
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 11, NOVEMBER 2011 1599

High Throughput Data Mapping for Coarse-Grained
Reconfigurable Architectures

Yongjoo Kim, Jongeun Lee, Member, IEEE, Aviral Shrivastava, Member, IEEE, Jonghee W. Yoon,
Doosan Cho, Member, IEEE, Yunheung Paek, Member, IEEE

Abstract—Coarse-grained reconfigurable arrays (CGRAs)
are a very promising platform, providing both up to 10–
100 MOps/mW of power efficiency and software programma-
bility. However, this promise of CGRAs critically hinges on
the effectiveness of application mapping onto CGRA platforms.
While previous solutions have greatly improved the computation
speed, they have largely ignored the impact of the local memory
architecture on the achievable power and performance. This
paper motivates the need for memory-aware application mapping
for CGRAs, and proposes an effective solution for application
mapping that considers the effects of various memory architec-
ture parameters including the number of banks, local memory
size, and the communication bandwidth between the local mem-
ory and the external main memory. Further we propose efficient
methods to handle dependent data on a double-buffering local
memory, which is necessary for recurrent loops. Our proposed
solution achieves 59% reduction in the energy-delay product,
which factors into about 47% and 22% reduction in the energy
consumption and runtime, respectively, as compared to memory-
unaware mapping for realistic local memory architectures. We
also show that our scheme scales across a range of applications
and memory parameters, and the runtime overhead of handling
recurrent loops by our proposed methods can be less than 1%.

Index Terms—Array mapping, bank conflict, coarse-grained
reconfigurable architecture, compilation, multi-bank memory.
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I. Introduction

COARSE-GRAINED reconfigurable arrays, or CGRAs,
promise up to 10–100 MOps/mW of energy efficiency [1]

while still retaining programmability. Being essentially an
array of processing elements (PEs), where each PE can
be programmed to execute word-level operations, such as
arithmetic and logic operations, CGRAs are especially suited
for multimedia and compute-intensive applications, whereas
field-programmable gate arrays (FPGAs) can be more ap-
propriate for applications involving complex logic and bit
manipulation. Another benefit of the coarser granularity is
that programming CGRAs with configuration bitstream, or
simply configuration, can be done much more quickly (and
even during runtime) than programming FPGAs. Generating
configurations for a given application is called application
mapping, or compilation, and it is one of the biggest challenges
for CGRAs.

Compilation for CGRAs has traditionally focused on two is-
sues [2]–[11]: 1) placing operations (such as arithmetic/logic,
multiplication, and load/store) of a loop kernel onto the PE
array, and 2) guaranteeing the data flow, or communication, be-
tween operations using the existing interconnection resources.
Then the loop is essentially turned into a “pipeline” on a
CGRA, completing one iteration every cycle, or every nth
cycle in general, where n is the initiation interval (II) of the
pipeline [12]. The input and output data are stored in the local
memory of the CGRA, which is a small on-chip SRAM with
very high bandwidth to the PE array. To sustain fast computa-
tion rate on the PE array, managing the input and output data
on the CGRA’s local memory becomes a critical issue.

There are two aspects to data management. The first is how
to place data, typically large array variables, in the limited
local memory of a CGRA. We refer to the problem of placing
arrays on the CGRA local memory as data mapping, whereas
placing operations onto the PE array is called computation
mapping. Data mapping may not be an issue for a simple
local memory architecture consisting of a single large bank,1 or
in general for a uniform memory access (UMA) architecture.
However, for more realistic local memory architectures with

1Alternatively, one can use a dynamic hardware support such as a crossbar
switch to provide uniform access to multiple banks [13], which may have
disadvantages such as limited scalability and higher cost. On the other hand,
using multiple banks with static mapping limits the applicability to loops with
sequential memory accesses.
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multiple ports and multiple banks, or in general for nonuni-
form memory access (NUMA) architectures such as those
used in architecture for dynamically reconfigurable embedded
system (ADRES) [13] and MorphoSys [14], data mapping can
affect the quality of computation mapping and even limit the
performance of the overall mapping.

The other aspect is how to make data transfers in and out
of the local memory very efficient, since CGRAs are typically
used as coprocessors to main processor and therefore the
input data for a CGRA must eventually come from the main
memory over the system bus, which may take long. To hide the
long data transfer latency as well as to overcome the limited
local memory size, data transfer is often done simultaneously
along with computation in an overlapping fashion on a double-
buffered local memory, as is the case with MorphoSys [14].
Consequently, the overall throughput on such CGRAs is not
determined by computation rate only, but by the minimum of
computation rate and data transfer rate. This means that we can
increase the overall performance by sacrificing computation
mapping a little if that buys us improved data mapping and
data transfer rate—provided that the computation rate was
initially higher than the data transfer rate, or in other words the
loop was initially memory-bound. Another complication that
arises from hardware double buffering on CGRAs is that it cre-
ates for application mapping a nontrivial problem of correctly
and efficiently handling dependent data for loops with inter-
iteration dependence, such as infinite impulse response (IIR)
filters. To the best of the authors’ knowledge this problem
of handling recurrent loops on CGRAs with double-buffered
local memories is not previously addressed.

In this paper, we present an application mapping flow for
CGRAs that considers both computation and data aspects of
the mapping so as to maximize the overall performance, as
opposed to maximizing computation rate. Our proposal intro-
duces new costs such as data reuse opportunity cost (DROC)
and bank balancing cost (BBC) to steer the mapping process
to be more aware of the architectural peculiarities. In addition,
for CGRAs with double-buffered local memories, we present
methods to correctly handle inter-iteration dependent data of
recurrent loops. Our experimental results indicate that not
only is our proposed mapping heuristic able to achieve near-
optimal results as compared to single-bank memory mapping
but it can also achieve 59% reduction in the energy-delay
product as compared to memory-unaware mapping for multi-
bank memory, which factors to 47% and 22% reductions
in the energy consumption and runtime, respectively. We
also demonstrate that our scheme scales across a range of
applications, and memory parameters.

The rest of this paper is organized as follows. In Section II,
we review the related work. After describing the target archi-
tecture in Section III, we explain in Section IV the challenges
of considering computation and data mapping together. In
Section V, we present our memory-aware heuristic that can be
applied to any modular scheduling algorithm. In Section VI,
we present novel methods to handle recurrent loops correctly
on a double-buffering local memory. In Section VII, we
present our experimental results and conclude this paper in
Section VIII.

II. Related Work

Earlier research on CGRAs was mostly about architecture
design [15], but with the recognition that application mapping
is the bottleneck, recent work increasingly focuses on appli-
cation mapping techniques.

A. Architecture Focus

Data transfer architectures between local memory and PEs
can be classified into implicit load-store and explicit load-
store architecture. Implicit load-store CGRA architectures,
e.g., MorphoSys [14], do not have explicit load and store
instructions. Data has to be pre-arranged in the local memory,
organized like a queue, and the topmost element is broadcast
to the CGRA every cycle. On the other hand, in explicit load-
store CGRAs, e.g., ADRES [16], PEs can explicitly compute
the address of the memory location that they intend to access,
and read/write to that location. While the implicit load-store
architectures are potentially much more power efficient, they
are more challenging to program, and also incur penalties
relating to the efforts required to arrange the data in a very
specific order in the local store.

Local memory can be designed as single-bank or multi-
bank. Single-bank memory makes programming much easier;
however, it is very difficult to provide all the necessary ports
for the PE array with just one bank. One solution is to
use multi-port static random-access memory cells, which are
however extremely expensive in terms of area, power, and
speed [17]. With multi-bank memory, it is the responsibility
of the programmer/compiler to make sure that the data a PE
accesses is present in a bank that it has access to. Alternatively,
one can use hardware arbitration to make every bank accessi-
ble to any PE [13], which makes the local memory design more
complicated with higher power, area, and possibly cycle time
compared to multi-bank memory without hardware arbitration.
Our work provides a software solution rather than a hardware
solution to the problem of managing multi-bank memory.

Hardware double buffering, e.g., MorphoSys [14] and re-
source sharing and pipelining in coarse-grained reconfigurable
architecture (RSPA) [18], can speed up the data transfer
between the system memory and the CGRA local memory,
while some architectures, e.g., ADRES [13], opt for a single
large buffer. Double buffering becomes more useful if the
local memory size is smaller, or the loops and arrays of the
applications are larger. We assume explicit load-store, multi-
bank, and double-buffered local memory in this paper.

Our partial shutdown exploration requires the resources of
a CGRA to be split and put into different modes of operation.
A similar idea and detailed mechanism are presented in
[19], which applies the technique to running multiple loops
simultaneously on the same CGRA.

B. Compilation Focus

Most previous work on application mapping for CGRA [2]–
[11] does not explicitly consider the local memory architecture
or data placement. They assume that all the required data is
already present in the local memory, and every load-store PE
can access that data whenever they need to. Even with such
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Fig. 1. CGRA architecture and application mapping. (a) DFG of a loop
from MPEG2. (b) Mapping the DFG onto CGRA. Dark nodes in (a) and
dark PEs in (b) represent memory operations and load-store PEs. Though a
single configuration is enough to map the DFG of (a), in general, multiple
configurations may be used.

a simplification, the application mapping problem for CGRA
is shown to be very hard [7], having to deal with operation
placement on a 2-D array considering the communication be-
tween them (spatial mapping) [8], as well as possibly changing
configurations every cycle (temporal mapping) [4], [9].

One exception to this is [20], which assumes a hierarchical
memory architecture, where the PEs are connected to a L0
local memory, which connects to the external main memory
through an L1 local memory. Since both these local memories
are scratchpads, and therefore statically scheduled, their main
interest is in improving the reuse between the L0 and L1 local
memories. An early work [21] on CGRA presents a method-
ology to evaluate memory architectures for CGRA mapping;
however, it lacks a detailed mapping algorithm. Reference
[22] also considers memory architecture for mapping, and is
therefore most closely related to our paper. However, their
mapping assumes multi-bank memory with arbitration logic
and single buffering, and therefore is not applicable to our
target architecture while we explore the impact of partitioned,
or multi-banked, memory architecture and also explore the
impact of limited memory bandwidth on the mapping. The
idea of balancing computation rate and data transfer rate on
CGRAs with double buffering was presented in [23], which is
extended in this paper to handle recurrent loops by efficiently
managing dependent data on buffer switches.

III. Target Architecture

CGRA is essentially an array of PEs connected through
a mesh-like interconnects, as illustrated in Fig. 1(b). The

local memory is an important part of CGRA, and is the only
memory that can be directly accessed by a PE. The set of
operations of a PE and the interconnections between PEs can
vary in different CGRA designs, but basic operations such
as arithmetic/logic operations are typically performed by any
PE whereas costly operations such as memory operations and
multiplications can be performed only by some PEs. The PEs
that can perform memory operations are called load-store
PEs. In a multi-bank local memory architecture, there may
be a one-to-one mapping between a row of PEs and a bank,
such that a bank may be accessed only by the PEs in the
corresponding row. In the ADRES architecture, for instance,
there is only one load-store PE per row in a 4 × 4 PE array
(either at one end or in the middle), and consequently each
load-store PE has its own bank, which can be accessed only
by the corresponding PE.

The local memory is limited in size. Hence hardware
support to manage data on the local memory is critical to
achieve high performance. First, direct memory access (DMA)
is used to transfer data between the local memory and main
memory, at the command of main processor. Second, hardware
double buffering is used to allow simultaneous accesses by
both DMA and the PE array (i.e., load-store PEs). Double
buffering works as follows, with two buffers denoted as A

and B. While the PE array uses buffer A to access the array
data for the current loop, DMA uses buffer B to write back
the output arrays of the previous loop and to bring in the
input arrays for the next loop. Then in the next loop, the other
buffer is used for each (called buffer switching). If the arrays
for a loop do not fit in one buffer, the loop can be broken
into smaller ones—executing only the first T iterations on one
buffer followed by the next T iterations to be executed on the
alternate buffer, and so on. Note that from the compiler point
of view, this is equivalent to tiling the loop with tile size of
T . Due to such restrictions, and because we do not assume
dynamic hardware such as a crossbar switch between load-
store PEs and bank memories [13], only loops with sequential
memory accesses can be supported by our static mapping.

IV. Problem Description

We first explain the basics of application mapping and
discuss the challenges of our problem.

1) Application Mapping: CGRAs are typically used to
accelerate the innermost loops of applications, thereby saving
runtime and energy. The innermost loop of a perfectly nested
loop can be represented as a data flow graph (DFG) [Fig. 1(a)],
in which the nodes represent micro-operations (arithmetic and
logic operations, multiplication, and load/store), and the edges
represent the data dependency between the operations. While
not for this loop, the data dependency can be in general loop-
carried. The task of mapping an application onto a CGRA
traditionally comprises of: 1) mapping the nodes of the DFG
onto the PE array of the CGRA, and 2) mapping the edges
onto the connections between the PEs. Since the mesh-like
interconnection can be restrictive for application mapping,
most CGRAs allow PEs to be used for routing of data (routing
PE); the routing PE does not perform any operation, but just
transfers one of the inputs to its output. This flexibility can
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be exploited by allowing the edges in the DFG to be mapped
onto paths in the CGRA.

2) Software Pipelining: Pipelining is explicit in the CGRA,
in the sense that the result of computation inside one PE can
be used by the neighboring PEs in the next cycle. For effective
application mapping the compiler must software-pipeline the
loop before mapping it onto the the PEs. Modulo schedul-
ing [12], one of the most effective algorithms to perform soft-
ware pipelining, tries to find a valid schedule for a given target
II (initiation interval) by using “modulo resource table,” which
can easily keep track of modulo resource constraints generated
as scheduling progresses. If no valid schedule is found, the
target II is incremented, and the whole procedure is repeated.

3) Challenges of the Problem: Thus in addition to the
problem of expressing the application in terms of the func-
tionality of PEs, a CGRA compiler must explicitly perform
resource allocation, software pipelining, and routing of data
dependencies on the CGRA. It is for these reasons that the
problem of application mapping on CGRA is challenging. Fur-
thermore, to consider data placement during CGRA mapping
we must maximize both computation rate and data transfer
rate at the same time. Simply maximizing data transfer rate
is trivial; for instance, fixing the placement of all the arrays
beforehand will do, but it may decrease computation rate
excessively. Considering computation rate only is what has
been typically done in previous approaches, which may fail
to maximize the overall throughput. Moreover, data mapping
should be emphasized only if the application is memory-
bound, which adds to the complexity of our problem. Thus,
our CGRA mapping problem considering both computation
and data mapping is more complicated than the traditional
CGRA mapping problem considering computation only, which
is already NP-hard [7]. Hence, we propose a heuristic in this
paper. We will also demonstrate through our experiments that
our heuristic can achieve near-optimal results for many loops.

V. Simultaneous Data and Computation Mapping

We now present our approach to simultaneous data and
computation mapping. Our heuristic considers: 1) minimizing
duplicate arrays (or maximizing data reuse); 2) balancing bank
utilization; and 3) balancing computation and data transfer
rates. A unique feature of our heuristic is that it merely defines
some cost functions for those memory-related considerations,
rather than prescribing a whole new algorithm, so that our
heuristic can be easily integrated with other existing memory-
unaware mapping algorithms. While our technique is generally
applicable to any modular scheduling algorithm considering
one operation at a time such as [4] and [9]; for the sake of the
discussion, we use the edge-centric modulo scheduling (EMS)
algorithm [9] in this paper as it is one of the best known.

A. Balancing Computation and Data Transfer

To balance optimization effort for computation and data
parts we first perform performance bottleneck analysis. Per-
formance bottleneck analysis determines whether it is compu-
tation or data transfer that limits the overall performance. We
define the data-transfer-to-computation time ratio (DCR) as
DCR = td/tc. For this we generate an initial, memory-unaware

Fig. 2. Data reuse example. Mapping operation 7 to PE3 allows the reuse of
array B between operations 1 and 7. Assuming: base routing cost = 10, DCR
= 3. (a) CGRA architecture. (b) DFG. (c) DRG. (d) Cost values for operation
7 by EMS. (e) Completed mapping by EMS. (f) Cost values for operation 7
by ours. (g) Completed mapping by ours.

mapping, and td is calculated as the time to transfer the input
and output data of the loop between the local memory and
main memory through DMA and tc = IIu · Niter, where IIu is
the II of the memory-unaware mapping and Niter is the number
of iterations of the loop. A loop is memory-bound if DCR > 1,
and roughly represents the optimization opportunity for our
memory-aware mapping.

B. Maximizing Data Reuse

Temporal reuse of data, or the use of the same data or array
elements in different iterations of a loop, is frequently found
in many loop kernels. Temporal as well as spatial reuse is
automatically exploited by data caches for general purpose
processors; however, for CGRAs everything must be explicitly
controlled by compilers. Traditional compilation flows for
CGRA, which are memory unaware, do not treat specially
arrays with reuse. As a result, two load operations, even if they
read from the same array, will typically be mapped to different
rows. Note that this is not an issue of functional correctness,
but of performance in NUMA CGRAs, since duplicating the
arrays in multiple banks solves the correctness problem. An
alternative approach is to realize reuse by mapping to the same
row all the load operations accessing the same array, which
we call reuse through the local memory.2

2When there is data reuse between two memory operations, the reuse can be
realized by routing the data through either a distributed register file (assuming
it is rotating), a series of routing PEs, or the local memory. Routing data
through either a distributed register file or routing PEs can be wasteful,
since the involved PEs cannot perform any other operation during routing.
In addition, the number of wasted PEs to route data using these schemes is
proportional to II, which can be large. Therefore we realize all data reuse
through the local memory.
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Reuse through the local memory has the benefit of lowering
the local memory pressure, but at the cost of constraining the
computation mapping. If computation is the bottleneck, it may
be better simply not to realize data reuse. Therefore, whether
and how much reuse to realize should be decided carefully
for optimal results. To guide the decision we introduce DROC.
DROC is defined for a memory operation and a load-store PE,
and measures the goodness of a reuse opportunity which will
be forfeited if the operation is mapped to the PE. Intuitively,
if two load operations have a reuse relation (i.e., they load
from the same array variable), placing the operations on the
same row has merit (because they can access the same array
variable), which is forfeited if they are placed to PEs on
different rows. Notice that in the latter case the same array
variable has to be duplicated to multiple banks. This reuse
opportunity is what DROC tries to quantify.

1) Data Reuse Analysis: Data reuse analysis finds the
amount of potential data reuse between every pair of memory
operations. Our data reuse analysis first creates a data reuse
graph (DRG) from the DFG of a loop. DRG is an undirected
graph, where nodes correspond to memory operations and
edge weights approximate the amount of reuse between two
memory operations. The amount of reuse is maximized when
two memory operations access the same array with the same
index expression, or access function. We define the weight
for such a case to be T , which is the number of iterations
to execute between buffer switches (switching due to double
buffering). If two memory access functions are affine forms
that differ only in the constant (with the difference divisible
by the coefficient of the affine functions), the weight is T −dr,
where dr is the constant difference divided by the coefficient
(i.e., reuse distance). Otherwise, we assume that there is no
data reuse we can exploit, and edges with zero weight are
omitted. Fig. 2(c) illustrates the DRG generated from Fig. 2(b).
T is assumed to be 11 in this example. dr between nodes 0
and 2 is 2, since the constant difference between them is 2 and
their coefficient is 1. Therefore the edge weight (of the DRG)
between the nodes is 9. In the same way, the edge weight
between nodes 1 and 7 is 10.

Once the DRG is constructed, computing DROC is easy.
Given scheduling context information such as what operations
have been already scheduled and which operation is about to
be scheduled, we first find the set of edges, called frontier edge
set. For a memory operation u that is about to be scheduled,
the frontier edge set of u consists of all the edges in the
DRG connecting u to a memory operation v that is already
scheduled. Then for such an edge e = {u, v} in the frontier
edge set, we compute its reuse opportunity as roe = we ·DCR,
where we is the nonzero weight of edge e in the DRG, and
DCR is the DCR of the loop. Finally, the reuse opportunity
of each edge e induces DROC of the same amount, for all the
load-store PEs other than the PE to which v is mapped. DROC
induced by all reuse opportunities are averaged if the frontier
edge set is larger than one. DROC is zero if the frontier edge
set is empty.

2) Example: Consider mapping the DFG shown in
Fig. 2(b) (dark nodes are memory load operations) onto the
2×2 CGRA shown in Fig. 2(a) (dark PEs are load-store PEs).

Fig. 3. Application mapping flow. Note: DFG, DCR, and DRG.

The DRG for the DFG is shown in Fig. 2(c). Fig. 2(d)–(g)
illustrate the mapping results in a tabular format, where the
vertical direction represents time in cycles. Suppose that we
are about to schedule the edge connecting operations 7 and
8 after having scheduled operations 0 through 6 as shown in
Fig. 2(d). Operation 7 is a load operation B[i+1], and operation
8 is an arithmetic operation.

The EMS algorithm works as follows. First the routing
costs for each open PE slot where the memory operation
can be scheduled are updated as in Fig. 2(d). Routing cost
is calculated by multiplying the unit routing cost (which is
assumed to be 10) by the number of routing PEs needed to
map the edge. In this example, if we schedule operation 7 in
time slot 1 of PE3, at least two routing operations are needed to
map operation 8. Thus, routing cost in the time slot 1 of PE3 is
20. Considering these costs, operation 7 will be mapped onto
the time slot 3 of PE1, which has the minimum cost. The final
solution generated by EMS is shown in Fig. 2(e). However,
this mapping requires array B to be duplicated in two banks.

DROC helps avoid duplicating reused arrays. In the same
example, the DROC cost induced by the reuse relation between
operations 1 and 7 is 30, assuming that the DCR parameter is
3. This DROC cost is added to all the load-store PEs except
for PE3, which forces operation 7 to be scheduled onto the
time slot 2 of PE3, as shown in Fig. 2(g). Though this new
mapping results in the use of an extra PE as a routing PE,
it increases the utilization of array B, which may reduce the
overall execution time.

C. Balancing Bank Utilization

The next important issue in application mapping onto a
NUMA CGRA is that, if the scheduler is not careful, it can
skew the distribution of the data in the memory banks. For
example, the solution can result in mapping all the data to just
one bank, and not utilizing the other banks. This can happen,
if the application mapping is unaware of the banked memory
architecture, but also if we apply our data reuse optimization
too aggressively and map all the arrays to the same bank. Such
a mapping can reduce the performance, since it decreases the
effective local memory size, results in smaller tiling factor for
the loop, and may cause very frequent buffer switching for
hardware buffering. One desirable shape of the data placement
is uniform distribution of the data among the banks. This can
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Fig. 4. Recurrent loop, i.e., one with loop-carried data dependence.

be rather easily solved by adding an additional cost to the PEs
to which load/store operations have been mapped, called BBC.
We define the BBC for a PE p, as BBC(p) = b ·m(p), where b

is a design parameter called the base balancing cost, and m(p)
is the number of memory operations already mapped onto PE
p.

Fig. 3 illustrates our compilation flow. The two analy-
ses, performance bottleneck analysis and data reuse analysis,
are performed before time-consuming modulo scheduling.
Memory-aware modulo scheduling refers to the EMS algo-
rithm extended by adding DROC and BBC to the existing cost
function, which does not significantly increase the complexity
of the mapping algorithm. The partial shutdown exploration is
explained in Section VII-C.

VI. Handling Recurrent Loops

A. Problem

The fundamental restrictions of CGRAs such as limited
local memory size and substantial data transfer latency are
the driving force behind the double-buffering architecture in
the local memory. The local memory has two buffers, or two
sets of banks physically, with one set connected to the PE
array and the other to the main memory through the system
bus. Let us call one buffer A and the other B, and if buffer
A is used for computation (i.e., accessed by the PE array),
buffer B is used for data transfer (i.e., accessed by DMA).
What we have so far considered as the local memory is then
just one set of banks that is connected to the PE array at the
moment. While double-buffering can effectively ease the two
restrictions of CGRA accelerators, it complicates handling of
dependent data for large loops if the data cannot entirely fit
in the local memory.

The situation is most complicated when there is loop-carried
dependence. Fig. 4 illustrates an IIR filter, which is a recurrent
loop. Suppose that the number of iterations, N, is so large that
the arrays X and Y cannot be contained in one buffer of the
local memory. Then the loop must be tiled; that is, the loop
is executed only for some iterations (T , called tile) on one
buffer, and then the next iterations, of up to T , are executed
on the other buffer, and so on. In this scheme, it is not a
problem to bring the input array X into the local memory
buffers. However, managing Y is, since Y is both input and
output of the computation, and therefore some elements of
Y are generated in one tile and used in the next tile while
the buffers available to the two tiles must be different due
to double-buffering. In the above example, Y [T + 1] would
be such a case of being generated and used in two different
tiles. Thus it becomes necessary to perform some data copy
operation on every buffer switch, without which the execution
cannot be correct for recurrent loops. The amount of data
copy is proportional to the distance between the dependent

Fig. 5. Data copy performed by main processor. The two add instructions
on the left represent address calculation. The diagram on the right illustrates
that the main performance bottleneck is caused by the load latency, which
has to cross the system bus twice. Store instructions can be buffered, which
then has little impact on the delay.

write-read reference pair. However, the runtime overhead can
vary significantly depending on how the copy operation is
performed.

B. Proposed Methods

We propose three methods to perform the necessary data
copy operation between buffers on a buffer switch. First note
that copying data between the buffers of a local memory is an
extended feature of a memory-aware CGRA. By default the
main processor or the PE array can access only one buffer
at any time. We relax the restriction such that during buffer
switching, both the buffers become accessible by either the
main processor (Method 1) or the PE array (Methods 2 and
3).3

1) Serial Mem-Copy by Main Processor: The main pro-
cessor repeats a pair of load-store instructions for every word
of data to be copied, as illustrated in Fig. 5. Since during
the buffer switching time PEs cannot do any useful work,
the time it takes for the main processor to finish the memory
load/store instructions is directly reflected on the overhead of
this method. Most of the delay is caused by load instructions,
since every memory read requires crossing the system bus
twice. In contrast, store instructions, or memory write opera-
tions, can be buffered and have negligible effect on the delay.
Overall, the overhead of this method can be formulated as
P + LN + Q, where P is the number of cycles for the address
calculation operations for the first load instruction,4 L is the
number of cycles taken until a pair of load-store instructions
finish (from the processor’s point of view), N is the total
number of data words to copy, and Q is the additional number
of cycles for the last store value to be written out in the local
memory buffer.

This method requires that the main processor be able to
access both buffers of the local memory of CGRA during
buffer switching time.

3Otherwise the only way to do data copy between the buffers would be to
transfer the data using DMA from the source buffer to the main memory, and
again from the main memory to the target buffer, which would be extremely
inefficient, since the amount of data to be copied is very small compared to
DMA setup time.

4Address calculation can be quite simple, since load and store locations in
the buffers are statically known.
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Fig. 6. Data copy performed by PEs. Here, address calculation and
load/store operations are assumed to take only one cycle each.

Fig. 7. Data copy performed by PEs with pipelining.

2) Parallel Load/Store by PE Array: The disadvantages of
the first method are twofold: 1) it takes much longer for the
main processor to access the CGRA local memory because the
data transfer takes place across the system bus, and 2) even
if the data to be copied are distributed over multiple banks,
the data copy operation cannot be done in parallel by the main
processor. In contrast, the PE array can access its local memory
much more quickly, and multiple load-store PEs can work on
different data if they are in different banks. To let the PEs do
the data copy, we must provide appropriate configurations in
advance, as illustrated in Fig. 6. We need separate load and
store configurations, which are executed alternately, and each
configuration consists of two parts, i.e., the address calculation
part and the load/store part, each of which is assumed to take
one cycle in Fig. 6.

This simple scheme does not utilize pipelining, and its
overhead is 2(p + l)d cycles, where p is the height of the tree
for the address calculation expression (either load or store),
l is the load/store latency from the PE, and d is the largest
number of data words to copy for a bank.

This method requires that the load-store PEs of a CGRA
have access to both buffers of the local memory during buffer
switching time.

3) Pipelined Parallel Load/Store by PE Array: This
method has the same architectural requirement as Method 2
but improves it by pipelining the PE operations, as illustrated
in Fig. 7. Pipelining can reduce the overhead to p+2d ·l cycles.
This is assuming that all the data copy operations for a bank
can be pipelined as if they are from a single reference pair,
which is typically the case. The difference, (2d − 1)p, can be
significant if d, the distance between the dependent reference
pair, is large.

Fig. 8. Runtime comparison. Refer to Section VII-C for PSE.

TABLE I

Benchmark Characteristics

#Ns #Es #memNs Length recMII resMII
Form−pred 10 9 4 8 − 1
Laplace 23 22 10 10 − 2
Sobel 29 34 9 10 − 2
Swim−calc1 39 44 14 8 − 3
Swim−calc2 46 48 20 8 − 3
Wavelet 20 22 6 6 − 2
Compress 9 8 5 6 3 1
GSR 12 11 6 7 4 1
SOR 25 26 12 11 8 2
Lowpass 27 26 10 11 8 2

N: operation; E: edge; memN: memory operation; Length: length of the
longest path.

VII. Experiments

A. Setup

To evaluate the effectiveness of our memory-aware compi-
lation heuristic, we use a set of kernels from the MiBench
benchmark suite [24], multimedia benchmarks, and SPEC
2000. Table I lists characteristics of benchmarks. Our target
architecture is a 4 × 4 architecture, as illustrated in Fig. 1(b),
with load-store units alternating in the two middle columns.
The 4 × 4 configuration is the basic unit in many CGRA
architectures including ADRES (4 × 4 tiles) and MorphoSys
(4×4 quadrants), and also frequently used to evaluate various
mapping algorithms (e.g., [5], [8], [9]). For the PE array, we
assume that a PE is connected to its four neighbors and four
diagonal ones. We also assume that each PE has an arithmetic
logic unit (ALU) and a multiplier unit, so that other than
memory operations, any operation can be mapped to any PE.

The local memory architecture has four banks, each con-
nected to a different row (i.e., to the load-store unit of
the corresponding row). The details of the local memory
architecture, such as width, size, and latency are modeled
after the RSPA architecture [18]. The local memory is double
buffered in hardware and the buffers can be switched in one
cycle. The size of each buffer is 768 bytes, or 384 16-bit
words, and is connected to the system memory through a
high-performance 16-bit pipelined bus. The system memory
is assumed to operate at half the frequency of the CGRA
coprocessor, giving the memory bandwidth is 16 bits per two
CGRA cycles. The clock frequency of the main processor is
assumed to be three times that of CGRA coprocessor.



1606 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 11, NOVEMBER 2011

In the literature, mapping algorithms are often compared in
terms of II, which is valid, since CGRA processors are under a
complete compile-time control; it is like a very long instruction
word processor without pipeline stall. However, II captures
the quality of the computation mapping only, and cannot
capture the possible delay due to the memory bottleneck.
We therefore use the CGRA runtime, which is computed by
adding up tile execution times, where tile execution time is the
maximum of computation II multiplied by the tile size, and
the memory access time for the tile. If an array is duplicated
in multiple banks with different offsets, we assume that the
array is loaded twice from the system memory, which is the
most straightforward way to load them, used in RSPA [18]
and MorphoSys [14]. However, for read-after-write dependent
references in recurrent loops we: 1) place the dependent
operations on the same row, and 2) copy the dependent data on
every buffer switch using Method 1 (copy by main processor)
as described in Section VI.

For the energy model of the CGRA, we consider both the
dynamic power and the leakage power of PEs and memory
banks. For dynamic power a PE is assumed to be in one
of the three power states depending on its operation: ALU
operation (including load/store), multiplication, and routing.
The power numbers for those states are obtained from a
detailed implementation of RSPA [25] based on a 180 nm
technology from DongbuAnam Semiconductor. The dynamic
power of a memory bank is obtained from CACTI 5.1 [17].
Following the dynamic versus leakage power ratios published
in the literature [26], we assume that a PE dissipates as
leakage 20% of its dynamic power at full operation (i.e.,
multiplication plus ALU operation, since every PE has a
multiplier), and a memory bank 20% of its read-operation
dynamic power, unless the PE or the memory bank is shut
down. Note that the leakage power is constant regardless of
the operation; therefore, the leakage energy is proportional to
runtime while the dynamic energy is not.

B. Efficiency of Our Memory-Aware Mapping

Though our memory-aware mapping may balance compu-
tation rate and data transfer rate, the computation rate will
be maximized in the case of traditional memory-unaware
mappings such as EMS. The maximum computation rate could
be realized if single-bank memory were used, although it
seems likely to have other negative effects such as increased
cycle time, power, and area, and may cancel out the benefit.
Thus, we compare three cases: Ideal (single-bank + EMS),
EMS (multi-bank + EMS), and MA (multi-bank + our memory-
aware extension of EMS). For a realistic multi-bank local
memory, the Ideal single-bank performance only serves as the
upper limit that a realistic multi-bank mapping could achieve.
We compare the three cases in terms of CGRA cycle count.
In the case of Ideal, the possible cycle time increase is not
taken into account, nor is the memory bandwidth restriction
(hence the name). In the case of EMS, the array placement
is determined in a straightforward manner after computation
mapping is done.

Fig. 8 compares the runtime of the three cases (in cycle
count), normalized to that of EMS. Comparing Ideal and

Fig. 9. Energy efficiency comparison. (a) Energy consumption. (b) EDP.

EMS indicates that for memory-bound loops, the cost of not
considering array placement early in the compilation flow is
quite high. By sequentially mapping computations and arrays,
the runtime can increase by more than 55% on average
compared to the Ideal case for memory-bound loops. On the
contrary, if data mapping is considered proactively along with
computation mapping as in our heuristic, the runtime increase
can be very effectively suppressed. Compared to the EMS,
our heuristic can reduce the runtime by as much as 31% on
average for memory-bound loops. This strongly motivates
the use of less expensive multi-bank memories for CGRAs
rather than the more expensive and more power-dissipating
single-bank memories.

Reduced runtime by our heuristic also translates into re-
duced energy consumption on the CGRA. Fig. 9(a) compares
the energy consumption by the base EMS versus our heuristic,
broken down into static and dynamic components. While our
heuristic may sometimes generate less-efficient computation
mappings compared to the base EMS (due to the increased
use of routing PEs, for instance), our heuristic can effectively
reduce the leakage energy by reducing the runtime, which
leads to significant energy reduction by our heuristic. Accord-
ingly, the EDP, or the energy-delay product, is also reduced
significantly by our heuristic, as indicated in Fig. 9(b).

C. Partial Shutdown Exploration

For a memory-bound loop, the performance is often limited
by the memory bandwidth rather than by computation, which
will be increasingly the case as the number of PEs increases.
For such a case, we can dramatically reduce the energy
consumption of CGRA by shutting down some of the rows of
PEs and the memory banks, effectively balancing computation
and memory access. While this kind of optimization could
be applied with any mapping algorithm, it becomes more
interesting with our memory-aware mapping heuristic, as
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both our heuristic and partial shutdown try to exploit the
same opportunity existing in memory-bound loops; one by
reducing the memory access load, the other by reducing the
computation resources. We assume that partial shutdown is
performed on a per-loop basis, and if a memory bank is shut
down, any output data on it are written back to the main
memory before shutdown. Write-back can be done rather
cheaply on a double-buffering architecture (which is our
target architecture), since input/output data are loaded/stored
even during loop execution. The time overhead of entering
a partial shutdown mode is ignored, as it can be done while
the main processor is doing some useful work.

We explore all the partial shutdown combinations on the
PE rows and the memory banks, to find the best configuration
that gives the minimum EDP. The design space is not large,
with only 16 configurations to explore as there are four rows
and four banks. The results are summarized in Figs. 8 and
9 (the last bars), with the best configurations summarized
in Table II. The results suggest that the partial shutdown
optimization can considerably reduce the energy consumption
and the EDP, by more than 27% on average, even after
our memory-aware heuristic is applied. Compared to the
previous memory-unaware technique without partial shutdown
optimization, our technique can achieve 59% reduction in the
energy-delay product, which factors into about 47% reduction
in the energy consumption and 22% reduction in the runtime.
Our partial shutdown exploration gives further justification for
the multi-bank memory architecture, as it is more amenable to
partially shutdown than the single-bank memory architecture.
And it also reinforces the importance of developing memory-
aware mapping techniques for multi-bank or NUMA memory
architectures, such as ours.

D. Effect of Memory Bandwidth and Register Files

To see the effect of memory bandwidth, we repeat the same
experiments doubling the bandwidth between the CGRA local
memory and the main memory (one word per cycle). Fig. 10(a)
plots the average runtime, energy, and EDP values by different
application mapping approaches, normalized to the results of
EMS for the lower bandwidth case. The light gray bars are
for the lower memory bandwidth and the dark ones are for
the higher memory bandwidth. First, it is quite clear that
the increased memory bandwidth can greatly enhance the
execution profiles of the benchmarks regardless of the mapping
approach. This is because the loops that we used are memory-
bound rather than computation-bound, and therefore any alle-
viation of memory bottleneck can increase the performance.
The amount of enhancement is greatest in the case of EMS,
which is memory-unaware, but is significant also in the case
of our memory-aware approaches. The only exception is that
the energy consumption by our memory-aware mapping plus
partial shutdown exploration is no further reduced by the
increased bandwidth. This is because our partial shutdown
exploration already balances computation and data transfer
rates to minimize the energy, and therefore increasing one will
only increase the other, resulting in no significant change in the
overall energy consumption. The EDP reductions very closely
follow the multiplication of runtime reduction and energy

Fig. 10. Effect of memory bandwidth and local registers. (a) While a
higher memory bandwidth helps all mapping approaches, it is more helpful
to memory-unaware mappings. (b) For memory-bound loops, the effect of
utilizing local registers is marginal.

reduction. As expected, the advantages of our memory-aware
approaches over the memory-unaware one is reduced when the
memory bandwidth becomes less of a bottleneck. In fact our
mapping algorithm uses a measure of memory-boundness to
determine how aggressively to apply our memory-related cost
functions, and thus for fully computation-bound loops, our
memory-aware mapping will become indistinguishable from
memory-unaware mapping.

Another level of memory hierarchy in CGRA is local
register files distributed throughout the PE array. The effect of
distributed register files is worth investigating, since register
files, being closely related to local memory in function, may
reduce the necessity and effectiveness of local memory-aware
optimizations such as ours. While so far our experiments have
assumed no utilization of local registers for routing, in this
experiment we allow up to four registers in each PE to be
utilized so as to ease the data transfers among PEs. Fig. 10(b)
compares, for different mapping approaches, the three execu-
tion profiles, averaged for all benchmarks and normalized to
those of EMS with “no register” option. Interestingly, adding
registers in each PE to aid in data routing does not translate to
significant improvement by any metric. This is again due to the
memory-boundness of the loops used in the experiments—if
computation is not a bottleneck, improving it might not have
any noticeable effect.

Table II lists the best configurations found by our partial
shutdown exploration, for different combinations of memory
bandwidth and register usage. As expected, the higher mem-
ory bandwidth tends to pull the best configurations toward
the bigger corner. Though not as remarkable, allowing local
registers has subtle effect of decreasing the number of rows of
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TABLE II

Best Configurations by Partial Shutdown Exploration (Optimized for Energy-Delay Product ‘‘ArBm’’ Represents A Rows and B

Banks)

Mem BW #Reg Form−pred Laplace Sobel Swim−calc1 Swim−calc2 Wavelet *Compress *GSR *SOR *Lowpass
1w/2cyc 0 1r1m 2r2m 3r1m 3r1m 3r2m 2r1m 1r1m 1r1m 2r1m 2r2m
1w/2cyc 4 1r1m 2r2m 2r1m 1r1m 2r2m 1r1m 1r1m 1r1m 1r1m 2r2m
1w/1cyc 0 2r2m 4r4m 4r4m 4r3m 4r3m 3r2m 2r2m 2r2m 2r2m 2r2m
1w/1cyc 4 2r2m 3r3m 4r4m 2r2m 2r2m 2r2m 2r2m 2r2m 2r2m 2r2m

Fig. 11. Data copy overhead of the three proposed methods.

the best configurations. This means that the local registers are
being used for data transfers within the PE array (thus speed
up computation), but it has little effect on performance, since
the loops are already memory-bound.

E. Recurrent Loop Overhead Reduction

Next, we compare the buffer switching overhead against
the total runtime for all the recurrent loops used in our exper-
iments. For this set of experiments, we use the original config-
uration, i.e., lower memory bandwidth and not using registers
other than for storing constants. First, the exact mechanism
of buffer switching for recurrent loops on a double-buffered
local memory was not previously discussed in the literature.
Therefore, this is the first paper quantitatively evaluating the
buffer switching overhead. For architectural parameters related
to data copy, we use the following: P + Q = 9, L = 9, p = 1,
and l = 1, all in CGRA cycles. Here, P+Q represents the initial
address calculation on the main processor (six cycles) plus the
last store completion (three cycles), the latter of which involves
one system bus crossing and one CGRA local memory write.
L accounts for two system bus crossings with synchronization,
one CGRA local memory read, and two load/store instructions
on the main processor.

The results shown in Fig. 11 suggest that the buffer switch-
ing itself, though very important for correct execution of these
loops, does not have particularly impact on runtime, ranging
from 2.7% to 4%, even by our simplest method of using
the main processor as the agent. Second, our more advanced
schemes of using the PE array for the data copy can bring
down the buffer switching overhead to a minimum—to less
than 1% for all the cases. This is because the advanced
schemes copy the dependent data directly between buffers
without ever leaving the local memory. The fact that our
second method performs well enough (compared to the third)
is very assuring, since the second method requires a much
slower rate of changing PE-to-buffer connections—in our

experiments, once in two cycles for Method 2 versus once
per every cycle for Method 3—and because a slower rate
requirement means that the corresponding hardware could
be implemented more efficiently, i.e., with lower cost and/or
power.

VIII. Conclusion

The promise of CGRAs providing very high power effi-
ciency while being software programmable, critically hinges
on the effectiveness of application mapping. While previous
solutions have focused on improving the computation speed
of the PE array, we motivate the need to balance computation
rate and data transfer rate to achieve higher performance and
energy efficiency for memory-bound loops on CGRAs. We
presented an effective heuristic that can be easily integrated
with existing modular scheduling-based algorithms. Further,
we presented efficient methods to handle dependent data
on a double-buffering local memory, which is necessary for
recurrent loops. Our experimental results on memory-bound
loops from MiBench, multimedia, and SPEC benchmarks
demonstrate that not only is our proposed heuristic able
to achieve near-optimal results as compared to single-bank
memory mapping but it can also achieve 59% reduction in
the energy-delay product as compared to memory-unaware
mapping for multi-bank memory, which factors into 47%
and 22% reductions in the energy consumption and runtime,
respectively. Further, our extensive experiments showed that
our scheme scales across a range of applications and memory
parameters, and the runtime overhead of handling recurrent
loops can be less than 1% with our proposed methods.
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