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Many Cyber-Physical Systems (CPS) have timing constraints that must be met by the cyber components

(software and the network) to ensure safety. It is a tedious job to check if a CPS meets its timing requirement

especially when they are distributed and the software and/or the underlying computing platforms are complex.

Furthermore, the system design is brittle since a timing failure can still happen e.g., network failure, soft error

bit flip, etc. In this paper, we propose a new design methodology called Plan B where timing constraints of the

CPS are monitored at the runtime, and a proper backup routine is executed when a timing failure happens

to ensure safety. We provide a model on how to express the desired timing behavior using a set of timing

constructs in a C/C++ code and how to efficiently monitor them at the runtime. We showcase the effectiveness

of our approach by conducting experiments on three case studies: 1) the full software stack for autonomous

driving (Apollo), 2) a multi-agent system with 1/10th scale model robots, and 3) a quadrotor for search and

rescue application. We show that the system remains safe and stable even when intentional faults are injected

to cause a timing failure. We also demonstrate that the system can achieve graceful degradation when a less

extreme timing failure happens.

1 INTRODUCTION
Cyber-Physical Systems (CPS) are commonly referred to as the integration of software components

(cyber) interacting with physical processes [1]. Pacemakers, drones, autonomous vehicles, and

smart cities are few examples of CPS ranging from small to very large. There are many CPS that

are time-sensitive, where it is important for the software to generate not only the “right values”

but also “at the right time” since a late response from the software may be as fatal as a wrong

output [2].

To simplify the design of time-sensitive CPS, one of the earliest steps is to analyze the behavior

of the whole system. To do so, a model is considered for the physical process (e.g., differential
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equations) and the software components (e.g., finite state machine) of the CPS, and then, a set of

timing constraints are determined that must be satisfied by the implementation [3]. For example,

from early analysis of a vehicle’s kinematics, the delay from detecting an obstacle to applying the

brake should be no more than a deadline, say 500 ms, in order to operate an autonomous vehicle

safely at a certain speed. Once timing constraints are set, then it is the software engineers’ job

to select a proper platform and develop the software such that the timing constraints are always

met. This assumption – that the timing constraint will be always met – helps the CPS developers,

as they only need to think about the system functionality. They do not have to think about what

happens when a timing constraint is not met. A few unexpected reasons for timing failure include

network delay, a bug in the code, soft error [4], and aging. This paper takes the position that such a

hard abstraction (assuming that all timing constraints will be met) is not effective anymore and

leads to inflexible designs.

A number of CPS design methodologies like Ptides[5], and Giotto[6] exist that take the CPS

system specification and design the CPS that is guaranteed to meet its timing constraints. Such

approaches, however, require the calculation and use of Worst-Case Execution Time (WCET) of

program routines/tasks [7]. While it was possible to estimate the WCET for small pieces of software

that are executed on simple hardware, today, both the size of the CPS software, and the complexity

of CPS hardware have increased dramatically. For instance, the Waymo Autonomous Vehicle’s

software comprises more than 100 million lines of code [8], and the platform consists of Amulti-core

CPU and a GPU with multiple cache levels. The WCET estimate for such large applications that

run on such complex hardware will either be impractically pessimistic or unsafe [9]. In addition,

any modification to the software/hardware invalidates previous timing analysis, which makes the

system design re-iteration a tedious job.

To address this issue, we take the stance that timing constraints may fail, and a scalable way to

design time-sensitive CPS is to urge programmers to not only specify what happens when a timing

constraint is met, but also what happens when it is not met.

In this paper, we make three contributions:

• We introduce a design methodology called Plan B to develop time-sensitive CPS resilient to

timing failures. With proper backup routines, a safe design can be achieved by just knowing

the WCET of backup routines, instead of estimating the WCET for the whole software. In

addition, more flexible designs can be developed that meet their timing requirements "most

of the time" and when a timing requirement fails –which happens rarely– the system remains

safe through the execution of a fail-safe backup routine. In addition, the developed system

can gracefully degrade and operate at lower rates instead of completely shutting down the

system when timing violations are tolerable. This feature enables designers to renegotiate

timing contracts at the runtime to tune the performance of the system.

• We propose a set of timing APIs for C++ language that can be used by the programmers to

express the desired timing behavior of the application in the code. Using our API, we urge

programmers to envision fail-safe backup routines as a part of the program, which will be

executed when timing failures happen. The proposed API also includes specifying timing

constraints among nodes of a distributed system.

• We also propose an efficient monitoring mechanism to check the timing requirements of

the system at the runtime. The proposed “virtual timer” can be employed when the selected

platform has a limited number of hardware timers. Furthermore, we provide study the

implementation of distributed timing constraints and practical considerations like time

synchronization.
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We apply Plan B’s methodology to three case studies: 1) A complex application - the software

stack of Apollo[10], which is an open-source platform for autonomous driving (tested in a co-

simulation with the LGSVL simulator), 2) A distributed system - an automated intersection system

with 1/10 scale model miniature AVs where a set of distributed timing constraints must be met to

ensure the safety of AVs, 3) A quadcopter that should enter a house through a window for disaster

response (simulated in Matlab). We showcased that CPS can be designed more reliably where there

is no need to accurately estimate the WCET and our approach can achieve both safety and higher

performance compared to static and measurement-based values. First and foremost, we showed

that the pessimism in the design of safety-critical CPS can be reduced while safety guarantees are

provided. For example, in one of the case studies, we were able to achieve 1.83X higher performance

compared to the case where WCET is determined pessimistically, at the cost of infrequent execution

of backup routines (0.1% of the times). Results from our experiments show the resiliency of our

approach against timing failures with the help of backup routines. To show the resiliency of our

approach to timing failure, we intentionally injected faults to cause a timing violation. Compared to

the conventional approaches –where a backup routine is not envisioned–, the plan B approach was

able to avoid accident/instability. We also show the flexibility of our approach to achieve graceful

degradation. Results show that the system can operate at a lower performance when an intermittent

timing failure happens instead of completely shutting down the system.

2 RELATEDWORKS
Researchers have broadly studied the WCET estimation in the literature [7, 11–15]. There are two

main approaches to estimate the WCET of the software: static timing analysis and measurement-

based approaches. Static methods estimate the WCET based on the structural information of the

software. In a search process, the path in the software that corresponds to the longest execution time

is sought [16] and the WCET is calculated accordingly. Since caches have the most contribution in

WCET computation, a cache model is considered to have a more accurate estimation [17]. However,

due to the complexity of the actual hardware (many levels of caching, out-of-order execution, etc.)

and software (many lines of code, OS calls, etc.), timing models are simplified, which result in an

inaccurate WCET estimation. Although static methods may be able to find a safe bound on the

execution time of a program, they usually overestimate the WCET, therefore, provide pessimistic

WCET values.

In measurement-based WCET approaches [12, 18], the program is executed for different sets of

input and its execution time is measured. Then, the longest execution time is considered as the

WCET of the program. To be confident, a 20% safety margin is added to the longest observed value

to account for cases that are not covered. Researchers have also developed probabilistic WCET

(pWCET) approaches to estimate the WCET [19–21] where a probability distribution function is fit

to the measured execution times and the WCET is provided with a confidence value e.g., 99.9%.

Measurement-based techniques and probabilistic approach, however, underestimate the WCET

and the calculated WCET using these methods is not safe. This is because the code and the system

cannot be tested for all possible inputs and states. To help researchers estimate the WCET, many

WCET analysis tools are developed. aiT [22], Bound-T [23], and RapiTime [24] are a few examples

of such tools. Uppaal[25] is a model checker tool that supports WCET analysis.

Assuming the WCET is known for a number of programs that run on the same platform, the

Worst-case Response Time (WCRT) [13] of a task is calculated by determining how many times

it may be preempted by other high priority tasks in the worst-case. WCET and WCRT are used

to perform a schedulability analysis. Based on the data dependency between tasks, end-to-end

analysis is done to estimate the Worst-case End-to-End Delay (WCE2ED) [26, 27].
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Simplex architecture [28] uses a similar concept to design safety-critical systems. In the Simplex

approach, a simpler subsystem is designed to take over when a fault (timing error, OS crash, no

output, voltage fault, etc.) happens. Compared to Simplex, Plan B is mainly focused on timing

violations and supports distributed systems.

3 BACKUP ROUTINE BASED EXECUTION
In this section, we first present the key idea for the design methodology of the Plan B approach

and then, present a motivating example to benefit from backup routines for graceful degradation.

3.1 Key Idea of Backup Routine-based Execution of Time-sensitive Applications
We have developed the Plan B framework based on the premise that a timing constraint may fail

(despite WCET analysis) and the designer should envision what should happen when a timing

violation occurs. In Plan B, a monitoring mechanism is developed to check if timing constraints are

met at the runtime and if not, execute a backup routine. By timely execution of a proper backup

routine, the safety of the system could be guaranteed. Since designing a proper backup routine

depends on the model of the system, backup routines vary from one application to another.

In many time-sensitive applications, the software is very large and the hardware is heterogeneous

and has a complex architecture, which makes WCET estimation a difficult process. Unlike existing

methods that try to estimate the WCET using static and measurement-based methods, the Plan-

B approach does not require estimating the WCET because the execution of the software can

be bounded by an upper bound. Typically, the distribution of the execution time is similar to

the histogram depicted in Figure 1. Let us assume that the histogram in Figure 10 belongs to an
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Fig. 1. Histogram of the execution time of the AV software and estimatedWCET using static andmeasurement-
based approaches.

Autonomous Vehicle (AV). An important timing constraint for an AV is that “the delay from sensing

to actuation should be less than a threshold”. The AV should be able to detect an obstacle and slow

down when needed in a timely manner. Let us assume that the actual WCET of the whole software

is 650 ms, and the estimated WCET by a measurement-based approach and a static approach is 450

ms and 1800 ms, respectively. If the system is designed based on the static WCET (1800 ms), the

vehicle should drive very slowly to ensure it does not hit an obstacle, which is very conservative. If

the system is designed based on the measurement-based WCET (450 ms), we cannot guarantee its

safety since the AV’s execution time can exceed 450 ms and it hits an obstacle.

As the first step in Plan-B’s design methodology, we need to find a reasonable upper bound for

the execution time. A practical way that is used is to consider the measurement-based WCET plus

10% buffer as the upper bound. Let us assume the upper bound is considered to be 500 ms. The next

step is to envision a backup routine such that if the backup routine is executed in a timely manner,

the AV remains in a safe state. A simple backup routine for this application is to apply the full brake.

We set the deadline for delivery of the backup routine to be 500 ms. Since this backup routine is
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very simple and comprises only a few lines of code, it is easy to accurately estimate its WCET. For

this example, we assume the WCET of the backup routine (𝐶𝐵𝑅) to be 10 ms. If the backup routine

is executed within 500 - 10 = 490 ms of the sensing, even in the worst-case scenario, the brake

signal is delivered within the set deadline (500 ms). Based on this design, it is guaranteed that the

AV never hits its front vehicle and will stop safely even if a timing failure happens. However, the

AV’s behavior is more conservative since it stops whenever there is a timing failure regardless of

the presence or absence of an obstacle. Figure 2 shows an overview of Plan B’s execution model for

our AV example.

𝐂𝑩𝑹 = 𝟏𝟎𝒎𝒔
sensing

Deadline

𝒅 = 𝟓𝟎𝟎𝒎𝒔

𝒅𝑩𝑹 = 𝟒𝟗𝟎𝒎𝒔

Executing the 

backup routine

Fig. 2. By on-time execution of a safe backup routine, the vehicle remains in a safe state.

3.2 Graceful Degradation using Backup Routine-based Execution
The Plan B approach allows for bounding the execution time of a program by defining an alternative

path (backup routine), which enables a number of capabilities. First and foremost, the system will

be more resilient because even if a timing failure happens –due to an unexpected issue such as

aging, soft error, or bug in the code– the system remains safe. Secondly, the design can become

flexible to timing failure. Instead of having timing constraints with fixed deadlines, the deadlines

can be adaptively set depending on the state of the system. Normally, the deadlines for a system are

set while accounting for the worst-case scenario e.g., the maximum braking distance of the vehicle

–which corresponds to the maximum velocity of the vehicle. However, when driving at a lower

velocity, the timing constraints can be relaxed. In a flexible design, when a timing constraint is not

met, the system can be reconfigured to operate at a lower rate (e.g., drive at a slower speed) and

gracefully degrade instead of a harsh action (e.g., applying the full brake or completely terminating

the operation). Recalling the AV example, one can derive a relationship between the deadline for

executing the backup routine and the maximum speed at which the AV should drive. We assume

the AV is following the two-second rule and its the dynamics are modeled using the following

equations: 
¤𝑝 = 𝑣

¤𝑣 = 𝑎
𝑎(𝑡) = 𝑢 (𝑡 − 𝜌)
𝑢 (𝑡) = 𝐾 (𝑝 𝑓 (𝑡) + 2 ∗ 𝑣 + 𝑐 − 𝑝)

(1)

where 𝑝 is the longitudinal position of the AV, 𝑣 is the velocity, 𝑐 is a constant safety barrier, 𝑎 is the

acceleration, 𝑢 is the control input (applied as throttle or brake), 𝑡 is time, 𝜌 is the response time of

the software (from sensing to actuation) and 𝑝 𝑓 is the longitudinal position of the front vehicle. The

control input is designed such that the AV maintains a distance equal to 2 seconds from its front

vehicle plus some constant 𝑐 . Since the acceleration rate and velocity of a vehicle are bounded, we

consider a bound on the acceleration 𝑎 ∈ [𝑎𝑚𝑖𝑛, 𝑎𝑚𝑎𝑥 ] and velocity 𝑣 ∈ [0, 𝑣𝑚𝑎𝑥 ]. Considering the
delay-free model (𝜌 = 0), the stop distance of the AV is calculated as 𝑑𝑠𝑡𝑜𝑝 = 𝑣2

2 |𝑎𝑚𝑖𝑛 | . If the response
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1 Backup_Routine(){

2 if (v_prev > 4)

3 v_r = v_prev * 0.7;

4 else
5 v_r = 0;

6 TC.deadline = lookupTable(v_r);

7 }

Listing 1. A flexible backup routine

is delayed, the traveled distance will be 𝑑𝑠𝑡𝑜𝑝 = 𝑣2

2 |𝑎𝑚𝑖𝑛 | + 𝜌𝑣 + 0.5𝑎𝑚𝑎𝑥𝜌
2
in the worst-case as the

AV may be accelerating while processing the sensed data. Substituting the maintained distance

2 ∗ 𝑣 + 𝑐 , we can find a relationship between 𝜌 and 𝑣 :

2𝑣 + 𝑐 ≥ 𝑣2

2|𝑎𝑚𝑖𝑛 |
+ 𝜌𝑣 + 0.5𝑎𝑚𝑎𝑥𝜌

2
(2)

For this example, we use following parameters: 𝑎𝑚𝑖𝑛 = −4.5, 𝑎𝑚𝑎𝑥 = 2.6, and 𝑐 = 4.5. Figure 3

shows the relationship between the AV’s velocity and the response time of the autonomous driving

software. The area highlighted as “unsafe” means the AV is in an unsafe state and may hit its front

vehicle if the front vehicle stops suddenly while the green area indicates that the AV can apply the

brake in time and it is physically impossible to hit its front vehicle even if the front vehicle stops

suddenly. Let us assume the AV is initially set to drive at 16 m/s (about 30 mph). A possible backup

Safe

Unsafe

Delay (s)

R
ef

er
en

ce
 V

el
o

ci
ty

 (
m

/s
)

Delay 
Adjustment

Velocity 
Adjustment

Fig. 3. Relationship between the velocity of the AV and response time of the software. When a fault happens,
the backup routine is executed periodically (every 200 ms) and each time the reference velocity is reduced by
70%.

routine to achieve graceful degradation is to reduce the velocity by 30% and re-adjust the deadline

(see listing 1).

The initial deadline is set to 200 ms. When a timing failure happens, the reference velocity is set

to 16*0.7 = 11.2 m/s. We assume that the response time of the controller is fast and for simplicity,

the AV slows down at -4.5𝑚/𝑠2. At 11.2 m/s the AV is able to tolerate a delay of up to 0.71 s and still

be safe. The new deadline (0.71 s) is computed from a lookup table that represents the relationship

between velocity and deadline as indicated in Equation 2. If another timing failure happens (the

deadline is greater than 0.71 s), the backup routine is executed again. For all velocities greater than
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4 m/s, the backup routine ensures that the AV remains in the green zone by reducing the velocity

by 30 %. If another timing failure happens, the backup routine is executed again and the deadline

value is updated. Similarly, when the timing goes back to normal (delay is 0.2 s), the system can

recover and operate at the nominal velocity (16 m/s).

3.3 System Model
Let us assume that our application has 𝑛 timing constraints. Without loss of generality, all timing

constraints can be simplified to an end-to-end latency constraint. For instance, the timing constraint

“the period of executing a function should be 100 ms” can be re-written as “the end-to-end latency

between two function calls should be 100 ms”. We assume that for each timing constraint, a safe

backup routine exists such that if the backup routine is executed within the timing constraint’s

deadline, the system remains in a safe state. We represent timing constraints of an application as a

set:

𝑇𝐶 = {𝑇𝐶1,𝑇𝐶2, ...,𝑇𝐶𝑛} (3)

where each timing constraint is a tuple: 𝑇𝐶𝑖 :=< 𝐶𝑖 ,𝑇𝑖 >, where 𝐶𝑖 is the WCET of the backup

routine 𝑖 and 𝑇𝑖 the execution period of the backup routine 𝑖 . The execution period of a backup

routine, 𝑇𝑖 , depends on how frequently the timing constraint is assigned/specified, 𝑇𝑇𝐶 . For timing

constraints that are assigned aperiodically, we consider a lower bound on 𝑇𝑖 . Since multiple timing

constraints may be specified, there will be multiple backup routines associated with them. To make

the execution deterministic, a priority value is assigned to each backup routine by the programmer.

Without loss of generality, we assume that the priority of the backup routine 𝑖 is 𝑖 and a lower

number indicates a higher priority. We do not explicitly model the task model for the normal

execution of the software since the priority of all backup routines is higher than tasks for normal

execution and the safety-related timing requirements are defined for backup routine and not normal

routines.

Assume that dynamics of the CPS are modeled as follows:{
¤𝑥 = 𝑓 (𝑥 (𝑡), 𝑢 (𝑡 −𝑇 (𝑡)))
𝑦 = 𝑔(𝑥 (𝑡))

(4)

where 𝑥 ⊆ R𝑛
represents the vector of the system state,𝑢 is the vector control inputs,𝑦 is the vector

of measured states, and 𝑇 is the sensing to actuation delay related to the software’s execution time.

It should be noted that 𝑇 is not constant and depends on the execution of the software. When a

timing failure happens and a backup routine is executed, the control inputs are changed. Therefore,

we use hybrid automata [29] to model the complete behavior of the system. Figure 4 shows the

overview of the complete system model. In this model, the software is represented using two

Fig. 4. The complete system (physical dynamics and software abstraction) is modeled using a hybrid automa-
ton to verify if the unsafe set is reached.
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discrete states (normal mode and backup mode). The initial state and input are specified with 𝑥0, 𝑢0.

Initially, the system operates in the normal mode. When the execution time or sensing to actuation

delay (𝑇 (𝑡)) is greater than the set deadline, the state machine transitions to the backup mode

where the backup routine (𝑢∗) is applied to the system.

Definition 1. Safe backup routine: Given 𝑥0 is the initial state of the system at time 𝑡0, and X𝑢

is the set of the unsafe states, the backup routine 𝑢∗ is a called safe if by applying 𝑢∗ to the system,
states of the system never reach the unsafe set, i.e., 𝑥 (𝑡) ∉ X𝑢 .

One can use Control Barrier Function (CBF) [30–32] to determine control inputs (backup routine)

that are proved to be safe. Alternatively, verification tools can be utilized to check if a backup

routine is safe. In existing verification tools [33, 34], an assertion is specified that describes the

unsafe set, 𝑥𝑢 .

For simplicity, we set the deadline for the execution of the backup routine to be the same as

the deadline for the original timing constraint (normal mode). Since the execution of the backup

routine itself takes some time, the backup routine should be executed a bit earlier. Assume a timing

constraint (indexed as 𝑖) is specified at time 𝑡 = 0, and its deadline is at 𝑡 = 𝑑𝑖 , the activation time

of the backup routine (𝑑𝑖
𝐵𝑅
) can be calculated as:

𝑑𝑖𝐵𝑅 = 𝑑𝑖 −𝐶𝑖

In most cases, backup routines are very small (have no more than few lines of code). As a result,

when the WCET of the backup routine can be estimated using static approaches, which results

in much less pessimistic values compared to the case where static analysis is done for the whole

program.

3.4 Safety Proof of a Proposed Backup Routine
Our approach is useful only if the proposed backup routine is proved to be safe when applied

in time. We can develop the safety proof in different ways, depending on the system model. For

a system with a deterministic model and input, one can simulate the system and check if the

backup routine is safe (e.g. using Matlab Stateflow tool). For a system with a non-deterministic

set of initial state and input, verification tools like Flow* [33] can be employed. Here, we provide

the proof for the aforementioned example in subsection 3.2 by simulation. We first define the

initial set 𝑋0 = [0 16 36.5 0] meaning that the ego vehicle is at 𝑝 = 0 driving at 16 m/s and

its front vehicle is 2𝑣 + 𝑐 = 36.5𝑚 away and is already stopped. The unsafe set is defined as

𝑋𝑢 = {𝑋 |𝑑𝑖𝑠𝑡 (𝑋 (1), 𝑋 (3)) < 0.5}, representing cases where the distance between vehicles is less

than 0.5 m. We want to show that even if the sensing to actuation delay is infinite, the distance

between vehicles remains greater than 0.5 m. The ego AV continues driving at 16 m/s for 0.2 s ( the

first deadline) and after that, it reduces its velocity to 12.8 m/s Since the maximum deceleration is

-4.5𝑚/𝑠2, it takes about 0.7 s to reach 12.8. Since the second deadline for the velocity at 12.8 m/s is

0.6, the backup routine is executed one more time and the velocity of the ego AV is set to 10.2 m/s.

Figure 5.left shows the position, velocity, and the set deadline for the vehicle when a safe backup

routine (slow down by 70%) is applied. The ego AV does not hit its front vehicle located at 36.5

since the final position value is 36. The set delay and reference velocity are shown in Figure 5. Note

that for a similar backup routine that reduces the velocity by 80%, a safety guarantee cannot be

achieved. Figure 5.left shows the position, velocity, and the set deadline for the vehicle when an

unsafe backup routine (slow down by 80%) is applied.
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Fig. 5. The trace for the worst-case scenario where consecutive timing failures happen. Left) The backup
routine (slow down by 70%) is safe and the AV is able to stop safely. Right) The backup routine (slow down by
80%) is unsafe and the AV is unable to stop safely.

3.5 Handling Multiple Backup Routines
Although rare, there can be cases where multiple timing constraints are specified and they are

violated at the same time or the execution of their backup routine has an overlap. In such cases, low

priority backup routines are blocked by high priority ones, and therefore, their finish time will be

late. As a result, we need to calculate the WCRT for each backup routine and use it for computing

the firing time of the backup routine. Figure 6 shows a scenario where 3 timing constraints are

violated at the same time.

𝑑3

𝑑2

𝑑1

𝑐3

𝑐2

𝑐1

𝑑𝐵𝑅2 𝑤2

𝑑𝐵𝑅3 𝑤3

𝑑𝐵𝑅1

Start

Start Deadline

Start Deadline

Deadline

Fig. 6. A scenario where three timing constraints are violated at the same time and the execution of backup
routines overlaps.

To make sure all backup routines will finish their execution before their deadline, we use WCRT

(𝑤 ) instead of WCET to determine the activation time of the backup routine:

𝑑𝐵𝑅 = 𝑑 −𝑤
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Assuming fixed-priority scheduling for the execution of backup routines, one can calculate the

WCRT of the backup routine 𝑖 using conventional approaches [13] as:

𝑤𝑖 = 𝑐𝑖 +
∑︁

𝑗 ∈ℎ𝑝 (𝑖)

⌈
𝑤𝑖

𝑇𝑗

⌉
𝑐 𝑗

ℎ𝑝 (𝑖) represents the set of all backup routines that have a higher priority than backup routine 𝑖

and are expected to be executed on the same machine as backup routine 𝑖 .

3.6 False Positives
It should be noted that there can be cases where the execution of the original code is between 490

and 500, which is fine and there is no need for the execution of the backup routine but the backup

routine is executed. Measurement-based WCET analysis is helpful to determine a reasonable upper

bound for the execution time of the software (e.g. 500 ms in this example) which will be used to

ensure that the timing requirement will be mostly met e.g., 99.9% of the times and when it is not

met, e.g., 0.1% of the times, the backup routine is executed. By correctly adjusting the upper bound,

the rate of false positives can be reduced.

The rate of “false positives” –when the execution time of the software falls between 𝑑𝐵𝑅 and 𝑑–

is usually low since the size of backup routines is small relative to the whole program. However,

the WCRT of low-priority backup routines increases with defining more timing constraints and

the rate of false positives increases too. First of all, this issue happens very rarely. If the rate of a

timing failure and execution of a backup routine is low, simultaneous timing failures are very rare.

3.7 Handling Distributed Timing Constraints
Plan B allows for building distributed systems with end-to-end timing constraints among nodes. In

the general form, two computing nodes collaborate to monitor a distributed timing constraint. since

this collaboration happens by means of communicating over the network, long network delays can

disrupt on-time monitoring of an end-to-end timing constraint. To tackle this issue, we convert all

aperiodic end-to-end latency constraints into periodic ones where the period is set to be the same

as the threshold for the end-to-end latency constraint.

Assume a distributed latency between events e1 and e2, specified on nodes N1 and N2. The

monitoring mechanism on the first node (N1) sends the deadline timestamp to the second node

(N2) in a periodic manner. On the receiver side, the monitoring mechanism receives the deadline

timestamp and locally monitors the timing constraint. If the deadline timestamp is not received

within the deadline (𝑑 ′), the backup routine will be executed.

In Plan B’s approach for distributed timing constraints, the first node computes a deadline and

converts it to the UTC format and the destination converts it back to a local deadline. As a result,

nodes should synchronize their local clocks periodically so that they have the same notion of time.

The period of the clock synchronization depends on the frequency variations of the node’s clock

(oscillator).

Let us consider a platooning scenario where multiple AVs drive together to get better fuel

efficiency by reducing air resistance. The front AV sends the intended action (slow down or speed

up) and desired velocity to its rear AVs and they adjust the velocity accordingly. To ensure the

safety of AVs, the latency from the front AV sending its information to the rear AVs should be less

than a threshold. The backup routine for each AV is to slow down periodically until the timing

constraint is met similar to Listing 1. The monitoring mechanism on each AV sets a timeout for

receiving the deadline timestamp.

, Vol. 1, No. 1, Article . Publication date: February 2022.



Plan B - Design Methodology for Cyber-Physical Systems Robust to Timing Failures 11

In the next section, we explain how programmers can specify timing constraints and correspond-

ing backup routines in the code and how it’s implemented such that on-time delivery of backup

routines is guaranteed.

4 PROPOSED TIMING API FOR C/C++ LANGUAGE
In this section, we introduce PlanB’s timing constructs which are developed for the C/C++ language.

In our approach, timing constraints are defined as exceptions that can be caught by a runtime

monitoring mechanism. A set of timing constructs is provided to specify a timing constraint as

a part of the program. In our approach, timing constraints are specified using events. An event

corresponds to a line in the code and is annotated using the _recordEvent(eventName)
construct, where eventName indicates the name of the event. Let us consider a simple C program

for an embedded control system shown in Listing 2 where the goal is to read data from the sensor,

perform some computations on the sensed data and then actuate based on the result.

1 while(1){
2 data = sense();

3 result = compute(data);

4 actuate(result);

5 }

Listing 2. A sample snippet of code for reading data from sensor performing some computation and then
actuating

We use this example to explain the specification of different timing constraints in the code.

4.1 Latency Constraint
Let us assume that the latency from the sensing to actuation in the example shown in Listing 2

should be less than 100ms –e.g. to ensure the quality of service. To specify such a timing constraint,

programmers can define two events, one before the sensing and one after the actuation, and define

a latency constraint as it is shown in Listing 3. In general, three types of latency constraints can

be defined, where the latency among two events should be less than, greater than, or equal to a

value. Note that for the equal case, programmers should know how much tolerance is acceptable

because achieving an exact latency is not feasible and then specify it in terms of two conditions: a

greater than and a less than case. Listing 3 shows the modified version of code in Listing 2 where

two events (e1 and e2) are annotated and a latency constraint is specified. p is the priority for the

execution of the corresponding backup routine. The priority value should be known since multiple

timing violations can happen simultaneously.

1 while(1){
2 data = sense();

3 _try{

4 _recordEvent(e1);
5 result = compute(data);

6 _recordEvent(e2);
7 }

8 _catch(_latency(e1,e2,100) > 100000 , p){

9 BR();

10 }

11 actuate(result);

12 }

Listing 3. Annotating a latency timing constraint inside the code to check if the sensing to actuation latency
is less than 100 ms
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Programmers can place a backup routine inside the catch segment in order to specify what

happens when the latency timing constraint is not met. The less than case can be defined similarly

by modifying the condition for the timing exception.

4.2 Period Constraint
Period constraint specifies that the occurrence period of an event to be less/greater than a or equal

to threshold. Programmers may want to make sure that the period of execution of a task/function

is less than, greater than or equal to a value. Let’s assume that we want the executing period of the

compute() function in the Listing 2 to be equal to 10 ms ± 1 ms. This timing constraint can be

specified by defining an event inside the compute() function and then specifying two period

constraints to specify the desired range as it is shown in Listing 4.

1 while(1){
2 data = sense();

3 result = compute(data);

4 actuate(result);

5 }

6

7 int compute(int data){

8 _try{

9 _recordEvent(e3);
10 ...

11 }

12 _catch(_period(e3,100) > 11000, 1){

13 BR();

14 }

15 _catch(_period(e3,100) < 9000, 2){

16 BR();

17 }

18 }

Listing 4. Timing constructs are added for checking the execution period of the compute() function

Based on the allowed tolerance (1 ms) the desired range for an acceptable period is between 9ms to

11 ms. If the period is out of this range, a backup routine (BR()) is executed.

4.3 Re-using Events for Multiple Timing Constraints
Sometimes, programmers may want to specify multiple timing constraints for a code. This can be

done by using multiple catch constructs. The code in Listing 5 shows a case where a latency and

a period constraints are specified together. The latency of the compute function should be less

than 100 ms and its period should be less than 200 ms. p1 and p2 are the priorities for execution

of the first and second backup routines, respectively which are specified by the programmer.

1 while(1){
2 data = sense();

3 result = compute(data);

4 actuate(result);

5 }

6

7 int compute(int data){

8 _try{

9 _recordEvent(e1);
10 ...
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11 _recordEvent(e2);
12 }

13 _catch(_latency(e1,e2,100) > 100000, 1){

14 BR1();

15 }

16 _catch(_period(e1,100) > 200000, 2){

17 BR2();

18 }

19 }

Listing 5. Specification of multiple timing constraints and resue of events in two separate timing constructs

Using a separate catch construct for each timing constraint allows programmers to specify a

separate backup routine when a timing constraint is not met. Also, the programmer can reuse an

event (e.g. e1 in this example) for specifying different timing constraints.

4.4 Distributed End-to-end Latency
Some CPS are distributed by nature (e.g. drone swarm) and some have a distributed computing

platform that includes multiple embedded devices communicating with each other. In such systems,

programmers may want to specify end-to-end timing constraints among devices. Let us consider

an example of a distributed CPS with two devices, where device 1 collects the data from a sensor,

does some pre-processing, and sends the result to device 2. Upon receiving the result, device 2

performs some more processing and then performs an actuation. Note that the communication is

synchronous and receive is blocking (not returned until the data is received). For this example, one

may define a timing constraint as: “The latency from sensing at device 1 to actuation at device 2

should be less than 500 ms”. Listing 6 and 7 show the code for device 1 and 2, respectively.

1 while(1){
2 _try{

3 _recordEvent(e1);
4 data = sense();

5 result = compute(data);

6 send(result);

7 }

8 _catch(_ackTimeout(e1,100), 1000000, 1){

9 BR1();

10 }

11 }

Listing 6. Timing constructs are added for specification of a distributed latency constraint between two
points in separate programs - device 1

1 while(1){
2 _try{

3 data = receive();

4 result = compute(data);

5 actuate(result);

6 _recordEvent(e2);
7 }

8 _catch(_distLatency(e1,e2,100) > 500000, 1){

9 BR2();

10 }
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11 }

Listing 7. Timing constructs are added for specification of a distributed latency constraint between two
points in separate programs - device 2

In order to implement the monitoring mechanism for an end-to-end timing constraint, device 1

sends the deadline to device 2, and device 2 locally sets up a timer to monitor the timing constraint.

Monitoring of a distributed timing constraint can be impacted by network delay, especially if

the deadline timestamp is sent over wireless communication. As a result, the timestamp may be

delivered to the receiver very late or not being delivered at all. To detect excessive network delays,

the receiver is configured to send back an acknowledge (ack) message to the sender upon receiving

the deadline timestamp. The sender waits for the ack message to ensure the deadline timestamp

was delivered on time. If the ack is not received after a deadline, the specified backup routine will

be executed. In addition, clock synchronization and timestamp translation need to be implemented

so that devices have the same notion of time because the deadline timestamps are captured by local

clocks and will be used by another device. More details are provided in the implementation section.

4.5 Distributed Simultaneity
A simultaneity timing constraint can be specified to make sure a set of events happen at the same

time –with a small tolerance. Let us assume that the same program as Listing 8 is running on

three devices. It is desired to perform sensing simultaneously with 1 ms tolerance. We annotate a

simultaneity timing constraint on the event set E1.

1 while(1){
2 _try{

3 _recordEvent(E1);
4 data = sense();

5 result = compute(data);

6 sendToServer(result)

7 }

8 _catch(_simultaneity(E1,100), 1){

9 BR1();

10 }

11 _catch(_ackTimeout(E1,100), 2){

12 BR2();

13 }

14 }

Listing 8. Timing constructs are added for specification of a simultaneity timing constraint

To implement this timing constraint, all three devices capture a timestamp before sensing and

broadcast it. Upon receiving timestamps of other devices, they verify that if the timing constraint

is met by checking if the time difference between the earliest and the latest timestamps is less than

the specified tolerance (1 ms). This timing constraint also requires maintaining a minimum level of

time synchronization and timestamp translation which is explained in the next section.

We have listed PlanB’s timing constructs in Table 1. Note that try constructs cannot be nested

and are used to hint the compiler where events are defined. Programmers should define a priority

value to specify the execution order of backup routines when multiple timing failures happen.

Having fixed priority values makes the execution behavior more deterministic compared to dynamic

priority values. The priority value is a number greater than zero. Smaller values correspond to

higher priorities and two timing exceptions cannot have the same priority.
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Construct Functionality

_try{ ... }
Indicates the body of the program

where events are defined.

_catch(exception, priority){
... }

Indicates the exception that should

be caught, backup routine to be ex-

ecuted and the execution priority

of the backup routine.

_recordEvent(e)
Annotate an event in the code la-

beled as e.

_latency(e1,e2,𝜖) ><= d

Specifies a latency timing con-

straint between two events e1 and

e2 (less than, greater than, or equal

to d seconds). 𝜖 defines the accept-

able tolerance of the timing con-

straint.

_period(e,𝜖) ><= T

The desired occurrence period of

the event e should be less than,

greater than or equal to T with a

tolerance of 𝜖 .

_distLatency(e1,e2,𝜖) ><= d

Similar to the local latency con-

straint but events e1 and e2 are de-

fined in programs running on sep-

arate devices.

_ackTimeout(e1,𝜖)
Specifies a timeout for sending the

deadline timestamp of a distributed

latency constraint.

_simultaneity(E,𝜖)

All events in the event set E (event

set E is defined on distributed de-

vice) should be simultaneous with

a tolerance of 𝜖 .

Table 1. PlanB Timing Constructs and their Functionalities

5 PROPOSED IMPLEMENTATION FOR EFFICIENT EXECUTION
In this section, we provide more detail for implementation of the introduced timing constructs. A

naive way to monitor a timing constraint is to take timestamps at event annotation locations and

perform a simple check on the values of timestamps to see if the timing constraint is met. However,

the detection time of the timing failure can be unbounded (e.g., when the program never reaches the

location of the second event). Since we are interested in the timely detection of a timing violation,

we get help from hardware timers for monitoring. A timer is activated using _startTimer(TC)
and stopped using _stopTimer(TC). Upon expiration of the timer, _timerExpired(TC) is

called automatically by the interrupt handler that is attached to the timer. TC is a struct variable

that represents a timing constraint, which includes the deadline for the constraint, name of the

corresponding backup routine, timing constraint’s ID, a timestamp value, and the state of the timing

constraint (being active or inactive). Each timing constraint has a tolerance value (𝜖) to indicate

how much inaccuracy is acceptable when being monitored since perfect monitoring is not feasible.

We consider three error sources for monitoring: 1) monitoring error (𝑒𝑀 ), 2) implementation error

(𝑒𝐼 ), and 3) synchronization error (𝑒𝑆 ). Monitoring error depends on the resolution of the captured

timestamp and implementation error depends on the time it takes to set up/re-configure a timer
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and the ISR’s response time upon expiration of a timer. Synchronization error is considered for

distributed timing constraints only (_distLatency and _simultaneity) and depends on

the synchronization level among devices. To verify that the monitoring system is suitable, the

following constraint is checked:

𝑒𝑀 + 𝑒𝐼 + 𝑒𝑆 ≤ 𝜖 (5)

5.1 Latency Constraint
As discussed in the previous section, latency timing constraints are of two types, less than or

greater than (the equal case should be annotated as a less than case and a greater than case).

For a greater than timing constraint (e.g latency(e1,e2) > 100 ms), a single-shot timer is

started at the annotation location of the first event and it is stopped at the annotation location of

the second event. If the timer is expired before reaching the second event, the timing constraint

is violated and the specified backup routine should be executed (it will be added to the backup

routine queue (BRQ) and will be executed). The activation time of the backup routine is set to

99 ms assuming the WCRT of the backup routine BR is 1 ms (100 - 1 = 99 ms) according to

𝑇𝐶.𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒 = 𝑇𝐶.𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 −𝑇𝐶.𝑊𝐶𝐸𝑇 . The code in Listing 9 shows the generated code

for the latency example from the previous section (Listing 3).

1 TC1.activationTime = 0.099;

2 TC1.priority = 1;

3 jmp_buf buf;

4 actuate_t gResult;

5 while(1){
6 data = sense();

7 if (setjmp(buf)){

8 result = gResult;

9 }else{
10 _startTimer(TC1);
11 result = compute(data);

12 _stopTimer(TC1);
13 }

14 actuate(result);

15 }

16

17 void BR(){

18 gResult = backupRoutine();

19 }

20

21 void _timerExpired(TC1){
22 _BRQManager(BR, TC1.priority);

23 longjmp(buf,1);

24 }

Listing 9. Implementation for a maximum end-to-end latency constraint

When the BRQ is empty and the first BR is added, the BR is being executed as a separate thread

using pthread_create(). The parent thread (_BRQManager()) will wait for the BR to finish

its execution (while (!isEmpty(BRQ)). As a result the control is not given back to the main loop

until the BR execution is finished and the gResult value is updated. In our scheme, backup routines

are executed based on their priority values and in series (no two backup routines are executed in

parallel) to make WCRT calculation of backup routines less conservative. When a high priority

backup routine is added to the BRQ (backup routine queue), the BRQ manager places it at the
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head of the queue, suspends the low priority backup routine by sending a suspend signal to it

(pthread_kill(BR1, signal) ) and executes the high priority backup routine. In the signal

handler of all backup routines, the thread is either paused (using pause()) or resumed depending

on the received signal. After executing the high priority backup routine, the BRQ is updated

(removing the high priority backup routine) and the queue manager sends a resume signal to the

low priority backup routine to resume the execution. The BRQ manager also utilizes a mutex to

ensure that two threads or itself (when a backup routine finishes its execution) do not access the

queue at the same time. We assume the update time of the queue is negligible and ignore it in the

WCRT computation.

If the compute(data)method has dynamic memory allocation, more effort is needed to avoid

possible memory leak due to jumps. Either the memory leak should be detected manually (e.g.,

using a flag) and it is deallocated after the jump (after if setjump(buf)) or a fixed global

memory space is allocated for the compute(data) function and reused. Additionally, non-atomic

data structures must be treated as corrupted when the longjmp occurs as they may be left in an

inconsistent state.

For a less than timing constraint (e.g latency(e1,e2) < 100 ms), a timer is started at the

annotation location of the first event and the variable TC.active is set to true. Upon expiration of

the timer, the variable TC.active is set to false. We assume that the WCRT of the backup routine

is 1 ms. If the program reaches the annotation location of the second event and the TC.active
variable is still true, the timing constraint is violated and the backup routine is added to the BRQ

to be executed. In Listing 10, we show the generated the code for the latency example from the

previous section (Listing 3) when the timing constraint condition is greater than 100 ms instead of

less than 100 ms.

1 TC1.activationTime = 0.099;

2 TC1.priority = 1;

3 jmp_buf buf;

4 actuate_t gResult;

5 while(1){
6 if (setjmp(buf)){

7 actuate(gResult);

8 }else{
9 _startTimer(TC1);
10 TC1.active = TRUE;

11 data = sense();

12 result = compute(data);

13 actuate(result);

14 if (TC1.active = TRUE){}

15 _stopTimer(TC1);
16 _BRQManager(BR(), TC1.priority);

17 longjmp(buf,1);

18 }

19 }

20 }

21

22 void _timerExpired(){
23 TC1.active = FALSE;

24 }

25

26 void BR(){
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27 gResult = backupRoutine();

28 }

Listing 10. Implementation for a minimum end-to-end latency constraint

5.2 Period Constraint
A period timing constraint can be implemented as a repetitive latency timing constraint. The code

in Listing 11 is the generated code for the Listing 4. The _firstIteration variable is used to

skip the first instantiating of the stopTimer and after that, the timer is used to check the latency

between every two consecutive execution of the program. We assume the WCRT of the backup

routines is negligible.

1 TC1.activationTime = 0.011;

2 TC2.activationTime = 0.009;

3 TC1.priority = 1;

4 TC2.priority = 2;

5 jmp_buf buf;

6 actuate_t gResult;

7 while(1){
8 data = sense();

9 result = compute(data);

10 actuate(result);

11 }

12

13 _firstIteration = TRUE

14 int compute(int data){

15 if (setjmp(buf)){

16 return gResult;

17 }else{
18 if (_firstIteration == FALSE){

19 _stopTimer(TC1);
20 if (TC2.active == TRUE){

21 _stopTimer(TC2);
22 _BRQManager(BR(), TC2.priority);

23 longjmp(buf,1);

24 }

25 }

26 _firstIteration = FALSE;

27 _startTimer(TC1);
28 _startTimer(TC2);
29 TC2.active = TRUE;

30 ...

31 return result;

32 }

33 }

34

35 void _timerExpired(TC1){
36 _BRQManager(BR(), TC1.priority);

37 longjmp(buf,1);

38 }

39

40 void _timerExpired(TC2){
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41 TC2.active = FALSE;

42 }

43

44 void BR(){

45 gResult = backupRoutine();

46 }

Listing 11. Implementation for an equal period constraint

Two timers are started at the annotation location of the event and stopped in the next iteration.

The desired period (10 ms ± 1 ms) is converted into an upper (0.011 ms) and a lower (0.009 ms)

bound for the timers. If the period is less than 0.009 ms, TC2 is violated and if it is greater than

0.011, TC1 is violated. Note that the backup routine for both cases is the same and, TC1 and TC2

cannot be violated at the same time.

5.3 End-to-end Distributed Constraint
As mentioned in subsection 4.4, implementing a distributed latency constraint is done by capturing

a timestamp on the first device, calculating the deadline timestamp, sending the deadline to the

second device, and setting up a timer locally on the second device based on the received deadline.

Not all end-to-end constraints are periodic and the second device doesn’t know when to expect a

deadline from the first device. This can be problematic when the network delay is large and the

deadline arrives late or not arrives at all. To make sure excessive network delays can be detected,

the second device is set to send back an acknowledgment to the sender device. If the sender doesn’t

receive the ack in time, it executes a backup routine. We consider a worst-case round-trip delay

(WCRTD) –from sending the timestamp to receiving the acknowledge– to set the deadline for

receiving the ack message. To maintain clock accuracy among devices, the _clockSync() is

called periodically to perform clock synchronization. The following equation shows the relationship

between period of clock synchronization in seconds (𝑇𝑆 ), clock’s frequency drift in part per million

format (𝑒𝑝𝑝𝑚) and the accuracy of the synchronization method (𝛿).

𝑒𝑆 = min(𝛿𝑆 ,𝑇𝑆𝑒𝑝𝑝𝑚 × 10
−6) (6)

For clock synchronization, a repetitive timer with a fixed period is set to execute the function

_periodic() function. In general, devices can synchronize their clock using Network Time

Protocol (NTP) [35], Precision Time Protocol (PTP) [36] or GPS. For this paper, we use a simplified

version of NTP since PTP requires dedicated hardware and GPS is not always available. The value

of 𝛿 for NTP, GPS, and PTP is 1 ms, 40 ns, and 10 ns, respectively. _local2global(ts) and

_global2local(ts) functions are also inserted to convert a local timestamp into a global one

and vice versa. Listings 12 and 13 show the generated code for the distributed latency constraint

example (Listing 6 and 7) presented in the previous section. For this example, we set the WCRTD

to be 300 ms.

1 TC1.activationTime = 0.3; // WCRTD = 300 ms

2 TC2.activationTime = 0.5; // 500 ms

3 TC1.priority = 1;

4 jmp_buf buf;

5 msg_t gResult;

6 while(1){
7 if (setjmp(buf)){

8 send(gResult);

9 }else{
10 ts = _local2global(now + TC2.deadline)
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11 _sendTS(ts);
12 _startTimer(TC1);
13 data = sense();

14 result = compute(data);

15 send(result);

16 }

17 }

18

19 void _ackReceived(TC1){
20 _stopTimer(TC1);
21 }

22

23 void _timerExpired(TC1){
24 _BRQManager(BR1(), TC1.priority);

25 longjmp(buf);

26 }

27

28 void _periodic(){
29 _clockSync();
30 }

31

32 void BR1(){

33 gresult = backupRoutine1();

34 }

Listing 12. Implementation for a distributed latency constraint - device 1

1 TC2.priority = 1;

2 actuate_t gResult;

3 jmp_buf buf;

4 while(1){
5 if (setjmp(buf)){

6 actuate(gResult);

7 } else {

8 data = receive();

9 result = compute(data);

10 actuate(result);

11 _stopTimer(TC2);
12 }

13 }

14

15 void _tsReceived(TC2){
16 TC2.deadline = _global2local(TC2.ts - now);

17 _startTimer(TC2);
18 _sendAck(TC1);
19 }

20

21 void _timerExpired(TC2){
22 _BRQManager(BR2(), TC2.priority);

23 longjmp(buf, 1);

24 }

25

26 void _periodic(){
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27 _clockSync();
28 }

29

30 void BR2(){

31 gResult = backupRoutine2();

32 }

Listing 13. Implementation for a distributed latency constraint - device 2

At the annotation location of the first event, device 1 converts and sends the deadline to device 2,

and then starts a timer locally. A callback (_deadlineReceived()) is set up in device 2’s code

to receive the sent timestamp (using an interrupt handler), perform timestamp translation, start a

timer, and send back an ack to the sender. On the sender side, a callback (_ackReceived()) is
set up to receive the ack (using an interrupt handler) and stop the timer. If the timer expires before

receiving the ack, the backupRoutine1() is executed on the sender device. On the receiver

side, the backupRoutine2() is executed if the timer expires.

5.4 Simultaneity Constraint
The code in Listing 14 shows the implementation code for the program in Listing 8.

1 float ts[3];

2 i = 0;

3 n = 0;

4 TC1.priority = 1;

5 TC2.priority = 2;

6 TC1.activationTime = 0.3; // WCRTD = 300 ms

7 jmp_buf buf;

8 msg_t gResult;

9 while(1){
10 if (setjmp(buf)){

11 sendToServer(gResult);

12 }else{
13 ts[i] = _local2global(now);
14 _sendTS(ts);
15 _startTimer(TC1);
16 data = sense();

17 result = compute(data);

18 sendToServer(result);

19 }

20 }

21

22 void _tsReceived(TC1){
23 i++;

24 ts[i] = _global2local(TC1.ts);
25 _sendAck();
26 if (i == 2){

27 if (!_verifySimultaneityLevel(ts,0.001)){

28 _BRQManager(BR1(), TC1.priority);

29 longjmp(buf, 1);

30 }

31 i = 0;

32 }

33 }
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Fig. 7. Overview of the runtime management system for initiation of a timing constraint using timers,
performing network communications and clock synchronization (when needed) and achieving deterministic
execution of backup routines based on the specified priorities.

34

35 void _ackReceived(TC2){
36 n++;

37 if (n==3){

38 _stopTimer(TC2);
39 n=0;

40 }

41 }

42

43 void _timerExpired(TC2){
44 _BRQManager(BR2(), TC2.priority);

45 longjmp(buf, 1);

46 }

47

48 void _periodic(){
49 _clockSync();
50 }

51

52 void BR1(){

53 gResult = backupRoutine1();

54 }

55

56 void BR2(){

57 gResult = backupRoutine2();

58 }

Listing 14. Implementation for a simultaneity timing constraint - device 1-3

Each device takes a timestamp before sensing and broadcast it. After receiving a timestamp,

5.5 Virtual Timers
Since a platform may not have enough hardware timers available to independently implement the

timing monitoring, we propose an efficient mechanism where multiple timers are implemented

using a queue that maintains a list of timing constraints sorted based on their deadlines, and a

timer is used to count the timing constraint that is at the head of the queue (with the earliest

deadline). We refer to this queue as Timing Constraint Queue (TCQ). Figure 7 shows the overview

of PlanB’s runtime monitoring mechanism. When the _startTimer() is called, the queue is
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updated to insert the new deadline. If the head of the queue is changed, the timer value is reset

and the values of existing deadlines are update. The algorithm 1 shows the pseudo-code for the

_startTimer().

Algorithm 1: _StartTimer(TC)

1 if TC.deadline < TCQ[0].deadline then
2 elapsedTime = getTimerValue();

3 TCQ.shiftFrom(0);

4 TCQ[0] = TC;

5 else
6 for (i=1; i<=length(TCQ); i++) do
7 if TC.deadline < TCQ[i].deadline then
8 TCQ.shiftFrom(i);

9 TCQ[i] = TC;

10 break;

11 end
12 end
13 end
14 TCQM();

When _stopTimer(TC) is called or the timer is expired (_timerExpired(TC)), the value
of deadlines is updated and the timer is armed again with the deadline of the queue’s head. Algo-

rithm 2 shows the pseudo-code for the _stopTimer(TC) and _timerExpired(TC).

Algorithm 2: _StopTimer(TC) and _timerExpired(TC)

1 for (i=1; i<=length(TCQ); i++) do
2 TCQ[i].deadline = TCQ[i].deadline - TCQ[0].deadline;

3 end
4 TCQ[0] = [];

5 TCQM();

It is possible to allocate more than a timer for the implementation of timing constraints on the

TCQ. If 𝑛 timers are available on a platform, the first 𝑛 elements on the queue are assigned to

existing timers.

If two timers expire at the same time or the interval for the execution of their corresponding

backup routine overlaps, the one with higher priority should be executed first. To achieve this

functionality, we use another queue called Backup Routine Queue (BRQ) that holds all the backup

routines to be executed. Upon violation of a timing constraint, its backup routine is added to the

BRQ. The BRQ is managed by the Backup Routine Queue Manager (BRQM) based on the priority

values of backup routines. BRQM ensures that all backup routines are sorted based on their priority

(from high to low) when a backup routine is added or removed and executes the backup routine at

the head of the BRQ (highest priority). It may be possible to execute multiple backup routines at

the same time, but it requires more information about their data dependency and is not considered

in this paper. When the timing constraint is distributed, the sender device passes the deadline and

the receiver’s address to the network send block, which is responsible for TCP communication. For
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Fig. 8. Overview of the code transformation from source code with annotated timing constructs to C/C++
codes that can be compiled with existing compilers (e.g. gcc).

receiving the timestamp and the ack, a non-blocking receive is implemented in network receive

and network ack blocks. The synchronization block performs the clock synchronization and uses

the highest desired accuracy for timekeeping.

5.6 Code Transformation
We developed a checker that acts as a source-to-source transformer. Our checker gets the source

code(s) that are annotated in C/C++ and checks the consistency of events and throws an error if

there are redundant events. In addition, our checker generates the code for creation, configuration

and deletion of timers (See appendix). We use Portable Operating System Interface (POSIX) library

for timer and signal configuration. Figure 8 shows an overview of our source-to-source checker.

Initially, the parser check for syntax error and then extracts timing constraints and events that are

involved. Then, checks if there are distributed timing constraints and if yes, it add the code to send

the timestamps and perform clock synchronization. Finally the generated code should be compiled

(e.g., using g++) to get the binary.

For POSIX-based code generation, we use timer_create() and timer_settime() func-

tions to create and start a timer. We use sigevent and sigaction to define a signal event and

attach it to the timer and also to specify the handler function that is linked to the signal action. We

use, real-time signals (RTSIG) –numbered from 32 to 64 in our implementation. We use the TCP

socket functions to implement the message passing between devices of a distributed system. The

periodic() function for synchronizing the clock is called at the fixed rate by setting up a timer

at the beginning of the program. We use NTP clock synchronization [35] in our implementation. For

platforms without POSIX support, we need to use hardware-dependent functions depending on the

platform. Usually, in MCUs timers and interrupts are set by directly writing into the corresponding

registers. Currently, our API only supports the ESP8266 board and uses the Ticker library for

configuring timers and interrupts. For TCP communication, we use the ESP8266WiFi library.

After compilation and code transformation, the code for POSIX based implementation is compiled

with gcc (version 7.3.0) with -lrt flag. The code for ESP8266 is compiled with Arduino IDE,

which uses the Xtensa lx106 toolchain.
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Fig. 9. A screenshot of Apollo [10] and LG [37] simulator in Shalun map.

6 EXPERIMENTS
6.1 Case Study I: Applying Plan B to a Complex Application - Autonomous Vehicle Full

Software Stack
We use Plan B to re-design Apollo[10], an open-source software for self-driving cars. We show

that higher performances are achieved when the system is designed using Plan B while the safety

of the AV is guaranteed. According to the architecture of Apollo software, the sensed data is first

processed by the perception module and then, passed to the prediction, planning, and control

modules. Finally, the data is given to the CAN Bus Chassis module which is responsible to send the

actuation commands to the ECU.

6.1.1 Testbed Information. We used Apollo together with the LG simulator to perform software-in-

the-loop (SIL) simulations. Details on how to install and bridge LGSVL with Apollo can be found

here
1
. Due to the intensity of computation, we ran the LGSVL simulator on a Desktop machine

and the Apollo on a Ubuntu laptop. The LG simulator was downloaded from
2
as a standalone

simulator and executed on a Desktop computer with Intel Core i7-6700 CPU 3.4 GHz, 16 GB of

memory, 128 MB Intel HD Graphics plus 8121 MB shared system memory, and a 64-bit Windows 10

OS. We used the Apollo v3.0 [10] and ran it on a high-performance laptop with Intel Core i7-7700

HQ CPU 2.8 GHz, 16 GB of memory, GeForce GTX 1060 PCIe/SSE2 (6 GB) and a 64-bit Ubuntu

18.04.3 LTS OS. The bridge between Apollo and LGSVL simulator is established by running the

rosbridge.sh inside the docker. The control panel of Apollo can be accessed from a browser

at localhost:8888. The selected vehicle for experiments is a Jaguar XE 2015 and the map for

the experiment is Shalun, the Taiwan Car Lab Testing Facility located in Tainan, Taiwan. Figure 9

shows an overview of Apollo’s control panel (Dreamview) and the LG simulator in the Shalun map.

To spawn the ego AV (controlled by the Apollo software) and other NPC agents such as pedestrians

and vehicles at the desired location, we used LGSVL’s python API
3
. After enabling the Localization,

Perception, Planning, Prediction, Routing, and Control modules, the AV starts driving.

1
https://github.com/lgsvl/apollo-3.0

2
https://github.com/lgsvl/simulator/releases/

3
https://www.svlsimulator.com/docs/python-api/python-api/
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6.1.2 Safety-based Timing Constraints. Based on the specification of Apollo software, the end-to-

end delay from sensing to actuation should be less than 1.5 s and the maximum allowed velocity is

15 m/s (33 mph). We measured the end-to-end delay of the Apollo software for 1000 executions by

inserting a probe that captures a timestamp when the data is collected from the sensors and another

one when the actuation signals are given to the CANbus module. Outputs from the execution of

the backup routine are published directly to the CANbus topics, overriding the messages that are

generated by the control module. The backup routine for cases where the end-to-end delay exceeds

the requirement (1.5s) is to stop the vehicle. There are three control commands that are generated

by the backup routine: brake = 100%, throttle = 0%, set_speed = 0. The other backup routine is to

slow down by 70% where the set_speed is dynamically written to and the throttle and brake values

are computed based on a simple PID controller as throttle = max(a, 0) and brake = min(a, 0), where

the desired acceleration value is computed by a simple PID controller as: 𝑎 = 𝑘𝑃 ∗𝑒 +𝑘𝐼 ∗𝑒𝐼 +𝑘𝐷 ∗𝑒𝐷 .
𝑒 = 𝑣𝑟 − 𝑣 is the error between the set_speed and actual velocity of the vehicle, 𝑒𝐼 is the integral

error and 𝑒𝐷 is the derivative error.

Figure 10 shows the histogram of the end-to-end delay values for Apollo software and the newly

set threshold (1.5 s). As it is shown in Figure 10, the measurement-based WCE2ED for sensing-

Measurement-

based WCE2ED

Deadline

Threshold with 

97.1% coverage

Fig. 10. Histogram of the end-to-end delay from perception to control for the Apollo software.

to-actuation (the longest observed execution time) is 2.8s and a statically calculated WCE2ED is

expected to be much larger. As a result, the AV software (with the current platform) does not meet

the timing constraint of 1.5 s. If we apply the Plan B approach to bound the execution time by 1.5 s,

the system is guaranteed to be safe and executes the backup routine if the delay when more than

1.5 s. For the case where the deadline is 1.5 s, the rate of timing violation is 0.6%. It should be noted

that when the backup routine is slowing down by 70%, the initial end-to-end timing constraint is

relaxed and the rate of timing violation is reduced even more. Another benefit is that by changing

the end-to-end delay threshold, the operating point of the vehicle can change. For instance, if the

threshold is set to be 1.2 s as indicated by a black arrow on Figure 10, the vehicle can drive at a

higher velocity (40 mph) but the rate of timing violations is increased (3.2%).

We statically overestimated the WCET of the backup routine to be 5 ms. Apollo source code

has more than 500,000 lines of code, which is almost 2000 times larger than the size of the backup

routine (24 lines). This highlights the benefit of Plan B in avoiding the pessimism of static WCET

analysis for the whole software.

To further showcase the robustness of our approach, we injected faults on the Apollo software

by inserting delay() functions with random duration at random locations in the code in order to

intentionally cause a timing failure. We ran the Apollo software for 1 hour and injected 200 faults

where 12 of them could have resulted in an accident. Thanks to the Plan B approach, no accidents

were observed when a timing failure occurs.
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6.2 Case Study II: Resilient and Flexible Design of an Automated Intersection of AVs
using Plan B

We used Plan B to build a 1/10 scale intersection of AVs.

6.2.1 Testbed Information. Our 1/10th scale model AVs are built on Traxxas chassis, are 50cm long

and 30 cm wide, and can drive up to 3.5 m/s. An ESP8266 NodeMCU v3 board is used to control the

steering angle and velocity of the vehicle. The ESP8266 also gets data from an HC-SR04 ultrasonic

sensor to maintain a safe distance from the front vehicle. ESP8266 boards communicate with each

other through a shared Wi-Fi network. A set of trackers are installed on each vehicle and an

OptiTrack system is used to determine the location and orientation of vehicles through high-speed

cameras. We used mocap_optitrack ROS (Robot Operating System) library to read the 2D

position and heading angle of vehicles from the OptiTrack system. A MATLAB script was written

to create a ROS node and pass the pose data to vehicles through the TCP protocol over the Wi-Fi

network (2.4GHz). Figure 11 shows an overview of the intersection. A demo of the intersection can

be found here
4
. The pose data is broadcast every 20 ms. AVs follow the predefined waypoints to

Fig. 11. Our signal-free intersection with 1/10 scale model autonomous vehicles. Vehicles use V2V communi-
cation to come up with a consensus about who crosses first, who crosses second and so on.

enter the intersection, and once they leave the intersection, they make a U-turn and return to the

intersection. The decision to whether turn left, right, or go straight is made randomly after making

the U-turn.

6.2.2 Safety-related Timing Constraints. To safely operate vehicles at the intersection, a number of

timing constraints (including some distributed timing constraints) must be met which are listed in

Table 2.

We have also defined the safe backup routine for timing violations. In order to show our approach

is resilient against unforeseen timing failures, we ran the intersection and applied two types of

fault that cause timing violations. First, we inserted a delay_ms() function to a random place in

the vehicle’s code. The delay has a random activation time 𝑡𝐴, and a random duration between 1

and 1000 ms. Secondly, we conducted a cyberattack on the Wi-Fi network that is used by AVs to

resembles a jamming attack. The cyberattack was done using the ESP Deauther 2.0 [38] software

where a malicious agent disconnects one or more vehicles from the network persistently by sending

a deauthentication packet to the server on behalf of the vehicle. Figure 12 shows the overview of

applied faults on the intersection management system for violating the safety timing constraints.

4
https://www.youtube.com/watch?v=Q0tPS6uNTeE

, Vol. 1, No. 1, Article . Publication date: February 2022.



28 M. Khayatian, et al.

# Type Name Description Backup Routine

1

L
o
c
a
l

Obstacle Avoidance

To ensure the vehicle always maintains a safe

distance from its front vehicle, the latency from

sensors to actuator should be less than 20 ms.

Slow down and stop

3 Waypoint Tracking

To make sure the vehicle does not drive out of

road boundaries, the latency from reading ori-

entation and position of the vehicle to actuation

should be less than 40 ms.

Change PID gains

of the controllers

4

D
i
s
t
r
i
b
u
t
e
d

Vehicle-to-Vehicle

Communication

The latency from one vehicle sending its info to

another vehicle receiving the info and writing

to the DC motor should be less than 200 ms.

Reduce the refer-

ence velocity by

20%

5

Communication

Ack

The latency from sending a deadline timestamp

to receiving the “ack” should be less than 200

ms.

Reduce the refer-

ence velocity by

20%

6

Clock Synchroniza-

tion

The latency between two clock synchronization

should be less than 66s.

Force time sync

Table 2. The list of timing constraints for the autonomous intersection case study and possible backup routine
to be executed upon failure of timing requirements.

obstacleAvoidance()
{
...
}

waypointTracking()
{
...
}

WiFiCommunicate()
{
...
}

delay_ms(rand)

…

Hacker

(a) (b)

delay_ms(rand)

delay_ms(rand)

Deauthentication

Fig. 12. Faults are injected to induce a timing failure: a) a delay function with arbitrary duration is randomly
inserted in the vehicle’s code, b) deauthentication attack is done to disconnect vehicles from the Wi-Fi
network.

We ran the intersection (with the vehicle’s original code) for 1 hour and assigned random

velocities to vehicles. We injected 200 faults and 68 accidents were observed. We modified the

vehicle code according to Plan B’s methodology and added backup routines listed Table 2. We

repeated the previous experiment and injected the same number of faults. In this experiment, all

vehicles reacted promptly when a fault was injected and no accident happened.

For system tuning and redesign, wemeasured the actual end-to-end delay of all timing constraints

in Table 2 for 3000 executions, again by capturing timestamps at different locations in the code. We

set the threshold for vehicle-to-vehicle timing constraint to be greater than 97.7% of all observed

latencies and for obstacle avoidance timing constraint, we set the threshold to be greater than 99.7%

of all observed latencies. We have depicted the histogram of actual delays for obstacle avoidance

delay and inter-vehicle communication latency in Figure 13. Using the newly adopted thresholds,

AVs can drive up to 3 m/s while safety is guaranteed. However, if the system was designed based on

conventional approaches, the max velocity of AVs was limited to 1 m/s. Let us assume the WCE2ED
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Threshold with 
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99.7% coverage
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Fig. 13. Top- histogram of the inter-vehicle end-to-end delay. Bottom- histogram of the vehicle’s obstacle
avoidance delay. The original deadline, newly set threshold after the redesign and actual measurement-based
WCE2ED are also shown.

for the inter-vehicle communication is equal to the measurement-based value, i.e., WCE2ED = 563

ms. By selecting the threshold of 140 ms, vehicles at the intersection can drive almost 3 times faster.

In this case, the backup routines (stopping the AVs) are invoked more frequently but the rate is low

(0.3%).

6.3 Case study III: Resilient and Flexible Control of aQuadcopter using Plan B
We simulated the behavior of a quadcopter that its dynamics are modeled using following equation

[39]:

¤𝑥 = 𝑤 (sin𝜙 sin𝜓 + cos𝜙 cos𝜓 sin𝜃 ) − 𝑣 (cos𝜙 sin𝜓 − cos𝜓 sin𝜙 sin𝜃 ) + 𝑢 cos𝜓 cos𝜃

¤𝑦 = 𝑣 (cos𝜙 cos𝜓 + sin𝜙 sin𝜓 sin𝜃 ) −𝑤 (cos𝜙 sin𝜓 − cos𝜙 sin𝜓 sin𝜃 ) + 𝑢 cos𝜃 sin𝜓
¤ℎ = 𝑤 cos𝜙 cos𝜃 − 𝑢 sin𝜃 + 𝑣 cos𝜃 sin𝜙
¤𝑢 = 𝑟𝑣 − 𝑞𝑤 − 𝑔 sin𝜃
¤𝑣 = 𝑝𝑤 − 𝑟𝑢 + 𝑔 cos𝜃 sin𝜙
¤𝑤 = 𝑞𝑢 − 𝑝𝑣 − 𝐹/𝑚 + 𝑔 cos𝜙 sin𝜃

¤𝜙 = 𝑝 + 𝑟 cos𝜙𝑡𝑎𝑛𝜃 = 𝑞 sin𝜙𝑡𝑎𝑛𝜃

¤𝜃 = 𝑞 cos𝜙 − 𝑟 sin𝜙
¤𝜓 = 𝑟 cos𝜙/cos𝜃 + 𝑞 sin𝜙/cos𝜃
¤𝑝 = 𝜏𝜙/𝐽𝑥 + 𝑞𝑟 (𝐽𝑦 − 𝐽𝑧)/𝐽𝑥
¤𝑞 = 𝜏𝜃/𝐽𝑦 + 𝑝𝑟 (𝐽𝑥 − 𝐽𝑧)/𝐽𝑦
¤𝑟 = 𝜏𝜓/𝐽𝑧 + 𝑝𝑞(𝐽𝑥 − 𝐽𝑦)/𝐽𝑧

(7)

where 𝑥 and 𝑦 are the latitude and longitude of the quadcopter, ℎ is the height, 𝑢, 𝑣,𝑤 are the

linear velocity towards x, y, and z axes, respectively. 𝜙, 𝜃,𝜓 are the orientation of the quadcopter,
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Fig. 14. An overview view of the attitude of the simulated drone for entering a house through a window
(depicted in red).

and 𝑝, 𝑞, 𝑟 are the angular velocities over x, y, and z axes, respectively.𝑚 is the mass of the drone

and 𝐽𝑥 , 𝐽𝑦 , and 𝐽𝑧 are the moment of inertia over x, y, and z axes. The defined mission for the drone

is to take off, reach 20 m of altitude and enter a 1 m x 1 m square window. The size of the drone is

40 cm x 40 cm x 20 cm.

𝐽𝑥 , 𝐽𝑦 𝐽𝑧 m g 𝑘1 𝑘2 𝑘3, 𝑘7, 𝑘11 𝑘4, 𝑘8, 𝑘12 𝑘5, 𝑘9 𝑘6, 𝑘10
0.012 0.02 1.4 9.8 1 0.5 1 0.5 0.05 0.1

Table 3. Parameters of the simulated drone.

The following PD (Proportional and Derivative) controllers are used to control the location and

orientation of the drone over the z-axis (𝜓 ):
𝐹 =𝑚𝑔 − 𝐾 (𝑘1 (ℎ − ℎ𝑟 ) + 𝑘2𝑤)
𝜏𝜙 = 𝐾 (−𝑘3𝜙 − 𝑘4𝑝 − 𝑘5 (𝑦 − 𝑦𝑟 ) − 𝑘6𝑣)
𝜏𝜃 = 𝐾 (−𝑘7𝜃 − 𝑘8𝑞 + 𝑘9 (𝑥 − 𝑥𝑟 ) + 𝑘10𝑢)
𝜏𝜓 = 𝐾 (−𝑘11 (𝜓 −𝜓𝑟 ) − 𝑘12𝑟 )

(8)

where 𝑘1, 𝑘2, ..., 𝑘12 are positive constants (gains) and 𝐾 is a constant multiplier that is modified in

the backup routine.

If the propeller speed of motors are 𝜔1, 𝜔2, 𝜔3 and 𝜔4, the desired speed can be calculated as:
𝜔2

1
= 𝐹/4𝑏 − 𝜏𝜃/2𝑏𝑙 − 𝜏𝜓/4𝑑

𝜔2

2
= 𝐹/4𝑏 − 𝜏𝜙/2𝑏𝑙 + 𝜏𝜓/4𝑑

𝜔2

3
= 𝐹/4𝑏 + 𝜏𝜃/2𝑏𝑙 − 𝜏𝜓/4𝑑

𝜔2

4
= 𝐹/4𝑏 + 𝜏𝜙/2𝑏𝑙 + 𝜏𝜓/4𝑑

(9)

where 𝑏 is the trust factor, 𝑑 is the drag factor and 𝑙 is the distance between the center of the

quadrotor and the center of the propeller.

Figure 14 shows the simulated drone in Matlab and its location at different moments.
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The goal for the drone is to enter the house through the designated window (depicted in red)

when the delay is variable. The drone start from [0,0,0] at time t=0 and the intermediate reference

points are [20,0,0] at t=2.5, [20,0,5] at t=5, [20,10,5] at t=6 and [20,15,5] at t=8.

If the delay from the IMU (Inertial Measurement Unit) to ESC (Electronic Speed Controller) is

more than a threshold, the drone either becomes unstable and crashes or cannot finish the designated

mission and hits the boundary of the window. We have depicted the relationship between the

controller’s delay and variation in the gains of the PD controllers in Figure 15. The orange dot
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Fig. 15. Relationship between controller’s delay and controller’s gain, 𝑘 (see equation 8). The orange dot show
the nominal operating point of the drone.

represents the nominal operating point of the quadcopter where K = 1.8 and the corresponding

deadline for the controller is 20 ms.

7 CONCLUSION
In this paper, we present a novel designmethodology for time-sensitive CPS called Plan B that allows

CPS designers to specify what happens if a timing constraint is not met. using online monitoring

of timing requirements at the runtime, timing violations can be detected and backup routines can

be executed on-time in order to maintain safety. Plan B also relaxes the timing constraints of the

system by renegotiating timing contracts to achieve graceful degradation instead of a complete

shutdown. We have evaluated our approach on two real case studies, a 1/10 scale model intersection

of AVs and the software of Apollo for autonomous driving together with the LG simulator. Despite

injecting faults to cause timing failures, both systems were able to maintain safety through the

execution of backup routines. Future improvements can be done by developing an API for different

programming languages.
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A APPENDIX 1 - SAMPLE CODES
Here we present some sample codes for start timer, stop timer, timer expired, and TCP scoket

initialization.

1 void timerInit()

2 {

3 sa.sa_flags = SA_SIGINFO;

4 sa.sa_sigaction = handler;
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5 if (sigaction(SIG, &sa, NULL) == -1)

6 errExit("sigaction");

7 sev.sigev_notify = SIGEV_SIGNAL;

8 sev.sigev_signo = SIG;

9 sev.sigev_value.sival_ptr = &timerid;

10 if (timer_create(CLOCKID, &sev, &timerid) == -1)

11 errExit("timer_create");

12 Q.length = 0;

13 }

Listing 15. Timer initialization and signal attachment

1 static void handler(int sig, siginfo_t *si, void *uc){

2 _expired();

3 }

Listing 16. Handler for timer expiration signal

1 void _startTimer(TC TCI)

2 {

3 if (Q.length == 0)

4 {

5 Q.IDs[0] = TCI.ID;

6 Q.deadlines[0] = TCI.deadline;

7 Q.length = 1;

8 }

9 else
10 {

11 timer_gettime(timerid, &its);

12 long long timerValue = its.it_value.tv_nsec + its.it_value.tv_sec

* 1000000000;

13 long long dt = Q.deadlines[0] - timerValue;

14 if (printLOG == 1)

15 {

16 printf("current time elapsed is %lld\n", dt);

17 }

18 for (int i = 0; i < Q.length; i++)

19 { // update deadlines

20 Q.deadlines[i] = Q.deadlines[i] - dt;

21 }

22 int inserted = 0;

23 for (int i = 0; i < Q.length; i++)

24 { // insert new TC in the Queue

25 if (TCI.deadline < Q.deadlines[i] && inserted == 0)

26 {

27 for (int j = Q.length; j >= i; j--)

28 {

29 Q.IDs[j + 1] = Q.IDs[j];

30 Q.deadlines[j + 1] = Q.deadlines[j];

31 }

32 Q.IDs[i] = TCI.ID;

33 Q.deadlines[i] = TCI.deadline;

34 inserted = 1;
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35 Q.length++;

36 break;
37 }

38 }

39 if (inserted == 0)

40 { // if it's the last element

41 Q.IDs[Q.length] = TCI.ID;

42 Q.deadlines[Q.length] = TCI.deadline;

43 inserted = 1;

44 Q.length++;

45 }

46 }

47 freq_nanosecs = Q.deadlines[0]; // last element of the queue...

48 its.it_value.tv_sec = freq_nanosecs / 1000000000;

49 its.it_value.tv_nsec = freq_nanosecs % 1000000000;

50 its.it_interval.tv_sec = its.it_value.tv_sec;

51 its.it_interval.tv_nsec = its.it_value.tv_nsec;

52 if (timer_settime(timerid, 0, &its, NULL) == -1)

53 errExit("timer_settime");

54 timer_gettime(timerid, &its);

55 long long timerValueF = its.it_value.tv_nsec + its.it_value.tv_sec *
1000000000;

56 timer_gettime(timerid, &its);

57 timerValueF = its.it_value.tv_nsec + its.it_value.tv_sec * 1000000000;

58

59 }

Listing 17. Start Timer

1 void _stopTimer(TC TCI)

2 {

3 int TCLocation = -1;

4 timer_gettime(timerid, &its);

5 long long timerValue = its.it_value.tv_nsec + its.it_value.tv_sec *
1000000000;

6 long long dt = Q.deadlines[0] - timerValue;

7 for (int i = 0; i < Q.length; i++)

8 { // update deadlines

9 Q.deadlines[i] = Q.deadlines[i] - dt;

10 }

11 for (int i = 0; i < Q.length; i++)

12 {

13 if (TCI.ID == Q.IDs[i])

14 {

15 TCLocation = i;

16 break;
17 }

18 }

19

20 if (TCLocation == -1)

21 { // was not found, it's already expired

22 // do nothing

23 if (printLOG == 1)
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24 {

25 printf("TC not found...\n");

26 }

27 }

28 else
29 {

30 if (TCLocation == Q.length - 1)

31 { // last element

32 Q.IDs[TCLocation] = -1;

33 Q.deadlines[TCLocation] = -1;

34 Q.length--;

35 }

36 else
37 {

38 for (int i = TCLocation; i < Q.length - 1; i++)

39 {

40 Q.IDs[i] = Q.IDs[i + 1];

41 Q.deadlines[i] = Q.deadlines[i + 1];

42 }

43 Q.length--;

44 }

45 }

46

47 if (Q.length > 0)

48 {

49 freq_nanosecs = Q.deadlines[0];

50 its.it_value.tv_sec = freq_nanosecs / 1000000000;

51 its.it_value.tv_nsec = freq_nanosecs % 1000000000;

52 its.it_interval.tv_sec = its.it_value.tv_sec;

53 its.it_interval.tv_nsec = its.it_value.tv_nsec;

54 if (timer_settime(timerid, 0, &its, NULL) == -1)

55 errExit("timer_settime");

56 }

57 else
58 {

59 its.it_value.tv_sec = 0;

60 its.it_value.tv_nsec = 0;

61 its.it_interval.tv_sec = its.it_value.tv_sec;

62 its.it_interval.tv_nsec = its.it_value.tv_nsec;

63 if (timer_settime(timerid, 0, &its, NULL) == -1)

64 errExit("timer_settime");

65 }

66 }

Listing 18. Stop Timer

1 void _expired()

2 {

3 TC TCI;

4 TCI.ID = Q.IDs[0];

5 TCI.deadline = Q.deadlines[0];

6

7 int TCLocation = -1;

, Vol. 1, No. 1, Article . Publication date: February 2022.



Plan B - Design Methodology for Cyber-Physical Systems Robust to Timing Failures 35

8 timer_gettime(timerid, &its);

9 long long dt = Q.deadlines[0];

10

11 for (int i = 1; i < Q.length; i++)

12 { // update deadlines

13 Q.deadlines[i] = Q.deadlines[i] - dt;

14 }

15

16 for (int i = 0; i < Q.length; i++)

17 {

18 if (TCI.ID == Q.IDs[i])

19 {

20 TCLocation = i;

21 break;
22 }

23 }

24

25 if (TCLocation == -1)

26 { // was not found, it's already expired

27 // do nothing

28 printf("TC not found...\n");

29 }

30 else
31 {

32 if (TCLocation == Q.length - 1)

33 { // last element

34 Q.IDs[TCLocation] = -1;

35 Q.deadlines[TCLocation] = -1;

36 Q.length--;

37 }

38 else
39 {

40 for (int i = TCLocation; i < Q.length - 1; i++)

41 {

42 Q.IDs[i] = Q.IDs[i + 1];

43 Q.deadlines[i] = Q.deadlines[i + 1];

44 }

45 Q.length--;

46 }

47 }

48

49 if (Q.length > 0)

50 {

51 freq_nanosecs = Q.deadlines[0];

52 its.it_value.tv_sec = freq_nanosecs / 1000000000;

53 its.it_value.tv_nsec = freq_nanosecs % 1000000000;

54 its.it_interval.tv_sec = its.it_value.tv_sec;

55 its.it_interval.tv_nsec = its.it_value.tv_nsec;

56 if (timer_settime(timerid, 0, &its, NULL) == -1)

57 errExit("timer_settime");

58 }

59 else
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60 {

61 its.it_value.tv_sec = 0;

62 its.it_value.tv_nsec = 0;

63 its.it_interval.tv_sec = its.it_value.tv_sec;

64 its.it_interval.tv_nsec = its.it_value.tv_nsec;

65 if (timer_settime(timerid, 0, &its, NULL) == -1)

66 errExit("timer_settime");

67 }

68

69 if (TCI.ID == 1)

70 {

71 backupRoutine2();

72 }

73 }

Listing 19. Timer Expired

1 int TCP_ServerInitialize()

2 {

3 int server_fd;

4 struct sockaddr_in address;

5 int opt = 1;

6 int addrlen = sizeof(address);
7 char buffer[1024] = {0};

8 char *hello = "Hello from server";

9

10 if ((server_fd = socket(AF_INET, SOCK_STREAM, 0)) == 0)

11 {

12 perror("socket failed");

13 exit(EXIT_FAILURE);

14 }

15

16 if (setsockopt(server_fd, SOL_SOCKET, SO_REUSEADDR | SO_REUSEPORT, &opt,

sizeof(opt)))
17 {

18 perror("setsockopt");

19 exit(EXIT_FAILURE);

20 }

21 address.sin_family = AF_INET;

22 address.sin_addr.s_addr = INADDR_ANY;

23 address.sin_port = htons(PORT);

24

25 if (bind(server_fd, (struct sockaddr *)&address, sizeof(address)) < 0)

26 {

27 perror("bind failed");

28 exit(EXIT_FAILURE);

29 }

30 if (listen(server_fd, 3) < 0)

31 {

32 perror("listen");

33 exit(EXIT_FAILURE);

34 }
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35 if ((socket1 = accept(server_fd, (struct sockaddr *)&address, (socklen_t

*)&addrlen)) < 0)

36 {

37 perror("accept");

38 exit(EXIT_FAILURE);

39 }

40 if (fcntl(socket1, F_SETFL, fcntl(socket1, F_GETFL) | O_NONBLOCK) < 0)

41 {

42 printf("TCP error\n");

43 }

44 return socket1;

45 }

Listing 20. TCP Server Initialization

1 int TCP_ClientInitialize()

2 {

3 struct sockaddr_in serv_addr;

4 char *hello = "Hello from client";

5 char buffer[1024] = {0};

6 if ((socket1 = socket(AF_INET, SOCK_STREAM, 0)) < 0)

7 {

8 printf("\n Socket creation error \n");

9 return -1;

10 }

11

12 serv_addr.sin_family = AF_INET;

13 serv_addr.sin_port = htons(PORT);

14

15 if (inet_pton(AF_INET, "127.0.0.1", &serv_addr.sin_addr) <= 0)

16 {

17 printf("\nInvalid address Address not supported \n");

18 return -1;

19 }

20

21 if (connect(socket1, (struct sockaddr *)&serv_addr, sizeof(serv_addr)) <

0)

22 {

23 printf("\nConnection Failed \n");

24 return -1;

25 }

26 if (fcntl(socket1, F_SETFL, fcntl(socket1, F_GETFL) | O_NONBLOCK) < 0)

27 {

28 printf("TCP Error\n");

29 }

30

31 return socket1;

32 }

Listing 21. TCP Client Initialization
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