,
global memory access occurs. When memory accesses from threads in each half warp,
which is a group of 16 consecutive threads, are aligned and not strided, the actual
transactions in memory can be coalesced to reduce the number of transactions. The
transactions are of 32-byte, 64-byte, or 128-byte. Since coalescing specifies the granu-
larity of data transfer, the size of data actually transferred from memory can be differ-
ent from the size of data requested. Thus, some unused data can be transferred, which
results in inefficient bandwidth utilization. Figure 5(a) shows an example where co-
alescing behavior incurs low bandwidth utilization (The figure is based on compute
capability 1.3[NVIDIA 2010b]). The coalescing behavior may be different for different

3Independent ALU instructions can also hide the latency, but we only consider memory operations in this
paper. Since CuMAPz does not take the whole program as input, it is basically not possible to model latency
hiding from executing independent ALU instructions. We leave this as future work.
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Fig. 5. (a) Shaded boxes depict threads, and clear box represents memory region. In the upper example, the
accesses are perfectly consecutive and aligned to the 64-byte segment, while the accesses are misaligned in
the lower example. Bandwidth utilization differs significantly. (b) Shaded boxes denote addresses requested
by thread blocks whose id’s are written in the boxes. Each outer frame represents a memory channel. Thread
blocks with consecutive ids are likely to be executed concurrently. On the right hand side, accesses of consecu-
tive thread blocks are all focused on only one channel, introducing significant channel skew.

generation of architecture [NVIDIA 2010b], but similar analysis can be applied with-
out loss of generality. 4
CuMAPz calculates the bandwidth utilization as the following:

bytes_access

bw_util = 3
bytes_tr @)
bytes_access = Z Z bytes_access,’
reRwew
bytes_tr = Z Z bytes_tr,
reRweWw

where bytes_access? and bytes_tr!* are the size of accessed (requested) data and actual
transferred data, respectively, for reference r in warp w. It is represented in terms of
warps for simplicity, but the actual analysis is done at the half warp granularity.

5.4. Channel Skew Cost Estimation

The memory subsystem in CUDA consists of multiple channels, and all of channels can
transmit data at the same time in parallel. Channel skew refers to the case where the
concurrent accesses are skewed to only a few of channels as shown in Figure 5(b). In
other words, channel skew occurs when global memory addresses that are requested
by all cores, at one point of time, are not evenly distributed to all the channels but
focused on only one channel of two channels. This essentially makes the bus width
much narrower on top of the slow latency of global memory. This phenomenon is also
called partition camping [Ruetsch and Micikevicius 2009].

To analyze channel skew, we need to know on which channel the concurrent accesses
are mapped. This makes the analysis tricky because to determine which blocks are
being executed concurrently is impossible. Initially, when a kernel is launched, threads
blocks are assigned to SMs in a sequential order so that adjacent blocks are executed
on adjacent SMs. Then, it becomes unpredictable after the first round of schedule since
the order in which thread blocks finish the execution cannot be determined [Ruetsch

4Similar analysis can be applied even in the presence of caches on devices with compute capability 2.x.
Cache line is of 128 bytes, so even if some part of memory can be cached, it is very likely that the accesses
from other warps will still incur cache misses. (The number of warps in an SM is usually at least 8 and 32
at maximum, which makes the size of data required from an SM to be 1024 to 4096 bytes in case of 4-byte
word size.) Moreover, since cache line maps to 128-byte aligned segment in global memory, misaligned and
strided access will fetch unused data, which will harmfully affect performance.
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and Micikevicius 2009]. Our channel skew analysis is basically to estimate the span
of initial round of concurrent memory accesses, and to see if those accesses are not
skewed to only part of channels.

When the channel width is X-byte, successive X-byte regions of global memory are
mapped to successive channels. For example, channel width is 256-byte in Tesla C1060,
and adjacent 256-byte regions are mapped to successive channels in that device. Let us
consider the initial set of blocks that are assigned to SMs when kernel is launched. A
global memory access instruction is likely to be executed by all threads in those blocks
at the same time due to simultaneous multithreading (SMT) of the hardware. The
addresses accessed by warps from successive blocks will be bDim.X x elem _size bytes
apart, where bDim.X denotes the X block dimension and elem _size is the maximum
element size of global memory arrays. Then, we can heuristically calculate the number
of blocks to initially use all the channels as the following.

channel_width
" bDim.X x elem_size

n_blk to_check = n_channels x MIN (max_blks 4)
, where max_blks is the maximum number of blocks that can run concurrently in one
SM for the given kernel, which is similar to occupancy except that occupancy is a
ratio. When the number of all thread blocks in the kernel is smaller than the number
calculated by the above, this analysis is skipped.

The impact of channel skew can be modeled as the skewness of mapping between
channels and global memory addresses requested during the execution of the above
number of thread blocks, which can be calculated as follows:

max_n_block _per_ch
MAX (1, min_n_block_per_ch)

(5)

ch_skew =

, where max_n_block_per_ch and min_n_block_per_ch denote, respectively, the maxi-
mum and minimum nonzero number of blocks assigned to a channel for the ini-
tial n_blk _to_check number of blocks, which is acquired from Equation 4. When
max_n_block _per_ch and min_n_block _per_ch are the same, which means all the accesses
are focused on one channel, ch_skew is just set to n_channels to represent severe chan-
nel skew.

5.5. Bank Conflict Cost Estimation

Similarly to global memory channels, shared memory is divided into multiple banks.
Successive four bytes data are assigned to successive banks. All banks can transmit
data in parallel, but each bank can serve one address at a time. When threads in a
half warp access K different addresses within one bank, the accesses are serialized K
times.

For example, let us consider the example in Section 3.2. Since, originally, the shared
memory buffer dimension is 16x16 and its type is float (4-byte), each column in a row
is mapped to a bank, and tIdx.x determines the bank number of the access. Using ref-
erence [tIdx.yl[tIdx.x], each thread in a half warp should access one address in each
bank. After changing the reference to [tIdx.x][tIdx.y], all threads in a half warp now
access 16 different addresses in one bank. This results in 16-way bank conflicts. In-
terestingly, changing the shared buffer array dimension to 16x17 can avoid the bank
conflicts. It makes the addresses requested by [tIdx.x][tIdx.y] spread over all banks so
that there is no bank conflict. The execution time changes in the example in Section
3.2 can be well explained in this way.

CuMAPz analyzes all addresses requested in each half warp and checks if bank
conflicts occur. Then, it accumulates all numbers of bank conflicts in half warps as the
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following:

n_bk_conflict = Z Z Z n_bk _conflict,’,

reRbeBweW

where n_bk_conflict,’ is the number of bank conflicts by shared memory accesses, in

warp w, caused by reference r. It is represented in terms of warps for simplicity, but

analyzed per half warp. Finally, the efficiency of shared memory access is modeled as

follows:

n_half warp x n_buffer
n_bk_conflict

where n_half warp and n_buffer denote number of half warps and number of shared
memory buffers in a program. When n_bk _conflict is zero, shm_eff is set to one.

shm_eff = (6)

5.6. Branch Divergence Cost Estimation

Besides memory latency or bottleneck, one of the factors that affect performance most
significantly is within-warp branch divergence. The execution of threads is in SIMD
manner. When threads in a warp take different execution paths, then all paths are
serialized. Branches are introduced when there is uncovered region that is not fetched
into shared memory, as shown at Line 6 and 13 in Figure 2. If some of addresses
accessed by a given reference in a warp are mapped to shared memory buffers, while
others not, then this not-perfect-coverage introduces branch divergence. 5 The existing
branches given as input are considered in this analysis since we intend to focus on the
performance impact of memory usage, i.e. how shared memory usage can introduce
branch divergence.

The penalty of serialized execution can be very different, even when the number of
paths remains the same, according to the program structure. It is mainly because if
the same memory reference is spread over different execution paths, then the accesses
cannot be coalesced because each path is taken one after another. Therefore, the coding
style of the kernel in Figure 2 is encouraged to achieve better performance, which is
more accurately predictable by our approach. In the figure, new variables t1, t2, and t3
are introduced so that all memory references can happen in a synchronized way. The
same kernel can be coded as shown in Figure 6. The first part of the code is omitted.
Every memory access is duplicated on every path, which makes the number of memory
requests 3 times more due to serialized execution. Also, note that the code in Figure
6, has the maximum number of paths taken in a warp of three while it is four in the
code in Figure 2. Though having less number of divergent paths, the code in Figure 6
runs much more slowly. In this paper, we assume that programmers would not write
a code in this way, and all the benchmarks in our experiments are not written in this
way either.

We simply model the impact of branch divergence as follows:

branch _eff = R 1barp
n_path

n_path = Z Z Z n_path,’

reRbeBweW

n_path, = {

(7

2, if paths diverged in warp w for »
1, otherwise,

5The other case where branches can be introduced is when the shared memory buffer size is not a multiple
of the thread block size, but as discussed in the previous section, shared memory buffer size can often be
adjusted to reduce or avoid bank conflicts. Therefore, we do not consider this case in this paper.
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if (tIldx.x == bDim.x—2)

out [rowxMAX+col] = s_in[tldx.y][tIdx.x] =*
s in[tldx.y]l[tIdx.x+1] =
in[rowxMAX+col +2];

}
else if (tldx.x > bDim.x—2)

out [rowxMAX+col] = s_in[tldx.y][tIdx.x] =*
in[row+«MAX+col +1] =*
in[rowxMAX+col +2];

}

else
out[rowxMAX+col] = s_in[tldx.y][tIdx.x] =*
s in[tldx.y][tIdx.x+1] =
s_in[tldx.y][tIdx.x+2];
}

Fig. 6. A worst case coding style for branch divergence. Every branch paths are serialized in CUDA. Every
memory access is duplicated on every path, which makes the number of memory requests three times more in
this example.

where n_warp denotes the number of total warps in a program.

5.7. Overall Memory Performance Estimation

Now all the factors that we explained in the above are combined together to estimate
overall memory performance. Memory performance estimate is calculated by the fol-
lowing formula.

bw _util

1/2
h shew x branch_eff x shm_eff (8)

MPE = data reuse x lat_hiding x
shm _eff is square-rooted to reflect the relatively smaller impact of shared memory bank
conflict on performance over other terms, which is empirically determined by curve
fitting. The larger MPE value is, the better the memory performance is.

6. EMPIRICAL EVIDENCE

We have implemented CuMAPz using C language. We ran CUDA driver version 3.2 on
NVIDIA Tesla C1060 [NVIDIA a] for all experiments. Table IV shows the list of bench-
marks used in this paper. The Laplace edge enhancement and Wavelet transformation
applications are from benchmark suites in [Kolson et al. 1996], and matrix multiplica-
tion and matrix transpose are from CUDA SDK. Gaussian, LUD, and Hotspot are from
Rodinia benchmark suite [Che et al. 2009]. The input size used for our benchmarks are
large enough to saturate all the processing cores for thousands of iterations. To avoid
the device startup time affecting the results, we included a dummy kernel launch as
follows before the actual kernel launch and measured only the latter kernel execution
time.
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Device code:

__global__ void dummy() {} // dummy kernel declaration
Host code:

dummy<<<1,1>>>(); // dummy kernel launch

We divide our experiments section into two parts i) Validation: in which we study
the correlation between our memory performance estimation and the performance of
the benchmarks for different ways of accessing shared and global memory, and ii) Per-
formance Optimization: in which we try to find the best way to accesses shared and
global memory using CuMAPz and the previous technique [Hong and Kim 2010].

Table IV. Kernel Characteristics

Input size | Thread block size Description
Laplace 8192x8192 16x16 Laplace transform
Wavelet 8388608 128 Wavelet filter
MatrixMul 1024x1024 varied Matrix multiplication
Transpose 2048x2048 32x32 Matrix transpose
Gaussian 160x160 varied Gaussian elimination
LUD 2048x2048 varied LU decomposition
Hotspot 1024x1024 16x16 Thermal simulation of a circuit
BackProp 65536 16x16 Machine learning algorithm on a nerual network

6.1. Validation

Here we compare estimated memory performance MPE by CuMAPz and the execu-
tion time of the real code using different ways to use global and shared memories. The
purpose of these experiments is to see how well CuMAPz can predict the relative per-
formance change as we try various ways of using memories. We refer to the reciprocal
of execution time as performance. Both values are normalized in order to compare two
sets of values in different scales. In all experiments we tried, performance change was
caused by factors that previous approach [Hong and Kim 2010] does not take into ac-
count. As a result, the performance prediction by their approach often stays almost the
same for all cases while the real performance varies a lot.

Laplace loop has two arrays, and one of them has nine references having different
strides. We only change what data is fetched into shared memory by using each ref-
erence one at a time. [row-1] [col], [row] [coll, and [row+1] [col] are coalesced ac-
cesses. Using one of these as a fetch function, a large part of uncoalesced accesses
caused by other references are substituted with corresponding shared memory ac-
cesses, and much more data reuse can be exploited. Figure 7(a) shows the comparison
result. References are denoted only using stride of accesses to save space. CuMAPz can
accurately predict the relative performance of all cases with correlation coefficient of
0.99. To see how CuMAPz estimated the memory performance, we show the normalized
values of each term in Equation 8 in Figure 7(c). The values are normalized because
of different scales of terms. The terms that have the same value for all cases are not
shown in the figure. The degree of data reuse has affected the profitability much as
we can see the value becomes almost twice from the first case to the last case. How-
ever, the one with the highest degree of data reuse does not show the best performance
mainly because of the bandwidth utilization. Bandwidth utilization is highest when
the accesses by a fetch function are aligned, which applies only to these three cases:
[row-1] [col], [row] [col], and [row+1] [col]. Using one of these as a fetch function,
a large part of uncoalesced accesses caused by other six references are removed and
substituted with corresponding shared memory accesses.
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Fig. 7. Results for Laplace and Wavelet (a),(b) CuMAPz can estimates the relative performance more accu-
rately than the previous approach. (c) Mainly data reuse and bandwidth utilization are affecting performance.
(d) Data reuse, latency hiding, and branch divergence are most significant factors affecting performance.

Wavelet loop has three arrays in it, and one array has six references. Here we in-
crease the buffer size, shared memory array size, starting from the same as block size
to the sixth multiple of it. Each time we introduce a shared memory buffer whose size
is the same as the thread block size. Each buffer is assigned one of the six references
as a fetch function. Thus, we have at most six independent load instructions for shared
memory data prefetching. Figure 7(b) shows the comparison result, and the correlation
coefficient to the performance is 0.92. As shown in Figure 7(d) branch divergence re-
duces as buffer size increases, because a branch disappears as one buffer is dedicated
to one reference. However, the best performance is achieved when the buffer size is
the twice the thread block size. This is because the buffer size of twice of the thread
block size can employ data reuse the most. Because of the overlap between the regions
covered by each reference, larger buffer size than this results in unnecessarily fetching
duplicated elements. Also, it is shown that the degree of latency hiding increases as the
number of buffers goes up because the number of independent data fetch references
grows.

For MatMul, at first we prefetch one of three matrices (A, B, and C) and then both A
and B into the shared memory. Then, we try the similar conversion shown in [Volkov
2010] such that we shrink the block dimension of X or Y direction (denoted as AB_x and
AB_y respectively in Figure 8(a) and 8(c)) while not changing shared memory buffer
size and grid dimensions. This conversion gives each thread twice more work. Half
number of threads prefetch the shared memory buffer of the same size, and thus
the number of prefetch load instructions is doubled. As shown in 8(a), CuMAPz can
accurately estimate the performance change of each case. The correlation coefficient
between performance and CuMAPz output was 0.94. The accesses to the first input
matrix A are not coalesced at all because all threads in a half warp access exactly
the same element at a time, accessing the same row, which makes prefetching matrix
A more beneficial than B. If we prefetch both A and B, then the number of load in-
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Fig. 8. Results for MatrixMul and Transpose (a),(b) CuMAPz can estimates the relative performance more
accurately than the previous approach. (¢) Latency hiding and bandwidth utilization affect performance most
significantly. (d) Channel skew and bank conflict are only dominating factors.

structions becomes two. The above mentioned conversion makes the degree of latency
hiding increase, but reducing the block dimension in X axis introduces two-way shared
memory bank conflicts. This is because the blockDim.X becomes 8, which makes two
threads within a half warp (e.g. thread 0 and thread 8) access the same bank. Figure
8(c) describes all of the phenomena.

For Transpose, the same conversions as in [Ruetsch and Micikevicius 2009] are done.
First, uncoalesced global memory accesses are substituted with coalesced ones using
shared memory. Data are first copied into shared memory in such a way that accesses
are coalesced, then data are read from shared memory. Second, global memory accesses
are now coalesced, but there are shared memory bank conflicts. The bank conflicts
are removed by increasing the X-dimension of the buffer by one as we described in
Section 3.2. However, this conversion does not bring much performance improvement
because the code is suffering from severe channel skew. Then, we remove channel
skew by using diagonal block ordering [Ruetsch and Micikevicius 2009], which is to
change the interpretation of blockIdx.x and blockIdx.y as follows so blocks can work
on different data. Note that blockIdx.x and blockIdx.y in the rest of the code need to
be substituted with blockIdx_x and blockIdx_y, respectively.

blockIdx_x = (blockIdx.x+blockIdx.y)%gridDim.x;
blockIdx_y = blockIdx.x;

Lastly, we again roll back the modification done in the second step to see the effect
of shared memory bank conflict. Figure 8(d) shows the change of corresponding perfor-
mance critical factors at each step. At first step, shared memory efficiency is low due to
shared memory bank conflict, and it is resolved at second step. At third step, channel
skew is resolved, and bank conflict appears again at the last step. Figure 8(b) shows
that CuMAPz can accurately estimate the performance variation with correlation co-
efficient of 0.97.
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Fig. 9. Results for Gaussian and LUD (a),(b) CuMAPz can estimates the relative performance more accu-
rately than the previous approach. (¢) Latency hiding, global memory coalescing and shared memory bank
conflict affect performance. (d) Latency hiding and shared memory bank conflicts determine the performance
change

Similarly to MatrixMul, we do the same conversion as done in [Volkov 2010] for
Gaussian and LUD. In Gaussian, the block dimension along X axis is first reduced from
16 to 8 (2x) and then 4 (4 x). Then the same modification is done along Y axis (2_y and
4_y). The performance estimation accuracy of CuMAPz is shown in Figure 9(a), and the
correlation coefficient is 0.95. As we reduce the block dimension, global memory access
latency can be hidden more, but shared memory bank conflicts increases as we shrink
the block dimension along X axis. Also, the global memory accesses are not coalesced in
4 x case since only four consecutive memory addresses are requested at a time, which
is utilizing only half of the minimal transaction size of 32-byte. All of the phenomena
mentioned above are depicted in Figure 9(c).

LUD benchmark has three separate kernels: lud diagonal, lud perimeter, and
lud_internal. Only 1ud_internal is modified since it is iterated for the most number
of times and dominates the program performance. Figure 9(b) and 9(d) show the sim-
ilar phenomena for LUD as the X axis block dimension gets shrunk from 16 to 8 and
then to 4. Interestingly, for all three cases, performance barely changes. More latency
hiding can be achieved, but bank conflicts also increases at the same time. Also, this
kernel has a loop in it, which accesses shared memory extensively, so shared memory
bank conflicts affect the performance more significantly. The benefit from latency hid-
ing is almost compensated and performance starts to slightly decrease in the last case.
Overall, correlation coefficient between CuMAPz and performance is 0.97.

Hotspot benchmark has three global memory arrays and three shared memory
buffers, with various conditional branches and loops with memory references. First, we
apply diagonal block ordering as we did in Transpose. As shown in the second columns
in Figure 10(a) and 10(c), it causes a significant channel skew, and performance be-
comes worse. As opposed to the case with Transpose, diagonal block ordering deteri-
orates channel skew, which urges the importance of comprehensive memory analysis.
Then, we apply the following thread id translation code to switch threadIdx.x and
threadIdx.y.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



Memory Performance Estimation of CUDA Programs 39:19

performance —#—CuMAPz —&—Honget al. —4— performance CuMAPz —&—Hong et al.

1 Wﬁ? 1 i <z
0.8 0.8
06 \ 0.6 \\
0.4 \ 0.4
0.2 \ 0.2
. "\o\‘

original diag orig_tytx diag_tytx original tytx
(a) (b)
W bw_util ch_skew W shm_eff W bw_util shm_eff
1+ 1
0.8 0.8 -
0.6 0.6 -
0.4 + 0.4 -
0 - 0 T
original diag orig_tytx diag_tytx original tytx

(c) (d)

Fig. 10. Results for Hotspot and BackProp (a),(b) CuMAPz can estimates the relative performance more
accurately than the previous approach. (¢) Bandwidth utilization, channel skew, and shared memory bank
conflict affect performance. (d) Bandwidth utilization and shared memory bank conflict affect performance.

tx = threadIdx.y;
ty = threadldx.x;

The global memory references and shared memory references in this benchmark are
complex functions of thread id’s, and now it uses tx and ty instead of threadIdx.x
and threadIdx.y, which completely changes the access pattern of both global memory
and shared memory. The third and fourth columns in figure show the effect of this ap-
plied to both the original benchmark and the one with diagonal block ordering. Global
memory bandwidth utilization and shared memory access efficiency are aggravated
greatly, and performance is degraded. CuMAPz can analyze all of these effect and es-
timate performance accurately, showing the correlation coefficient of 0.96.

Figure 10(b) shows performance degradation of BackProp benchmark, caused by
switching thread id’s as we did for Hotspot. Using CuMAPz, we can estimate the per-
formance degradation and analyze the cause as shown in Figure 10(d). Global memory
bandwidth utilization and shared memory access efficiency are greatly reduced. Since
there are only two points, the correlation coefficient is one.

6.2. Performance Optimization

In this section, to see the usefulness of the detailed memory performance analysis, we
show the performance improvement that we could achieve using the proposed tech-
nique. For each benchmark, we prepared a set of input parameters on memory usage
(shown in Figure 4) and tested the performance. To be more specific, we compared
the performance of 1) fetching different global memory arrays into shared memory
buffers, 2) using different data fetch references for each shared memory buffer, 3) us-
ing different shared memory buffer sizes, 4) using different the global memory and
shared memory access references, and 5) using different thread block sizes.
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Fig. 11. Normalized execution time comparison among the original benchmarks with no optimization, and
the cases using the best way of using memories selected by [Hong and Kim 2010] and CuMAPz. The memory
usages selected by CuMAPz can reduce execution time more than 30% on average compared to the ones selected
by [Hong and Kim 2010].

Figure 11 compares the execution time of the best way of using shared and global
memories, among the input we tried , selected by [Hong and Kim 2010] and CuMAPz.
The baseline is the execution time of the original benchmark, without any modifica-
tion. Gaussian and LUD already had shared memory buffers, so the amount of exe-
cution time reduction is not as much as we have for Laplace, Wavelet, MatMul, and
Transpose. Moreover, all the design choices we tried for Hotspot and BackProp re-
sulted in performance degradation, i.e. we could not optimize them. This however does
not necessarily mean that the benchmarks are already optimized enough. We can still
try other design choices which may result in better performance. For this purpose,
automatic design space exploration is part of our future work.

Using [Hong and Kim 2010], we could not identify the best performance design
choices due to lack of detailed memory performance analysis. Many performance crit-
ical factors are not considered such as channel skew, latency hiding, and branch di-
vergence. Also, shared memory instructions are just regarded as register operations.
Unless the number of global memory instructions is reduced as in matrix multipli-
cation and matrix transpose, shared memory buffers only increases instruction count
in [Hong and Kim 2010]’s viewpoint, so it chose rather not to use shared memory. In
matrix transpose, it could not differentiate the worst case and the best case in the
explored design space, because it does not consider channel skew and shared memory
bank conflict. Note that when the performance estimation using [Hong and Kim 2010]
was the same for multiple design choices, we chose the best performance case among
them. This means that performance of the best design choices found by their model
can also be worse than that in the figure.

Overall, CuMAPz-chosen usages could reduce execution time by average 30% more
than the best ways chosen by [Hong and Kim 2010].

7. RUNTIME CONSIDERATIONS

The timing complexity of the CuMAPz analysis is O(|W|-|R|-| B|), where W, R, and B are
the set of all warps, global memory references, and shared memory buffers respectively.
In case where the kernel contains loops that have memory references, the complexity
increases with the loop depth exponentially. To work around this, we would like to
note that CuMAPz analysis scales with input data size. In other words, it is possible
to perform the analysis on a smaller data set, and the choice of the best way to access
the shared and global memory remains valid for the original program. Except for the
channel skew, all other terms are independent of input size. The ratio between shared
memory and global memory accesses for data reuse and branch divergence analysis
remains the same for different input size. Also, as long as full warps are executed, the
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Fig. 12. The correlation coefficients stay almost the same as we reduce the input size while the execution
times decrease dramatically.

pattern of global memory coalescing and shared memory bank conflict do not change
either. For channel skew analysis to scale, we should at least have number of blocks
more than that obtained by n_blk_to_check, which is acquired from Equation 4.

We compared the correlation coefficients between CuMAPz output and performance
for various input sizes. Figure 12(a) shows the four results for Laplace benchmark,
varying the input array size from 4096x4096 to 512x512. The correlation coefficients
stay almost the same as we reduce the input size while the execution times decrease
dramatically. The difference between correlation coefficients is less than 0.001. We
also show the correlation coefficient and the execution time of GPGPU-sim (v. 2.1.2b)
[Bakhoda et al. 2009], a cycle-accurate GPGPU simulator. GPGPU-sim takes more
than 30 minutes for 1024x1024 input array, while CuMAPz takes only about two min-
utes for 4096x4096 arrays and about two seconds for 512x512 arrays. For results in
this paper, we used orders of magnitude smaller input arrays. (e.g., 256x256 array in-
stead of 8192x8192 array.) The average correlation coefficient between actual runtime
and CuMAPz output for all benchmarks was 0.96, and the maximum CuMAPz run-
time among all cases was less than 2 seconds on E4500 Intel Core 2 Duo system with
3GB memory.

8. LIMITATION

Our approach is compile-time analysis, and therefore we cannot handle any infor-
mation that can only be determined during run-time, such as dynamically allocated
shared memory, indirect array accesses, etc. Also, we only focus on memory perfor-
mance. Thus, our approach may not show the same accuracy for compute-intensive
kernels as for memory-intensive kernels. For example, we cannot model latency hiding
from executing independent ALU instructions. We only model the latency hiding from
having multiple data fetch references as they are obviously independent. For the same
reason, the MPE values from Equation 8 are only meaningful for different versions of
one program. Since different program may have different computation performance,
performance estimation of CuMAPz is only relative to other design choices of a given
program.

9. CONCLUSION AND FUTURE WORK

GPUs provide power-efficient processing power in embedded systems, but optimizing
GPGPU programs is not easy due to complex memory hierarchy and many inter-
coupled performance factors to be considered. The memory performance affects the
program performance very significantly; therefore optimizing the memory behavior
of a program is crucial in optimizing GPGPU programs. In this paper, we present
CuMAPz, a tool which can help developers to explore different ways to use global
and shared memories, estimate their performance, and thereby optimize the program.
CuMAPz comprehensively analyzes various performance critical effects on memory
behavior, such as data reuse, global memory latency hiding, global memory access coa-
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lescing, bank conflicts, channel skew, and branch path divergence. Since our approach
can quantify the performance impact of each of performance critical factors, program-
mer can find a possible bottleneck and try to improve the corresponding part of the
code. Experimental results show very high correlation between the actual execution
time and CuMAPz memory performance estimation. Two main threads of research
that start from this work are: i) automatic design space exploration to find the best
way to use memories, and ii) taking texture memory and constant memory into con-
sideration.
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