
Plan B - Design Methodology for Cyber-Physical Systems
Robust to Timing Failures

MOHAMMAD KHAYATIAN∗, San Jose State University, USA

MOHAMMADREZA MEHRABIAN†, University of the Pacific, USA

EDWARD ANDERT‡, Arizona State University, USA
REESE GRIMSLEY§, Carnegie Mellon University, USA

KYLE LIANG§, Carnegie Mellon University, USA

YI HU§, Carnegie Mellon University, USA

IAN MCCORMACK§, Carnegie Mellon University, USA

CARLEE JOE-WONG§, Carnegie Mellon University, USA

JONATHAN ALDRICH§, Carnegie Mellon University, USA

BOB IANNUCCI¶, Google Inc, USA
AVIRAL SHRIVASTAVA‡, Arizona State University, USA

Many Cyber-Physical Systems (CPS) have timing constraints that must be met by the cyber components

(software and the network) to ensure safety. It is a tedious job to check if a CPS meets its timing requirement

especially when they are distributed and the software and/or the underlying computing platforms are complex.

Furthermore, the system design is brittle since a timing failure can still happen e.g., network failure, soft error

bit flip, etc. In this paper, we propose a new design methodology called Plan B where timing constraints of the

CPS are monitored at the runtime, and a proper backup routine is executed when a timing failure happens

to ensure safety. We provide a model on how to express the desired timing behavior using a set of timing

constructs in a C/C++ code and how to efficiently monitor them at the runtime. We showcase the effectiveness

of our approach by conducting experiments on three case studies: 1) the full software stack for autonomous

driving (Apollo), 2) a multi-agent system with 1/10th scale model robots, and 3) a quadrotor for search and

rescue application. We show that the system remains safe and stable even when intentional faults are injected

to cause a timing failure. We also demonstrate that the system can achieve graceful degradation when a less

extreme timing failure happens.

1 INTRODUCTION
Cyber-Physical Systems (CPS) are commonly referred to as the integration of software components

(cyber) interacting with physical processes [1]. Pacemakers, drones, autonomous vehicles, and

smart cities are few examples of CPS ranging from small to very large. There are many CPS that

are time-sensitive, where it is important for the software to generate not only the “right values”

but also “at the right time” since a late response from the software may be as fatal as a wrong

output [2].

To simplify the design of time-sensitive CPS, one of the earliest steps is to analyze the behavior

of the whole system. To do so, a model is considered for the physical process (e.g., differential

Authors’ addresses: Mohammad Khayatian, Mohammad.Khayatian@sjsu.edu, San Jose State University, San Jose, California,

USA; Mohammadreza Mehrabian, mmehrabian@pacific.edu, University of the Pacific, Stockton, California, USA; Edward

Andert, eandert@asu.edu, Arizona State University, Tempe, Arizona, USA; Reese Grimsley, reese.grimsley@sv.cmu.edu,

Carnegie Mellon University, Pittsburgh, Pennsylvania, USA; Kyle Liang, kmliang@andrew.cmu.edu, Carnegie Mel-

lon University, Pittsburgh, Pennsylvania, USA; Yi Hu, yihu@andrew.cmu.edu, Carnegie Mellon University, Pittsburgh,

Pennsylvania, USA; Ian McCormack, icmccorm@andrew.cmu.edu, Carnegie Mellon University, Pittsburgh, Pennsylva-

nia, USA; Carlee Joe-Wong, cjoewong@andrew.cmu.edu, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA;

Jonathan Aldrich, jonathan.aldrich@cs.cmu.edu, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA; Bob Iannucci,

bob.iannucci@west.cmu.edu, Google Inc, Mountain View, California, USA; Aviral Shrivastava, aviral.shrivastava@asu.edu,

Arizona State University, Tempe, Arizona, USA.

, Vol. 1, No. 1, Article . Publication date: February 2022.

HTTPS://ORCID.ORG/0000-0003-4134-5008
HTTPS://ORCID.ORG/0000-0002-9081-9049
HTTPS://ORCID.ORG/0000-0003-4722-9032
HTTPS://ORCID.ORG/0000-0002-3458-0707
HTTPS://ORCID.ORG/0000-0003-0568-1784
HTTPS://ORCID.ORG/0000-0003-3417-778X
HTTPS://ORCID.ORG/0000-0001-6349-3402
HTTPS://ORCID.ORG/0000-0003-0785-9291
HTTPS://ORCID.ORG/0000-0003-0631-5591
HTTPS://ORCID.ORG/0000-0002-2382-1464
HTTPS://ORCID.ORG/0000-0002-1075-897X
https://orcid.org/0000-0003-4134-5008
https://orcid.org/0000-0002-9081-9049
https://orcid.org/0000-0003-4722-9032
https://orcid.org/0000-0003-4722-9032
https://orcid.org/0000-0002-3458-0707
https://orcid.org/0000-0003-0568-1784
https://orcid.org/0000-0003-3417-778X
https://orcid.org/0000-0001-6349-3402
https://orcid.org/0000-0003-0785-9291
https://orcid.org/0000-0003-0631-5591
https://orcid.org/0000-0002-2382-1464
https://orcid.org/0000-0002-1075-897X


2 M. Khayatian,et al.

equations) and the software components (e.g., �nite state machine) of the CPS, and then, a set of
timing constraints are determined that must be satis�ed by the implementation [3]. For example,
from early analysis of a vehicle's kinematics, the delay from detecting an obstacle to applying the
brake should be no more than a deadline, say 500 ms, in order to operate an autonomous vehicle
safely at a certain speed. Once timing constraints are set, then it is the software engineers' job
to select a proper platform and develop the software such that the timing constraints are always
met. This assumption � that the timing constraint will be always met � helps the CPS developers,
as they only need to think about the system functionality. They do not have to think about what
happens when a timing constraint is not met. A few unexpected reasons for timing failure include
network delay, a bug in the code, soft error [4], and aging. This paper takes the position that such a
hard abstraction (assuming that all timing constraints will be met) is not e�ective anymore and
leads to in�exible designs.

A number of CPS design methodologies like Ptides[5], and Giotto[6] exist that take the CPS
system speci�cation and design the CPS that is guaranteed to meet its timing constraints. Such
approaches, however, require the calculation and use of Worst-Case Execution Time (WCET) of
program routines/tasks [7]. While it was possible to estimate the WCET for small pieces of software
that are executed on simple hardware, today, both the size of the CPS software, and the complexity
of CPS hardware have increased dramatically. For instance, the Waymo Autonomous Vehicle's
software comprises more than 100 million lines of code [8], and the platform consists of A multi-core
CPU and a GPU with multiple cache levels. The WCET estimate for such large applications that
run on such complex hardware will either be impractically pessimistic or unsafe [9]. In addition,
any modi�cation to the software/hardware invalidates previous timing analysis, which makes the
system design re-iteration a tedious job.

To address this issue, we take the stance that timing constraints may fail, and a scalable way to
design time-sensitive CPS is to urge programmers to not only specify what happens when a timing
constraint is met, but also what happens when it is not met.

In this paper, we make three contributions:

� We introduce a design methodology calledPlan Bto develop time-sensitive CPS resilient to
timing failures. With proper backup routines, a safe design can be achieved by just knowing
the WCET of backup routines, instead of estimating the WCET for the whole software. In
addition, more �exible designs can be developed that meet their timing requirements "most
of the time" and when a timing requirement fails �which happens rarely� the system remains
safe through the execution of a fail-safe backup routine. In addition, the developed system
can gracefully degrade and operate at lower rates instead of completely shutting down the
system when timing violations are tolerable. This feature enables designers to renegotiate
timing contracts at the runtime to tune the performance of the system.

� We propose a set of timing APIs for C++ language that can be used by the programmers to
express the desired timing behavior of the application in the code. Using our API, we urge
programmers to envision fail-safe backup routines as a part of the program, which will be
executed when timing failures happen. The proposed API also includes specifying timing
constraints among nodes of a distributed system.

� We also propose an e�cient monitoring mechanism to check the timing requirements of
the system at the runtime. The proposed �virtual timer� can be employed when the selected
platform has a limited number of hardware timers. Furthermore, we provide study the
implementation of distributed timing constraints and practical considerations like time
synchronization.

, Vol. 1, No. 1, Article . Publication date: February 2022.



Plan B - Design Methodology for Cyber-Physical Systems Robust to Timing Failures 3

We apply Plan B's methodology to three case studies: 1) A complex application - the software
stack of Apollo[10], which is an open-source platform for autonomous driving (tested in a co-
simulation with the LGSVL simulator), 2) A distributed system - an automated intersection system
with 1/10 scale model miniature AVs where a set of distributed timing constraints must be met to
ensure the safety of AVs, 3) A quadcopter that should enter a house through a window for disaster
response (simulated in Matlab). We showcased that CPS can be designed more reliably where there
is no need to accurately estimate the WCET and our approach can achieve both safety and higher
performance compared to static and measurement-based values. First and foremost, we showed
that the pessimism in the design of safety-critical CPS can be reduced while safety guarantees are
provided. For example, in one of the case studies, we were able to achieve 1.83X higher performance
compared to the case where WCET is determined pessimistically, at the cost of infrequent execution
of backup routines (0.1% of the times). Results from our experiments show the resiliency of our
approach against timing failures with the help of backup routines. To show the resiliency of our
approach to timing failure, we intentionally injected faults to cause a timing violation. Compared to
the conventional approaches �where a backup routine is not envisioned�, the plan B approach was
able to avoid accident/instability. We also show the �exibility of our approach to achieve graceful
degradation. Results show that the system can operate at a lower performance when an intermittent
timing failure happens instead of completely shutting down the system.

2 RELATED WORKS

Researchers have broadly studied the WCET estimation in the literature [7, 11� 15]. There are two
main approaches to estimate the WCET of the software: static timing analysis and measurement-
based approaches. Static methods estimate the WCET based on the structural information of the
software. In a search process, the path in the software that corresponds to the longest execution time
is sought [16] and the WCET is calculated accordingly. Since caches have the most contribution in
WCET computation, a cache model is considered to have a more accurate estimation [17]. However,
due to the complexity of the actual hardware (many levels of caching, out-of-order execution, etc.)
and software (many lines of code, OS calls, etc.), timing models are simpli�ed, which result in an
inaccurate WCET estimation. Although static methods may be able to �nd a safe bound on the
execution time of a program, they usually overestimate the WCET, therefore, provide pessimistic
WCET values.

In measurement-based WCET approaches [12, 18], the program is executed for di�erent sets of
input and its execution time is measured. Then, the longest execution time is considered as the
WCET of the program. To be con�dent, a 20% safety margin is added to the longest observed value
to account for cases that are not covered. Researchers have also developed probabilistic WCET
(pWCET) approaches to estimate the WCET [19� 21] where a probability distribution function is �t
to the measured execution times and the WCET is provided with a con�dence value e.g., 99.9%.
Measurement-based techniques and probabilistic approach, however, underestimate the WCET
and the calculated WCET using these methods is not safe. This is because the code and the system
cannot be tested for all possible inputs and states. To help researchers estimate the WCET, many
WCET analysis tools are developed. aiT [22], Bound-T [23], and RapiTime [24] are a few examples
of such tools. Uppaal[25] is a model checker tool that supports WCET analysis.

Assuming the WCET is known for a number of programs that run on the same platform, the
Worst-case Response Time (WCRT) [13] of a task is calculated by determining how many times
it may be preempted by other high priority tasks in the worst-case. WCET and WCRT are used
to perform a schedulability analysis. Based on the data dependency between tasks, end-to-end
analysis is done to estimate the Worst-case End-to-End Delay (WCE2ED) [26, 27].

, Vol. 1, No. 1, Article . Publication date: February 2022.



4 M. Khayatian,et al.

Simplex architecture [28] uses a similar concept to design safety-critical systems. In the Simplex
approach, a simpler subsystem is designed to take over when a fault (timing error, OS crash, no
output, voltage fault, etc.) happens. Compared to Simplex, Plan B is mainly focused on timing
violations and supports distributed systems.

3 BACKUP ROUTINE BASED EXECUTION

In this section, we �rst present the key idea for the design methodology of the Plan B approach
and then, present a motivating example to bene�t from backup routines for graceful degradation.

3.1 Key Idea of Backup Routine-based Execution of Time-sensitive Applications

We have developed the Plan B framework based on the premise that a timing constraint may fail
(despite WCET analysis) and the designer should envision what should happen when a timing
violation occurs. In Plan B, a monitoring mechanism is developed to check if timing constraints are
met at the runtime and if not, execute a backup routine. By timely execution of a proper backup
routine, the safety of the system could be guaranteed. Since designing a proper backup routine
depends on the model of the system, backup routines vary from one application to another.

In many time-sensitive applications, the software is very large and the hardware is heterogeneous
and has a complex architecture, which makes WCET estimation a di�cult process. Unlike existing
methods that try to estimate the WCET using static and measurement-based methods, the Plan-
B approach does not require estimating the WCET because the execution of the software can
be bounded by an upper bound. Typically, the distribution of the execution time is similar to
the histogram depicted in Figure 1. Let us assume that the histogram in Figure 10 belongs to an

Fig. 1. Histogram of the execution time of the AV so�ware and estimated WCET using static and measurement-
based approaches.

Autonomous Vehicle (AV). An important timing constraint for an AV is that �the delay from sensing
to actuation should be less than a threshold�. The AV should be able to detect an obstacle and slow
down when needed in a timely manner. Let us assume that theactualWCET of the whole software
is 650 ms, and the estimated WCET by a measurement-based approach and a static approach is 450
ms and 1800 ms, respectively. If the system is designed based on the static WCET (1800 ms), the
vehicle should drive very slowly to ensure it does not hit an obstacle, which is very conservative. If
the system is designed based on the measurement-based WCET (450 ms), we cannot guarantee its
safety since the AV's execution time can exceed 450 ms and it hits an obstacle.

As the �rst step in Plan-B's design methodology, we need to �nd a reasonable upper bound for
the execution time. A practical way that is used is to consider the measurement-based WCET plus
10% bu�er as the upper bound. Let us assume the upper bound is considered to be 500 ms. The next
step is to envision a backup routine such that if the backup routine is executed in a timely manner,
the AV remains in a safe state. A simple backup routine for this application is to apply the full brake.
We set the deadline for delivery of the backup routine to be 500 ms. Since this backup routine is

, Vol. 1, No. 1, Article . Publication date: February 2022.



Plan B - Design Methodology for Cyber-Physical Systems Robust to Timing Failures 5

very simple and comprises only a few lines of code, it is easy to accurately estimate its WCET. For
this example, we assume the WCET of the backup routine (� �' ) to be 10 ms. If the backup routine
is executed within 500 - 10 = 490 ms of the sensing, even in the worst-case scenario, the brake
signal is delivered within the set deadline (500 ms). Based on this design, it is guaranteed that the
AV never hits its front vehicle and will stop safely even if a timing failure happens. However, the
AV's behavior is more conservative since it stops whenever there is a timing failure regardless of
the presence or absence of an obstacle. Figure 2 shows an overview of Plan B's execution model for
our AV example.

Fig. 2. By on-time execution of a safe backup routine, the vehicle remains in a safe state.

3.2 Graceful Degradation using Backup Routine-based Execution

The Plan B approach allows for bounding the execution time of a program by de�ning an alternative
path (backup routine), which enables a number of capabilities. First and foremost, the system will
be more resilient because even if a timing failure happens �due to an unexpected issue such as
aging, soft error, or bug in the code� the system remains safe. Secondly, the design can become
�exible to timing failure. Instead of having timing constraints with �xed deadlines, the deadlines
can be adaptively set depending on the state of the system. Normally, the deadlines for a system are
set while accounting for the worst-case scenario e.g., the maximum braking distance of the vehicle
�which corresponds to the maximum velocity of the vehicle. However, when driving at a lower
velocity, the timing constraints can be relaxed. In a �exible design, when a timing constraint is not
met, the system can be recon�gured to operate at a lower rate (e.g., drive at a slower speed) and
gracefully degrade instead of a harsh action (e.g., applying the full brake or completely terminating
the operation). Recalling the AV example, one can derive a relationship between the deadline for
executing the backup routine and the maximum speed at which the AV should drive. We assume
the AV is following the two-second rule and its the dynamics are modeled using the following
equations:

8>>>>><

>>>>>
:

¤? = E
¤E= 0
0¹Cº = D¹C� dº
D¹Cº =  ¹?5 ¹Cº ¸ 2 � E¸ 2 � ?º

(1)

where? is the longitudinal position of the AV,Eis the velocity,2 is a constant safety barrier,0 is the
acceleration,Dis the control input (applied as throttle or brake),Cis time,d is the response time of
the software (from sensing to actuation) and?5 is the longitudinal position of the front vehicle. The
control input is designed such that the AV maintains a distance equal to 2 seconds from its front
vehicle plus some constant2. Since the acceleration rate and velocity of a vehicle are bounded, we
consider a bound on the acceleration0 2 »0<8=• 0<0G¼and velocityE2 »0• E<0G¼. Considering the
delay-free model (d = 0), the stop distance of the AV is calculated as3BC>?= E2

2j0<8= j . If the response

, Vol. 1, No. 1, Article . Publication date: February 2022.



6 M. Khayatian,et al.

1 Backup_Routine(){
2 if (v_prev > 4)
3 v_r = v_prev * 0.7;
4 else
5 v_r = 0;
6 TC.deadline = lookupTable(v_r);
7 }

Listing 1. A flexible backup routine

is delayed, the traveled distance will be3BC>?= E2

2j0<8= j ¸ dE¸ 0”50<0G d2 in the worst-case as the
AV may be accelerating while processing the sensed data. Substituting the maintained distance
2 � E¸ 2, we can �nd a relationship betweend andE:

2E¸ 2 �
E2

2j0<8= j
¸ dE¸ 0”50<0G d2 (2)

For this example, we use following parameters:0<8= = � 4”5, 0<0G = 2”6, and2 = 4”5. Figure 3
shows the relationship between the AV's velocity and the response time of the autonomous driving
software. The area highlighted as �unsafe� means the AV is in an unsafe state and may hit its front
vehicle if the front vehicle stops suddenly while the green area indicates that the AV can apply the
brake in time and it is physically impossible to hit its front vehicle even if the front vehicle stops
suddenly. Let us assume the AV is initially set to drive at 16 m/s (about 30 mph). A possible backup

Fig. 3. Relationship between the velocity of the AV and response time of the so�ware. When a fault happens,
the backup routine is executed periodically (every 200 ms) and each time the reference velocity is reduced by
70%.

routine to achieve graceful degradation is to reduce the velocity by 30% and re-adjust the deadline
(see listing 1).

The initial deadline is set to 200 ms. When a timing failure happens, the reference velocity is set
to 16*0.7 = 11.2 m/s. We assume that the response time of the controller is fast and for simplicity,
the AV slows down at -4.5< •B2. At 11.2 m/s the AV is able to tolerate a delay of up to 0.71 s and still
be safe. The new deadline (0.71 s) is computed from a lookup table that represents the relationship
between velocity and deadline as indicated in Equation 2. If another timing failure happens (the
deadline is greater than 0.71 s), the backup routine is executed again. For all velocities greater than

, Vol. 1, No. 1, Article . Publication date: February 2022.



Plan B - Design Methodology for Cyber-Physical Systems Robust to Timing Failures 7

4 m/s, the backup routine ensures that the AV remains in the green zone by reducing the velocity
by 30 %. If another timing failure happens, the backup routine is executed again and the deadline
value is updated. Similarly, when the timing goes back to normal (delay is 0.2 s), the system can
recover and operate at the nominal velocity (16 m/s).

3.3 System Model

Let us assume that our application has= timing constraints. Without loss of generality, all timing
constraints can be simpli�ed to an end-to-end latency constraint. For instance, the timing constraint
�the period of executing a function should be 100 ms� can be re-written as �the end-to-end latency
between two function calls should be 100 ms�. We assume that for each timing constraint, a safe
backup routine exists such that if the backup routine is executed within the timing constraint's
deadline, the system remains in a safe state. We represent timing constraints of an application as a
set:

)� = f)� 1•)� 2• ”””•)�=g (3)

where each timing constraint is a tuple:)� 8 :=Ÿ � 8•)8 ¡ , where� 8 is the WCET of the backup
routine 8and) 8 the execution period of the backup routine8. The execution period of a backup
routine,) 8, depends on how frequently the timing constraint is assigned/speci�ed,) ) � . For timing
constraints that are assigned aperiodically, we consider a lower bound on) 8. Since multiple timing
constraints may be speci�ed, there will be multiple backup routines associated with them. To make
the execution deterministic, a priority value is assigned to each backup routine by the programmer.
Without loss of generality, we assume that the priority of the backup routine8is 8and a lower
number indicates a higher priority. We do not explicitly model the task model for the normal
execution of the software since the priority of all backup routines is higher than tasks for normal
execution and the safety-related timing requirements are de�ned for backup routine and not normal
routines.

Assume that dynamics of the CPS are modeled as follows:
(

¤G= 5¹G¹Cº•D¹C� ) ¹Cººº
~ = 6¹G¹Cºº

(4)

whereG� R = represents the vector of the system state,Dis the vector control inputs,~ is the vector
of measured states, and) is the sensing to actuation delay related to the software's execution time.
It should be noted that) is not constant and depends on the execution of the software. When a
timing failure happens and a backup routine is executed, the control inputs are changed. Therefore,
we use hybrid automata [29] to model the complete behavior of the system. Figure 4 shows the
overview of the complete system model. In this model, the software is represented using two

Fig. 4. The complete system (physical dynamics and so�ware abstraction) is modeled using a hybrid automa-
ton to verify if the unsafe set is reached.

, Vol. 1, No. 1, Article . Publication date: February 2022.



8 M. Khayatian,et al.

discrete states (normal mode and backup mode). The initial state and input are speci�ed withG0•D0.
Initially, the system operates in the normal mode. When the execution time or sensing to actuation
delay () ¹Cº) is greater than the set deadline, the state machine transitions to the backup mode
where the backup routine (D� ) is applied to the system.

Definition 1. Safe backup routine: GivenG0 is the initial state of the system at timeC0, andXD
is the set of the unsafe states, the backup routineD� is a called safe if by applyingD� to the system,
states of the system never reach the unsafe set, i.e.,G¹Cº 8 XD.

One can use Control Barrier Function (CBF) [30� 32] to determine control inputs (backup routine)
that are proved to be safe. Alternatively, veri�cation tools can be utilized to check if a backup
routine is safe. In existing veri�cation tools [33, 34], an assertion is speci�ed that describes the
unsafe set,GD.

For simplicity, we set the deadline for the execution of the backup routine to be the same as
the deadline for the original timing constraint (normal mode). Since the execution of the backup
routine itself takes some time, the backup routine should be executed a bit earlier. Assume a timing
constraint (indexed as8) is speci�ed at timeC= 0, and its deadline is atC= 38, the activation time
of the backup routine (38

�' ) can be calculated as:

38
�' = 38 � � 8

In most cases, backup routines are very small (have no more than few lines of code). As a result,
when the WCET of the backup routine can be estimated using static approaches, which results
in much less pessimistic values compared to the case where static analysis is done for the whole
program.

3.4 Safety Proof of a Proposed Backup Routine

Our approach is useful only if the proposed backup routine is proved to be safe when applied
in time. We can develop the safety proof in di�erent ways, depending on the system model. For
a system with a deterministic model and input, one can simulate the system and check if the
backup routine is safe (e.g. using Matlab State�ow tool). For a system with a non-deterministic
set of initial state and input, veri�cation tools like Flow* [33] can be employed. Here, we provide
the proof for the aforementioned example in subsection 3.2 by simulation. We �rst de�ne the
initial set - 0 = »0 16 36”5 0¼meaning that the ego vehicle is at? = 0 driving at 16 m/s and
its front vehicle is2E¸ 2 = 36”5< away and is already stopped. The unsafe set is de�ned as
- D = f - j38BC¹- ¹1º• - ¹3ºº Ÿ 0”5g, representing cases where the distance between vehicles is less
than 0.5 m. We want to show that even if the sensing to actuation delay is in�nite, the distance
between vehicles remains greater than 0.5 m. The ego AV continues driving at 16 m/s for 0.2 s ( the
�rst deadline) and after that, it reduces its velocity to 12.8 m/s Since the maximum deceleration is
-4.5< •B2, it takes about 0.7 s to reach 12.8. Since the second deadline for the velocity at 12.8 m/s is
0.6, the backup routine is executed one more time and the velocity of the ego AV is set to 10.2 m/s.
Figure 5.left shows the position, velocity, and the set deadline for the vehicle when a safe backup
routine (slow down by 70%) is applied. The ego AV does not hit its front vehicle located at 36.5
since the �nal position value is 36. The set delay and reference velocity are shown in Figure 5. Note
that for a similar backup routine that reduces the velocity by 80%, a safety guarantee cannot be
achieved. Figure 5.left shows the position, velocity, and the set deadline for the vehicle when an
unsafe backup routine (slow down by 80%) is applied.

, Vol. 1, No. 1, Article . Publication date: February 2022.



Plan B - Design Methodology for Cyber-Physical Systems Robust to Timing Failures 9

Fig. 5. The trace for the worst-case scenario where consecutive timing failures happen. Le�) The backup
routine (slow down by 70%) is safe and the AV is able to stop safely. Right) The backup routine (slow down by
80%) is unsafe and the AV is unable to stop safely.

3.5 Handling Multiple Backup Routines

Although rare, there can be cases where multiple timing constraints are speci�ed and they are
violated at the same time or the execution of their backup routine has an overlap. In such cases, low
priority backup routines are blocked by high priority ones, and therefore, their �nish time will be
late. As a result, we need to calculate the WCRT for each backup routine and use it for computing
the �ring time of the backup routine. Figure 6 shows a scenario where 3 timing constraints are
violated at the same time.

Fig. 6. A scenario where three timing constraints are violated at the same time and the execution of backup
routines overlaps.

To make sure all backup routines will �nish their execution before their deadline, we use WCRT
(F ) instead of WCET to determine the activation time of the backup routine:

3�' = 3 � F

, Vol. 1, No. 1, Article . Publication date: February 2022.



10 M. Khayatian,et al.

Assuming �xed-priority scheduling for the execution of backup routines, one can calculate the
WCRT of the backup routine8using conventional approaches [13] as:

F8 = 28 ¸
Õ

92�? ¹8º

�
F8

) 9

�
29

�? ¹8º represents the set of all backup routines that have a higher priority than backup routine8
and are expected to be executed on the same machine as backup routine8.

3.6 False Positives

It should be noted that there can be cases where the execution of the original code is between 490
and 500, which is �ne and there is no need for the execution of the backup routine but the backup
routine is executed. Measurement-based WCET analysis is helpful to determine a reasonable upper
bound for the execution time of the software (e.g. 500 ms in this example) which will be used to
ensure that the timing requirement will be mostly met e.g., 99.9% of the times and when it is not
met, e.g., 0.1% of the times, the backup routine is executed. By correctly adjusting the upper bound,
the rate of false positives can be reduced.

The rate of �false positives� �when the execution time of the software falls between3�' and3�
is usually low since the size of backup routines is small relative to the whole program. However,
the WCRT of low-priority backup routines increases with de�ning more timing constraints and
the rate of false positives increases too. First of all, this issue happens very rarely. If the rate of a
timing failure and execution of a backup routine is low, simultaneous timing failures are very rare.

3.7 Handling Distributed Timing Constraints

Plan B allows for building distributed systems with end-to-end timing constraints among nodes. In
the general form, two computing nodes collaborate to monitor a distributed timing constraint. since
this collaboration happens by means of communicating over the network, long network delays can
disrupt on-time monitoring of an end-to-end timing constraint. To tackle this issue, we convert all
aperiodic end-to-end latency constraints into periodic ones where the period is set to be the same
as the threshold for the end-to-end latency constraint.

Assume a distributed latency between events e1 and e2, speci�ed on nodes N1 and N2. The
monitoring mechanism on the �rst node (N1) sends the deadline timestamp to the second node
(N2) in a periodic manner. On the receiver side, the monitoring mechanism receives the deadline
timestamp and locally monitors the timing constraint. If the deadline timestamp is not received
within the deadline (30), the backup routine will be executed.

In Plan B's approach for distributed timing constraints, the �rst node computes a deadline and
converts it to the UTC format and the destination converts it back to a local deadline. As a result,
nodes should synchronize their local clocks periodically so that they have the same notion of time.
The period of the clock synchronization depends on the frequency variations of the node's clock
(oscillator).

Let us consider a platooning scenario where multiple AVs drive together to get better fuel
e�ciency by reducing air resistance. The front AV sends the intended action (slow down or speed
up) and desired velocity to its rear AVs and they adjust the velocity accordingly. To ensure the
safety of AVs, the latency from the front AV sending its information to the rear AVs should be less
than a threshold. The backup routine for each AV is to slow down periodically until the timing
constraint is met similar to Listing 1. The monitoring mechanism on each AV sets a timeout for
receiving the deadline timestamp.

, Vol. 1, No. 1, Article . Publication date: February 2022.



Plan B - Design Methodology for Cyber-Physical Systems Robust to Timing Failures 11

In the next section, we explain how programmers can specify timing constraints and correspond-
ing backup routines in the code and how it's implemented such that on-time delivery of backup
routines is guaranteed.

4 PROPOSED TIMING API FOR C/C++ LANGUAGE

In this section, we introduce PlanB's timing constructs which are developed for the C/C++ language.
In our approach, timing constraints are de�ned asexceptionsthat can be caught by a runtime
monitoring mechanism. A set oftiming constructsis provided to specify a timing constraint as
a part of the program. In our approach, timing constraints are speci�ed using events. An event
corresponds to a line in the code and is annotated using the_recordEvent(eventName)
construct, whereeventName indicates the name of the event. Let us consider a simple C program
for an embedded control system shown in Listing 2 where the goal is to read data from the sensor,
perform some computations on the sensed data and then actuate based on the result.

1 while (1){
2 data = sense();
3 result = compute(data);
4 actuate(result);
5 }

Listing 2. A sample snippet of code for reading data from sensor performing some computation and then
actuating

We use this example to explain the speci�cation of di�erent timing constraints in the code.

4.1 Latency Constraint

Let us assume that the latency from the sensing to actuation in the example shown in Listing 2
should be less than 100ms �e.g. to ensure the quality of service. To specify such a timing constraint,
programmers can de�ne two events, one before the sensing and one after the actuation, and de�ne
a latency constraint as it is shown in Listing 3. In general, three types of latency constraints can
be de�ned, where the latency among two events should be less than, greater than, or equal to a
value. Note that for the equal case, programmers should know how much tolerance is acceptable
because achieving an exact latency is not feasible and then specify it in terms of two conditions: a
greater than and a less than case. Listing 3 shows the modi�ed version of code in Listing 2 where
two events (e1 ande2) are annotated and a latency constraint is speci�ed.p is the priority for the
execution of the corresponding backup routine. The priority value should be known since multiple
timing violations can happen simultaneously.

1 while (1){
2 data = sense();
3 _try{
4 _recordEvent (e1);
5 result = compute(data);
6 _recordEvent (e2);
7 }
8 _catch( _latency (e1,e2,100) > 100000 , p){
9 BR();

10 }
11 actuate(result);
12 }

Listing 3. Annotating a latency timing constraint inside the code to check if the sensing to actuation latency
is less than 100 ms

, Vol. 1, No. 1, Article . Publication date: February 2022.



12 M. Khayatian,et al.

Programmers can place a backup routine inside thecatch segment in order to specify what
happens when the latency timing constraint is not met. The less than case can be de�ned similarly
by modifying the condition for the timing exception.

4.2 Period Constraint

Period constraint speci�es that the occurrence period of an event to be less/greater than a or equal
to threshold. Programmers may want to make sure that the period of execution of a task/function
is less than, greater than or equal to a value. Let's assume that we want the executing period of the
compute() function in the Listing 2 to be equal to 10 ms� 1 ms. This timing constraint can be
speci�ed by de�ning an event inside thecompute() function and then specifying two period
constraints to specify the desired range as it is shown in Listing 4.

1 while (1){
2 data = sense();
3 result = compute(data);
4 actuate(result);
5 }
6

7 int compute( int data){
8 _try{
9 _recordEvent (e3);

10 ...
11 }
12 _catch( _period (e3,100) > 11000, 1){
13 BR();
14 }
15 _catch( _period (e3,100) < 9000, 2){
16 BR();
17 }
18 }

Listing 4. Timing constructs are added for checking the execution period of thecompute() function

Based on the allowed tolerance (1 ms) the desired range for an acceptable period is between 9ms to
11 ms. If the period is out of this range, a backup routine (BR() ) is executed.

4.3 Re-using Events for Multiple Timing Constraints

Sometimes, programmers may want to specify multiple timing constraints for a code. This can be
done by using multiplecatch constructs. The code in Listing 5 shows a case where a latency and
a period constraints are speci�ed together. The latency of thecompute function should be less
than 100 ms and its period should be less than 200 ms.p1 andp2 are the priorities for execution
of the �rst and second backup routines, respectively which are speci�ed by the programmer.

1 while (1){
2 data = sense();
3 result = compute(data);
4 actuate(result);
5 }
6

7 int compute( int data){
8 _try{
9 _recordEvent (e1);

10 ...

, Vol. 1, No. 1, Article . Publication date: February 2022.



Plan B - Design Methodology for Cyber-Physical Systems Robust to Timing Failures 13

11 _recordEvent (e2);
12 }
13 _catch( _latency (e1,e2,100) > 100000, 1){
14 BR1();
15 }
16 _catch( _period (e1,100) > 200000, 2){
17 BR2();
18 }
19 }

Listing 5. Specification of multiple timing constraints and resue of events in two separate timing constructs

Using a separatecatch construct for each timing constraint allows programmers to specify a
separate backup routine when a timing constraint is not met. Also, the programmer can reuse an
event (e.g. e1 in this example) for specifying di�erent timing constraints.

4.4 Distributed End-to-end Latency

Some CPS are distributed by nature (e.g. drone swarm) and some have a distributed computing
platform that includes multiple embedded devices communicating with each other. In such systems,
programmers may want to specify end-to-end timing constraints among devices. Let us consider
an example of a distributed CPS with two devices, where device 1 collects the data from a sensor,
does some pre-processing, and sends the result to device 2. Upon receiving the result, device 2
performs some more processing and then performs an actuation. Note that the communication is
synchronous and receive is blocking (not returned until the data is received). For this example, one
may de�ne a timing constraint as: �The latency from sensing at device 1 to actuation at device 2
should be less than 500 ms�. Listing 6 and 7 show the code for device 1 and 2, respectively.

1 while (1){
2 _try{
3 _recordEvent (e1);
4 data = sense();
5 result = compute(data);
6 send(result);
7 }
8 _catch( _ackTimeout (e1,100), 1000000, 1){
9 BR1();

10 }
11 }

Listing 6. Timing constructs are added for specification of a distributed latency constraint between two
points in separate programs - device 1

1 while (1){
2 _try{
3 data = receive();
4 result = compute(data);
5 actuate(result);
6 _recordEvent (e2);
7 }
8 _catch( _distLatency (e1,e2,100) > 500000, 1){
9 BR2();

10 }

, Vol. 1, No. 1, Article . Publication date: February 2022.



14 M. Khayatian,et al.

11 }

Listing 7. Timing constructs are added for specification of a distributed latency constraint between two
points in separate programs - device 2

In order to implement the monitoring mechanism for an end-to-end timing constraint, device 1
sends the deadline to device 2, and device 2 locally sets up a timer to monitor the timing constraint.
Monitoring of a distributed timing constraint can be impacted by network delay, especially if
the deadline timestamp is sent over wireless communication. As a result, the timestamp may be
delivered to the receiver very late or not being delivered at all. To detect excessive network delays,
the receiver is con�gured to send back an acknowledge (ack) message to the sender upon receiving
the deadline timestamp. The sender waits for the ack message to ensure the deadline timestamp
was delivered on time. If the ack is not received after a deadline, the speci�ed backup routine will
be executed. In addition, clock synchronization and timestamp translation need to be implemented
so that devices have the same notion of time because the deadline timestamps are captured by local
clocks and will be used by another device. More details are provided in the implementation section.

4.5 Distributed Simultaneity

A simultaneity timing constraint can be speci�ed to make sure a set of events happen at the same
time �with a small tolerance. Let us assume that the same program as Listing 8 is running on
three devices. It is desired to perform sensing simultaneously with 1 ms tolerance. We annotate a
simultaneity timing constraint on the event set E1.

1 while (1){
2 _try{
3 _recordEvent (E1);
4 data = sense();
5 result = compute(data);
6 sendToServer(result)
7 }
8 _catch( _simultaneity (E1,100), 1){
9 BR1();

10 }
11 _catch( _ackTimeout (E1,100), 2){
12 BR2();
13 }
14 }

Listing 8. Timing constructs are added for specification of a simultaneity timing constraint

To implement this timing constraint, all three devices capture a timestamp before sensing and
broadcast it. Upon receiving timestamps of other devices, they verify that if the timing constraint
is met by checking if the time di�erence between the earliest and the latest timestamps is less than
the speci�ed tolerance (1 ms). This timing constraint also requires maintaining a minimum level of
time synchronization and timestamp translation which is explained in the next section.

We have listed PlanB's timing constructs in Table 1. Note that try constructs cannot be nested
and are used to hint the compiler where events are de�ned. Programmers should de�ne a priority
value to specify the execution order of backup routines when multiple timing failures happen.
Having �xed priority values makes the execution behavior more deterministic compared to dynamic
priority values. The priority value is a number greater than zero. Smaller values correspond to
higher priorities and two timing exceptions cannot have the same priority.

, Vol. 1, No. 1, Article . Publication date: February 2022.



Plan B - Design Methodology for Cyber-Physical Systems Robust to Timing Failures 15

Construct Functionality

_try{ ... }
Indicates the body of the program
where events are de�ned.

_catch(exception, priority){
... }

Indicates the exception that should
be caught, backup routine to be ex-
ecuted and the execution priority
of the backup routine.

_recordEvent(e)
Annotate an event in the code la-
beled ase.

_latency(e1,e2, n) ¡Ÿ = d

Speci�es a latency timing con-
straint between two eventse1 and
e2 (less than, greater than, or equal
to d seconds).n de�nes the accept-
able tolerance of the timing con-
straint.

_period(e, n) ¡Ÿ = T

The desired occurrence period of
the evente should be less than,
greater than or equal to T with a
tolerance ofn.

_distLatency(e1,e2, n) ¡Ÿ = d

Similar to the local latency con-
straint but events e1 and e2 are de-
�ned in programs running on sep-
arate devices.

_ackTimeout(e1, n)
Speci�es a timeout for sending the
deadline timestamp of a distributed
latency constraint.

_simultaneity(E, n)

All events in the event set E (event
set E is de�ned on distributed de-
vice) should be simultaneous with
a tolerance ofn.

Table 1. PlanB Timing Constructs and their Functionalities

5 PROPOSED IMPLEMENTATION FOR EFFICIENT EXECUTION

In this section, we provide more detail for implementation of the introduced timing constructs. A
naive way to monitor a timing constraint is to take timestamps at event annotation locations and
perform a simple check on the values of timestamps to see if the timing constraint is met. However,
the detection time of the timing failure can be unbounded (e.g., when the program never reaches the
location of the second event). Since we are interested in the timely detection of a timing violation,
we get help from hardware timers for monitoring. A timer is activated using_startTimer(TC)
and stopped using_stopTimer(TC) . Upon expiration of the timer,_timerExpired(TC) is
called automatically by the interrupt handler that is attached to the timer.TCis astruct variable
that represents a timing constraint, which includes the deadline for the constraint, name of the
corresponding backup routine, timing constraint's ID, a timestamp value, and the state of the timing
constraint (being active or inactive). Each timing constraint has a tolerance value (n) to indicate
how much inaccuracy is acceptable when being monitored since perfect monitoring is not feasible.
We consider three error sources for monitoring: 1) monitoring error (4" ), 2) implementation error
(4� ), and 3) synchronization error (4( ). Monitoring error depends on the resolution of the captured
timestamp and implementation error depends on the time it takes to set up/re-con�gure a timer

, Vol. 1, No. 1, Article . Publication date: February 2022.



16 M. Khayatian,et al.

and the ISR's response time upon expiration of a timer. Synchronization error is considered for
distributed timing constraints only (_distLatency and_simultaneity ) and depends on
the synchronization level among devices. To verify that the monitoring system is suitable, the
following constraint is checked:

4" ¸ 4� ¸ 4( � n (5)

5.1 Latency Constraint

As discussed in the previous section, latency timing constraints are of two types, less than or
greater than (the equal case should be annotated as a less than case and a greater than case).
For a greater than timing constraint (e.glatency(e1,e2) ¡ 100 ms), a single-shot timer is
started at the annotation location of the �rst event and it is stopped at the annotation location of
the second event. If the timer is expired before reaching the second event, the timing constraint
is violated and the speci�ed backup routine should be executed (it will be added to the backup
routine queue (BRQ) and will be executed). The activation time of the backup routine is set to
99 ms assuming the WCRT of the backup routine BR is 1 ms (100 - 1 = 99 ms) according to
)�”02C8E0C8>=)8<4= )�”3403;8=4� )�”, ��) . The code in Listing 9 shows the generated code
for the latency example from the previous section (Listing 3).

1 TC1.activationTime = 0.099;
2 TC1.priority = 1;
3 jmp_buf buf;
4 actuate_t gResult;
5 while (1){
6 data = sense();
7 if (setjmp(buf)){
8 result = gResult;
9 } else {

10 _startTimer (TC1);
11 result = compute(data);
12 _stopTimer (TC1);
13 }
14 actuate(result);
15 }
16

17 void BR(){
18 gResult = backupRoutine();
19 }
20

21 void _timerExpired (TC1){
22 _BRQManager(BR, TC1.priority);
23 longjmp(buf,1);
24 }

Listing 9. Implementation for a maximum end-to-end latency constraint

When the BRQ is empty and the �rst BR is added, the BR is being executed as a separate thread
usingpthread_create() . The parent thread (_BRQManager() ) will wait for the BR to �nish
its execution (while (!isEmpty(BRQ)). As a result the control is not given back to the main loop
until the BR execution is �nished and the gResult value is updated. In our scheme, backup routines
are executed based on their priority values and in series (no two backup routines are executed in
parallel) to make WCRT calculation of backup routines less conservative. When a high priority
backup routine is added to the BRQ (backup routine queue), the BRQ manager places it at the

, Vol. 1, No. 1, Article . Publication date: February 2022.



Plan B - Design Methodology for Cyber-Physical Systems Robust to Timing Failures 17

head of the queue, suspends the low priority backup routine by sending a suspend signal to it
(pthread_kill(BR1, signal) ) and executes the high priority backup routine. In the signal
handler of all backup routines, the thread is either paused (usingpause() ) or resumed depending
on the received signal. After executing the high priority backup routine, the BRQ is updated
(removing the high priority backup routine) and the queue manager sends a resume signal to the
low priority backup routine to resume the execution. The BRQ manager also utilizes a mutex to
ensure that two threads or itself (when a backup routine �nishes its execution) do not access the
queue at the same time. We assume the update time of the queue is negligible and ignore it in the
WCRT computation.

If the compute(data) method has dynamic memory allocation, more e�ort is needed to avoid
possible memory leak due to jumps. Either the memory leak should be detected manually (e.g.,
using a �ag) and it is deallocated after the jump (afterif setjump(buf) ) or a �xed global
memory space is allocated for the compute(data) function and reused. Additionally, non-atomic
data structures must be treated as corrupted when the longjmp occurs as they may be left in an
inconsistent state.

For a less than timing constraint (e.glatency(e1,e2) Ÿ 100 ms), a timer is started at the
annotation location of the �rst event and the variableTC.active is set to true. Upon expiration of
the timer, the variableTC.active is set to false. We assume that the WCRT of the backup routine
is 1 ms. If the program reaches the annotation location of the second event and theTC.active
variable is still true, the timing constraint is violated and the backup routine is added to the BRQ
to be executed. In Listing 10, we show the generated the code for the latency example from the
previous section (Listing 3) when the timing constraint condition is greater than 100 ms instead of
less than 100 ms.

1 TC1.activationTime = 0.099;
2 TC1.priority = 1;
3 jmp_buf buf;
4 actuate_t gResult;
5 while (1){
6 if (setjmp(buf)){
7 actuate(gResult);
8 } else {
9 _startTimer (TC1);

10 TC1.active = TRUE;
11 data = sense();
12 result = compute(data);
13 actuate(result);
14 if (TC1.active = TRUE){}
15 _stopTimer (TC1);
16 _BRQManager(BR(), TC1.priority);
17 longjmp(buf,1);
18 }
19 }
20 }
21

22 void _timerExpired (){
23 TC1.active = FALSE;
24 }
25

26 void BR(){

, Vol. 1, No. 1, Article . Publication date: February 2022.



18 M. Khayatian,et al.

27 gResult = backupRoutine();
28 }

Listing 10. Implementation for a minimum end-to-end latency constraint

5.2 Period Constraint

A period timing constraint can be implemented as a repetitive latency timing constraint. The code
in Listing 11 is the generated code for the Listing 4. The_firstIteration variable is used to
skip the �rst instantiating of thestopTimer and after that, the timer is used to check the latency
between every two consecutive execution of the program. We assume the WCRT of the backup
routines is negligible.

1 TC1.activationTime = 0.011;
2 TC2.activationTime = 0.009;
3 TC1.priority = 1;
4 TC2.priority = 2;
5 jmp_buf buf;
6 actuate_t gResult;
7 while (1){
8 data = sense();
9 result = compute(data);

10 actuate(result);
11 }
12

13 _firstIteration = TRUE
14 int compute( int data){
15 if (setjmp(buf)){
16 return gResult;
17 } else {
18 if (_firstIteration == FALSE){
19 _stopTimer (TC1);
20 if (TC2.active == TRUE){
21 _stopTimer (TC2);
22 _BRQManager(BR(), TC2.priority);
23 longjmp(buf,1);
24 }
25 }
26 _firstIteration = FALSE;
27 _startTimer (TC1);
28 _startTimer (TC2);
29 TC2.active = TRUE;
30 ...
31 return result;
32 }
33 }
34

35 void _timerExpired (TC1){
36 _BRQManager(BR(), TC1.priority);
37 longjmp(buf,1);
38 }
39

40 void _timerExpired (TC2){

, Vol. 1, No. 1, Article . Publication date: February 2022.



Plan B - Design Methodology for Cyber-Physical Systems Robust to Timing Failures 19

41 TC2.active = FALSE;
42 }
43

44 void BR(){
45 gResult = backupRoutine();
46 }

Listing 11. Implementation for an equal period constraint

Two timers are started at the annotation location of the event and stopped in the next iteration.
The desired period (10 ms� 1 ms) is converted into an upper (0.011 ms) and a lower (0.009 ms)
bound for the timers. If the period is less than 0.009 ms, TC2 is violated and if it is greater than
0.011, TC1 is violated. Note that the backup routine for both cases is the same and, TC1 and TC2
cannot be violated at the same time.

5.3 End-to-end Distributed Constraint

As mentioned in subsection 4.4, implementing a distributed latency constraint is done by capturing
a timestamp on the �rst device, calculating the deadline timestamp, sending the deadline to the
second device, and setting up a timer locally on the second device based on the received deadline.
Not all end-to-end constraints are periodic and the second device doesn't know when to expect a
deadline from the �rst device. This can be problematic when the network delay is large and the
deadline arrives late or not arrives at all. To make sure excessive network delays can be detected,
the second device is set to send back an acknowledgment to the sender device. If the sender doesn't
receive the ack in time, it executes a backup routine. We consider a worst-case round-trip delay
(WCRTD) �from sending the timestamp to receiving the acknowledge� to set the deadline for
receiving the ack message. To maintain clock accuracy among devices, the_clockSync() is
called periodically to perform clock synchronization. The following equation shows the relationship
between period of clock synchronization in seconds () ( ), clock's frequency drift in part per million
format (4??< ) and the accuracy of the synchronization method (X).

4( = min¹X( •)( 4??< � 10� 6º (6)

For clock synchronization, a repetitive timer with a �xed period is set to execute the function
_periodic() function. In general, devices can synchronize their clock using Network Time
Protocol (NTP) [35], Precision Time Protocol (PTP) [36] or GPS. For this paper, we use a simpli�ed
version of NTP since PTP requires dedicated hardware and GPS is not always available. The value
of X for NTP, GPS, and PTP is 1 ms, 40 ns, and 10 ns, respectively._local2global(ts) and
_global2local(ts) functions are also inserted to convert a local timestamp into a global one
and vice versa. Listings 12 and 13 show the generated code for the distributed latency constraint
example (Listing 6 and 7) presented in the previous section. For this example, we set the WCRTD
to be 300 ms.

1 TC1.activationTime = 0.3; // WCRTD = 300 ms
2 TC2.activationTime = 0.5; // 500 ms
3 TC1.priority = 1;
4 jmp_buf buf;
5 msg_t gResult;
6 while (1){
7 if (setjmp(buf)){
8 send(gResult);
9 } else {

10 ts = _local2global (now + TC2.deadline)

, Vol. 1, No. 1, Article . Publication date: February 2022.



20 M. Khayatian,et al.

11 _sendTS (ts);
12 _startTimer (TC1);
13 data = sense();
14 result = compute(data);
15 send(result);
16 }
17 }
18

19 void _ackReceived (TC1){
20 _stopTimer (TC1);
21 }
22

23 void _timerExpired (TC1){
24 _BRQManager(BR1(), TC1.priority);
25 longjmp(buf);
26 }
27

28 void _periodic (){
29 _clockSync ();
30 }
31

32 void BR1(){
33 gresult = backupRoutine1();
34 }

Listing 12. Implementation for a distributed latency constraint - device 1

1 TC2.priority = 1;
2 actuate_t gResult;
3 jmp_buf buf;
4 while (1){
5 if (setjmp(buf)){
6 actuate(gResult);
7 } else {
8 data = receive();
9 result = compute(data);

10 actuate(result);
11 _stopTimer (TC2);
12 }
13 }
14

15 void _tsReceived (TC2){
16 TC2.deadline = _global2local (TC2.ts - now);
17 _startTimer (TC2);
18 _sendAck (TC1);
19 }
20

21 void _timerExpired (TC2){
22 _BRQManager(BR2(), TC2.priority);
23 longjmp(buf, 1);
24 }
25

26 void _periodic (){

, Vol. 1, No. 1, Article . Publication date: February 2022.



Plan B - Design Methodology for Cyber-Physical Systems Robust to Timing Failures 21

27 _clockSync ();
28 }
29

30 void BR2(){
31 gResult = backupRoutine2();
32 }

Listing 13. Implementation for a distributed latency constraint - device 2

At the annotation location of the �rst event, device 1 converts and sends the deadline to device 2,
and then starts a timer locally. A callback (_deadlineReceived() ) is set up in device 2's code
to receive the sent timestamp (using an interrupt handler), perform timestamp translation, start a
timer, and send back an ack to the sender. On the sender side, a callback (_ackReceived() ) is
set up to receive the ack (using an interrupt handler) and stop the timer. If the timer expires before
receiving the ack, thebackupRoutine1() is executed on the sender device. On the receiver
side, thebackupRoutine2() is executed if the timer expires.

5.4 Simultaneity Constraint

The code in Listing 14 shows the implementation code for the program in Listing 8.

1 float ts[3];
2 i = 0;
3 n = 0;
4 TC1.priority = 1;
5 TC2.priority = 2;
6 TC1.activationTime = 0.3; // WCRTD = 300 ms
7 jmp_buf buf;
8 msg_t gResult;
9 while (1){

10 if (setjmp(buf)){
11 sendToServer(gResult);
12 } else {
13 ts[i] = _local2global (now);
14 _sendTS (ts);
15 _startTimer (TC1);
16 data = sense();
17 result = compute(data);
18 sendToServer(result);
19 }
20 }
21

22 void _tsReceived (TC1){
23 i++;
24 ts[i] = _global2local (TC1.ts);
25 _sendAck ();
26 if (i == 2){
27 if (!_verifySimultaneityLevel(ts,0.001)){
28 _BRQManager(BR1(), TC1.priority);
29 longjmp(buf, 1);
30 }
31 i = 0;
32 }
33 }

, Vol. 1, No. 1, Article . Publication date: February 2022.



22 M. Khayatian,et al.

Fig. 7. Overview of the runtime management system for initiation of a timing constraint using timers,
performing network communications and clock synchronization (when needed) and achieving deterministic
execution of backup routines based on the specified priorities.

34

35 void _ackReceived (TC2){
36 n++;
37 if (n==3){
38 _stopTimer (TC2);
39 n=0;
40 }
41 }
42

43 void _timerExpired (TC2){
44 _BRQManager(BR2(), TC2.priority);
45 longjmp(buf, 1);
46 }
47

48 void _periodic (){
49 _clockSync ();
50 }
51

52 void BR1(){
53 gResult = backupRoutine1();
54 }
55

56 void BR2(){
57 gResult = backupRoutine2();
58 }

Listing 14. Implementation for a simultaneity timing constraint - device 1-3

Each device takes a timestamp before sensing and broadcast it. After receiving a timestamp,

5.5 Virtual Timers

Since a platform may not have enough hardware timers available to independently implement the
timing monitoring, we propose an e�cient mechanism where multiple timers are implemented
using a queue that maintains a list of timing constraints sorted based on their deadlines, and a
timer is used to count the timing constraint that is at the head of the queue (with the earliest
deadline). We refer to this queue as Timing Constraint Queue (TCQ). Figure 7 shows the overview
of PlanB's runtime monitoring mechanism. When the_startTimer() is called, the queue is

, Vol. 1, No. 1, Article . Publication date: February 2022.



Plan B - Design Methodology for Cyber-Physical Systems Robust to Timing Failures 23

updated to insert the new deadline. If the head of the queue is changed, the timer value is reset
and the values of existing deadlines are update. The algorithm 1 shows the pseudo-code for the
_startTimer() .

Algorithm 1: _StartTimer(TC)

1 if TC.deadlineŸ TCQ[0].deadlinethen
2 elapsedTime = getTimerValue();
3 TCQ.shiftFrom(0);
4 TCQ[0] = TC;
5 else
6 for (i=1; iŸ=length(TCQ); i++)do
7 if TC.deadlineŸ TCQ[i].deadlinethen
8 TCQ.shiftFrom(i);
9 TCQ[i] = TC;

10 break;
11 end
12 end
13 end
14 TCQM();

When_stopTimer(TC) is called or the timer is expired (_timerExpired(TC) ), the value
of deadlines is updated and the timer is armed again with the deadline of the queue's head. Algo-
rithm 2 shows the pseudo-code for the_stopTimer(TC) and_timerExpired(TC) .

Algorithm 2: _StopTimer(TC) and _timerExpired(TC)

1 for (i=1; iŸ=length(TCQ); i++)do
2 TCQ[i].deadline = TCQ[i].deadline - TCQ[0].deadline;
3 end
4 TCQ[0] = [];
5 TCQM();

It is possible to allocate more than a timer for the implementation of timing constraints on the
TCQ. If= timers are available on a platform, the �rst= elements on the queue are assigned to
existing timers.

If two timers expire at the same time or the interval for the execution of their corresponding
backup routine overlaps, the one with higher priority should be executed �rst. To achieve this
functionality, we use another queue called Backup Routine Queue (BRQ) that holds all the backup
routines to be executed. Upon violation of a timing constraint, its backup routine is added to the
BRQ. The BRQ is managed by the Backup Routine Queue Manager (BRQM) based on the priority
values of backup routines. BRQM ensures that all backup routines are sorted based on their priority
(from high to low) when a backup routine is added or removed and executes the backup routine at
the head of the BRQ (highest priority). It may be possible to execute multiple backup routines at
the same time, but it requires more information about their data dependency and is not considered
in this paper. When the timing constraint is distributed, the sender device passes the deadline and
the receiver's address to the network send block, which is responsible for TCP communication. For

, Vol. 1, No. 1, Article . Publication date: February 2022.



24 M. Khayatian,et al.

Fig. 8. Overview of the code transformation from source code with annotated timing constructs to C/C++
codes that can be compiled with existing compilers (e.g. gcc).

receiving the timestamp and the ack, a non-blocking receive is implemented in network receive
and network ack blocks. The synchronization block performs the clock synchronization and uses
the highest desired accuracy for timekeeping.

5.6 Code Transformation

We developed a checker that acts as a source-to-source transformer. Our checker gets the source
code(s) that are annotated in C/C++ and checks the consistency of events and throws an error if
there are redundant events. In addition, our checker generates the code for creation, con�guration
and deletion of timers (See appendix). We use Portable Operating System Interface (POSIX) library
for timer and signal con�guration. Figure 8 shows an overview of our source-to-source checker.
Initially, the parser check for syntax error and then extracts timing constraints and events that are
involved. Then, checks if there are distributed timing constraints and if yes, it add the code to send
the timestamps and perform clock synchronization. Finally the generated code should be compiled
(e.g., using g++) to get the binary.

For POSIX-based code generation, we usetimer_create() andtimer_settime() func-
tions to create and start a timer. We usesigevent andsigaction to de�ne a signal event and
attach it to the timer and also to specify the handler function that is linked to the signal action. We
use, real-time signals (RTSIG) �numbered from 32 to 64 in our implementation. We use the TCP
socket functions to implement the message passing between devices of a distributed system. The
periodic() function for synchronizing the clock is called at the �xed rate by setting up a timer
at the beginning of the program. We use NTP clock synchronization [35] in our implementation. For
platforms without POSIX support, we need to use hardware-dependent functions depending on the
platform. Usually, in MCUs timers and interrupts are set by directly writing into the corresponding
registers. Currently, our API only supports the ESP8266 board and uses theTicker library for
con�guring timers and interrupts. For TCP communication, we use theESP8266WiFi library.
After compilation and code transformation, the code for POSIX based implementation is compiled
with gcc (version 7.3.0) with-lrt �ag. The code for ESP8266 is compiled with Arduino IDE,
which uses the Xtensa lx106 toolchain.

, Vol. 1, No. 1, Article . Publication date: February 2022.




	Abstract
	1 Introduction
	2 Related Works
	3 Backup Routine based Execution
	3.1 Key Idea of Backup Routine-based Execution of Time-sensitive Applications
	3.2 Graceful Degradation using Backup Routine-based Execution
	3.3 System Model
	3.4 Safety Proof of a Proposed Backup Routine
	3.5 Handling Multiple Backup Routines
	3.6 False Positives
	3.7 Handling Distributed Timing Constraints

	4 Proposed Timing API for C/C++ Language
	4.1 Latency Constraint
	4.2 Period Constraint
	4.3 Re-using Events for Multiple Timing Constraints
	4.4 Distributed End-to-end Latency
	4.5 Distributed Simultaneity

	5 Proposed Implementation for Efficient Execution
	5.1 Latency Constraint
	5.2 Period Constraint
	5.3 End-to-end Distributed Constraint
	5.4 Simultaneity Constraint
	5.5 Virtual Timers
	5.6 Code Transformation

	6 Experiments
	6.1 Case Study I: Applying Plan B to a Complex Application - Autonomous Vehicle Full Software Stack
	6.2 Case Study II: Resilient and Flexible Design of an Automated Intersection of AVs using Plan B
	6.3 Case study III: Resilient and Flexible Control of a Quadcopter using Plan B

	7 Conclusion
	8 Acknowledgement
	A Appendix 1 - Sample Codes
	References

