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ABSTRACT

Autonomous Vehicles (AVs) have the potential to significantly evolve transportation.

AVs are expected to make transportation safer by avoiding accidents that happen

due to human errors. When AVs become connected, they can exchange information

with the infrastructure or other Connected Autonomous Vehicles (CAVs) to efficiently

plan their future motion and therefore, increase the road throughput and reduce en-

ergy consumption. Cooperative algorithms for CAVs will not be deployed in real life

unless they are proved to be safe, robust, and resilient to different failure models.

Since intersections are crucial areas where most accidents happen, this dissertation

first focuses on making existing intersection management algorithms safe and resilient

against network and computation time, bounded model mismatches and external dis-

turbances, and the existence of a rogue vehicle. Then, a generic algorithm for conflict

resolution and cooperation of CAVs is proposed that ensures the safety of vehicles

even when other vehicles suddenly change their plan. The proposed approach can

also detect deadlock situations among CAVs and resolve them through a negotiation

process. A testbed consisting of 1/10th scale model CAVs is built to evaluate the

proposed algorithms. In addition, a simulator is developed to perform tests at a large

scale. Results from the conducted experiments indicate the robustness and resilience

of proposed approaches.
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Chapter 1

INTRODUCTION

Intelligent Transportation Systems (ITS) have the potential to revolutionize trans-

portation by providing safer and more efficient driving experiences. In the past

decade, many automotive industries were focused on improving the Advanced driver-

assistance systems (ADAS) and have tried to pave the road to deploy fully Au-

tonomous Vehicles (AVs) that can drive without human intervention. Today, more

than 65 automotive companies are permitted to test their AVs on the streets of

California, US CNBC (2020). When AVs become connected, they can share their

information with other AVs and/or the infrastructure in order to avoid potential ac-

cidents and increase the throughput of the roads. Traffic management of Connected

Autonomous Vehicles (CAVs) can take place at different places and for different pur-

poses including but not limited to platooning in highways, cooperative merging at

ramps, automated roundabout management, cooperative lane changing at highways

and automated intersection management Khayatian et al. (2020b).

According to the Federal Highway Administration (FHA), 40 percent of all crashes

happen at intersections, which is the second-largest category of accidents Administra-

tion (2019). As a result, I will first focus on making existing intersection management

algorithms robust. In the past few years, the intersection management of CAVs has

been the focus of many researchers and so far, a variety of intersection management

approaches Dresner and Stone (2008b); Lee and Park (2012); Azimi et al. (2014)

were proposed. However, existing works are mostly focused on performance-related

aspects of intersection management (e.g. which scheduling policy result in a better

throughput) and safety aspects have received less attention.
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My thesis statement is that Cooperative algorithms for CAVs will only be deployed

in the real world if they are proved to be robust to several kinds of failures.

To support this thesis, in this dissertation, I propose several safe and robust

cooperative algorithms for CAVs that have a better chance of being deployed in the

real world starting from centralized approaches for intersection management and then

a decentralized approach for general situations. In specific, the contributions of this

dissertation are developing algorithms that are:

• Robust against network delay and computation time: Many of the ex-

isting techniques do not consider the communication delay between CAVs and

the Intersection Manager (IM) and their computation times. As a result, a CAV

may be ahead of its expected position when receiving the assigned velocity from

the IM and may cause an accident. I have developed intersection management

algorithms that are resilient against network delay and computation time An-

dert et al. (2017); Khayatian et al. (2019). Proposed approaches set a bound

on the worst-case round trip delay (from the moment a CAV sends its informa-

tion to the moment it receives the response) and the IM instructs the CAVs to

actuate at a fixed time which is set to be greater than the worst-case round trip

delay.

• Robust against model mismatches and external disturbances: In most

of the previous works a constant velocity is assigned to CAVs to track and it

is assumed that the considered model for the behavior of vehicles is perfect.

However, model mismatches and external disturbances (e.g. wind, bump) can

temporarily degrade the tracking of the vehicle and cause errors in the even-
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tual position of vehicles (for velocity-assignment methods). I have developed

intersection management algorithms that are resilient against small model mis-

matches and external disturbances Khayatian et al. (2018). In this approach,

the IM assigns the desired Velocity of Arrival (VoA) and Time of Arrival (ToA)

to CAVs instead of a constant velocity. Then, each CAV creates an optimal

reference trajectory and track it locally. As a result, the effect of external dis-

turbances and model mismatches can be reduced or completely compensated

for.

• Robust against Rogue Vehicles: CAVs may become rogue unintentionally

or deliberately and lie about their position, velocity, etc. when sharing their

information or disobey IM’s direction and accelerate or decelerate to enter the

intersection earlier or later than scheduled. I have developed intersection man-

agement algorithms that are resilient against rogue vehicles (vehicles that may

share wrong information and/or does not follow the expected trajectory) Khay-

atian et al. (2020a). In the proposed technique, a surveillance system is used

to detect rouge vehicles and notify other CAVs to either stop (if they can stop

without entering the intersection area) or continue (if a safe stop is not pos-

sible). The temporal buffer between cross time of CAVs is select to be large

enough so that even in cases that a CAV cannot stop safely without entering

the intersection, the rouge vehicle is far enough and cannot physically hit it.

• Robust against blame in an accident: Most motion planning algorithms

assume that all CAVs follow the assigned trajectory while a CAV may change

its plan (e.g. break down or stop to yield to a jay-walker). The state-of-the-art

work (Responsibility-sensitive Safety (RSS)) does not scale to properly handle

merge, intersection and unstructured road scenarios. I have developed a generic
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conflict resolution algorithm for CAVs that ensures safety of CAVs even when

they suddenly change their plan and can detect Khayatian et al. (2021). The

proposed approach first determines the set of possible conflict zones for every

pair of CAVs and then computes who has the advantage to enter the conflict

zone first. The CAV with a disadvantage is instructed to yield to the other

CAV and account for its worst-case behavior (even if it applied full brake).

• Robust against deadlocks: When CAVs interact, they can get into a dead-

lock situation, i.e., the CAVs slow down for each other, and no-one can make

progress. Existing approaches for deadlock resolution of CAVs assume that all

CAVs have access to information of all other CAVs and conflicts among them,

which in turn, result in a high computation overhead. I have developed a dis-

tributed and efficient algorithm that can detect and resolve deadlocks among

CAVs Khayatian et al. (2021). The proposed approach comes with a mecha-

nism where CAVs broadcast their yield-to graph (to whom they are yielding to)

and after receiving other CAVs’ yield-to graph and combining them, they can

detect if there is a cycle in the graph and remove it in the same way.

We have evaluated our algorithms on a testbed with 1/10th scale model CAVs and

on different simulators for large scale testing. Results from our experiments indicate

the robustness and resilience of proposed approaches to mentioned fault models.

The organization of this dissertation is as follows: In the second chapter, I provide

a complete literature review on existing intersection management algorithms and

compare existing works from different perspectives. In chapters three, four, and

five, I present our proposed approaches for intersection management of CAVs and in

chapter six, I present our new RSS-based conflict resolution and deadlock resolution

algorithm for CAVs.
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Chapter 2

A SURVEY ON INTERSECTION MANAGEMENT OF CAVS

In this chapter, we provide a thorough survey on existing intersection management

algorithms for CAV that are reported in the literature to date and evaluate them

from following perspectives: 1) V2V/V2I interface for intersection management, 2)

scheduling policy for CAVs, 3) wireless technology, 4) model for vehicle dynamics, 5)

conflict detection, 6) extension to multi-intersections, 7) support for human-driven

vehicles, 8) safety and robustness, 9) emergency situations and recovery, 10) security

concerns, and 11) evaluation method

2.1 V2I/V2V Interface for Intersection Management

Deployment of an intersection management algorithm in real life requires certain

specifications to be defined by designers. For instance, the algorithm must specify

what information will be exchanged, who is responsible for the scheduling of CAVs

-is there a separate infrastructure near the intersection or will one of the CAVs take

the responsibility?

Existing decentralized/centralized approaches are different in terms of communi-

cation protocol and information that is shared. Some of the existing works specifically

mention what information needs to be exchanged while some other works, do not and

assume that a CAVs or the Intersection Manager (IM) have to access to all informa-

tion of CAVs.

Based on the fact that who manages the intersection, we categorize existing works

into two groups: 1) Distributed, where CAVs do the scheduling themselves and 2)

Centralized, where there is a station near the intersection that schedules approaching
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CAVs. Figure 2.1 shows an overview of a centralized and distributed intersection

management interface.

Centralized

Decentralized

Figure 2.1: Main Interfaces to Manage the Intersection of CAVs. In Centralized
Approaches, CAVs Communicate with the Infrastructure While in Distributed Ap-
proaches, CAVs Communicate with Each Other.

2.1.1 Distributed Approaches

As an advantage of distributed approaches, they do not need support from infras-

tructure, which means they can scale easily and be used in uncrowded intersections

controlled by stop signs and those in rural areas.

Li et al. Li and Wang (2006) developed a distributed intersection management

algorithm where CAVs randomly communicate with each other to form small groups

when they are within a certain radius of the intersection. All CAVs share their ID,
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width and length, incoming/outgoing lane, velocity, and position. Then, CAVs from

different groups communicate with each other to collect the information of CAVs in

other groups. As soon as a CAV receives the information of all vehicles, it becomes

the leader or intersection manager and schedules the cross-time of CAVs. The leader

also lets other CAVs know about its leadership so that they stop collecting data.

STIP (Spatio-Temporal Intersection Protocol) Azimi et al. (2014) is another co-

operative intersection management algorithm where there are three message types

that a CAV sends to the others: ENTER, CROSS, and EXIT. In this method, CAVs

share their ID, current road segment, current lane, future road segment, arrival-time,

exit-time, list of trajectories, list of arrival times, and message sequence. When two

CAVs intend to cross the same zone and their cross-time overlaps, the CAV with

higher priority continues and enters the intersection while the CAV with lower prior-

ity slows down and stops before entering the conflict zones. The priority for CAVs is

determined based on the FCFS policy where a CAV with earlier arrival time has a

higher priority.

In Katriniok et al. (2018, 2019), Katriniok et al. proposed a model predictive

control (MPC) technique to coordinate vehicles through the intersection. Upon ap-

proaching the intersection, each CAV receives the trajectories of all other CAVs and

then formulates and solves an optimal control problem to find a sequence of actions.

Next, the CAV broadcasts its information including distances to collision point with

other CAVs. This process is repeated again after a short time-step to handle newly

approaching CAVs.

Aoki et al. Aoki and Rajkumar (2018) proposed a general solution for scenarios

that a pair of CAVs have conflicts on their future paths including an intersection. In

this work, a Request-response negotiation-based protocol is proposed to detect dy-

namic intersections of CAVs. CAVs notify each other about the existence of conflicts
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and yielding to/interrupting other CAVs. In this approach, four message types are

defined: 1) Dynamic Intersection or DI request, to notify other CAVs, 2) DI approve,

to acknowledge the requested maneuver, 3) DI interrupt, to ask other vehicles to stop,

and 4) DI yield, to respond to DI interrupt.

In Liu et al. (2018), the intersection area is divided into multiple conflict zones.

Upon approaching the intersection, each CAV periodically broadcasts its arrival time

and departure time with respect to all the conflict zones that it intends to occupy. If a

CAV detects a conflict, it determines if it has the advantage to enter the conflict zone

first. A CAV will have the advantage if it proposes to 1) leave some conflict zone later

than the other CAV, 2) leave all conflict zones earlier than the other CAV, and 3) enter

some conflict zone earlier than the other CAV. The vehicle that has the advantage

continues with its plan and the other CAV changes its plan such that its enter time

to all conflict zones is later than the exit time of the CAV with the advantage. This

technique assumes that all CAVs are synchronized where the computation happens

at the same time within the broadcasting period.

Belkhouche et al. propose a distributed collision detection system Belkhouche

(2018) that is aware of the unsafe situations that may happen with respect to another

CAVs that is approaching the intersection. In this approach, the set of all velocities

that may cause an accident in the future are determined for a pair of CAVs. If a

conflict exists, one of the CAVs must accelerate and the other one will decelerate. The

optimal crossing is then determined by finding the desired velocity for both CAVs such

that CAVs change their velocity minimally while avoiding the set of unsafe velocities.

In Bian et al. approachBian et al. (2019), the area before entering the intersec-

tion is divided into three zones. A CAV will first enter the observation zone, where it

observes the current state of other CAVs and their order, then it enters the optimiza-

tion zone, where it optimizes its trajectory, finally, it enters the control zone, where
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the CAV tracks the desired trajectory. This paper assumes that the communication

range is limited and therefore a CAV may not be able to receive the information of

all CAVs. As a result, it estimates the state (position and velocity) of out-of-range

CAVs using the information broadcast by their neighbors.

In Filocamo et al. (2020), CAVs send/receive position, speed, and direction upon

entering the communication area and then calculate a priority based on the arrival

time. A CAV with lower priority yields to CAVs with higher priorities by slowing

down such that it arrives at the intersection when the intersection is cleared. This

process is repeated until a CAV leaves the intersection.

Among existing works that propose a distributed intersection management inter-

face, in Li and Wang (2006), a leader is selected dynamically to schedule CAVs while

in the restAzimi et al. (2014); Liu et al. (2018); Katriniok et al. (2018); Aoki and

Rajkumar (2018); Belkhouche (2018), each CAV determines its plan based on the

shared information of other CAVs and its own state. Selecting a leader that per-

forms intersection management is very similar to a centralized approach. Later, we

will study the pros and cons of centralized and distributed intersection management.

In general, each distributed approach follows a unique protocol for communication

where the number of exchanged messages and their size differs.

2.1.2 Centralized Approaches

Centralized algorithms mostly follow a server-client scheme where vehicles send

a request to the IM and the IM replies with a response. We categorize existing

centralized approaches into two groups: query-based intersection management or QB-

IM, and assignment-based intersection management AB-IM approaches. In QB-IM,

vehicles query a safe passage from the IM by proposing a cross-time/velocity and

the IM either accepts or rejects the vehicle’s proposal. In AB-IM, vehicles share their
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status with the IM and the IM assigns a cross-time to each vehicle, and vehicles follow

that.

Query-based Intersection Management

Autonomous Intersection Management (AIM) Dresner and Stone (2008b) was one of

the initial attempts to develop a centralized algorithm for intersection management of

CAVs. In AIM, the intersection is modeled as a grid of squares. Each of these squares

is represented in discrete time-steps. Vehicles approaching the intersection query safe

entry to the intersection by sending their estimated time of arrival and velocity of

arrival. The IM generates the future trajectory of the vehicle in terms of time-space

(which square will be used and when) and checks if it conflicts with other time-space

reservations (for other vehicles). If there is a conflict, the IM rejects the request and

the vehicle slows down and requests again after a timeout. If no reservation is assigned

to a vehicle, it will stop behind the intersection edge and request again. If there is

no conflict, the vehicle continues and enters the intersection. AIM is a query-based

intersection management (QB-IM) approach where vehicles query safe passage from

the IM and the IM replies a YES/NO. As a result, this approach may face higher

network overheads and achieve lower throughputs. This is because vehicles may come

to a complete stop and have to send multiple requests until getting a reservation. Liu

et al. (2019a) proposes a similar QB-IM methodology where vehicles send a request

to the IM reporting their future conflict zone occupation time (CZOT). The IM store

CZOTs of all vehicles and share it with all vehicles. Then, each vehicle finds a valid

solution (a new CZOT that does not have any conflict with other CAVs) and reports

it to the IM. If two CAVs request the CZOT at the same time, the IM responds to

them in the order it receives the request. IM does not respond to other CAVs until

it receives the proposed CZOT and updates its local CZOT Choi et al. (2019) is also
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a similar query-based algorithm where each CAV sends a reservation to the IM and

IM either accepts or rejects the request. In this approach, there are two zones, 1)

queuing zone and 2) acceleration zone. The vehicle sends their request only when

they are in the queuing zone.

Jin et al. Jin et al. (2013) follow another approach where platoons of CAVs are

formed using V2V communication and each platoon has a leader. The leader commu-

nicates with the IM on behalf of its platoon by sending the platoon’s earliest arrival

time and passage time. The IM evaluates the reservation time slot and responds to

the proposal of the leader by either accepting or rejecting the request and suggesting

a reservation for the platoon. Bashiri et al. (2018) and Bashiri and Fleming (2017) are

similar approaches where platoons of CAVs are formed and only leaders communicate

with the IM by sending one the following messages: 1) Request, 2) Change-Request,

3) Acknowledge or 4) Done. Accordingly, IM follows a query-based approach and

responds to a request by sending one the following messages: 1) Acknowledge, 2)

Confirm, or 3) Reject. For the request, a leader vehicle sends its VIN (vehicle iden-

tification number) as ID, current position, velocity, acceleration, estimation for the

time of arrival, and the size of the platoon. Jin et al. (2012a) is another QB-IM ap-

proach where vehicles send their estimated earliest arrival time to the IM to reserve a

time slot. The IM uses a dynamic reservation system that accepts or rejects a request

based on the priority of the request. Jin et al. (2012b) is a variation of the same

approach using a different scheduling policy and Bento et al. (2012) proposes to use

a similar QB-IM approach.

Assignment-based Intersection Management

In 2016, Yang et al. Yang et al. (2016) proposed an AB-IM algorithm where the IM

collects information of all CAVs that are within the range of the intersection and
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assigns a trajectory to each vehicle. The scheduling process is repeated when a new

vehicle enters the control zone, an existing vehicle departs the intersection or it comes

to a stop.

Crossroads Andert et al. (2017) and Crossroads+ Khayatian et al. (2019) are

similar AB-IM approaches where vehicles first synchronize their internal clock with

the IM and then, let the IM know of their presence by sending their position, velocity,

and exit lane along with a timestamp that corresponds to the captured status. IM

checks the status of existing vehicles and assigns a constant velocity and “time to

actuate” to each vehicle. Once a vehicle receives the response, waits until the time

to actuate and then accelerate/decelerate to maintain the assigned velocity. Azimi

et al. Azimi et al. (2015) propose a similar approach where the IM assigns a TOA

and VOA to a CAV and also checks for deadlock and resolve them. In Sayin et al.

(2018), another AB-IM approach is presented where approaching vehicles send a

request to the IM containing their utility function (u) and safety function (s) and

the IM schedules vehicle such that the sum of all utility functions is maximized.

Authors have also provided a mechanism for truthful utility reporting. In Lu et al.

approachLu and Kim (2016), the IM creates a queue for approaching CAVs which

is sorted based on the request time and then, assigns an occupancy in space-time to

CAVs. Qian et al. Qian et al. (2019) present an interface between the IM and CAVs

where each CAV sends a request by sharing its information and the IM computes a

scheduling solution for it. The IM also waits for feedback from the CAV to make

sure the scheduled plan is received. In Khayatian et al. (2018), each CAV sends its

position, velocity, outgoing lane, and timestamp to the IM and the IM assigns a time

of arrival and velocity of arrival to the CAV.

We have categorized existing works in terms of their interface and management

algorithm in Table 2.1.

12



Intersection management interface

Distributed
Centralized

Query-based Assignment-based

Zohdy et al. (2012); Li and
Wang (2006); Elhenawy

et al. (2015); Azimi et al.
(2014); Lee et al. (2013);

Aoki and Rajkumar (2018);
Liu et al. (2018); Qiao
et al. (2018); Katriniok

et al. (2018, 2019);
Belkhouche (2018); Bian
et al. (2019); Filocamo

et al. (2020)

Dresner and Stone
(2008b); Jin et al.
(2012a,b); Stone
et al. (2015); Vasir-
ani and Ossowski
(2012); Lin et al.
(2017); Choi et al.
(2019)

Jin et al. (2013); Andert
et al. (2017); Khayatian
et al. (2018, 2019); Yang
et al. (2016); Bashiri and
Fleming (2017); Sharon
et al. (2017); Chen et al.
(2018); Shi et al. (2018); Lu
and Kim (2019); Elhadef
(2015); Sayin et al. (2018);
Lu and Kim (2016); Qian
et al. (2019); Azimi et al.
(2015)

Table 2.1: Existing Intersection Management Algorithms Based on the Proposed
Interface for Communication among Vehicles (or with Intersection Manager).

In QB-IM, the IM either accepts or rejects a request, while in AB-IM, IM explicitly

assigns a reservation to the CAV. As a result, AB-IM algorithms can achieve higher

throughputs compared to QB-IM ones but the processing time of the intersection

manager for an AB-IM algorithm is more than a QB-IM.

Both centralized and distributed approaches have their own pros and cons but

most importantly, in centralized approaches, the IM is a single point of failure and

therefore less reliable compared to distributed approaches. Also, distributed ap-

proaches are more scalable since they don’t require support from infrastructure and

can be deployed at every intersection. In centralized approaches, CAV’s control is

given to the IM once it enters the intersection zone and given back to the CAV when

it leaves the intersection area. On the other hand, CAVs need to broadcast their

information periodically to let newly arrived CAVs know of their cross time, while in

centralized techniques, IM stores the information about the state of the intersection

(e.g. occupancy times-areas) and therefore, CAVs do not have to broadcast their in-
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formation periodically. As a result, distributed techniques may have higher network

overheads compared to centralized ones. Time synchronization is a fundamental part

of the intersection management which has received less attention. Almost all central-

ized and distributed approaches require having the same notion of among all nodes in

order to ensure the correctness of the intersection management and safety of CAVs.

Since all CAVs are equipped with GPS receivers, they can maintain an accurate no-

tion of time up to few microseconds. However, if GPS signals are poor/not available

in an area, time synchronization should be a part of the intersection management’s

V2V/V2I interface.

2.2 Vehicle Dynamics

Typically, a model is needed to estimate/predict future trajectories of vehicles

before and at the intersection. In the literature, researchers have considered different

models for vehicle dynamics. Some existing works use a simple one-dimension model,

while some use more complex models. Next, we will study some of the models that

are used for the dynamics of vehicles. Figure 2.2 shows different approaches used

to model the dynamics of a vehicle in existing works on intersection management of

CAVs.

𝑥

𝐿
𝑦

𝜓

𝜙

𝑥 𝛼 𝑚𝑔

Figure 2.2: (a) Double Integrator Model - Considering the Longitudinal Movements
of the CAV Only (b) 2D Model - Considering Longitudinal and Lateral Movements
of the CAV (c) High-Fidelity Model - Considering the Road Slope and Aerodynamic
Drag Force (Fd).
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One-dimension Model (double integrator)

This model considers the longitudinal movements of the vehicle only.


ẋ = v

v̇ = u

(2.1)

x and v are the longitudinal position and velocity of the vehicle and u is the input to

the vehicle that captures the input to the throttle and brake for positive and negative

inputs respectively.

4-wheel Model

This model considers both the longitudinal and latitudinal movements of the vehicle

Dresner and Stone (2008b): 

ẋ = v cos(φ)

ẏ = v sin(φ)

φ̇ = v
L

tan(ψ)

v̇ = u

(2.2)

x and y are the longitudinal and latitudinal position of the vehicle in Cartesian

coordinate. v is the absolute velocity of the vehicle and u is the input to the vehicle

that captures the input to the throttle and brake for positive and negative inputs

respectively. φ is the heading angle of the car, ψ is the steering angle of the vehicle

and L is the wheelbase distance.
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Bicycle model

This is a simplified version of the 4-wheel model which is created by projecting front

and rear wheels onto two virtual wheels located at the middle of the car. The vehicle

dynamics for the bicycle model can be written as:


ẋ = vxcos(θ)− vysin(θ)

ẏ = vxsin(θ) + vycos(θ)

θ̇ = r

(2.3)

where vx and vy are the longitudinal and lateral velocities of the vehicle respectively

and r is the yaw rate.

Modeling Air Drift, Road Slope, and Mass

This model considers the effect of air drag force and road slope in the vehicle model-

Bian et al. (2019).


ẋ = v

v̇ = η
mr
T − CA

m
v2 − g

(
sin(α) + f cos(α)

) (2.4)

where T is the torque applied to wheels, η is the mechanical efficiency of the driveline,

m the mass r is the tire radius, CA is aerodynamic drag coefficient, f is the rolling

resistance, g is the gravitational acceleration and α is the road slop.

We have categorized existing works on intersection management of CAVs based

on the considered model for the vehicle dynamics in Table 2.2.

The double integrator model is linear and therefore is easy to work with because

the solution for the behavior can be determined analytically. However, it does not

16



Single dimension model (double integrator)
2D model (4-
wheel vehicle)

With mass,
air drift, and
road slope

Malikopoulos and Zhao (2019a); Fayazi and
Vahidi (2017); Malikopoulos and Zhao

(2019b); Li et al. (2019a); Colombo and
Del Vecchio (2012); Feng et al. (2018);

Mahbub et al. (2019); Zhang et al. (2017);
Murgovski et al. (2015); Khoury and Khoury

(2014); Mirheli et al. (2019); Liu et al.
(2019b); Steinmetz et al. (2018); Katriniok
et al. (2018, 2019); Karlsson et al. (2018);

Zhao and Malikopoulos (2018); Hafizulazwan
(2018); Zhao et al. (2018); Fayazi and Vahidi
(2018); Shi et al. (2018); Makarem and Gillet
(2011); Lee et al. (2013); Yang et al. (2016);

Lin et al. (2017); Zhang et al. (2016); Au and
Stone (2010); Li and Wang (2006); Guler et al.
(2014); Neuendorf and Bruns (2004); Lee and
Park (2012); Onieva et al. (2015); Zohdy et al.

(2012); Kloock et al. (2019); Filocamo et al.
(2020); Wang et al. (2020); Hadjigeorgiou and

Timotheou (2019)

Khayatian
et al. (2019);
Fajardo et al.
(2011); Khay-
atian et al.
(2018); An-
dert et al.
(2017); Dres-
ner and Stone
(2008b);
Guney and
Raptis (2020)

Bashiri et al.
(2018); Bian
et al. (2019);
Bichiou and
Rakha (2018)

Table 2.2: Existing Works on Intersection Management of Cavs Categorized by the
Considered Vehicle Dynamics

capture the movement of the vehicle in 2D space. To model the behavior of a CAV

even more accurately, different factors like air drift, mass, friction, road slope can

be considered. However, considering a high-fidelity model will put a burden on the

scheduling system since more computation is needed to estimate the behavior of the

CAVs and determine a feasible solution –especially in optimization-based approaches.

As a result, it remains an open problem to determine the right level of fidelity. There

are many parameters that should be considered to model the actual behavior of a

CAV where some of them are variable e.g. road slope, wind, the mass of the vehicle,

road friction coefficient, etc. Therefore, accurate prediction of the behavior of a CAV
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requires an online identification mechanism to estimate such parameters.

2.3 Conflict Detection

In order to detect a possible conflict that two CAVs may have at the intersection,

existing works have proposed two approaches: 1) considering a Spatio-temporal oc-

cupancy map for the intersection area and 2) considering the expected trajectories of

CAVs inside the intersection.

(a) The grid represents the areas that
will be occupied by vehicles at time t. A
conflict exists if two areas have an over-
lap (depicted in red).

(b) Predefined paths are defined for
crossing the intersection. A conflict ex-
ist if two paths cross and the cross times
of the vehicles overlap.

Figure 2.3: Modeling a Conflict at the Intersection.

The first approach models the intersection as a grid of conflict areas and the path

of a CAV inside the intersection is captured by indicating which blocks (of the grid)

will be occupied by a CAV at each time-step. In this approach, the intersection

management algorithm needs to make sure two CAVs are not scheduled to occupy a

block at the same time. The granularity of splitting the intersection area into a grid

varies among different approaches. In the extreme case, the whole intersection area

is considered as a conflict area.

In the second approach, there is no need to store the occupancy map for the whole

intersection area, instead, the expected path of two CAVs is used to determine the

location at which two CAVs may have a conflict. This can be done offline as the
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expected paths of CAVs are known e.g. for going straight or making a turn.

We have categorized existing works in terms of the way conflicts are modeled in

Table 2.3.

Conflict Detection using Occupancy Map
Conflict Detection using on
CAVs’ Trajectory

Li and Wang (2006); Azimi et al. (2014);
Aoki and Rajkumar (2018); Liu et al. (2018);
Belkhouche (2018); Bian et al. (2019); Filo-
camo et al. (2020); Dresner and Stone
(2008b); Liu et al. (2019a); Choi et al.
(2019); Jin et al. (2013, 2012a); Bento et al.
(2012); Andert et al. (2017); Azimi et al.
(2015); Sayin et al. (2018); Qian et al. (2019);
Qiao et al. (2018); Khoury and Khoury
(2014); Bentjen (2018); Lu and Kim (2016);
Pourmehrab et al. (2017); Fayazi et al. (2017)

Katriniok et al. (2018, 2019);
Yang et al. (2016); Khayatian
et al. (2019); Lu and Kim (2016);
Khayatian et al. (2018)

Table 2.3: Categorizing Existing Works in Terms of Modeling the Conflicts Inside the
Intersection Area.

Using an occupancy grid to model conflicts is computationally cheap since it in-

volves simple boolean checking operation, however, the computation increases by

considering finer conflict zones and smaller time-steps. The throughput of the in-

tersection is directly dependent on the granularity of the Spatio-temporal grid and

generally finer grids can achieve higher throughputs.

2.4 Scheduling Policy

The main purpose of intersection management is achieving higher throughputs

compared to conventional traffic lights while ensuring the safety of vehicles. In this

paper, the process of deciding which CAV should cross the intersection first and which

CAV should cross second and so on is called “scheduling”. We group existing schedul-

ing policies into three main categories: i) First-Come First-Served, ii) Heuristic, and
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iii) Optimization-based. Figure 2.4 shows an example of an intersection and possible

solutions determined using the FCFS, optimization-based and a heuristic approach.

Optimization-based

Veh1 Veh2 Veh3 Veh4 Veh5

Veh1 Veh2 Veh3 Veh4 Veh5

First-Come First-Served (FCFS)

Heuristic

Approaching order

Crossing order

Veh1 Veh2 Veh3 Veh4 Veh5

Veh1 Veh3 Veh5 Veh2 Veh4

Approaching order

Crossing order

Veh1 Veh2 Veh3 Veh4 Veh5

Veh1 Veh3 Veh2 Veh4 Veh5

Approaching order

Crossing order

❶
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Figure 2.4: Examples of FCFS, Optimization-based and Heuristic Scheduling Policies.
In the Left Section, the Approaching and Crossing Order of Vehicles is Indicated. In
the Right Section, the Status of the Intersection at the Scheduling Time is Depicted.

2.4.1 First-Come First-Served Approaches

First Come First Served (FCFS) traffic control algorithms works as the name

sounds, the first vehicle to arrive is the first vehicle to be served and grants entry to

the intersection. One of the first implementations of an FCFS method is AIM which

was proposed by Dresner et al. Dresner and Stone (2008b). Requests to the intersec-

tion manager are processed in the same order they are received. For scheduling the

cross of a vehicle, AIM stores a reservation grid for the area of the intersection. This

segmentation can be used to check if another vehicle is occupying the space at a time.

FCFS was the scheduling policy for many other intersection management techniques.

For instance, Azimi et al. (2014) considers a reservation map with smaller segmen-

tation, Bentjen (2018), Khoury and Khoury (2014) and Qiao et al. (2018) similarly

consider a reservation area for the intersection, Elhadef (2015) uses a predefined con-
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flict table between entry lanes of the CAVs and a locking mechanism, and Khayatian

et al. (2018), Andert et al. (2017) and Khayatian et al. (2019) use predefined tra-

jectories of the vehicles inside the intersection for reservation. In Jin et al. (2013),

Jin et al. proposed to use FCFS for platoons of CAVs instead of individual vehicles

where the IM uses a reservation table to schedule the next platoon. In Filocamo et al.

(2020), a priority value is calculated for each CAV based on the arrival time and the

priority specifies the crossing order of CAVs. Lu Lu and Kim (2016) et al. is another

FCFS approach that a queue of CAVs is created and the intersection manager serves

the top CAV in the queue by assigning a time slot.

2.4.2 Optimization-based Approaches

Despite FCFS scheduling methods, optimization-based approaches try to minimize

the average travel time of the whole intersection regardless of their approaching order.

As a result, the crossing order of vehicles may vary from the approaching order of

vehicles.

There have been several optimization-based approaches that solve the intersection

management scheduling problem. The simplest type of optimization-based scheduling

is done by controlling the status of the traffic light namely Signal Phase, and Timing

(SPaT) to achieve a high throughput Emami et al. (2018); Pourmehrab et al. (2017);

Liu et al. (2019b); Fayazi and Vahidi (2018); Fayazi et al. (2017); Bian et al. (2019);

Xu et al. (2019). In such approaches, the IM suggests an optimal trajectory for

the CAVs to follow such that they will hit a green light. Fayazi and Vahidi (2018)

and Fayazi et al. (2017) use Mixed Integer Linear Programming (MILP) to solve the

optimization problem and Ashtiani et al. (2018), extends it to a grid of connected

intersections.

Researchers have also proposed optimization-based approaches for an intersection
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without a traffic light. Generally, the goal is to increase the throughput which is for-

mulated as minimizing the travel time/wait time/cross-time Hubmann et al. (2017);

Gregoire et al. (2013); Lee and Park (2012); Lin et al. (2017); Zohdy et al. (2012);

Bichiou and Rakha (2018). To avoid a collision in the intersection area, a set of

constraints are defined based on the unsafe states e.g. two vehicles be very close to

each other at any time. Hubmann et al. (2017) uses a POMDP (partially observable

Markov decision process) to model vehicle dynamics and the Adaptive Belief Tree

(ABT) algorithm for finding the optimal solution. Xu et al. approach Xu et al.

(2019), similarly creates a tree for all the possible solutions for the passing order

where the leaf of the tree represents the complete solution.

Guler et al. Guler et al. (2014) proposed an iterative algorithm to find the opti-

mal arrival/departure sequence of CAVs. In Yang et al. (2016), they extended their

work and formulated the intersection management problem using two optimization

problems: 1) finding the optimal arrival/departure sequence of CAVs, and 2) finding

the optimal trajectory of each vehicle once arrival/departure times are known. They

propose to use the Branch-and-Bound approach to find the optimal arrival/departure

sequence. Guney and Raptis (2020) also solves an optimization problem to minimize

the delay of CAVs. This paper employs the particle swarm optimization (PSO) algo-

rithm to find the optimal solution. Lu et al. Lu and Kim (2019) solve the optimization

problem using MILP to minimize the travel time. Liu et al. Liu et al. (2018) propose

to convert a centralized optimization problem into distributed optimization problems

that are solved locally on each vehicle to find the optimal solution. In Bashiri and

Fleming (2017), a platoon-based approach is introduced to find the optimal solution

that yields minimum average delay. Similarly, Timmerman et al. Timmerman and

Boon (2019) propose an optimization-based approach for platoons of vehicles. In Li

and Wang (2006), Li et al. proposed to create a tree where each node corresponds to
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a valid schedule. The optimal entrance of the vehicles is then determined by travers-

ing the tree. Zhu and Ukkusuri (2015) studies the problem of managing a grid of

intersections where the traffic flow of each link should be determined. Linear pro-

gramming is used to solve the problem. In Jin et al. (2012b), Jin et al. linearizes

the optimization problem using the big M method and then, solves it using linear

programming to find the minimum travel time of vehicles. Onieva et al. (2015) uses

a fourth-order Laplace model for vehicle dynamics and use the multi-objective fuzzy

rule-based system to find the minimum travel time of vehicles. In all aforementioned

approaches, a goal function was defined based on the travel time of the vehicles and

dynamics of the vehicle, and safety specifications were modeled as constraints.

There are other approaches that consider velocity variation Murgovski et al.

(2015); Mirheli et al. (2019); Katriniok et al. (2018); Karlsson et al. (2018); Shi et al.

(2018); Katriniok et al. (2019); Malikopoulos and Zhao (2019b); Kloock et al. (2019),

passenger discomfort Murgovski et al. (2015); Katriniok et al. (2018); Zhang et al.

(2017), communication overhead Steinmetz et al. (2018), acceleration/deceleration

variation Shi et al. (2018), absolute acceleration/deceleration amount Karlsson et al.

(2018); Zhao and Malikopoulos (2018); Zhao et al. (2018); Zhang et al. (2016); Shi

et al. (2018); Lee et al. (2013); Kloock et al. (2019); Wang et al. (2020); Hadjige-

orgiou and Timotheou (2019) and fuel consumption Mahbub et al. (2019); Zhang

et al. (2017); Hafizulazwan (2018); Wang et al. (2020) as a metric and define the

goal function based on it. In Murgovski et al. (2015), Murgovski et al. reformulate

the optimization problem into a sub-problem by finding the optimal entrance order

of vehicles and then transformed it into a convex problem. Zhao and Malikopoulos

(2018), Zhao et al. (2018), Zhang et al. (2016), Wang et al. (2020) and Malikopou-

los and Zhao (2019a) follow optimal control approaches and use the Euler-Lagrange

equation to solve the optimization problem analytically. In Lee et al. (2013), the opti-
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mization problem is solved in three steps using Active-set Method (ASM), Sequential

Quadratic Programming (SQP) and Genetic Algorithm (GA). Philippe et al.Philippe

et al. (2019) propose to create a local utility function for each CAV that is a function

of the inverse of distance every two CAV, the difference from the maximum veloc-

ity and difference from the initial velocity. Then, the Probability Collectives (PC)

method is used to optimize the utility function. In Li et al. (2019b), authors propose

to use Discrete Forward-Rolling Optimal Control (DFROC) to minimize the total

delay of CAVs.

2.4.3 Heuristic Scheduling Approaches

Heuristic approaches take another way to solve the intersection management prob-

lem that isn’t guaranteed to be optimal but is sufficient for reaching the immediate

goal. For instance, researchers from MIT have proposed a scheduling algorithm called

BATCHTachet et al. (2016) with a designating reordering period. When the IM re-

ceives a request it doesn’t assign a velocity to the vehicle immediately. Instead, it

waits for a designated time period and keeps the record of all requests. Once the

period is over, it re-orders the entrance time of vehicles to get a better schedule. The

most efficient pattern of entry is chosen. Stevanovic et al. proposed a quite different

approach to manage the intersection through the re-arrangement of the typical lane

configuration so that there are fewer conflicts in the roadway itselfStevanovic and

Mitrovic (2018).

Another heuristic approach is a bidding system to resolve conflicts within CAVs

Vasirani and Ossowski (2012). Vehicles can bid currency to beat out other vehicles

to get reservations for the intersection. In many cases, a vehicle has to pay for

the reservation of vehicles in front of it too in order to clear the queue. Wei et

al. Wei et al. (2018) follow a game-theory approach to find a schedule that has the
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least conflicts. Another heuristic approach is proposed by Jin et al. Jin et al. (2012a)

where a mixture of a priority-based and an FCFS is implemented, where vehicles with

higher priorities are processed earlier. In a similar work, Elhenaway et al. Elhenawy

et al. (2015) propose a game theory-based heuristic based on the chicken game, where

vehicles approaching the intersection have a joint utility function associated with each

action.

In Li et al. (2019a), Li et al. proposed a similar approach where a reward function

is defined based on two metrics: crossing the intersection in a timely manner, not

hitting any vehicles, and keeping a reasonable distance from other vehicles. Makarem

et al. Makarem and Gillet (2011) propose a method based on a local navigation

function that takes into account a vehicle’s size and ability to accelerate/decelerate

quickly when being scheduled. Au and Stone (2010) follows a heuristic approach,

where the IM determines the highest possible velocity of arrival that a vehicle can

achieve and then selects the schedule that yields the earliest time of arrival.

Aoki et al. Aoki and Rajkumar (2018) propose a heuristic approach that is created

from the integration of the FCFS policy and a timeout policy. CAVs are normally

served based on the FCFS but when the wait time of a CAV is greater than a thresh-

old, it interrupts the operation of the intersection and lets the CAV with excessive

wait time to pass. Wu et al. Wu et al. (2019) proposed a reinforcement learning ap-

proach to figure out a policy that is collision-free. The Q-learning method was used

to update the policy and intersection delay was used as the reward. In Belkhouche

(2018), Belkhouche et al. presented a heuristic approach that finds the best crossing

order based on the safety margins defined for crossing without collision. Another

heuristic scheduling approach is presented in Sayin et al. (2018) where vehicles report

their utility function to the IM and the IM determines a schedule such that it max-

imizes the utility values of all vehicles while maintaining the fairness when possible.
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Bruni et al. (2013) and Colombo and Del Vecchio (2012) look at the intersection

management as a verification problem where the goal is to check if there exists an

input that such that the system can avoid the set of Bad States or an unsafe situa-

tion. Wu et al. Wu et al. (2012) propose to use the current best known local solution

using the Ant Colony Optimization (ACO) approach to find the minimum wait time

of vehicles. Choi et al. (2019) proposes to create a Red-Black Tree from conflicts and

then traverse the tree and find the earliest time that the slot is available. Buckman

et al. Buckman et al. (2019) propose a modified version of FCFS to schedule CAVs

where a negotiation occurs between CAVs in the form of pairwise swapping. They

use Social Value Orientation (SVO) to create a utility function and a swap occurs

only when the summation of utility functions is increased.

We have categorized existing works based on their scheduling policy in table 2.4.

The scheduling policy of intersection management is directly related to the through-

put of vehicles. In addition to throughput, fairness is a key metric in determining the

scheduling policy because waiting for a long time may not be acceptable for most peo-

ple. The FCFS algorithm fulfills the fairness requirement and vehicles will not wait

for an improperly long time. However, FCFS may not be efficient and its performance

degrades significantly as the intersection scales.

There is a tradeoff between fairness and the overall throughput that an approach

achieves. We believe that both throughput and fairness are important metrics and

should be taken into account for realistic implementations. On the contrary, a heuris-

tic method can achieve better throughput compared to FCFS and all vehicles will

eventually receive a reservation i.e. vehicle delay is bounded. Another disadvantage

of optimization-based approaches is the delay due to the processing time of the in-

tersection management for finding the optimal schedule, and it becomes worse as the

intersection scales. On the other hand, analytical optimization-based approach and
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FCFS Optimization-based Heuristic

Fajardo et al. (2011);
Fok et al. (2012);

Dresner and Stone
(2008a); Quinlan

et al. (2010); Sharon
and Stone (2017);

Stone et al. (2015);
Dresner and Stone

(2007); Sharon et al.
(2017); Hausknecht
et al. (2011); Azimi
et al. (2014); Bentjen
(2018); Khoury and
Khoury (2014); Qiao
et al. (2018); Elhadef

(2015); Khayatian
et al. (2018); Andert
et al. (2017); Jin
et al. (2013);

Filocamo et al.
(2020); Lu and Kim

(2016)

Hubmann et al. (2017); Gregoire et al.
(2013); Murgovski et al. (2015); Onieva

et al. (2015); Mirheli et al. (2019);
Steinmetz et al. (2018); Katriniok et al.

(2018, 2019); Karlsson et al. (2018);
Malikopoulos and Zhao (2019a); Zhao and
Malikopoulos (2018); Hafizulazwan (2018);

Lu and Kim (2019); Liu et al. (2019b);
Zhao et al. (2018); Fayazi and Vahidi

(2018); Liu et al. (2018); Shi et al. (2018);
Lee et al. (2013); Lin et al. (2017); Bashiri
and Fleming (2017); Fayazi et al. (2017);
Ashtiani et al. (2018); Yang et al. (2016);

Zhang et al. (2016); Zhu and Ukkusuri
(2015); Zohdy et al. (2012); Lee and Park

(2012); Jin et al. (2012b); Guler et al.
(2014); Li and Wang (2006); Bian et al.
(2019); Xu et al. (2019); Kloock et al.

(2019); Wang et al. (2020); Hadjigeorgiou
and Timotheou (2019); Guney and Raptis

(2020); Li et al. (2019b); Bichiou and
Rakha (2018)

Tachet et al. (2016);
Stevanovic and Mitro-
vic (2018); Vasirani
and Ossowski (2012);
Wei et al. (2018); Jin
et al. (2012a); Aoki
and Rajkumar (2018);
Makarem and Gillet
(2011); Elhenawy
et al. (2015); Au and
Stone (2010); Li et al.
(2019a); Wu et al.
(2019); Belkhouche
(2018); Sayin et al.
(2018); Bruni et al.
(2013); Colombo and
Del Vecchio (2012);
Wu et al. (2012);
Choi et al. (2019);
Buckman et al. (2019)

Table 2.4: Categorizing Existing Works Based on Their Scheduling Policy.

heuristic approaches can avoid this problem.

2.5 Wireless Technology

Vehicle to everything (V2X) is a family of communication technologies that are

used for information sharing of vehicles with other vehicles (V2V), infrastructure

(V2I), and pedestrian (V2P).

Currently, two types of wireless technologies exist for connected vehicles: i) DSRC

(Dedicated Short-range Communication) Chen et al. (2009) and 2) Cellular-V2X (C-

V2X). DSRC uses 802.11p protocol at the physical layer Abdelgader and Lenan (2014)

and its network architecture and security are defined by IEEE WAVE standards Li

(2010). DSRC uses SAE J2735 Misener (2016) standards to define message format
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at the application layer and J2945/x Misener (2016) family of standards for defining

performance requirements of different V2X scenarios. One of the important messages

in DSRC is Basic Safety Message (BSM) Perry (2019), which is proposed to be used

as a way to share information in some of the intersection management papers Azimi

et al. (2013b); Aoki and Rajkumar (2018); Azimi et al. (2013a, 2014, 2012); Qian

et al. (2019). It should be noted that most of the existing works do not specifically

mention what wireless technology they propose to work.

C-V2X is a 3GPP communication technology Wang et al. (2017) that works with

the cellular network and has controlled Quality of Service (QoS) Toukabri et al. (2014).

C-V2X has two modes of operation, cellular communication (Uu) and direct commu-

nication (PC5). Uu mode enables V2V communications through the cellular network

while PC5 allows for direct communication among vehicles similar to DSRC. DSRC

achieves low latencies and high reliability when a few vehicles are present, however,

its performance deteriorates in a dense environment with many vehicles. C-V2X,

on the other hand, has shown more reliable latencies even in dense environments. In

terms of communication range, DSRC is more suitable for low-range communications,

while C-V2X can provide long-range communications. Compared to C-V2X, DSRC

has been tested more often due to its availability (from 2017) Romero et al. (2020).

Since DSRC uses message broadcasting, it benefits from user anonymity but will be

inefficient as point-to-point communication is not possible.

DSRC C-V2X

Pros
good hardware support, proved to work
with J2735 messages, Anonymity of
users

Long range communication
support, can perform point-
to-point communication

Cons
limited range, message are broadcast
only, may not reliable in dense areas

limited hardware support

Table 2.5: Comparing DSRC with Cellar-V2X
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2.6 Managing Multiple Intersections

Since a city can be broken down into a grid of intersections, effective intersec-

tion management of CAVs is key to city-wide traffic management. Hausknecht et

al. Hausknecht et al. (2011) extended the AIM approachDresner and Stone (2008b)

and proposed an intersection management policy for a grid of intersections. In this

approach, the intersection manager estimates the delay of traffic using 4 features: i)

the total number of active vehicles (TAV) that exists within the range of the intersec-

tions, ii) the total number of active vehicles along the planned path (PAV), iii) the

previously calculated PAV (oPAV) in the last step, and iv) the average traversal time

for the planned trajectory (TWA). The estimated traversal time of a vehicle is then

calculated as:

Test. = 0.09TAV + 0.83PAV + 0.25oPAV + 0.25TWA+ 2.26 (2.5)

The above equation is determined by simulating a single intersection and linear re-

gression approach. Once the estimated traversal time is determined for each vehicle,

an A* search is performed to find the best scheduling. The proposed algorithm is

evaluated for a 2x2 grid of intersections.

In a similar work Lin and Ho (2019), the problem of CAV routing is solved using

an iterative A*. There are 3 steps in each iteration, i) batch processing stage, where

the data of CAVs are collected using simulation, ii) routing stage, where A* is used

to find the best route for vehicles, and iii) congestion checking stage, where vehicles

are re-routed to avoid congestion. This approach predicts future traffic flows using

simulation. This approach is evaluated on different sizes of intersections up to 9x9

using SUMO. Their iterative algorithm has shown better results compared to AIM’s

multi-intersection management approach.
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In another work, a market-inspired Vasirani and Ossowski (2012) approach is

proposed to manage a network of intersections. The idea is that CAVs bid a price to

get a reservation in order to drive through the intersections and intersection managers

will follow an auction-based approach to provide the reservation to CAVs. A model

is provided for CAV drivers which considers the time of travel in a free-flow scenario

and the price of the travel governed by the intersection managers. This approach is

evaluated in a mesoscopic-microscopic simulator.

In a recent work Wang et al. (2020), authors propose a greedy algorithm to opti-

mize the sequence for route planning in a grid of intersection.

Fine-grain information about the status (position, velocity, lane, route) of CAVs

is more beneficial for intersection management compared to coarse-grain informa-

tion like traffic flow. However, the processing of fine-grain information can be very

compute-intensive and requires high-performance computing solutions.

2.7 Hybrid (Human-CAV) Intersections

Deployment of a fully autonomous intersection of CAVs is still far from happening

since it is unlikely to have an intersection exclusively for CAVs only. The intermediate

step will have a mixture of human-driven vehicles (HVs) and CAVs, which we refer

to as hybrid intersections.

One of the first attempts to consider a hybrid intersection was a part of the AIM

approach Dresner and Stone (2008b). Dresner and Stone proposed FCFS+Light,

an intersection management mechanism that is integrated with a traffic light model.

The intersection manager follows a query-based approach to assign the reservation to

incoming CAVs and HVs will follow the normal traffic light rules. In a similar work,

Sharon et al. proposed Hybrid-AIM (H-AIM) Sharon and Stone (2017), which was

built on FCFS+Light. The main difference between FCFS+Light and H-AIM is that
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in FCFS+Light, IM immediately rejects a reservation request that is received from a

CAV if the light is red for the corresponding lane. While in H-AIM, IM rejects the

request only if another vehicle with a green light is present at the intersection. H-

AIM requires extra infrastructure to be integrated into the intersection management

system to detect the presence of vehicles.

Semi-AIM Stone et al. (2015) is a modified version of AIM that allows HVs and

semi-autonomous vehicles to make reservations similar to CAVs. An interface e.g. a

button is designed for HVs to send a request to the IM. In semi-AIM, three vehicle

models were considered: i) semi-autonomous with communication (SA-COM) only,

where the driver is permitted to pass if the entire lane is available, otherwise, it has

to slow down and follows the traffic signal, ii) semi-autonomous with cruise control

(SA-CC), where the driver gives the control to the driver agent to guide the vehicle

through the intersection. Afterward, the control is given back to the driver. The

vehicle will enter the intersection if it can maintain its velocity. Otherwise, it will act

like the SA-COM model. iii) semi-autonomous vehicles with adaptive cruise control

(SA-ACC) where the vehicle sends an anchor request to the IM and follows the front

vehicle and enters the intersection if there is any. Otherwise, it will follow the SA-CC

model.

In another effort to consider HVs, researchers have considered a connected vehicle

center (CVC) Lin et al. (2017) which can detect the movement and position of HVs

through traffic detectors and set green periods for them to enter the intersection when

they reach the edge of the intersection. By default, the light is red for all HVs and

when the intersection is clear, CVC changes the light to green for HVs. A Fuzzy

Rule-based System (FRBS) Onieva et al. (2015) was proposed for an intersection

of CAVs and HVs where autonomous vehicles can detect the existence of HVs and

take proper maneuver to avoid them. This approach does not use traffic light and is
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limited to scenarios where HVs enter the intersection from one road.

Fayazi et al. Fayazi and Vahidi (2017) proposed a device to be installed on the

vehicle that suggests the desired speed (a range of speed) to the driver to follow so

that it will reach the intersection at the desired time of arrival. This approach was

tested on an actual vehicle and an API for the driver. In Shen et al. (2019), Shen

et al. propose to use an On-Board Unit (OBU) to convey different communication

signals to HVs. Two commands are envisioned for both CAVs and HVs, “pass” and

“stop” and HVs are assumed to follow the command.

Supporting HVs at an automated intersection not only requires installing an extra

device on vehicles, but it also needs training of drivers. Despite CAVs, HVs behavior

may not be predictable and can disrupt the operation of the intersection. Therefore,

the management approach should be flexible to handle HVs negligible mistakes or

abnormal behaviors. Besides supporting human drivers, a management algorithm

should account for pedestrians. So far, not much attention is paid to the management

of pedestrians, and to the best of our knowledge, Niels et al. (2019) is the only work

that considers scheduling of pedestrians.

2.8 Safety and Robustness

Since intersection management is directly dealing with vehicles that transport

humans, it should be safe and resilient against faults and uncertainties. Despite

advances in localization approaches e.g. Simultaneous Localization and Mapping

(SLAM) Bailey and Durrant-Whyte (2006), localization of autonomous vehicles is

not perfect yet.

Therefore, the IM should consider a larger size of the CAV when reserving a space-

time slot for a vehicle to ensures that vehicles don’t collide. We refer to this barrier

as Safety Buffer. The size of the safety buffer is directly related to the accuracy and
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(b) Added safety buffer to account for round-trip delay.

Figure 2.5: Different Safety Buffers Considered to Account for Uncertainties

precision of sensors (encoder, IMU, GPS, camera, etc.) as well as the localization

algorithms of the CAV and the maximum velocity of the vehicle. A common way to

consider a safety buffer is depicted in Figure 2.5a (a). Figure 2.5a(b) depicts a safety

buffer to account for position error due to round-trip delay. Besides position errors,

there are a number of faults/anomalies that may occur during the operation of the

intersection and can cause an accident. For example, a vehicle may break down inside

the intersection or the intersection management software/hardware may crash.

Localization Errors: The AIM approach Dresner and Stone (2008b) considers a

safety buffer around each vehicle to account for such uncertainties in the position due

to inaccurate sensor readings (similar to Figure 2.5a). Belkhouche et al. Belkhouche

(2018) follow another approach and consider a safety margin between the cross-time

of vehicles to account for uncertainties in the position of CAVs.

Network Failures: Network delay is an inherent part of the intersection man-

agement algorithm because CAVs communicate over a wireless network. In existing

papers on intersection management of CAVs, it is assumed that CAVs trust the infor-

mation that is received from other CAVs and schedule their cross-time accordingly.

As a result, the safety of CAVs depends on the authenticity of the information and
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the timeliness of sending and receiving the information.

Processing time: In addition to network delay, checking the conflict between

CAVs and determining a safe schedule –especially in optimization-based approaches

takes time. Since CAVs are moving when waiting for a response from IM or other

vehicles, the position at which they receive the response is dependent on the round-trip

delay (RTD) i.e. from the moment they send a request and the moment they receive

the response2.5b. Crossroads Andert et al. (2017) proposes to do synchronization and

timestamping to make sure CAVs and the IM have the same notion of time. Andert

et al. propose to assign a “time to actuate” to each CAV to make vehicles behavior

deterministic. By considering an upper bound on the RTD, on-time actuation of

CAVs can be guaranteed.

Vehicle Model Mismatch Another source of error is the considered model for

CAVs. Any inconsistency between the actual model and the considered model can

result in accidents inside the intersection. Additionally, a vehicle may face external

disturbances like wind, bump, etc. that can deviate its behavior from the expected

one. There are many intersection management approaches where a reference velocity

profile is assigned to the CAV (to track). Although such approaches work fine in

ideal situations, they are not robust to an external disturbance (e.g. wind) or model

mismatches (e.g. a small mismatch in a parameter) and they can affect the eventual

arrival time of the CAV at the intersection. RIM Khayatian et al. (2018) highlighted

that the effect of bounded external disturbances and model mismatches can be com-

pensated if a CAV tracks a reference position profile instead of a reference velocity

profile.

Other Faults In the literature, researchers have modeled other sources of error

and faults that can occur during the operation of the intersection. In a version of

the AIM approach Dresner and Stone (2008a), authors assumed there is a way to

34



let the IM know an accident has happened e.g. when the airbag sensor triggers and

then stop other vehicles by informing them. Another fault model that is considered

is a pedestrian/obstacle that suddenly starts crossing the intersection Li and Wang

(2006). Li et al. proposed a method where the first CAV that detects the pedestrian,

lets other CAVs know that there is an obstacle so that all CAVs stop. Dedinsky et

al. Dedinsky et al. (2019) propose to use infrastructure-mounted cameras to improve

the robustness of the intersection against faults. In a recent study, Khayatian et

al. Khayatian et al. (2020a) proposed an intersection management approach called

R2IM that is resilient against a “rogue vehicle”, which is referred to a CAV that

does not follow the IM’s command (stops or accelerates) or share wrong information

(deliberately or unintentionally). R2IM approach considers a large gap between the

cross-time os CAVs to ensure the safety in the presence of a rogue CAV. It was proved

that no accident will happen inside the intersection area as long as there is one rogue

vehicle at a time. To avoid accidents, the intersection management approach should

have certain detection methods. Not all scenarios can be detected from the exchanged

data and therefore, there is a need for environmental sensors to doublecheck the status

of the CAVs.

Safety and efficiency of the intersection management depend on the latency, range,

and rate of the communication protocol. Since Intersection management has safety-

critical timing constraints, bounded time communication is needed to make sure mes-

sages are delivered to vehicles on time. The communication range also plays a sig-

nificant role in the correctness of intersection management and can affect efficiency.

Since CAVs cannot communicate with the infrastructure or each other until they are

close enough to the intersection, they should drive at a slower speed to make sure

when they receive the information for the first time, they have enough time to safely

slow down or in the worst-case stop if needed. Given the total amount of data that
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each CAV needs to send and receive as well as the communication rate of the wireless

technology is known, the maximum capacity of the intersection management can be

determined in terms of the number of vehicles that can be present at the same time.

2.9 Graceful Degradation and Recovery

In reality, unexpected situations can happen which temporarily disrupt the normal

operation of the intersection e.g., an emergency vehicle approaching the intersection or

a CAV breaking down inside the intersection. The intersection management approach

should have certain mechanisms to resume the operation of the intersection once the

emergency situation is resolved. We refer to the process of resuming the operation of

the intersection as “recovery”.

The AIM approach Dresner and Stone (2008a) has an inherent recovery mechanism

integrated with it since it follows a QB-IM approach. When an emergency is detected,

the IM rejects all requests until the emergency situation is cleared. Afterward, the

IM starts accepting requests and will schedule CAVs.

Li et al. Li and Wang (2006) propose a recovery approach for scenarios where

a pedestrian suddenly attempts to cross the intersection. In this approach, another

cooperative driving plan is regenerated when the road is cleared.

Resuming the operation of the intersection is crucial to the liveness of the system

and in some scenarios, recovery may not be possible e.g. the intersection area is

blocked due to an earthquake or falling tree. As a result, CAVs must have a built-in

recovery algorithm to re-route.

2.10 Security Concerns

Security is an important aspect of any intersection management since vehicles

communicate over a shared medium (wireless communication). Security concerns are
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more serious in cooperative intersection management approaches since the vehicle

that schedules the intersection can be malicious and cause a catastrophe.

Currently, modern vehicles have the potential of being the target of cyberat-

tacks Checkoway et al. (2011). Such attacks can be done by physically accessing the

vehicle e.g. connecting to the Controller Area Network (CAN) bus Koscher et al.

(2010) or installing malicious applications Mazloom et al. (2016). Also, it can be

done over wireless communication Checkoway et al. (2011), e.g. using Bluetooth

or cellular channel. Similar attacks can be applied to the intersection management

system. Chen et al. Chen et al. (2018) showed that a malicious agent can spoof the

data that connected vehicles send to the Intelligent Traffic Signal System (I-SIG) and

therefore, cause traffic congestion. In this attack, a malicious agent sends false data

to deceive the I-SIG system and cause a traffic jam.

In Bentjen (2018), Bentjen et al. analyzed two attack scenarios: 1) Sybil Attack,

where the Sybil attacker makes a false reservation or multiple reservations at a time.

They showed that certain reservations that have the most number of conflicts with

other paths will have the most significant effect on traffic congestion. 2) Squatting

attack, where a CAV proposes to come to a complete stop within the intersection

which forces the intersection manager to assign very low velocities to other CAVs

and cause a traffic jam. The authors proposed to mitigate the Sybil by using a

unique signed certificate for each message or installing environmental sensors to detect

vehicles. They also proposed to mitigate the Squatting attack by specifying a lower-

bound on the velocity of arrival that is proposed by CAVs.

Despite the fact that extensive research is done on cybersecurity of automobiles,

not much research has been done on the cyber-security of intersection management

systems. There can be different types of Sybil attack Douceur (2002) that may be

applied to the intersection management system: i) Nuisance, adding a delay in com-
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munication, ii) Herding, deceiving several intersection managers to control a variety of

cars, iii) Carjacking where the attacker spoofs the assigned speed for one or multiple

cars Bentjen (2018).

2.11 Comparison of Evaluation Methods

In this section, we summarize the evaluation method of existing approaches. Some

previous works use existing simulation tools, some developed their own simulation

from scratch, some implemented an intersection with scale model vehicles, and some

performed vehicle-in-the-loop (VIL) testing. Figure 2.6 shows an overview of some of

the existing methods of evaluation. We categorized existing intersection management

works based on their evaluation methods in Table 2.6.

AIM (in Java)

SUMO

VISSIM

Intersection Simulator 

(in Matlab)

AutoSIMGazebo

1/20 scale model

1/12 scale model

1/8 scale model

1/25 scale model

Vehicle-in the-loop

Figure 2.6: Researchers have Evaluated Their Algorithms using Existing Simulators,
Simulator that They Have Built from Scratch, Scale-Model Intersections or Vehicle-
In-The-Loop testing. Top Row From Left, 1) A Simulator Developed in Java for
AIM Approach Dresner and Stone (2008b), 2) Gazebo, 3) VISSIM, 4) AutoSIM, 5)
A 1/12 Scale Model Intersection by Fok et al. Fok et al. (2012) 6) A 1/25 Scale
Model Intersection by Beaver et al. Beaver et al. (2019). Bottom Row from Left, 1)
A simulator Developed in MATLAB Khayatian et al. (2018), 2) SUMO, 3)Vehicle-
in-the-loop Testing by Fayazi et al. Fayazi and Vahidi (2017), 4) A 1/20 Scale Model
Intersection by Wu et al. Wu et al. (2012), and 6) A 1/8 Scale Model Intersection by
Khayatian et al. Khayatian et al. (2018).

SUMOCenter (2019) and VISSIMPTVAG (2019) are the most popular simulators

that are used by the researchers. AutoSIMAutoSIM (2019), GazeboGazebo (2019),
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Their Own Simulators
VISSIM
PTVAG
(2019)

SUMO
Behrisch
et al.
(2011)

Other
Simula-

tors

Scale
Model
Car

Vehicle
in the
loop

Dresner and Stone (2008b);
Zohdy et al. (2012); Guler et al.
(2014); Elhenawy et al. (2015);
Yang et al. (2016); Vasirani and
Ossowski (2012); Ashtiani et al.

(2018); Bashiri and Fleming
(2017); Lee et al. (2013); Zhao
et al. (2018); Liu et al. (2019b);
Hafizulazwan (2018); Zhao and
Malikopoulos (2018); Onieva
et al. (2015); Zhang et al.
(2017); Li et al. (2019a);
Malikopoulos and Zhao

(2019b); Pruekprasert et al.
(2019); Stone et al. (2015);

Sharon et al. (2017); Fajardo
et al. (2011); Dresner and Stone

(2008a); Sharon and Stone
(2017); Dresner and Stone
(2007); Hausknecht et al.

(2011); Bentjen (2018); Khoury
and Khoury (2014)

Lee and
Park (2012);
Zhang et al.
(2016); Lin

et al.
(2017); Lee

et al.
(2013);
Le Vine
et al.

(2015);
Chen et al.

(2018);
Zhao and

Malikopou-
los (2018);

Emami
et al.

(2018);
Mirheli

et al. (2019)

Fayazi
et al.

(2017);
Jin et al.

(2013,
2012a,b);
Lu and

Kim
(2019);
Sayin
et al.
(2018)

Azimi
et al.

(2014);
Aoki

and Ra-
jkumar
(2018);
Bento
et al.

(2012);
Fayazi

and
Vahidi
(2018);
Mahbub
et al.

(2019);
Ste-

vanovic
and

Mitrovic
(2018)

Andert
et al.

(2017);
Khaya-

tian
et al.

(2018);
Fok
et al.

(2012);
Wu
et al.

(2012);
Paull
et al.

(2017);
Beaver
et al.
(2019)

Quinlan
et al.
(2010);
Fayazi
and
Vahidi
(2017)

Table 2.6: Categorizing Existing Works Based on Their Evaluation Approach.

and Synchro are other simulators that have been used by researchers. For a more

realistic evaluation, researchers have developed scale modelFok et al. (2012); Andert

et al. (2017); Wu et al. (2012); Khayatian et al. (2018). There have been a few

implementations that include full-size vehicleFayazi and Vahidi (2017); Quinlan et al.

(2010) that are conducted using VIL.

Among existing simulators, SUMO is suitable for large-scale simulation and fast

execution where the graphics are not important (simulates in 2D). SUMO, however,

uses a simple model for vehicle dynamics and therefore cannot model the behavior

of vehicles accurately. Similarly, VISSIM can perform large-scale simulations but it
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provides a 3D view and it can integrate high fidelity models (e.g. from CarMaker).

VISSIM is relatively slower than SUMO. Both SUMO and VISSIM can model pedes-

trians too. Gazebo simulator has a good physics engine and graphical representation.

Gazebo can simulate multiple vehicles in 3D and accurately simulate vehicle sensors

including LIDAR, Camera, RADAR, Ultrasonic, etc. Gazebo, however, compute-

intensive and requires a high-performance computer to run smoothly when modeling

multiple vehicles. Synchro and AutoSIM are other simulators that are not well doc-

umented and rarely used. The integration of an intersection management algorithm

with Synchro and AutoSIM is challenging.

Currently, the state-of-the-art approach for intersection management of vehicles

(either AVs, CAVs or human-driven vehicles) is through controlling the traffic light

and signal free approaches have not been deployed yet to the best of our knowledge.

Signal-free approaches are expected to be tested on private test tracks like M-City

Briefs (2015), GoMentum StationCosgun et al. (2017), or Taiwan Car LabTsai et al.

(2019) first before the actual deployment on public roads.

Simulation-based evaluations are simpler to implement and reproduce, and easier

to scale. However, a simulation may not capture all challenges of an actual deploy-

ment. For instance, the effect of network delay, vehicle model mismatch, computation

time on the operation of the system, and the need for implementing clock synchro-

nization, fail-safe routines, etc. are some challenges of a real implementation.
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Chapter 3

CROSSROADS+ APPROACH

In the past few years, different methodologies have been proposed to manage inter-

sections of CAVs. However, the timing problem due to RTD was ignored in almost all

previous works. In this section, we propose Crossroads+ approach which addresses

the problems due to RTD.

3.1 Backgrounds

We first start by providing some backgrounds on safety issues.

3.1.1 Safety Buffer

All localization devices used for autonomous driving like GPS, encoder, and

odometer are subject to inherent errors. It’s shown that Kalman Filter Setoodeh et al.

(2004, 2007) and Particle FilterWon et al. (2010); Gross et al. (2010) based approaches

can be used to improve the accuracy of localization for an autonomous agent. Nowa-

days, SLAM (Simultaneous Localization and Mapping) algorithms Durrant-Whyte

and Bailey (2006); Bailey and Durrant-Whyte (2006) are widely used to estimate

CAV location with the help of landmarks in the environment. However, it has been

shown that current SLAM approaches are still not perfect Fuentes-Pacheco et al.

(2015). Noise, drift, unknown disturbance, nonlinear behavior, and model mismatch

are some common causes that can result in discrepancies between the actual and es-

timated positions of a CAV. Different error models exist to account for uncertainties

in position. For instance, GPS error can be modeled as a circle around the CAV;

while shaft encoder’s error drifts over time and is typically modeled as a longitudinal
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(b) Added safety buffer to account for RTD.

Figure 3.1: Safety Buffer and its Extension to Account for Nondeterministic RTD

buffer in front of/behind a CAV. Due to these errors, the IM should consider a buffer

around each CAV to avoid potential collisions, which we refer to as Safety Buffer.

The size of the safety buffer is related to the accuracy and precision of positioning

sensors (odometer, IMU, GPS sensor, etc.) as well as the estimation algorithms. In

this paper, we consider the error model to be similar to Figure 3.1a.

3.1.2 Round-trip Delay

In a real deployment of an intersection management algorithm, CAVs and IM

communicate over a wireless network and therefore, are prone to unknown commu-

nication delays. This delay is directly related to the amount of data that needs to

be transmitted. For instance, sending two arrays of data (e.g., reference position and

timestamps) will incur higher delays compared to transmitting a single variable (e.g.,

constant velocity).

In conventional VT-IM approaches, the target velocity is safe only if it is received

by a CAV at where the original request was sent and is executed right away. In

reality, however, the communication delay and IM processing time are not zero and

the CAV receives the velocity later than when the IM expects. As a result, the CAV’s
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trajectory will be different from what the IM has calculated and this may cause

an accident inside the intersection. Based on the initial velocity and the assigned

IM to Vehicle 

Communication Delay

Velocity

Time

Target 

Velocity

Initial 

Velocity

Expected Velocity Trajectory

Actual Velocity Trajectory

Position 

Error

Position

TimeInitial 

Position

Expected Position Trajectory

Actual Position Trajectory

Figure 3.2: Ignoring the Network Delay Will Result in Position Error and Can Cause
an Accident.

target velocity, a CAV may be ahead of or behind the expected position. If the

assigned velocity is greater than the initial velocity and the RTD is not zero, then

the actuation (acceleration) will be delayed and the CAV will enter the intersection

later than expected and vice versa. Figure 3.2 shows an example of a CAV lagging

behind the expected trajectory due to RTD (assuming instant velocity change).

One way to model the effect of communication delay and the processing time of

the IM is to consider a larger safety buffer around each CAV. Figure 3.1b illustrates

how the safety buffer needs to be extended longitudinally. The size of the buffer

(BRTD) depends on the WCRTD and the maximum possible velocity of CAVs

BRTD = ∆tWCRTD × vmax (3.1)

∆tWCRTD is defined as the duration of the worst-case delay from the time a CAV

sends its information to the IM to the time it receives the response. The shorter the
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WCRTD, the smaller the added buffer, and consequently, the better the throughput.

This is because a much larger virtual size of the CAV is considered with an extended

safety buffer.
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Figure 3.3: Round Trip Delay (RTD) for the Best-Case, Average-Case and Worst-
Case Network Delay for 1-4 CAV(s) Sending a Request to the IM Simultaneously.

We measured the RTD when there are multiple CAVs sending requests to an

IM simultaneously using our 1/10 scale model testbed (explained later). Figure 3.3

depicts the average, minimum and the maximum values of measured RTD for 4 sce-

narios, where the number of CAVs sending a request to the IM is equal to 1, 2, 3

and 4 respectively. We repeated each experiment 10 times. Note that for a 4-way

intersection with one lane per road, the maximum number of CAVs that can send

a request at the same time is 4. We can observe that the WCRTD increases as the

number of CAVs increments.

3.2 Crossroads+ Algorithm

In this section, we present our Crossroads+ methodology. Algorithms 1 and 2

show the Crossroads+ interface for CAVs and the IM. Upon reaching the sync line

(depicted in Figure 3.4), CAVs communicate with the IM to synchronize their lo-
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cal clock. Synchronization is needed to have the same notion of time among all

Intersection 

Manager

Transmit 

Line

2nd

Slow-down 

Line

Sync 
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1st

Slow-down 

Line

Figure 3.4: An Overview of the Crossroads+ Interface. IM Uses a FCFS Policy for
Scheduling of CAVs.

nodes Shrivastava et al. (2016); Mehrabian et al. (2017); Shrivastava et al. (2017).

When a CAV reaches the designated transmit line, it captures the time and sends its

ID, position, velocity, maximum acceleration and deceleration rates, destination lane

and the captured timestamp to the IM. After sending the request, CAVs will continue

traveling with their initial velocity until either receiving a response from the IM or

reaching the slow-down line. When the IM receives a request, it computes a target

velocity and an actuation time based on the received information and status of other

CAVs. When the CAV receives the target velocity and actuation time, it continues

traveling at its current velocity until the actuation time, at which point it will take

action to reach the assigned target velocity. If a CAV cannot synchronize its clock

with the IM before reaching the 1st slow-down line, it will apply the brake to stop

behind the transmit line. If a CAV does not receive a response from the IM after

the set timeout, it will request again. If no response is received from the IM before

reaching the 2nd slow-down line, the CAV will apply the brake and stop behind the

intersection line. Slow-down lines are imaginary lines and are set for fail-safe oper-

ation of CAVs. Recovery from an event (such as a problem in the communication

system or when an emergency car approaches) is out of the scope of this paper, but
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is an important issue to be studied further.

Algorithm 1: Crossroads+ Approach - CAV

1 if Sync line is crossed then
2 Synchronize clock with IM;
3 while Waiting for Sync do
4 if reached the 1st slow-down line then
5 Apply brake;
6 end
7 if sync is successful then
8 Exit the loop;
9 end

10 end

11 end
12 if Transmit line is crossed then
13 Send a request to IM;
14 while waiting for the response do
15 if reached the 2nd slow-down line then
16 Apply brake;
17 end
18 if no response within the timeout then
19 Prepare to stop when the 2nd slow-down line is reached;
20 else
21 Exit the while loop;
22 end

23 end
24 Receive the response;
25 Wait until actuation time;
26 Accelerate or decelerate to achieve the target velocity;

27 end

3.2.1 Crossroads+ Scheduling Policy

Crossroads+ adopts an FCFS-based policy to ensure fairness among all CAVs. If

two or more CAVs send their requests at the same time, the IM will use the CAVs’

IDs to break the tie. When the IM receives a request from a CAV, it adds the

CAV’s information to the list of active CAVs. Accordingly, when a CAV leaves the
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Algorithm 2: Crossroads+ Approach - IM

1 if a new msg is received then
2 if msg is a request then
3 Set the actuation time (tact);
4 Find potential conflicts (xc, tc) w.r.t. existing CAVs ;
5 Calculate the target velocity (vnewT ) w.r.t. xc, tc;
6 Send back tAct and vnewT ;
7 Add the requesting CAV’s information to the list of active CAVs;

8 end
9 if msg is a leave notification then

10 remove the CAV’s information from the list of active CAVs;
11 end

12 end

intersection, it will be removed from the list of active CAVs by the IM.

When a request is received, the IM sets the actuation time for the CAV, tAct, to

be:

tAct = t0 + ∆tWCRTD (3.2)

where t0 is the timestamp corresponding to the moment at which the requesting CAV

has measured its status (position, velocity, etc.) and ∆tWCRTD is the considered

WCRTD. We will later discuss how to determine a reasonable value of ∆tWCRTD for

the intersection manager. The actuation time corresponds to a particular position

along the vehicle’s travel path, xAct, since the CAV will drive at its initial velocity

until tAct:

xAct = x0 + v0 ×∆tWCRTD (3.3)

where x0 is the position of CAV at request time (t0), and v0 is the initial velocity of

the CAV at t0. The IM then computes all potential conflict points and corresponding

conflict times along the requesting CAV’s path with respect to each existing active

CAV i. xc and tc are the sets of conflicts position (xic) and times (tic) calculated

based on the set target velocities of existing active CAVs. For example, Figure 3.5
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Figure 3.5: A View of a Four-Way Intersection with Three Lanes Per Road. Four
Conflict Points Are Determined for the CAV Number 5 Regarding the Existing Ones.

illustrates the potential conflict positions and times calculated for the travel path of

the requesting CAV, CAV #5. The travel path of CAV #5 is depicted by the dashed

line. Other CAVs (#1, #2, #3 and #4) are on the list of active CAVs and have

already received a target velocity and actuation time. Their paths are shown by solid

lines. The intersections of paths of all CAVs with CAV #5 are denoted by solid dots.

For example, the blue dot indicates the intersection between the paths of CAV #1

and CAV #5, i.e. conflict point x1c . t
1
c is the time when CAV #1 reaches this point

x1c . For CAVs on the same lane as the requesting CAV, the edge of the intersection

is considered as the conflict point. With all potential conflict points determined, the
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IM projects each conflict time (tic) to a safe reach time (tis):

tis = tic + ∆tsafety (3.4)

where ∆tsafety is the delay buffer ensuring that the requesting CAV reaches the conflict

position ∆tsafety time units after the existing active CAV i. One way to determine

the ∆tsafety in order to achieve guaranteed safety is

∆tsafety =
lmax + lB
vmin

(3.5)

where lB is the longitudinal size of the safety buffer due to sensor error, lmax is the

length of the longest CAV among all CAVs and vmin is the slowest velocity that IM

assigns to a CAV i.e., IM will not assign a velocity less than vmin to a CAV. The

proof of safety will be presented in Section 3.4. The target velocity viT corresponding

to a pair of safe time and conflict position (tis, x
i
c) is calculated as:

viT =
di

tis − tAct
(3.6)

where

di = xic − xAct

is the total distance the requesting CAV travels from its actuation position until

reaching the conflict position xic. We can rewrite di as di = diI +dR. diI is the distance

the requesting CAV travels inside the intersection to reach the conflict position xic and

dR is the distance between the actuation position and edge of the intersection. The

computation of diI and dR is straight-forward when the dimension of the intersection is

known. For instance, it is trivial to show that d4I , the distance CAV #5 travels inside
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the intersection to reach x4c in the example of Figure 3.5, is equal to acos(3/3.5) ×

3.5LW , where LW is the lane width. Since an instant velocity change is impractical,

the target velocity viT needs to be modified to account for the requesting CAV’s

acceleration/deceleration. In the next section, we will explain in detail how the

compensated target velocity vnew
i

T is calculated based on viT , taking into consideration

the vehicle dynamics of the requesting CAV. After calculating all target velocities

(vnew
i

T ) the IM selects the slowest velocity and assigns it to the requesting CAV.

3.3 Safe Target Velocity Calculation

This section discusses how to calculate vnew
i

T based on viT , taking into consideration

the vehicle dynamics of the requesting CAV. The superscription i is dropped in this

section to simplify the notations. Without loss of generality, we only discuss the case

where vT is higher than v0. The case of deceleration can be analyzed similarly.

In order to compute the compensated target velocities (vnewT ) to account for CAV

acceleration/deceleration time, we need to know what the actual velocity and accel-

eration profiles of a CAV under vT are. They can be calculated using a model for the

CAV dynamics, with explicit considerations of acceleration limits and the underlying

CAV controller.

In subsection 3.3.1, we first compute the velocity profile with realistic vehicle

dynamics but unbounded acceleration, which will serve as a baseline for computing

the compensated target velocity. Subsection 3.3.2 explains how vnewT is calculated

in the case that the resulting CAV acceleration/deceleration is always within the

acceleration/deceleration limit. Subsection 3.3.3 discusses the case where the resulting

CAV acceleration/deceleration from the baseline unbounded profile exceeds the limit.
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3.3.1 Solving for Velocity Profile with Realistic Vehicle Dynamics and Unbounded

Acceleration

The following differential equations are used to model CAV motion in the 2D

space: 

ẋ = vcos(φ)

ẏ = vsin(φ)

φ̇ = v
L
tan(ψ)

v̇ = a

(3.7)

where x, y are the longitude and latitude of a CAV in Cartesian coordinates re-

spectively, φ is the heading angle from the x-axis, v and a are linear velocity and

acceleration of the CAV respectively, L is CAV’s wheelbase distance and ψ is steering

angle of front tires with respect to the heading of the CAV. In order to account for

maximum acceleration and brake capability of each CAV, we consider the following

saturation function to bound the acceleration. Therefore, Equation (3.7) is replaced

by:

v̇ =


amax, if a > amax

amin, if a < amin

a, otherwise

(3.8)

Without loss of generality, consider an eastbound CAV (driving along the x-axis

before entering the intersection) that uses a PID controller to achieve and maintain

the assigned target velocity. The vehicle dynamics presented in Equation (3.7) for
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this vehicle can be written as:

ẋ = v

ẏ = 0

φ̇ = 0

v̇ = KP e+KI

∫
e+KDė

(3.9)

where e is the velocity error (e = vT − v) and KP ,KI and KD are Proportional,

Integral and Derivative gains of the PID controller. By substituting ė = −v̇ and

taking the derivative of Equation (3.9), we have:

v̈ = −KP v̇ +KI(vT − v)−KDv̈

simplifying, we get:

v̈ +
KP

1 +KD

v̇ +
KI

1 +KD

v =
KIVT

1 +KD

(3.10)

The solution to Equation (3.10) is the actual velocity profile of a CAV under the

target velocity vT .

Once the values of the PID gains are determined, we can find the homogeneous

solution to Equation (3.10) by obtaining the characteristic equation of the system. To

do so, we should replace v̈, v̇ and v in Equation (3.10) with v2, v and 1 respectively

and set the left hand side of the equation equal to zero:

(1 +KD)v2 +KPv +KI = 0 (3.11)

This equation can have real or complex roots, but we only consider the case with

real roots. This is because complex roots correspond to overshoot in the controller
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response and are not suitable for velocity tracking. The homogeneous solution to

Equation (3.10), when roots of the characteristic equation of the system are real, can

be written as:

vH(t) = c1e
−At + c2e

−Bt (3.12)

where A and B are roots of the characteristic equation (Eq. (3.11)), and c1 and c2

are constants to be determined (computed later). The particular solution to Equa-

tion (3.10) can be calculated by setting all derivatives to zero.

vP (t) = vT (3.13)

Using initial conditions v̇(0) = 0 and v(0) = v0 (without loss of generality, let tAct =

0), the complete solution can be written as:

v(t) = vT + c1e
At + c2e

Bt (3.14)

where

c1 =
−B
A−B

(v0 − vT )

and

c2 =
A

A−B
(v0 − vT )

When computing the velocity profile of a CAV with the Equations3.7, two cases

should be considered: i) CAV acceleration/deceleration is always within the acceler-

ation/deceleration limit, or ii) CAV acceleration/deceleration exceeds the limit and

result in a saturated acceleration/deceleration behavior.
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3.3.2 Case 1, no saturated acceleration

With the baseline velocity profile under a target velocity vT calculated as in Equa-

tion (3.14), let us first consider the case where the corresponding acceleration to

achieve this velocity profile is always within the acceleration limit.

In this case, the baseline velocity profile (Equation (3.14)) is the actual velocity

profile; but the expected velocity profile the IM adopted when calculating vT assumes

instantaneous velocity change. The position discrepancy at the expected time of

arrival ts at a potential conflict position xc can be calculated as the difference between

the area under the expected and the actual velocity profiles:

e =

∫ ts

0

(
vT − v(t)

)
dt (3.15)

We can replace the upper bound of the integral with ∞, assuming that the CAV

has achieved vT at time ts. This requires the response time of the controller is short

enough (see Appendix A for a discussion on controller design to achieve a short

response time) and/or the transmit line is sufficiently far away from the edge of the

intersection (see Appendix A.2.2 for more details). As a result, we can rewrite the

position discrepancy as:

e =

∫ ∞
0

(
vT − (c1e

At + c2e
Bt + vT )

)
dt (3.16)

=
c1
A

+
c2
B

Equation (3.16) means the CAV will travel e units less than expected if the assigned

velocity is higher than its initial velocity (or |e| unit more than expected if the assigned

velocity is lower than the initial velocity) during the time interval from tAct to ts. To
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compensate this discrepancy, we modify the calculated velocity vT as:

vnewT =
d+ e

ts − tAct
= vT +

e

ts − tAct
(3.17)

where vnewT is the compensated velocity and d is the traveled distance from tAct to ts.

As a small example, we simulated a case where the IM does not compensate for

CAV’s actuation delay and a case where it does. Figure 3.6 shows the expected (ideal)

and actual trajectories and velocity profiles. We can see that the CAV’s position at

Figure 3.6: Position error of a CAV Due to Neglecting CAV Dynamics. The New
Target Velocity Compensates the Effect of Response Time on the Position Error.

time t = 2 (when the CAV is expected to reach the conflict point) will be ahead

of the expected position, if the assigned velocity is vT = 1m/s, which is calculated

without considering CAV dynamics. However, by modifying the assigned velocity to

vnewT = 0.84m/s, we can compensate for the position error caused by the actuation
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time.

3.3.3 Case 2, with Saturated Acceleration

We now consider the case where the acceleration/deceleration required to track

the baseline velocity (Equation (3.14)) exceeds the acceleration limit. The expected

acceleration in order to achieve vT (derivative of Equation (3.14)) is:

a(t) = Ac1e
At +Bc2e

Bt (3.18)

In reality, however, the acceleration rate of a CAV is bounded (Equation (3.8)). In

this case, a CAV faces saturated acceleration and its behavior will be different from

what was discussed in the previous section. To determine the compensated target

velocity vnewT , we need to simultaneously calculate vnewT and how long the vehicle will

accelerate at maximum value. The position discrepancy, on the other hand, is not used

in calculating vnewT , unlike in the case of unsaturated acceleration. Readers interested

in learning more about position discrepancy in the case of saturated acceleration are

referred to Appendix A.1. Same as in the previous section, our discussion below will

focus on the case where vT is higher than v0. The case of deceleration can be analyzed

similarly.

When a CAV needs to speed up (vT > v0), and the acceleration exceeds the amax,

the CAV will accelerate at amax and maintain it until the input from the controller

is less than the limit. We refer to the time when saturated acceleration ends as tSAT .

Assuming the initial acceleration is large enough, Equation (3.18) when the target
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velocity is vnewT can be written as:

a′(t) =


amax, if t ≤ tSAT

Ac′1e
At +Bc′2e

Bt, if t ≥ tSAT

(3.19)

where

c′1 =
−B
A−B

(vSAT − vnewT )

and

c′2 =
A

A−B
(vSAT − vnewT )

From Equation (3.19), the velocity profile can be computed as:

v′(t) =


v0 + amaxt, if t ≤ tSAT

c′1e
At + c′2e

Bt + vnewT , if t ≥ tSAT

(3.20)

We define vSAT as the velocity at time tSAT assuming the initial acceleration is zero:

vSAT = tSATamax + v0

The distance traveled by the CAV can be derived from Equation (3.20) as:

∆x =

∫ tSAT

0

(
v0 + amaxt

)
dt+

∫ ts

tSAT

c′1e
At + c′2e

Bt + vnewT dt (3.21)

We define t′ = t− tSAT (note that dt′ = dt) and replace it in the second integral as:

∆x =

∫ tSAT

0

v0 + amaxtdt+

∫ ts−tSAT

0

c′1e
At′ + c′2e

Bt′ + vnewT dt′
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Solving the integral assuming the response time is fast enough, we have:

∆x = v0tSAT +
amaxt

2
SAT

2
+
c′1
A

+
c′2
B

+ vnewT (ts − tSAT )

By setting the travelled distance equal to vT ts, we have:

vT ts = v0tSAT +
amaxt

2
SAT

2
+
c′1
A

+
c′2
B

+ vnewT (ts − tSAT ) (3.22)

There are two unknown variables in this equation: tSAT and vnewT . We know that the

acceleration is continuous. Therefore, from Equation (3.19), we can write:

amax = Ac′1e
AtSAT +Bc′2e

BtSAT (3.23)

The new target velocity vnewT can now be determined from solving Equation (3.22)

and Equation (3.23).

Figure 3.7 shows an example of the actual acceleration profile a′(t) (dotted blue

line) compared to the baseline a(t) (red dotted curve) in the bottom sub-figure, the

corresponding velocity profiles in the middle sub-figure, and the trajectories in the

top sub-figure. By adopting the new target velocity (vnewT ), the position error due to

acceleration limit will be compensated (green dashed lines).

3.4 Safety Proof

In this section, we prove that the proposed Crossroads+ methodology is safe. We

start by making the following assumptions for the system:

• All CAVs are connected and autonomous (no human driver).

• All CAVs have built-in Adaptive Cruise Control (ACC) system.
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Figure 3.7: The Behavior of a Cav Using When Acceleration Is Limited and When
There Is No Limit on Acceleration. Crossroads+ Is Able to Compensate for the Effect
of Acceleration Delay in the Actuation of CAV.

• The spatial travel paths of all CAVs are predetermined based on the dimensions

of the intersection.

• The position error due to tracking of predetermined paths is within the safety

buffer.

Instead of showing that CAV trajectories don’t overlap in 2D, we map their trajec-

tories into multiple 1D ones where the longitudinal movement of the CAV matters.

We assume that x(t) corresponds to the center of each CAV. For a CAV of length l,
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a conflict point xc (as depicted in Figure 3.5) now becomes a conflict interval:

I = [xc − l, xc + l]

We use induction for the proof and define k to be the number of existing CAVs

on the active list.

When k = 0, i.e. no existing vehicle, any velocity for the requesting vehicle will

be safe.

When k = 1, i.e. there is one CAV on the active list, three scenarios can happen:

1) the travel paths of the two CAVs do not intersect each other; 2) the travel paths

of the two CAVs intersect at a single point; and 3) the travel paths of two CAVs

intersect at more than one point (paths of two CAVs on the same lane will overlap).

Since the IM considers the edge of the intersection as the conflict point for two CAVs

on the same lane, we can treat this case similar to the single conflict point scenario.

For the first scenario, there is no conflict. For the second scenario, we assume the

length of the existing CAV is lE, its velocity is vE, and its distance from the conflict

point is dE. The conflict time is then:

tc =
dE
vE

Recalling from Equation (3.1), the IM schedules the requesting vehicle to reach the

conflict point at

ts = tc + ∆tsafety

where

∆tsafety =
lmax + lB
vmin
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We calculate the position of the existing vehicle at time tc + 1
2
∆tsafety:

xE = vE

(
tc +

1

2
∆tsafety

)
= vE

(
dE
vE

+
lmax + lB

2vmin

)

or

xE = dE + (lmax + lB)
vE

2vmin

We know that vmin ≤ vE is always true. Therefore, we have:

xE ≥ dE +
lmax + lB

2

which means the existing vehicle will be completely out of the conflict interval at time

tc + 1
2
∆tsafety since lmax ≥ lE and therefore,

xE /∈ [xc − lE, xc + lE]

On the other hand, assume the distance of the requesting vehicle from the conflict

point is dR. Similarly, we can calculate the position for the requesting CAV at time

tc + 1
2
∆tsafety as

xR = vR

(
tc +

1

2
∆tsafety

)
= vR

(
ts −

1

2
∆tsafety

)
= vR

(
dR
vR
− lmax + lB

2vmin

)

or

xR = dR − (lmax + lB)
vR

2vmin

considering the fact vmin ≤ vR,

xR ≤ dR −
lmax + lB

2
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As a result, the requesting vehicle will be outside of the conflict interval:

xR /∈ [xc − lR, xc + lR]

because lmax ≥ lR.

Now, we assume that there are n CAVs on the active list that have already received

a target velocity and there is no conflict among them (case k = n), i.e.

xi /∈ Ii,j,∀xi, i = 1, ..., n, j = 1, ..., n i 6= j.

where xi is the longitudinal position of a CAV and Ii,j is the conflict interval around

the conflict point between CAVs i and j projected on travel path of CAV i:

Ii,j = [xi,j − li, xi,j + li]

where xi,j is the conflict point between CAV i and j. We will show that if a new CAV

approaches the intersection and makes a request (case k = n+ 1), the assigned target

velocity to the requesting CAV will be safe.

xi /∈ Ii,j,∀xi, i = 1, ..., n+ 1, j = 1, ..., n+ 1 i 6= j. (3.24)

We already know that existing vehicles (i = 1, ...n) do not have any conflicts. As a

result, we can simplify the Equation (3.24) and rewrite it as:

xi /∈ Ii,n+1, i = 1, ..., n.

and

xn+1 /∈ In+1,i, i = 1, ..., n.
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In other words, the new CAV (denoted by index n+ 1) should not have any conflicts

with existing ones. Recalling from Section 3.2, the IM calculates target velocities

with respect to each existing vehicle as:

viT =
di

tic + ∆tsafety
(3.25)

and assigns the slowest target velocity among all calculated target velocities to the

requesting CAV:

vT ≤ viT

As a result, the actual reach time of the requesting vehicle to each conflict point,

tireach will satisfy

di

tireach
≤ di

tis

Since all variable are positive, we can write:

tireach ≥ tis

As a result, there won’t be any conflict between existing CAVs and the new one.

�

3.5 Tesbed 1 - Intersection Simulator

In order to validate the proposed method for multi-lane intersections and for

arbitrary flow rates of approaching CAVs, we developed a simulator in MATLAB 1.

We simulated the IM and CAVs as separate computation nodes and communication

between IM and CAVs is done using the network model. The modeled network is

1The simulator is available at https://github.com/mkhayatian/Traffic-Intersection-Simulator-for-
Autonomous-Vehicles
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Figure 3.8: A Snapshot of Our Simulator In Matlab with Three Lane Per Road.

actually a buffer of packets with the delivery time. This allows for modeling the

network delay by easily adding a random variable to the set delivery time. The

random variable (D) is selected from the interval [0, RTDmax/2]. The simulated

CAVs in our simulator are 6 m long and 2 m wide, and the vehicle wheelbase length

is 5m. The speed limit is 50 mph (≈ 22.3 m/s). The maximum value of acceleration

is 5 m/s2 and deceleration is -8 m/s2. Roads connected to the intersection are 200

m long and lane width is 10 meters. The transmit line is 100 m away from the

edge of the intersection. An overview of our simulator is depicted in Figure 3.8. In

this demonstration, left turns are possible from the leftmost lane and right turns

are allowed from the rightmost lane. The numbers next to each CAV in Figure 3.8

corresponds to the CAV’s ID.
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3.6 Results

In this section, we first show the result of experiments conducted on our testbed

followed by the results of a simulated multi-lane intersection in our simulator.

3.6.1 Experiment on our testbed

We compared the throughput of VT-IM and Crossroads+. The throughput is

measured in terms of the number of CAVs (8 in our case) divided by the total wait

time. The wait time of a CAV is measured as the difference between the time a CAV

crosses the transmit line and the time it leaves the intersection. Since existing VT-IM

approaches may lead to potential collisions due to ignoring the RTD, we considered an

extra buffer of BRTD around each CAV to implement the VT-IM technique without

accidents (see Section 3.1.2). Based on our experiments for measuring the RTD in

of 1/10 scale model RC cars, ∆tWCRTD is 1800ms (Figure 3.3). Since the vmax is

3.5m/s in our testbed, the required longitudinal safety buffer for VT–IM is 630cm,

which almost 10 times of vehicle size (60cm). We tested 10 different traffic scenarios

(from light to heavy traffic) using our 1/10 scale model intersection and each scenario

was repeated 10 times. In the light traffic scenarios, vehicles are set to drive toward

the intersection such that there is the least number of conflicts between approaching

CAVs. On the other hand, for heavy traffic scenarios, CAVs are set to reach the

transmit line in a short time interval. An example of a light traffic scenario and a

heavy traffic scenario is depicted in Figure 3.9.

All CAVs first synchronize their clock with the IM. The IM then broadcasts the

“start time” of the experiment to all CAVs. CAVs start driving when their local timer

is equal to the set start time. This way, all CAVs start driving at the same time no

matter where they are placed. Each CAV detects the transmit line by comparing
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Figure 3.9: An Example of a Light Traffic Scenario and a Heavy Traffic Scenario
Created by Setting the Initial Position and Velocities of CAVs.

its shaft encoder’s value with the hard-coded position of the transmit line. We used

the same initial position and velocity for CAVs in both VT-IM and Crossroads+

experiments. The improvement in the average wait time of CAVs in Crossroads+

is depicted in Figure 3.10. The improvement is calculated by dividing the average

wait time for VT-IM by the average wait time for Crossroads+. The first scenario

represents a heavy traffic case where CAVs arrive at the transmit line with short time

headways. Conversely, scenario 10 represents a light traffic scenario where CAVs

are spaced enough to arrive at the transmit line with large time headways. Other

scenarios are generated randomly and are sorted based on the reduction in the wait

time of CAVs that is achieved in our method compared to VT–IM. Since the size

of the intersection and the location of the transmit line is fixed for our experiment,

less wait times result in higher throughputs. Based on our results, Crossroads+ can

achieve 15% better throughput on average in comparison with VT-IM. The main

advantage of Crossroads+ is avoiding consideration of an extra safety buffer due to

the unknown RTD.
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Figure 3.10: Improvement in the Wait Time for 10 Different Scenarios from Heavy to
Light Traffic Conducted Using Our 1/10 Scale Model CAVs (Explained in Testbed
Section). Scenario 1 Represents the Heaviest Traffic Case and Scenario 10 Represents
the Lightest One.

3.6.2 Simulation of Multi-Lane Intersections

We compared QB-IM, VT-IM, and Crossroads+, in terms of both network over-

head and throughput in our simulator. Since the VT-IM and QB-IM are not proposed

to account for RTD, we added an extra safety buffer (Equation 3.5) for each CAV to

operate the intersection without any accidents. The size of this buffer is determined

from the multiplication of maximum velocity and WCRTD for a realistic case (vmax =

22.3 m/s or 50 mph). The maximum latency of DSRC (Dedicated Short-range Com-

munication) is 100 ms Xu et al. (2017). The WCET (Worst-case Execution time)

of the FCFS scheduling algorithm is 900 ms. Therefore, WCRTD is 0.1 + 0.9 +

0.1 = 1.1 s and the required safety buffer is 1.1 * 22.3 = 24.53 m, which is almost

four times of the length of a vehicle. To provide a fair comparison, we conducted a

simulation of all approaches with the same configuration. In particular, we used the

same time vector and an initial velocity vector for generating CAVs. In terms of net-

work overhead, VT-IM, and Crossroads+ have the same performance since the data
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Figure 3.11: Comparison of the Network Overhead of QB-IM Approach with VT-IM
and Crossroads+ in Terms of the Average Number of Messages Exchanged Between
CAVs and IM.

is exchanged once unless a packet is dropped. However, due to the trial-and-error

nature of the QB-IM approach, its communication overhead for heavy traffic cases

is very high. We considered a 1-second timeout between two consecutive requests

for the QB-IM method and counted the number of requests from CAVs. Figure 3.11

shows the average number of requests per CAV for different input flow rates of CAVs.

As the input flow rate of the intersection increase in QB-IM, more CAVs fail to get

a reservation, which results in a re-request and more network traffic. Based on the

results, QB-IM has 14X communication overhead in the worst case.

We measured the average travel time of CAVs for different input flow rates.

Due to the limitation of VT-IM, it cannot operate for flow rates more than 0.02

CAV/lane/Second. This is because the intersection becomes congested and IM can-

not assign a positive velocity to a CAV. Figure 3.12 depicts the average travel time

of the ideal case, QB-IM, VT-IM, and Crossroads+ (CAV per lane per second). The

ideal case is indicated by a blue solid line, which represents an intersection with sep-

arated roads so that CAV can always pass the intersection while driving at the max

velocity. VT-IM performs better than QB-IM because it has the advantage of assign-
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Figure 3.12: Comparing Crossroads+ with Other Techniques Implemented in Our
Simulator. Crossroads+ Performs Better than Other Approaches Especially in Heavy
Traffic Scenarios.

ing higher velocities if possible and can avoid the extra safety buffer. On average,

Crossroads+ achieves 36% better throughputs in comparison with VT-IM and 16%

in comparison with QB-IM.

In Figure 3.13, we depicted the position and velocity of a CAV for VT-IM, QB-IM

and Crossroads+. In VT-IM, the CAV starts tracking the target velocity (vT = 6) as

soon as it’s received. In QB-IM, the CAV comes to a complete stop before entering

the intersection (at x = 200 m) and then accelerate after 3 second. In Crossroads+,

the CAV waits for WCRTD = 1.1 second and then starts tracking the target velocity.

The target velocity for the Crossroads+ is most likely greater than VT-IM since

VT-IM requires an extra safety buffer due to ignoring the RTD.

We also developed an experiment to observe the effect of the safety buffer size,

speed limit, WCRTD and distance of transmit line from the edge of the intersection

on the throughput of an intersection. In the first experiment, the average travel
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Figure 3.13: Comparing Behavior of a CAV for VT-IM, QB-IM and Crossroads+
Approaches.

time is measured for different value of WCRTD. In the original case, the WCRTD

is 1100 ms and in the rest of the cases, it’s decreased by 90%, 89%, 70%, 60%, and

50%. We can observe that a smaller WCRTD can slightly increase the throughput

and this is because a CAV travels at its initial velocity for a shorter time. In the

second experiment, we measured the average travel time of the CAVs for the base

case (Vmax = 50 mph) and a reduction in the speed limit (45, 40, 35, 30 and 25 mph).

A lower speed limit results in a significant increase in the average travel time of CAVs.

This is because with a slower assigned velocity, a CAV occupies the intersection area

for a longer time and therefore, delays the scheduling of next CAVs. In the third

experiment, the distance of transmit line from the edge of the intersection varies

between the original length (100 m) and a 25% increase in the length (125m). It can
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be observed that the average wait time is reduced when the transmit line is placed

farther from the intersection. The reason behind this reduction is better flexibility

that is achieved. When the distance of the transmit line increases, the IM can assign

a target velocity to a CAV earlier. In the last experiment, we measured the average

travel time of the CAVs when the safety buffer is increased by 10%, 20%, 30%, 40%

and 50%. Figure 3.14 shows the sensitivity of throughput on the WCRTD, speed

limit, transmit line and safety buffer.
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Figure 3.14: The Effect of WCRTD, Speed Limit, Transmit Line and Safety Buffer
on the Throughput of the Intersection.

We can observe that by increasing the speed limit, we can improve the throughput

of the intersection for all input flow rate. However, the increase in the safety buffer

only affects the higher input flow rates.
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Chapter 4

ROBUST INTERSECTION MANAGEMENT (RIM) APPROACH

4.1 Background

Velocity Assignment Intersection Management (VA-IM) techniques neglect the

effect of network delay due to communication and the delay caused by the IM when

processing the request. As a result, a vehicle will receive the target velocity with an

unknown delay and the time it starts accelerating/decelerating is delayed. We refer

to the summation of WCND in the forward and backward path and, WCET of the

IM as Worst-Case Round-trip Delay (WCRTD). Since the value of WCRTD is not

known beforehand, it cannot be compensated by the IM. Hence, the eventual position

of the vehicle (and therefore its TOA) is erroneous. Figure 4.1 shows a scenario where

the assigned velocity is greater than the current velocity of the vehicle and network

delay and IM processing time cause a late actuation. As a result, IM should consider

an extra safety buffer (the brown buffer in Figure 4.1) for each vehicle to ensure

their safety. The result buffer has the same lateral size as the safety buffer while the

longitudinal size is extended relative to the WCRTD and maximum velocity of the

vehicle. The longitudinal size of the extra safety buffer can be as large as 3X of a

vehicle size Andert et al. (2017). Considering such a large buffer greatly reduces the

throughput of the intersection and makes such VA-IM techniques impractical to use.

In 2017, Andert et al. proposed a velocity assignment approach, Crossroads Andert

et al. (2017), that can skip considering an extra buffer due to WCRTD.

In this technique, all vehicles first synchronize their local clock with the IM and,

then send their information (position, velocity, etc.) with a timestamp to the IM. As
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Figure 4.1: The Effect of Network Delay and IM Processing Time on the Behavior
of a Vehicle in VA-IM Techniques. All VA-IM Techniques Require Considering an
Extra Safety Buffer (the Brown Box) to Ensure the Safety of Vehicles.

a result, Both IM and the requesting vehicle have the same notion of time. Accord-

ingly, IM calculates an actuation timestamp along with the target velocity to fix the

actuation time of the vehicle (When to start accelerating/decelerating). Crossroads

can achieve 1.6X better throughput in comparison with regular VA-IM approaches

thanks to avoiding considering an extra safety buffer.

Despite the fact that vehicles have a deterministic behavior in Crossroads tech-

nique, our experiment on our 1/10 scale intersection with autonomous vehicles (ex-

plained in the Result section) shows that accidents can happen. This is because IM

needs an accurate model of a vehicle in order to compute a safe target velocity for

the vehicle and any mismatches between the actual model and the considered one

by the IM can cause errors in the expected TOA of the vehicle and cause accidents.

Specifically, the response time of a vehicle (acceleration or deceleration time) can be

different from the expected one, which depends on the dynamics of the vehicle as well
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as the control algorithm. IM should know how long acceleration/deceleration time of

a vehicle is and how long it takes to maintain the assigned velocity. Moreover, vehi-

cles track a constant velocity in VA-IM and Crossroads approaches and not a position

trajectory. Thus, external disturbances like wind, slope, etc. can temporarily prevent

them from tracking the assigned velocity and therefore, the eventual arrival time of

the vehicle varies and can cause accidents. In order to demonstrate this issue, we

performed an experiment on our 1/10 scale model autonomous vehicle (Result Sec-

tion) and measured the position and velocity of a vehicle in presence of an external

disturbance (a step input with 0.1X amplitude was added to the controller’s input to

the motor) and model mismatches (up to 10% in parameters of the PID controller

and actuator gain). Figure 4.2 shows the position and velocity trajectories of the

vehicle and the effect of model mismatches and the external disturbance on the even-

tual position of the vehicle. One can observe that the vehicle has a 0.54 m position

error when it enters the intersection, which is almost equal to the size of the vehicle

(vehicle length is 0.6m). This experiment shows that VA-IM approaches including

Crossroads should consider an extra safety buffer due to the model mismatch and

possible disturbances to ensure the safety of vehicles.

Another practical issue of VA-IM approaches and Crossroad is associated with

the speed limit for vehicles that intend to make a turn at the intersection. A vehicle

should not make the turn at high velocities to avoid rollover. Since in Crossroad IM

assigns a constant velocity to all vehicles to maintain (including those that intend to

make a turn) and vehicles are supposed to keep the assigned velocity until entering

the intersection, the assigned velocity for vehicles that intend to make a turn will

be bounded by the turn speed limit. As a result, turning vehicles have to drive at

a slow speed before reaching the intersection and this reduces the throughput of the

intersection.
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To address this issue, we propose the RIM approach which solves the problem for

bounded errors on the model and external disturbances. Figure 4.3 shows an overview

of existing interfaces for intersection management of CAVs. In RIM approach, we

divide the status of an approaching vehicle into four phases: 1) when the vehicle

is within the range of the intersection and before reaching the synchronization line,

2) after the synchronization line and before the transmit line and 3) after sending

the request and before receiving the response, 4) after receiving the response until

entering the intersection. Figure 4.4 shows the status of a vehicle at different phases.
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Figure 4.3: In QB-IM Techniques, Approaching Vehicles Propose a Time-space Slot
in the Intersection, and the IM Replies with a Yes or No. In VA-IM Methods, Ve-
hicles Report Their Position, Velocity, and Timestamp When They Arrive, and the
IM Assigns Them a Velocity (Hence Velocity Assignment) at Which to Drive. In
Crossroads and Crossroads+ Approaches, a Fix Actuation Timestamp Is Assigned
to a Vehicle to Make It Robust Against Network Delay Variations. In the Proposed
Approach RIM, the IM Assigns a Velocity of Arrival (VOA) and Time of Arrival
(TOA) to Each Vehicle.

4.2 Robust Intersection Management Approach

In phase 1, all vehicles synchronize their local clock by either communicating with

the IM or receiving a reference clock from a GPS sensor (GPS satellites broadcast

very accurate clocks). If the synchronization is successful, the vehicle enters phase

2 and sends its position (P), velocity (V), acceleration (a) and the corresponding

timestamp (TS), as well as the outgoing lane (LO), max/min acceleration (amax and

amin) and the ID to the IM upon crossing the transmit line. In phase 3, IM processes

the request and calculates a feasible TOA and VOA, based on the status of the

vehicle (V-Info) and the scheduling policy (FCFS, BATCHTachet et al. (2016), etc.).

Variety of scheduling policies are studied in the literature Tachet et al. (2016); Fayazi

et al. (2017); Ahn and Del Vecchio (2016). Since the effectiveness of the scheduling

policy is not the main focus of this paper, we use an FCFS scheduling policy for

simplicity. Then, IM sends them back to the requesting vehicle. In this phase, the

vehicle maintains its initial velocity until it receives the response. In phase 4, the
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vehicle creates a reference trajectory and follows it until it enters the intersection.

We consider the following model for the behavior of vehicles in 2D:



ẋ = vcos(φ)

ẏ = vsin(φ)

φ̇ = v
L
tan(ψ)

v̇ = u(t)

u(t) = Ka

(
−Kpe−Ki

∫
e−Kdė+ d(t)

)
(4.1)

where x, y are longitude and latitude of the vehicle in Cartesian coordinates respec-

tively, φ is the heading angle of the vehicle from the x-axis, v is the linear velocity

of the vehicle, L is vehicle’s wheelbase distance, ψ is the steering angle of front tires

and u is the control input for the motor. Kp, Ki and Kd are PID controller gains,
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e,
∫
e and ė are the error between actual velocity and target velocity, its integral

and derivative respectively and d(t) is the applied disturbance. Ka is a constant to

model actuator’s gain. The input for the motor is u(t), which is generated as a Pulse

Modulation Width (PWM) signal. We assume that the values of the PID controller

and the actuator gain have model mismatches.

4.2.1 Vehicles

When the vehicle receives the TOA and VOA, it computes an optimal reference

position trajectory and a PID controller is utilized to track the trajectory. Each ve-

hicle has a specified timeout to bound its waiting time when waiting the response.

Algorithm 3, shows a pseudocode of the vehicle’s controller. The value of dmin is

calculated based on amin and vmax, i.e., the distance a vehicle needs for stopping.

In order to compute the reference trajectory, each vehicle stores its current position,

velocity, and the timestamp as initial position (x0), velocity (v0) and time (t0). Addi-

tionally, final position (xf ), velocity (vf ) and TOA (tf ) of the reference trajectory are

known (received from the IM). Any position trajectory that satisfies the initial and

final position condition (x(t0) = x0 and x(tf ) = xf ) and its derivative (velocity trajec-

tory) satisfies the initial and final velocity conditions (v(t0) = v0 and v(tf ) = vf ) can

be a candidate for the reference trajectory. However, we are looking for an optimal

trajectory for the vehicle. So, we define a functional J to minimize the acceleration

of the trajectory:

J =

∫ tf

t0

a2dt (4.2)

where a is the acceleration of a vehicle. After solving Equation (4.2) using the Fun-

damental Lemma of the Calculus Variation Gelfand et al. (2000), the solution (accel-
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Algorithm 3: Vehicle Controller

1 if Sync line is crossed then
2 result = synchronize();
3 if result is not OK then
4 if distance to transmit line is less than dmin then
5 update(Trajectory, SD); /* slow down */

6 end
7 Goto Line 3;

8 end

9 end
10 if Transmit line is crossed then
11 V-Info = [P, V, a, TS, LO, amax, amin, ID];
12 send(V-Info);
13 Wait for the response;
14 if response is timed out then
15 if distance to intersection is less than dmin then
16 update(Trajectory, SD); /* slow down */

17 end
18 Goto line 12;

19 else
20 [TOA, VOA] = getPacket(response) ;
21 [A0, B0] = calculateTrajectory(TOA, VOA);
22 update(Trajectory, [A0, B0]); /* set the Ref Trajectory */

23 end

24 end

eration trajectory) is found to be in the form of:

a(t) = A0t+B0 (4.3)

A0 and B0 are constant variables to be determined. Taking integral from (4.3), we

have:

v(t) =
1

2
A0t

2 +B0t+ v0 (4.4)
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Taking integral from (4.4) results in a cubic function as:

x(t) =
1

6
A0t

3 +
1

2
B0t

2 + v0t+ x0 (4.5)

Without loss of generality, we assume that the initial time t0 for the reference tra-

jectory is zero. By substituting t, x(t) and v(t) for boundary condition values, tf , xf

and vf in Equations (4.4) and (4.5), following equations are derived:

xf =
1

6
A0t

3
f +

1

2
B0t

2
f + v0tf + x0 (4.6)

and

vf =
1

2
A0t

2
f +B0tf + v0 (4.7)

Solving Equations (4.6) and (4.7) for A0 and B0, yields:


A0 =

6(2x0−2xf+tfv0+tfvf )
t3f

B0 =
−2(3x0−3xf+2tfv0+tfvf )

t2f

(4.8)

Each vehicle computes the value of A0 and B0 and creates its reference trajectory

according to Equation (4.5). If a vehicle receives the target TOA and VOA within

the worst-case delay (due to the IM’s computation time and network delay), it’s still

able to create a feasible trajectory that meets the final conditions (TOA and VOA).

Case study

To have a better understanding, we simulated position and velocity trajectories of a

vehicle (Using Equation (4.1)) that is 15 m away from the intersection while driving

at 3 m/s. The worst-case delay from IM to the vehicle is 1350 ms and the assigned
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Algorithm 4: IM’s Scheduling algorithm

1 Input: Request;
2 Outputs: [TOA, VOA];
3 while Request buffer is not empty do
4 V-Info = read(buffer[first]);
5 [TOA, VOA] = Schedule(V-Info, I-Info);
6 Result = F-Check(TOA, VOA, V-Info, I-Info);
7 if Result is OK then
8 Send(TOA,VOA,Vehicle Info);
9 update(I-Info)

10 else
11 Increase(TOA);
12 Goto Line 6;

13 end

14 end

TOA and VOA are 4 s and 2.5 m/s respectively. Dashed lines in Figure 4.5 show

position and velocity trajectories for the best-case round-trip delay (BCRTD) and

solid lines depict position and velocity trajectories for the worst-case round-trip delay

(WCRTD) respectively. Delay in the network or IM processing time may affect the

trajectory of the vehicle. However, no matter how much is the delay, as long as it’s

smaller than the WCET plus WCND, the arrival time and velocity of the vehicle

remains unaffected.

4.2.2 Intersection Manager

When IM receives a request, it computes a TOA and VOA based on the status

of the requesting vehicle (V-Info) and the status of other vehicles that have already

received a TOA and VOA (I-Info). Before sending back the computed TOA and

VOA to the requesting vehicle, IM verifies the feasibility of the computed TOA and

VOA using the “F-Check” function. Algorithm 4 shows the pseudo-code for the

IM. In order to check the feasibility of assigned TOA and VOA, IM has to check
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Trajectories for the BCRTD and WCRTD

Figure 4.5: Velocity and Position Trajectories for the Best-case and Worst-case
Round-trip Delay (BCRTD and WCRTD) in the Network.

the future trajectory of the vehicle and verify that road specifications (V < Vmax),

vehicle specifications (a < amax) and safety specifications (No front-back accident

before entering the intersection) are not violated. From Figure 4.5, one can observe

that the area under the velocity profile is the same for both best-case and worst-case

RTD. This is because the TOA and VOA are fixed. As a result, the vehicle will

experience higher/lower velocities (a higher peak/a lower trough), as the receive time

increases. Based on this observation, we can conclude that if the worst-case trajectory

does not violate the maximum/minimum velocity threshold, the best-case trajectory
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never exceeds such values. This way, we can check if requirements are being met only

by verifying the worst-case trajectory.

4.2.3 Safety Analysis

IM needs to verify that the assigned TOA and VOA are safe. As a result, it

performs a feasibility analysis for the best-case and worst-case scenarios. F-Check

function in Algorithm (2) computes the values of A0 and B0 based on the WCND

and WCET and, checks if the max value of the worst-case delay trajectory is smaller

than road speed limit (Vmax) and the min value is greater than a threshold Vmin > 0.

Additionally, F-Check verifies if the maximum acceleration of the worst-case trajec-

tory is smaller than amax. For different values of VOA and TOA, we simulated the

position and velocity trajectories of a vehicle and depicted them in Figure 4.6 where

green trajectories are feasible and red ones are infeasible. Algorithm 5 shows details

of the F-Check function. Since the extreme acceleration/deceleration cases occur

only at boundary conditions, IM can verify the feasibility of the worst-case reference

trajectories by just checking the acceleration at the initial time. We simulated the

behavior of a vehicle driving at 3 m/s for different pairs of VOA and TOA when the

intersection is 15 meters away. Figure 4.6 depicts the position and velocity trajec-

tories of the vehicle. If the velocity trajectory for the WCRTD scenario exceeds the

speed limit or its slope exceeds the acceleration limit (amax), the trajectory is not

feasible and IM extends the TOA of the vehicle. However, if the velocity trajectory

goes under the minimum velocity, it means that the vehicle should drive at a very

slow velocity, which is not practical. Once the vehicle calculates the values of A0 and

B0, it sends them to the IM in order to confirm that it has received the assigned TOA

and VOA and, lets the IM know how the trajectory would be.

It’s also possible that the trajectory of a vehicle conflicts with another vehicle
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Algorithm 5: F-Check function

1 v = calculateVelocity ; /* based on Eq.(4) */

2 a = calculateAcceleration; /* based on Eq.(3) */

3 inLane = getLane(V-Info);
4 if max(v) < vmax and min(v) < vmin then
5 if max(a) < amax then
6 For all cars ∈ I-Info s.t. V-Info.inLane = inLane
7 distance = distanceBetweenCar1andCar2;
8 if min(distance) > distance Threshold then
9 Result = OK;

10 else
11 Result = Not OK;
12 end

13 else
14 Result = Not OK;
15 end

16 else
17 Result = not OK;
18 end

in the same lane before reaching the intersection. We simulated a case where two

vehicles driving in the same lane have a conflict on their position trajectory and

depicted their trajectories in Figure 4.7. Blue trajectories belong to the front vehicle

and the red and green ones belong to the rear car. Red trajectories are not feasible

while the green ones are feasible. IM can find a feasible trajectory for the rear vehicle

by increasing the TOA. If the distance between trajectories of two vehicles in the same

lane is always greater than a threshold, the value of the result is “OK”. Otherwise,

the result will be “not OK” and the IM has to increase the TOA and verify the TOA

and VOA using the F-Check function again.

4.2.4 Practical issues

Since vehicles and IM interact with each other, both should follow some rule as a

prerequisite to the correct functionality of the system. For instance, the system will

84



Figure 4.6: An Example of Feasibility Checking for a Set of the VOA and TOA.
Based on the Specified Maximum and Minimum Velocity Thresholds, IM Rejects a
Pair of TOA and VOA. Green Points on the Velocity Figure Correspond to Feasible
TOAs and VOAs.

not work if the processing time of the IM is very high or if a vehicle takes a trajectory

that fails to satisfy the assigned TOA and VOA. Therefore, we discuss some of the

necessary requirements that should be met. It is challenging to find an upper bound

for the network request because the delay in the network can be infinite. To address

this issue, vehicles use a timeout mechanism to bound the waiting time of a vehicle.

This ensures that a vehicle either receives the response within the expected delay

or it will ignore the response if it’s received afterward. The value of the timeout

can be determined by measuring the average delay of the network and WCET of
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Figure 4.7: A Scenario Where F-check Fails. The Assigned TOA and VOA Cause a
Front-back Accident (the Blue Position Trajectory Crosses the Red One). IM Then
Assigns Another TOA (Green) That Is Safe.

the IM. WCET can be calculated statically using existing WCET analysis methods

Hardy and Puaut (2008); Chattopadhyay and Roychoudhury (2009); Gustafsson et al.

(2006). Similarly, if a vehicle fails to synchronize its clock with the IM or cannot get it

from the GPS before reaching the transmit line, it should slow down and stop behind

the intersection line.

As another requirement, vehicles must always retain a safe distance from their

front vehicle. Typically, the Adaptive Cruise Control (ACC) system is responsible to

maintain a safe distance from the front vehicle by adjusting the velocity. Based on the

Responsibility-Sensitive Safety (RSS) model Shalev-Shwartz et al. (2017), maintain-
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ing a minimum distance from the front vehicle requires having a bounded response

time (from sensing to actuation). In order to guarantee the safety of the intersection,

we can express a set of requirements for vehicles and IM. One way to formally express

such safety requirements for each processing unit is specifying them using temporal

logic (like Timestamp Temporal Logic (TTL) Mehrabian et al. (2017, 2018)). Here’s

the list of requirement:

• WCET of the IM when responding to a request should be less than a threshold,

say tIM .

• Settling time of the PID controller should be short enough (Settling time is

referred to the time it takes for the vehicle to reach and maintain the assigned

trajectory).

• The network delay should be less than a threshold, tN .

• The response time of the ACC system should be less than a threshold to avoid

accidents before reaching the transmit line and after exiting the intersection,

tACC .

Thresholds are determined based on specification of the intersection (intersection size,

the distance of transmit line from the intersection, turn speed limit, wireless network,

etc.), IM (WCET), network (WCND) and vehicles (size, max/min acceleration rate,

etc.).

4.3 Testbed 2 - 1/10 Scale Model CAVs version 1

In order to demonstrate the effectiveness of our approach, we built a single lane

1/10 scale model intersection (Figure 4.8) with 8 CAVs Khayatian et al. (2018).

The width of each lane is 0.6 m and the size of the intersection is 1.2 × 1.2 m2.
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Our CAVs are RWD (Rear Wheel Drive) cars with Traxxas Slash RC chassis. The

size of each car is 0.296 m × 0.568 m and has 3.5 m/s maximum speed. 3.5 m/s

for our 1/10 scale model corresponds to 78mph in real-life. We used DC motors

with built-in quadrature encoder to measure the longitudinal position of the CAV.

Encoder data is processed by an Arduino Nano board and the processed data is

then sent to the main microcontroller (Arduino Mega 2560). We utilized a Bosch

BNO055 absolute orientation sensor which has built-in sensor fusion and fuses the

data gathered from a 3-axis magnetometer, accelerometer, and gyroscope. Each car

communicates to the server via NRF24L01+, 2.4GHz wireless module and the wireless

module communicates with the Arduino Mega via the SPI protocol.

Figure 4.8: 1/10 Scale CAVs in Our Experiment. Top Speed is 3.5 m/s (78mph in
full scale). Intersection and Road Lines Are Overlayed for a Better Intuition.

We set the transmit line to be 3 meters away from the edge of the intersection.

CAVs are set to communicate with the IM when they reach the transmit line. The IM

consists of a communication station with Arduino Mega 2560 that talks with the other
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nodes via NRF24L01+,2.4GHz wireless module. Communication station sends the

received data to a laptop via serial over the USB port. The IM program is executed

on the laptop and is written in Matlab R2016. The laptop has 10 GB memory, Core i7

-3517u @1.9/2.4GHZ CPU and Windows 8.1 64-bit OS. Each car exchanges 44 bytes

of data with IM for communication. The internal clock of all CAVs is synchronized

to the IM’s clock before reaching the transmit line. We developed Network Time

Protocol (NTP) Mills et al. (1985) for synchronization and we achieved 1ms accuracy.

We measured the WCRTD for our testbed empirically (Figure 3.3). Synchronization

packet has a size of 7 bytes (1 byte for message type, 4 bytes for timestamps and 2

bytes for ID). The size of a request packet is 30 bytes, which includes ID, message type,

velocity, position, captured timestamp, lane out, max acceleration, max deceleration,

and max speed. The response packet has a size of 16 bytes, which includes ID, message

type, TOA, VOA and transmit line distance (the distance of transmit line from the

edge of the intersection). The acknowledgement packet is 8 bytes and contains A0

and B0. For the experiment, vehicles are placed at arbitrary positions and start

driving with arbitrary initial velocities. Before reaching the transmit line, vehicles

synchronize their local clock with the IM by sending a sync packet. Each vehicle

monitors its position and upon crossing the synchronization line or transmit line, it

sends a synchronization message or a request to the IM respectively. To estimate the

worst-case delay for the IM, we need to find a reasonable value for communication

delay and estimate the WCET of the IM. Figure 4.9 shows the histogram of the

measured delay for the wireless network in 50 experiments. Based on the collected

data, we set the network threshold to be 600 ms. As a result, the value of timeout

for each vehicle can be calculated as:

tT imeout = WCET + 2WCND

89



Usual delay Unusual delay

S
e

le
c

te
d

 T
h

re
s

h
o

ld

Figure 4.9: Histogram of the Measured Network Delay in Our 1/10 Scale Model
Testbed. Based on the Collected Data, the Selected Threshold Value for a Commu-
nication with a Usual Delay Is Set to Be 600 ms.

The WCET of the IM is estimated based on the maximum capacity of the intersection,

which is related to the maximum number of vehicles that fit in the intersection and

roads before it. The estimated WCET of the IM for the microcontroller (Atmega2560

with the clock frequency of 16 MHz) is 56 ms. As a result, we set the timeout to be

1256 ms. Since vehicles ignore a response after the timeout, we can claim that the

WCRTD is 1256 ms.

4.4 Results

We conducted two types of experiments: i) safety-related and ii) throughput-

based experiments. The first one highlights the effectiveness of the RIM technique

in reducing the position error and the second one shows the usefulness of the RIM

in improving the throughput of the intersection. In safety experiments, we evaluated

the impact of external disturbances and model mismatch on the eventual position of

the vehicle in 3 different experiments:
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Figure 4.10: An External Disturbance Is Applied to the Vehicle That Causes a Tem-
porary Degradation in the Velocity. However, the Vehicle Is Able to Compensate for
the Effect of the Disturbance and Meet the Assigned TOA and VOA.

• Effect of External Disturbances (ED) on TOA

To model the external disturbance, we added a step function with the amplitude of up

to 5% of the maximum range to the PWM signal (generated by the controller for the

motor) and measured the position error at the expected TOA for Crossroads approach

and RIM. Figure 4.10 depicts the position and velocity trajectories of a vehicle under

RIM interface in presence of an external disturbance with the amplitude of 10 % of

the max value. Despite the fact that the velocity trajectory of the vehicle is deviated

by the external disturbance, it is still able to meet the set TOA and VOA.

• Effect of Model Mismatches (MM) on TOA

In Crossroads, IM has to account for the response time of vehicles when computing

the target velocity and actuation time. However, the response time calculation is
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done based on the considered model and can be inaccurate. To see how much model

mismatches can affect the TOA, we added up to 10% error to parameters of the PID

controller (KP , KI , and KD), which is related to the estimated actuation time by the

IM. We measured the position error at the expected TOA for both Crossroads and

RIM techniques and reported the result in Figure 4.2 and Figure 4.10.

• Effect of combined MM and ED on TOA

In this experiment, we modeled both the external disturbance and model mismatch

similar to the first and second experiments and recorded the measured position error

at the expected TOA. Then, we compared the result for the Crossroads approach and

RIM technique. We repeated each experiment 50 times for a different set of initial

velocities and positions and, the position error is reported by storing the position of

vehicles along with a timestamp on the EEPROM memory of their microcontroller.

Figure 4.11 shows the average and the worst-case position error of vehicles at the

expected TOA for Crossroads and RIM, normalized to the size of the vehicle. Results

from Figure 4.11 indicate that on average, RIM can reduce the position error by 18X

compared to the Crossroads technique. Since Crossroads and generally all VA-IM

techniques ignore the effect of model mismatch and external disturbances, they are

not safe and accidents can happen. In order to safely manage by just vehicles using

a constant velocity, IM should consider a larger safety buffer around all vehicles to

avoid accidents. Results from our experiment show that the size of the extra safety

buffer can be as large as 3.2X of the vehicle length in the worst-case (MM and ED

together). Considering such a large buffer around each vehicle guarantees the safety

of the vehicle but is impractical since it reduces the throughput of the intersection

greatly.

• Velocity management for vehicles making a turn
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In intersections with a separate road for a right turn, the turn speed limit can be

as high as 31 mph. However, for small intersections vehicles have to make a sharp

right turn and therefore, the turn speed limit is as low as 9 mph. In this experiment,

we measured the wait time of all vehicles, from transmit line to the departure of the

intersection, by storing entrance and departure timestamps on the EEPROM memory

of the vehicle’s microcontroller. The maximum allowed velocity for making a turn in

our 1/10 scale model varies from 0.4 m/s to 1.4 m/s (9 mph to 31 mph for a real

intersection Fitzpatrick et al. (2005)) and, the speed limit (for the road) is 2.5 m/s

(55 mph). Figure 4.12 shows the throughput of RIM and Crossroads normalized to

the throughput of the Crossroads.

Results show that RIM can achieve 2.7X better throughputs on average in com-
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parison with Crossroads and other VA-IM techniques and, 8X in the best-case (lowest

turn speed limit). The great difference in the throughput at low turn speeds has two

main reasons: i) the scheduling policy of the IM and ii) induced behavior from the

front vehicle. Since the scheduling policy is FCFS, a vehicle that tends to go straight

will be slowed down if it is behind another vehicle that is making a turn at the inter-

section. For other scheduling policies like BATCHTachet et al. (2016), the difference

can be lower. Since setting arbitrary input flow rates in real experiments is hard, we

will study the effect of considering the extra safety buffer on the throughput of the

intersection using our simulator.
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4.4.1 Extension to Multi-lane Intersections

We used the result of the experiment on our 1/10 scale model autonomous vehicle

to estimate the size of the extra safety buffer for the Crossroads technique and VA-

IM approaches. Since the length of the vehicle is 6 m and the error due to model

mismatch and possible external disturbances can be as large as 3.3X of the length

of the vehicle, the extra safety buffer size is calculated as 20m (10 m in front of the

vehicle and 10 m behind it). The transmit line is 200 m away from the intersection

and the sync line is 250 m away from the intersection. We implemented an FCFS

policy for the IM and requests are processed based on their arrival time. Figure 4.13

shows the degradation of the throughput in a single lane intersection and in a multi-

lane intersection (3 lanes per road) due to considering an extra safety buffer around

vehicles. Results from Figure 4.13 show that we can improve the throughput of the
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intersection by up to 8% for a multi-lane intersection and up to 5% for a single lane

intersection when there is no need for considering an extra safety buffer for model

mismatches and external disturbances. In order to fairly compare the throughput of

the Crossroads technique and other VA-IM techniques against RIM, we should add

the improvement result from both Figure 4.12 and Figure 4.13. This is because RIM

can increase the throughput by managing the speed of vehicles making a turn at the

intersection and avoid considering an extra safety buffer.
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Chapter 5

ROBUST AND RESILIENT INTERSECTION MANAGEMENT (R2IM)

APPROACH

When a CAV is within the communication range of the intersection, it synchronizes

its internal clock with the IM and then sends a request to the IM by sharing its

position, velocity, and corresponding timestamp as well as CAV’s ID and the intended

outgoing lane. Accordingly, the IM calculates a safe Time of Arrival (TOA) and

Velocity of Arrival (VOA) and sends it back to the CAV. Upon receiving the VOA

and TOA, the CAV determines an optimal reference trajectory and lets the IM know

by sharing the trajectory parameters, A0 and B0 (explained later). Next, the IM adds

CAV’s information to its list of “active CAVs” and sends an acknowledgment (ACK)

to the CAV. After receiving the ACK from the IM, the CAV follows its reference

trajectory until it reaches the intersection where it continues at the constant velocity

of VOA. If a CAV fails to synchronize its clock or at any stage, does not receive a

response from the IM within the set timeout, it will apply break and starts over by

synchronizing its clock as its clock may be out of sync. IM and CAV’s algorithms are

presented in Alg. 6 and Alg. 11.

5.0.1 Reference Trajectory Calculation and Tracking

When a CAV receives the VOA and TOA values from the IM, it needs to make a

plan to arrive at the intersection at time TOA with speed VOA. The plan is essentially

a position-vs-time graph that specifies where the vehicle should be at any point in

time. For simplicity, we consider a double integrator model for the behavior of the
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CAVs before entering the intersection:


ṗ = v

v̇ = a

(5.1)

where p is the longitudinal position of the vehicle, v is the velocity and a is the input

acceleration. Since acceleration and deceleration rates of a CAV are bounded in real

life, we consider limits for the acceleration as a ∈ [amin, amax], where amax and amin are

the maximum acceleration and deceleration rates of the CAV. Similarly, we consider

an upper bound and a lower bound for the velocity of the CAV as v ∈ [vmin, vmax],

where vmax is the maximum velocity of the vehicle and is the same as speed limit and

vmin is the minimum velocity of the vehicle. We determine the reference trajectory

by minimizing the total amount of acceleration/deceleration for each CAV, which is

linear: similar to Malikopoulos et al. (2018); Khayatian et al. (2018):

J = min

∫ TOA

t0

a2dt (5.2)

One can construct the Hamiltonian and solves the Euler-Lagrange equations to find

the optimal solution for acceleration, which will be linear:

ar = A0t+B0 (5.3)

where A0 and B0 are constants that can be determined from initial and final conditions

similar to Khayatian et al. (2018). by Eq. (5.5). One can determine the reference
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velocity and position trajectories by taking integral from Eq. (5.3):


vr = 1

2
A0(t− t0)2 +B0(t− t0) + v0

pr = 1
6
A0(t− t0)3 + 1

2
B0(t− t0)2 + v0(t− t0) + p0

(5.4)

where v0 and p0 are the initial velocity and position of the CAV at the request time

(t0). Substituting initial and final conditions into Eq. 5.4, A0 and B0 are determined

as: 
A0 = 6(2p0−2POA+TOA∗v0+TOA∗V OA)

TOA3

B0 = −2(3p0−3POA+2TOA∗v0+TOA∗V OA)
TOA2

(5.5)

where POA is the position of arrival (POA) at the edge of the intersection. Each

CAV utilizes a PID (Proportional-Integral-Derivative) controller to track the reference

position trajectory:

a = kP e+ kIeI + kDeD (5.6)

where a is the control input (acceleration), e is the position error defined as e = pr−p,

eI is the integral of the error (eI =
∫
e), eD is the derivative of e (eD = vr−v) and kP ,

kI , and kD are positive constants which are referred to as PID gains. By tuning the

PID gains, CAV’s position converges to the reference position trajectory (Eq. (5.4))

within a reasonable time.

5.1 R2IM with Rouge vehicles

In this section, we first present the fault model and then show the interaction of

IM with CAVs to handle rogue vehicles.
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5.1.1 Fault Model – Rouge Vehicle

The Rogue vehicle is a CAV that intentionally or unintentionally is lying when

sharing its information to the IM, or does not follow IM’s directions. The rogue CAV

may either accelerate or decelerates but it never drives outside the road boundary.

To generalized the rogue vehicle’s definition, we use the following definition:

Definition 1 A CAV is deemed rogue if it deviates from its expected position by a

pre-set threshold.

This fault model covers many scenarios including following extreme cases:

Acceleration (ACC) Fault Scenario: The rogue vehicle suddenly accelerates with

a = amax toward the intersection and enters the intersection earlier than it was sched-

uled.

Deceleration (DEC) Fault Scenario: The rogue vehicle breaks down and sud-

denly stops (a = −∞) inside the intersection area.

Lying about outgoing Lane: The rogue vehicle lies about its outgoing lane and

takes another path once it enters the intersection. Next, we define some of the terms

that we use in the algorithm.

Definition 2 Point of No Return (PONR) is the farthest point from the inter-

section that if after passing this point a CAV starts applying full brake (a = amin), it

cannot fully stop without entering the intersection.

The distance of the PONR from the edge of the intersection (POA) is dPONR and can

be calculated as:

dPONR =
v2PONR
2|amin|

+
V L

2
(5.7)

V L is vehicle length and vPONR is the velocity of the CAV at the PONR. Since p

represents the longitudinal location of the center of a CAV, V L
2

is added to account
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for the length of the CAV.

Definition 3 Critical zone for a CAV is defined as the area between its PONR

and the point it exits the intersection.

Definition 4 Critical time window is the time it takes for a CAV to travel through

the critical zone.

The critical window (∆tcrit) can be calculated as the summation of time to reach the

intersection and time to travel inside the intersection:

∆tcrit = (TOA− tPONR) +
dI + 0.5V L

V OA
(5.8)

where dI is the traveled distance inside the intersection and can be determined from

the dimensions of the intersection. For left and right turns, the dI is 3πLW
2

and πLW
2

respectively and for going straight dI is 2LW where LW is the lane width.

Definition 5 Safety Barrier (SB) is the maximum distance that a CAV may

travel when the previously scheduled CAV is in its critical zone.

Since the velocity of a CAV is bounded by vmax, the maximum distance that a CAV

can travel corresponds to the case where its initial velocity is equal to vmax. As a

result, the size of the safety barrier is:

dSB = ∆tcritvmax (5.9)

For a practical design, the IM should account for the worst-case execution time

of the IM (CIM) and CAVs (CCAV ), and the period of emergency inquiry by a CAV

(T ) to ensure safety. As a result, Eq. (5.7) and (5.9) is modified as follows to account
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for them:

dPONR =
v2PONR
2|amin|

+
V L

2
+ ρvmax (5.10)

dSB = (∆tcrit + ρ)vmax (5.11)

where ρ = T + CIM + CCAV is the worst-case end-to-end delay from the moment a

CAV becomes rogue to the moment other CAVs are notified and react.

5.1.2 IM and CAV Interaction In Presence of A Rogue Vehicle

The IM periodically calculates the distance between the estimated position of

CAVs – which is determined from a CNN-based perception system like Farhadi et al.

(2019) – and their expected position. If the distance is greater than a threshold, eth,

it set the emergency state to active. Whether the emergency state is active or not,

the IM periodically broadcasts it. When a CAV notifies that the emergency state is

active, it checks if its position is before its Point of No Return (PONR) (Eq. (5.7))

and can safely stop without entering the intersection. If the CAV is after its PONR,

it ignores the emergency state and continues with its trajectory. If a CAV does not

receive the emergency state within the set timeout, it assumes that the emergency

state is active and applies the brake. During the emergency state, the IM rejects all

the requests that are received from CAVs. When the emergency is resolved the IM

sets the emergency state to false and starts processing the requests that it receives.

The IM adopts a First-Come First-Served (FCFS) policy for scheduling. Given the

request time, position, and velocity of the requesting CAV, and expected trajectories

of other CAVs are known, the IM determines a VOA and TOA pair for the requesting

CAV such that the earliest arrival time is achieved. To do so, the IM solves the

following optimization problem:

minTOA (5.12)
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subjected to following constraint:



pi(tPONR,i−1) < pSB,i

pi(texit,i−1) < pPONR,i + ρvmax

pi(t) > pi,front(t) + dPONR,i ∀i > 1

amin < ai(t) < amax

vmin < vi(t) < vmax

V OA < vturn

(5.13)

where pi(tPONR,i−1) is the position of the requesting CAV (i) when the last scheduled

CAV (i− 1) is at its PONR and pSB,i is the safety barrier point that is dSB,i meters

away from the intersection. The first constraint ensures that the requesting CAV (i)

is far enough from the intersection when the last scheduled CAV (i−1) is at its PONR

and does not cause a conflict for the last scheduled CAV. pi(texit,i−1) is the position of

the CAV (i) when the last scheduled CAV (i− 1) leaves the intersection and pPONR,i

is the position the PONR for the requesting CAV. The second constraint ensures

that the requesting CAV has enough time to stop if the last scheduled CAV slows

down and stops inside the intersection. pi,front(t) is the position of the last scheduled

CAV in the same lane as the requesting CAV or simply CAV i’s front CAV if any.

The third constraint ensures the requesting CAV’s trajectory has always a minimum

safe distance from its front CAV. Fourth and fifth constraints are considered to ensure

that the velocity and acceleration of the requesting CAV are within the feasible range.

Finally, vturn is the maximum safe velocity for making a turn to avoid rollover. For

driving straight, vturn = vmax. To ensure that constraints in Eq.(5.13) are met, the

IM reconstructs the trajectory of the last scheduled CAV (i − 1) and the CAV’s
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front CAV (if any) from the request information (t0, v0, p0), schedule information (

TOA, V OA,POA) and trajectory information (A0, B0).

5.2 Safety Proof

We assume that only one rogue vehicle is present at a time and prove that no

accident will happen inside the intersection area. We are limiting our proof to provide

safety for the intersection area only because a rogue vehicle may accelerates or steer

to the opposite lane and hits another vehicle and in such cases, an accident may be

unavoidable. We also assume that the roads connected to the intersection are not

curved and if a CAV drives out of road’s boundary, it will travel a longer distance

compared to driving within the lanes. We will show that the rogue vehicle cannot get

involved in an accident with the last scheduled CAV or the next scheduled CAV (if

any). For a better intuition, we have depicted these two corner cases in Figure 5.1.

𝒅𝐏𝐎𝐍𝐑,𝟏

❷

❶

𝒅𝐒𝐁,𝟐
The rogue vehicle 

(red) accelerates at 

maximum rate (𝑎𝑚𝑎𝑥)

𝒑𝐏𝐎𝐍𝐑,𝟏

𝒑𝐒𝐁,𝟐

The rogue vehicle 

(red) suddenly stops 

inside the 

intersection area

❷

𝒅𝐏𝐎𝐍𝐑,𝟐

❶

𝒑𝐏𝐎𝐍𝐑,𝟐

Figure 5.1: Two Corner Cases Where a CAV Becomes Rogue.
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5.2.1 Interaction of Rogue Vehicle with Last Scheduled CAV

Let us assume that vehicle i becomes rogue and accelerates at time trogue. If the

distance of the rogue vehicle from the intersection when it becomes rogue is more

than dSB, the earliest time that it can enter the intersection is after trogue+∆tcrit+ρ.

Since the last scheduled CAV will reach and leave the intersection by ∆trogue, the

rogue vehicle enters the intersection when the last scheduled CAV has already left

the intersection. If the distance of the rogue vehicle from the intersection when it

becomes rogue is less than dSB, the last scheduled CAV will be behind its point of

no return according to Eq. (5.13). Therefore the last scheduled CAV can stop safely

without entering the intersection.

5.2.2 Interaction of Rogue Vehicle with Next Scheduled CAV

If the rogue vehicle breaks down and suddenly stops before exiting the intersection,

the next scheduled CAV will have at least dPONR+ρvmax distance from the intersection

(see Eq.(5.13)). As a result, even if it takes ρ milliseconds to notify the next scheduled

CAV, it will have enough distance to stop without entering the intersection.

If a CAV lies about its position, velocity, or the corresponding timestamp, the IM

will detect it using its surveillance system. Similarly, if a CAV reaches the intersection

range and does not share its information, it will be detected as rouge. In both cases,

all CAVs will have enough distance to stop or continue because the distance of the

rogue vehicle is greater than dSB. If a CAV lies about its outgoing lane and suddenly

changes its direction inside the intersection, (e.g. makes a left turn instead of going

straight), the next scheduled CAV will be beyond its PONR (see Eq. (5.13)) and

therefore has enough distance to stop without entering the intersection similar to the

deceleration case.
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5.3 Testbed 3 - 1/10 Scale Model CAVs version 2

Our experimental testbed is an intersection with 1/10 scale model CAVs that are

57 cm long and 30 cm wide. An ESP8266 NodeMCU v3 board is utilized to enable

wireless communication of CAVs with the IM and perform real-time motion control

by adjusting the steering angle and speed for the DC motors that run the CAV. A set

of markers is installed on each vehicle and the OptiTrack monitoring system is used to

track CAVs’ positions. We use mocap optitrack library from ROS (Robot Operating

System) to read the CAVs’ 2D pose data. We have written a script to create a ROS

node and to pass the pose data to vehicles through TCP/IP sockets. This script also

acts as the IM and interacts with the CAVs. Figure 5.2 shows an overview of the

intersection. The pose data and the emergency state packet is broadcast every 20 ms.

Figure 5.2: Our Testbed Is a Single-lane Intersection with 1/10 Scale Model CAVs.
CAVs Position is Tracked by the OptiTrack System.

Timing constraints of each AV are also monitored at the runtime Mehrabian et al.

(2018). CAVs start from arbitrary positions and track a set of way-points to drive

within the lane and cross the intersection. When a CAV reaches the end of the road,
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it makes a u-turn and randomly makes a new plan to cross the intersection. Then it

drives toward the intersection and communicates with the IM again. To make sure

that CAVs maintain enough distance from their front vehicle when they reach the

end of the road, we have implemented an Adaptive Cruise Control (ACC) algorithm

for CAVs. The maximum velocity of CAVs is 3m/s, and the maximum acceleration

and deceleration rates are measured as 2m/s2 and −1.5m/s2 respectively. We set

the minimum velocity to be 0.2m/s. IM uses the OptiTrack real position data as

monitoring data too. Since the OptiTrack system is accurate up to the millimeter

level, we added a random number between [0, 0.1] m to the position of CAVs in order

to emulate the error for a realistic surveillance and detection system.

5.4 Results

We performed two types of experiments to validate the safety of our approach

when a rouge vehicle is present: 1) systematically injecting a fault on a CAV and 2)

randomly injecting a fault.

5.4.1 Safety Validation by Systematic Fault Injection

For the systematic fault injection, we created a scenario where two CAVs are

scheduled to cross the intersection and the CAV that is scheduled to cross second

becomes rogue after some time and accelerates. We created the same scenario and

repeated our fault injection but at different times. Using the brute-force approach,

we injected a set of ACC fault on the secondly scheduled CAV at every 0.1s where

the fault injection time varies from 34.5 to 36. Figure 5.3 shows the distance between

CAVs and the unsafe area.

When the fault is injected before the tPONR, the other CAV stops but when the

fault injection time is after the tPONR, the other vehicle continues. It can be observed
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Figure 5.3: Systematic Fault Injection of an ACC Fault on Our 1/10 Scale Model
Intersection. By Increasing the Fault Time, the Distance Between CAVs Decreases
until the tPONR and Then It Increases.

that for all experiments, the distance between vehicles is always greater than 0.5m.

To check the scalability of our approach for a real-size intersection with variable

traffic patterns and also do fault injection more precisely, we built a simulator in

Matlab and performed the same fault injection experiment. The length of CAVs is

5m and their width is 2m, the maximum velocity of CAVs is set to 20.1m/s (45mph),

and maximum acceleration and deceleration rates are measured as 6m/s2 and−7m/s2

respectively. The simulator models network communication between CAVs and IM

by randomly adding a delay to the communicated packets and models the vehicle

dynamics (Eq. (5.1)).

Our simulator can generate traffic patterns at a given flow rate by instantiating

new CAVs. Unlike our real-life testbed, in our simulator, CAVs are spawned at a given

time and removed when they leave the intersection. The simulator was executed on

a desktop machine with Intel Core i7-6700 CPU @ 3.4GHz, 16.0 GB of Memory, and

64-bit Windows OS.
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We created a scenario similar to the previous experiments in our simulator where

two CAVs are about to cross the intersection and we conducted the same systematic

fault injection experiment. Figure 5.4 shows the distance between CAVs when the

secondly scheduled CAV becomes rouge at different moments. It can be seen that

Figure 5.4: Systematic Fault Injection of an ACC Fault on Our Simulator. The
Distance Between CAVs Never Reaches the Unsafe Limit.

the distance between CAVs is always greater than 10m. Also, the results from the

simulation match the real-life experiments.

5.4.2 Randomized Fault Injection:

We performed another experiment where the fault injection is done randomly.

This experiment was done on our simulator where the fault injection time was selected

between [0, 10]s after the spawn time of a CAV, the traffic flow was randomly selected

between [0.01, 0.15] car/second/lane and the probability of injecting a DEC fault was

equal to an ACC fault. In total, 500 faults were injected during 20 hours of simulation,
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out of which 110 could cause an accident but they were avoided.

5.4.3 Recovery Analysis

To check if the intersection can recover after a rogue vehicle leaves the intersection

area (for an ACC fault) or is removed (for a DEC fault) by a tow truck, we measured

the average travel time of CAVs when a fault is injected. We first measured the

average travel time for the normal operation of the intersection where no rogue vehicle

is present and then repeated the same experiment and injected an ACC fault with

the same traffic pattern and measured the average travel time. Next, we repeated

the same experiment and injected a DEC fault with the same traffic pattern and

measured the average travel time. These three experiments were repeated 20 times

with different traffic patterns and the results were averaged. The final results for

the average travel time of CAVs are shown in Figure 5.5. For the DEC fault, the
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Figure 5.5: Average Travel Time of CAVs Increases When an ACC or DEC Fault Is
Injected But the Intersection Recovers.

rogue vehicle stops for 10 seconds and then is removed. As can be expected, a DEC

fault results in larger travel times compared to an ACC one since the duration of
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the emergency state is longer. Results show that the average travel time of CAVs

increases when a fault is injected but the IM is able to recover and reduce the average

travel time once the emergency situation is resolved.

5.4.4 Comparison with Traffic Light

To fairly compare the throughput of the R2IM with other scheduling approaches,

we developed a simulator for one of the state-of-the-art technique Robust Intersection

Management (RIM) Khayatian et al. (2018) and a simulator for an intersection that

is managed by a traffic light. The green time of the traffic light is set to be 25 s, yellow

time 5 s and red time 30 s. The same input flow and traffic patterns (spawn times)

were used for all experiments to fairly compare the throughput of the intersection.

Figure 5.6 shows the output flow rate of CAVs vs the input flow rate for R2IM,
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Figure 5.6: Comparing the Output Flow Rate of an Intersection Managed by a Traffic
Light, R2IM and RIM Approaches.

traffic light and the RIM approach when the input flow rate varies from 0.01 to 0.16

car/lane/second. The output flow is measured by counting the number of CAVs that

leave the intersection in a 5-second time interval divided by the length of the interval
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(5). It can be observed that R2IM always achieves a lower throughput compared to the

RIM technique and this is because R2IM allocates a larger temporal buffer between

arrival times of CAVs for protecting CAV from a rogue vehicle. When comparing

our approach with a traffic light, the R2IM performs better than traffic light for

low traffic flows ([0.01 to 0.05]) while traffic light performs better for higher flows.

However, it should be noted that R2IM can avoid accidents that cannot be avoided

if the intersection is managed by a traffic light or RIM approach. We believe that

safety is of utmost importance and although rogue vehicles are rare, it’s reasonable

to sacrifice performance for safety.

5.4.5 Real-time Calculation of Optimal Solution

Solving the optimization problem presented in Eq. (5.12) and Eq. (5.13) is the

most compute intensive part of the IM’s algorithm and to ensure safety, the IM’s pro-

cessing time should be bounded by CIM (see Eq. (5.11)). Conventional optimization

methods/solvers can take up to seconds to find the optimal solution which makes

them impractical to use. To efficiently solve the optimization problem, we use a

heuristic approach, where we discretize the solution space (TOA vs VOA) and refine

the search space by removing solutions that do not satisfy the constraints. We bound

the search space for VOA to be between vmin = 5 and vmax = 20 and for TOA to

be between t0 + 1 and t0 + 60. We have depicted the feasible VOA and TOA for a

scenario in Figure 5.7.

Discretizing the space may result in assigning sub-optimal TOA and VOA values to

CAVs and therefore can degrade the throughput of the intersection. We conducted an

experiment where the discretization granularity of our approach varies. We measured

the processing time of the IM for different configurations and reported the processing

and average travel time time in Table 5.1. By increasing the accuracy our approach,

112



Figure 5.7: Solutions Satisfying All Constraints of Eq. (5.13) for an Example. The
Minimum TOA Is Highlighted in Red.

the average travel time of CAVs decrease. However, the reduction amount is negligible

(less than 1 second). Based on the result, we set the granularity for VOA and TOA

to be 1 since it results a low processing time and a reasonable average travel time.
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Algorithm 6: Algorithm for CAVs

1 while True do
2 if (within the intersection range) then
3 synchronize the clock;
4 if sync is not successful or timed out then
5 apply brake and goto line 3;
6 end
7 send a request to IM;
8 receive the TOA and VOA from IM;
9 if response is timed out then

10 apply brake and goto line 3;
11 end
12 calculate reference trajectory;
13 send trajectory information to the IM;
14 receive the ACK from the IM;
15 if ACK is timed out then
16 apply brake and goto line 3
17 end
18 inquiry emergency state from IM;
19 if emergency state is active or timed out then
20 if (After point of no return (PONR)) then
21 follow reference trajectory and goto line 18;
22 else
23 apply brake and goto line 3
24 end

25 else
26 if (if entered the intersection) then
27 drive at a constant velocity (VOA)
28 else
29 follow reference trajectory goto line 18
30 end

31 end

32 end

33 end
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Algorithm 7: Algorithm for the Intersection Manager

1 while True do
2 check emergency state;
3 broadcast emergency state;
4 if a request is received then
5 if emergency state is active then
6 reject the request;

7 calculate the optimal TOA and VOA;
8 send TOA and VOA to the vehicle;

9 if trajectory information is received then
10 store the CAV’s trajectory information;
11 send the ACK message;

Configuration
#

TOA step
size (s)

VOA step
size (m/s)

Processing
Time (s)

AVG Travel
Time (s)

1 2 2 0.117 66.675
2 1 1 0.129 65.389
3 0.2 0.5 0.467 65.230
4 0.1 0.5 0.810 65.198
5 0.1 0.1 2.826 64.949

Table 5.1: IM’s Processing Time for Solving the Optimization Problem and the Cor-
responding Average Travel Time of CAVs.
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Chapter 6

RSS-BASED MOTION PLANNING FOR CAVS

Autonomous Vehicles (AVs) have the potential to make transportation safer by

reducing the number of accidents that are caused due to human error. When AVs

become connected (which are referred to as Connected Autonomous Vehicles (CAVs)),

they can further improve road safety by sharing their information with each other such

as position, velocity, future plans, etc. In addition, CAVs are projected to improve

fuel consumption, travel time, and passenger comfort through cooperative driving.

Achieving cooperative behaviors among robots is typically studied under multi-

agent motion planning in the robotics domain Mohanan and Salgoankar (2018); Rossi

et al. (2018). Existing techniques can be categorized into two groups: i) central-

ized Kant and Zucker (1986); Peng and Akella (2005) and ii) decentralized (dis-

tributed) Erdmann and Lozano-Perez (1987); Bekris et al. (2007). In centralized ap-

proaches, it is assumed that a central planner exists that has access to all information

and computes the trajectory for robots e.g. path-velocity decomposition technique,

while in decentralized approaches, each robot is assumed to have incomplete informa-

tion and autonomously determines a plan while avoiding static and moving obstacles

as well as other robots. Although centralized approaches can find the optimal solu-

tion, they are computationally demanding and less tolerant of uncertainty. On the

same lines, in the Intelligent Transportation System (ITS) domain, centralized and

decentralized techniques Chen and Englund (2015); Rios-Torres and Malikopoulos

(2016b) are proposed where CAVs share their information with each other (through

V2V) or the infrastructure (through V2I) to perform traffic management at intersec-

tions Zheng et al. (2019); Khayatian et al. (2018); Lin et al. (2019), merges Lu and
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Hedrick (2003); Rios-Torres and Malikopoulos (2016a); Aoki and Rajkumar (2017).

In general, existing motion planning algorithms and traffic management tech-

niques consider a safety buffer around each vehicle to cover for uncertainties in the

localization and trajectory tracking, and then a reference trajectory is determined. A

trajectory is considered to be safe if the safety buffer of the vehicle does not overlap

with obstacles or other vehicles’ safety buffer at any point in time. While reasonable,

this definition may not provide absolute safety because it implicitly assumes that

all vehicles will follow the plan (with small errors that are within the safety buffer).

However, any disruption in the plan can cause an accident. For example, consider a

scenario when two vehicles are driving on a street, one behind the other. If the front

vehicle suddenly stops for any unplanned reason (e.g. yielding to a jaywalker), then

the rear vehicle may hit the front car. In common driving parlance – the rear vehicle

should not tail-gate the front vehicle.

Responsibility-Sensitive Safety (RSS) approach Shalev-Shwartz et al. (2017) from

Mobileye+Intel addresses the safety issue from the legal/blame perspective and allows

vehicles that have the right-of-the-way according to the rules of the road to change

their plans. RSS proposes a set of safety rules such that if a vehicle abides by these

rules, then it cannot be blamed for an accident. In the scenario that is mentioned

above, RSS rules are used to determine the minimum distance at which the rear vehicle

should follow the front one so that it will be able to stop without causing an accident

even in the worst-case scenario. RSS uses a lane-based coordinate system to define

lateral and longitudinal distances between vehicles depending on the driving scenario.

For example, there is a longitudinal rule for the scenario when two vehicles are one in

front of the other, and there is a lateral rule for the scenario in which two vehicles are

driving in parallel to each other. The longitudinal direction is toward the center-line

of the lane and the lateral direction is perpendicular to the center-line of the lane.
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The main shortcoming of RSS is that it is scenario-based and not all scenarios are

covered because longitudinal and lateral distances cannot be computed for merges,

intersections, and unstructured roads where lane markings are not provided.

When CAVs interact with each other in different scenarios, they may face a dead-

lock situation where CAVs yield to each other for an indefinite time. Researchers have

proposed methods to detect and resolve deadlocks at intersections Lin et al. (2019);

Liu et al. (2017); Perronnet et al. (2019) and roundabouts Azimi et al. (2014). In

existing approaches, the intersection/roundabout area is divided into a grid of zones,

and vehicles that intend to occupy the same zone are said to have a conflict. Then,

the dependencies between CAVs (who should enter a conflict zone first and who en-

ters second) are represented with a directed graph, and deadlocks are resolved by

removing cycles in the graph. One of the limitations of existing approaches is that

they use fixed zones to detect conflicts between vehicles and the size of each zone af-

fects the efficiency and computational complexity of the conflict detection algorithm

since using coarse grids makes the schedule pessimistic and using fine grids increases

the number of checks. Furthermore, in existing approaches, the dependency graph is

computed individually by each CAV, which is extremely inefficient because the same

computing is done redundantly and the overhead grows as the number of vehicles

increases.

In this chapter, we present a cooperative driving and deadlock resolution approach

for CAVs Khayatian et al. (2021). Instead of a lane-based coordinate system, we use

future trajectories of CAVs to represent their conflicts, which can be applied to any

road geometries and situations. Inspired by the RSS legal/blame perspective, we

develop a new set of safety rules for CAVs to guarantee that no accidents happen if

CAVs abide by proposed RSS rules. We also provide an efficient and decentralized

deadlock detection and resolution algorithm for CAVs. The integration of the pro-
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posed RSS safety rules and deadlock resolution algorithms with motion planning is

also provided. Results from conducting experiments on our realistic simulator –that

considers vehicle dynamics and network delay– demonstrate that all CAVs remain

safe even if one or more CAVs slow down or stop at any point in time. We evaluate

the efficiency of our approach by comparing the average travel time of CAVs with

a case that vehicles are autonomous but not connected. Finally, we showcase our

deadlock resolution mechanism for an intersection scenario.

6.1 Generic Formulation of RSS Rules

In this section, we introduce a trajectory-based formulation for RSS rules. The

advantage of this approach is that the rules are generic and can be applied to all

cases, including unstructured roads.

Given the future paths of CAVs are known, each CAV can determine the set of

conflict zone C. A conflict zone, Ci ⊂ C is defined as a convex contour that includes

a subset of two CAVs’ future path (FP ) where the distance between the future paths

is less than a threshold, dth. Since two CAVs may have more than one conflict, only

consecutive edges that have a distance of less than dth are considered to be a part of

the same conflict zone. The midpoints of the edges are used to calculate the distance

between two edges from two future paths. To specify the boundaries of a conflict

zone, midpoints of first and last edges are used.

Based on the road geometry and rules of the road, every pair of CAVs can de-

termine who has the advantage to enter the conflict zone first and who has the dis-

advantage. For simplicity, we assume the CAV with the earlier arrival time has the

advantage. Without loss of generality, we assume that one of the CAVs has the ad-

vantage and the other one has disadvantage. We represent the distance of the CAV

with the advantage from the beginning of the conflict zone and from the end of the
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conflict zone with dAbegin and dAend, respectively. Similarly, we represent the distance

of the CAV with disadvantage from the beginning of the conflict zone with dDbegin.

Figures 6.1, 6.2, and 6.3 show different scenario where the dAbegin, dAend and dDbegin are

shown. We assume that Equation6.12 represents the dynamics of each CAV. For sim-

plicity, the trajectory of each CAV is projected onto its path and represented with the

double-integrator model. As a result, the stop distance of the CAV with advantage

is calculated as:

dAstop =
v2A

2|abrake|
(6.1)

We assume that each CAV broadcast its information every T milliseconds and the

worst-case end-to-end delay (ρ) is 2T . Taking into account the delay, the worst-case

stop distance of the CAV with disadvantage is calculated as:

dDstop = vDρ+
1

2
aACCρ

2 +
(vD + aACCρ)2

|2abrake|
(6.2)

The first two terms (vDρ and 1
2
aACCρ

2) indicate that the CAV with disadvantage

may be accelerating in the worst-case scenario while waiting for broadcast informa-

tion from the CAV with advantage. If the distance of the CAV with advantage form

the end of the conflict zone is greater or equal to the stop distance of the CAV with

advantage (dAend ≥ dAstop), there is a possibility that it may slow down and stop inside

the conflict zone and block the CAV with the disadvantage. Otherwise, there is no

conflict. Accordingly, we define the modified RSS rule as:

Definition 6 General RSS Rule: Given the order of entering a conflict zone is

known, the minimum safe distance to maintain from the conflict zone (dDSAFE) for the

CAV with disadvantage is:

120



dDSAFE =


dDstop − dAextra + V LA+V LD

2
if dAend > dAstop

0 otherwise

(6.3)

where dAextra is the scenario-dependant distance that the CAV with the advantage

travels inside the conflict zone making extra room for the CAV with a disadvantage,

and V LA and V LD are the vehicle length for the vehicle with advantage and disad-

vantage, respectively. Since the distance values are calculated based on the center of

CAVs, the term V LA+V LD

2
is added.

Lemma 1 If the CAV with disadvantage always maintains a distance of at least

dDSAFE from its conflict zone, it will not hit the CAV with advantage even if it changes

its plan and decelerates at any point in time.

Proof 1 If the distance of the CAV with the advantage from the end of the conflict

zone is smaller than its stop distance, dAend < dAstop, it will stop outside of the conflict

zone even if it decelerates at a rate of smaller than or equal to abrake.

If the distance of the CAV with the advantage from the end of the conflict zone

is greater than its stop distance, dAend > dAstop, it may stop inside the conflict zone

if it decelerates. In this case, the CAV with disadvantage will be notified after ρ

milliseconds in the worst-case scenario. If the CAV with disadvantage accelerates

at a rate of smaller than or equal to aACC during this time interval (ρ) and then

decelerates at a rate of abrake, its stop distance will be equal to dDstop (Eq. (6.2)) and it

will not enter the conflict zone and no accident will happen. For scenarios where the

scenario-dependent distance is not zero, dAextra > 0 (same lane and merge), the paths

of the CAVs overlap and if the CAV with advantage decelerates, it will allow the CAV

with disadvantage to travel through the conflict zone by dAextra and still be safe. As a

result, the required safe distance is dDstop − dAextra.
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Next, we study a few case studies and show how the safe RSS distance is calculated

for each scenario.

6.1.1 Same Lane

Let us consider a scenario where two CAVs are driving in the same lane as depicted

in Figure 6.1. The front CAV has the advantage since its arrival time at the conflict

𝑑𝑒𝑛𝑑
𝐴

𝑑𝑏𝑒𝑔𝑖𝑛
𝐷

Rear Front

𝑑𝑏𝑒𝑔𝑖𝑛
𝐴 = 0

Conflict Zone

Figure 6.1: An Example of a Same Lane Scenario with Two CAVs. The Front CAV
Has the Advantage and Its Distance from the Conflict Zone Is Zero. The Conflict
Zone Is Highlighted in Orange.

zone is smaller than the rear CAV. Since the paths of the front CAV overlaps with

the path of rear CAV, dAextra = dAstop, which means the front CAV travels dAstop meters

inside the conflict zone before a complete stop and the rear CAV has dAstop meters

more to stop. According to Equation (6.3), the required safe distance for the rear

CAV (dDSAFE) to maintain from the conflict zone/front CAV is:

dDSAFE = dDstop − dAstop +
V LD + V LA

2

dDstop and dAstop are calculated according to Equation6.1 and 6.2.
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6.1.2 Intersection

Now, let us consider a scenario where two CAVs approach an intersection and

their future path crosses inside the intersection area as it is depicted in Figure 6.2.

We assume the arrival time of the green CAV to be earlier than the blue CAV and

𝑑𝑏𝑒𝑔𝑖𝑛
𝐴

𝑑𝑒𝑛𝑑
𝐴

𝑑𝑏𝑒𝑔𝑖𝑛
𝐷

Advantage

Disadvantage

Conflict 

zone

Figure 6.2: A Scenario with Two CAVs Approaching an Intersection and Their Future
Path Intersect. It Is Safe to Enter the Conflict Zone after the Other CAV Leaves
Conflict Zone.

therefore, it has the advantage. If the green CAV stops anywhere inside the conflict

zone, it’s not safe for the blue CAV to enter the conflict zone. Therefore, the scenario-

dependant distance is zero, dAextra = 0. As a result, we have:

dDSAFE =


dDstop + V LA+V LD

2
if dAend ≥ dAstop

0 otherwise

If the distance of the green CAV from the end of the conflict zone is smaller than

its stop distance, even in the worst-case (if it decelerates at the maximum rate), it
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will stop outside the conflict zone and does not cause a conflict for the blue CAV. In

this case, there will be no conflicts and dDSAFE = 0.

6.1.3 Merge

Next, we consider a merge scenario where two CAVs merge into the same lane

as it is shown in Figure 6.3. Without loss of generality, we assume one of the CAVs

𝑑𝑒𝑛𝑑
𝐴

𝑑𝑏𝑒𝑔𝑖𝑛
𝐷

Advantage

Conflict 

Zone

𝑑𝑏𝑒𝑔𝑖𝑛
𝐴

𝑑𝑚𝑒𝑟𝑔𝑒
𝐴

Figure 6.3: A Scenario Where Two CAVs Are Expected to Be Merged into the Same
Lane. The CAV with Earlier Arrival Time Has the Advantage.

(green one) has the advantage and the other CAV has disadvantage respectively. In

this scenario, the scenario-dependant distance is dAextra = min(0, dAstop−dAmerge), where

dAmerge is the distance of the CAV with advantage from the merging point, which is

indicated in Figure 6.3. As a result, the blue CAV must maintain a minimum distance

of

dDSAFE = dDstop −min(0, dAstop − dAmerge) +
V LD + V LA

2

from the conflict zone. Note that once the blue CAV reaches the merge point, the

dAextra is changed. The lateral case in the original RSS rules (two CAVs driving on
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adjacent lanes) can be modeled like a merging case. If any of the CAVs attempts to

merge into the other CAV’s lane, it is only allowed if the created conflict zone is far

enough from the other CAV i.e. at least dmax.

6.2 Proposed Cooperative Driving Approach

In this section, we first present the algorithm that runs on each CAV assuming no

deadlock situation happens. In the next section, we explain the deadlock resolution

algorithm.

6.2.1 Main Algorithm

Given the initial position and final destination of a CAV are known, the motion-

Planner uses the world’s map to determine the shortest path (R) that connects CAV’s

current position to the destination. We assume that at least one feasible path exists

that connects CAV’s current location to its destination. The map, M(N,E), is a

directed graph where N is the set of nodes or waypoints and E is the set of edges or

connections between waypoints. Each edge of the map graph has a weight, w, which

indicates the maximum velocity for that segment of the road. In our algorithm, we

assume that the ego CAV’s computation time and communication time are bounded

by T .

In a periodic manner, each CAV broadcasts its ID, position, velocity, timestamp,

and its future path (FP ), which is an array of x-y coordinates. We assume that all

CAVs synchronize their clock using GPS so that timestamps are captured with clocks

that have almost the same notion of time. When the CAV receives the information of

other CAVs, it checks if their paths intersect or the distance between their paths is less

than a threshold. If so, the CAV computes a set of conflict zones (C). For each conflict

zone, the CAV determines which vehicle has the advantage to enter the conflict zone
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first based on who is expected to reach the conflicting zone first. To detect possible

deadlocks, the CAV computes a graph called Partial Dependency Graph (PDG),

which represents the dependency among other CAVs and itself (who should yield to

who over a conflict zone). Next, the CAV broadcasts the computed PDG, and after

receiving other CAVs PDG, it constructs the Complete Dependency Graph (CDG)

to detect and resolve possible deadlocks. Finally, if the CAV has disadvantage over a

conflict zone, it computes a safe velocity so that it always maintains a safe distance

from that conflict zone. Based on the determined velocity, the weight of some of

the edges are updated to reflect the presence of other CAVs and to make sure a safe

distance is always maintained from the conflict zone. Then, the motion planner runs

the shortest path algorithm again to check if a shorter path exists that does not

cause a new conflict. Finally, the motion controller uses a subset of future waypoints

and velocities of corresponding edges to determine the desired velocity and control

inputs (steering angle and acceleration) for the CAV. Alg. 8 shows the pseudo-code

of our algorithm that is executed on each CAV. To have a better understanding

of our algorithm, we have depicted different components of our approach and their

relationship in Figure 6.4. Next, we will focus on explaining the functionality of each

component of the algorithm.

6.2.2 Future Path Computation

Each CAV broadcasts its ID, position (x, y), velocity (v), and the corresponding

timestamp (ts) as well as its future path ((x1, y1), ..., (xn, yn)). Assuming the CAV’s

motion controller is tuned to have a short settling time, the CAV will track its path

with a negligible error. As a result, we represent the future position of the CAV with

a subset of its expected route (R). Given R ⊂ M(N,E) is the route of the CAV,

the future path of the CAV, FP ⊂ R is calculated as follows which consists from n
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Algorithm 8: CAVs algorithm

1 path = motionPlanner(map);
2 while has not reached the destination do
3 FP = compute future path();
4 CAV info = [x, y, v, ts, FP, ID];
5 broadcast(CAV info);
6 others info = receive other CAVs info();
7 for each member of other CAVs info do
8 [C, PDG] = find conflict zones(CAV info, others info);
9 end

10 broadcast(PDG);
11 others PDG = receive other PDGs();
12 CDG = construct CDG(PDG, other PDGs);
13 C = deadlock resolution(C, CDG);
14 if ego CAV has disadvantage over a conflict zone then
15 [FP, velocity] = motion planner(C, Map);
16 end
17 motionController(FP, Velocity);

18 end

points:

FP =

{
(xi, yi) ∈ R

∣∣∣∣( i=n∑
i=2

√
(xi − xi−1)2 + (yi − yi−1)2

)
< dmax

}
(6.4)

where dmax is the fixed length of the future path calculated as:

dmax = vmax(ρ+ tb) (6.5)

ρ represents the worst-case end-to-end delay from one CAV capturing its information

and broadcasting it, to another CAV’s actuation based on the received information

(see Figure 6.5) and tb is the worst-case brake time which can be calculated as tb =

vmax

|abrake|
. Figure 6.5 shows the execution profile of our algorithm on two CAVs (i and j).

Let us assume that CAVs i and j have a conflict and CAV i (top) has the advantage. If
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Figure 6.4: Overview of Our Approach. Details of Each Component –Except V2X
Module and Map– Are Explained Later.

CAV i slows down due to any reason right after sensing and broadcasting its info, the

CAV j will not be notified until receiving the next broadcast. As a result, the worst-

case end-to-end delay (ρ) is bounded by 2T as depicted in Figure 6.5. By computing

the dmax based on the worst-case info sharing delay and worst-case braking time, we

ensure that for the first time that two CAVs detect that they have a conflict, the

CAV with the disadvantage have enough distance to safely stop without entering the

conflict zone, even in the worst-case scenario.

6.2.3 Conflict Zone Detection

Despite existing approaches that use fixed conflict zones, we use CAV’s expected

trajectory to detect a conflict zone. As mentioned before, CAVs’ future paths (FP )

are used to represents their expected future position. First, CAVs computes the
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Figure 6.5: CAVs Perform Computation and Communication in a Synchronized Man-
ner. The Worst-case Sensing to Actuation Delay Corresponds to the Case That CAVi
Breaks down Right after Sensing.

distance between the mid point of edges on their path. All contiguous edges that

have a distance less than dth are considered to be a part of the same conflict zone.

Two CAVs may have multiple conflicts on their path as depicted in Fig. 6.6. Each

Conflict 

Zone 1

Conflict 

Zone 2

Figure 6.6: An Example of Two CAVs with Arbitrary Paths and Two Conflict Zones.
The Conflict Zone Includes Parts of the CAV Path (Waypoints) Where the Distance
Between Paths of CAVs Is Less than a Threshold.

conflict zone Ci is a data structure that includes waypoints that are inside the conflict

zones, distance of CAVs from the the beginning and end of the conflict zone, their

expected arrival time at the conflict zone (Equation 6.6) and the ID of the CAV

that has the advantage. We compute the arrival time assuming the CAV drives at a
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constant velocity.

TOAi =
dibegin
vi

(6.6)

where dibegin is the distance of the CAV i from the conflict zone and vi is the velocity

of the CAV i. Since the algorithm is executed periodically (every T ms), the value

of TOAi is updated as the velocity of the CAV changes. If a CAV is stopped inside

a conflict zone, its arrival time is set to zero. By default, the CAV with the earliest

arrival time will have the advantage unless it is changed to resolve a deadlock (ex-

plained in the next section) or the other CAV has a priority (e.g. opposite direction).

If two CAVs have the same arrival time, the CAV with the lower ID will have the

advantage to break the tie. In addition, if the difference between the arrival times of

two CAVs is within the accuracy of the clock synchronization (± 10 nanoseconds for

GPS), they use CAVs ID to determine who has the advantage.

6.2.4 Motion Planner

If a CAV has disadvantage over a conflict zone, it first checks if an alternative

path exists such that it avoids all the conflicts. If such a path exists, the CAV selects

that path and if not, the CAV calculates a safe velocity (vSAFE) to be maintained so

that the CAV is always safe. The safe velocity, vSAFE, is determined based on the

minimum safe distance that the ego CAV must maintain from the conflict zone given

that other CAV –which has the advantage– may slow down at any point in time and

stop inside the conflict zone.

Maximum Safe Velocity: For each segment of the road that has a distance of

dC from the conflict zone, the maximum safe velocity is computed using Equation 6.7.

vSAFE =
−(2ρaACC + 2|abrake|) +

√
∆

2
(6.7)
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where ∆ = 4(a2brake + 2aACCρabrake − aACCρ
2abrake − 2dC |abrake|. Equation 6.7 is

determined by solving Equation 6.2 for vD when the distance from the conflict zone is

dC . dC can be calculated using Equation 6.10. Equation (6.7) ensures that the CAV

with disadvantage has always a minimum distance of dDSAFE from the conflict zone.

Once the safe velocity is determined for each conflict zone (Ci), the motion planner

updates weights of the map M(N,E), to account for the presence of other CAVs and

generates safe velocities for the motion controller. To account for the presence of other

CAVs, the motion planner determines, U the set of all edges (ei) that are connected

to waypoints that are on the future path of other CAVs

U = {ei ∈ E|ei ∈ connected(FP )} (6.8)

where connected(FP ) is the set of all edges that are connected to waypoints in the

set FP . To account for the safe RSS distance, the motion planner determines UD,

the set of all edges that are connected to the waypoints that are on the future path

of the CAV with disadvantage (FPD) and are either a member of the conflict zone

set (C) or within the safe distance (dDSAFE) of the conflict zone.

UD = {ei ∈ E|ei ∈ connected(FPC
D )} (6.9)

where connected(FPC
D ) is the set of all edges that are connected to waypoints in the

set FPC
D . Figure 6.7 shows a merge scenario and CAV’s future paths. Weights of all

edges connected to nodes that are on the path of the CAV with advantage (depicted

in green) and all edges that are on the path of the ego CAV and are either within

the safe distance of or inside the conflict zone are updated. The set UD and U are

highlighted on the path of CAVs. The subset of future point, FPC
D , is determined as:
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Figure 6.7: Weights of the Edges on the Path of the Other CAV and Edges on Path
of the Ego CAV Are Updated to Account for the Presence of Other CAVs as Well as
the Conflict Zone and the Required Safe Distance.

FPC
D = {ni ∈ N |ni ∈ FPD and ni ∈ C or ni ∈ within(Cj)}

within(Cj) is the set of all waypoints that where their distance from the conflict zone

j is less than dSAFE. To calculate the distance between two waypoints, we use the

following recursive equation:

distance =
N∑
i=2

√
(xi − xi−1)2 + (yi − yi−1)2 (6.10)

where N is the number of waypoints including the first and last waypoints. Finally,

weights of each edge in set U and UD are updated based on their distance from the

conflict zone using Equation 6.7:

wi =
l

viSAFE
(6.11)

where i refers to each segment of the road, l is the length of the corresponding edge

and viSAFE is the safe velocity calculated for each segment of the road (edge). Since

the weight of an edge may be updated multiple times –as it may be involved in more
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than one conflict–, the maximum weight is considered (the slowest safe velocity) for an

edge. If the safe velocity (vSAFE is equal to zero, instead of infinity, the weight is set

to be a large constant number. After updating the weights, the motion planner uses

the Dijkstra algorithm to find the shortest path to the destination. The summation of

weights (
∑
wi) from the source to the destination corresponds to the travel duration.

6.2.5 Motion Controller

We assume the following vehicle dynamics for the CAV.



ẋ = v cos(φ)

ẏ = v sin(φ)

φ̇ = v
L

tan(ψ)

v̇ = a

(6.12)

where x and y represents the position of the ego CAV in Cartesian coordinates, φ is

the CAV’s heading angle from the x-axis, v and a are linear velocity and acceleration

of the CAV respectively, L is CAV’s wheelbase distance and ψ is steering angle of

front wheels with respect to the heading of the CAV. In order to make the model

more realistic, we consider an upper bound and a lower bound on the acceleration

rate and steering angle of a CAV as: a ∈ [amin, amax] and ψ ∈ [ψmin, ψmax] where

amax and amin are the maximum acceleration and deceleration rates and ψmax and

ψmin are the maximum and minimum steering angles of the vehicle.

The motion controller uses the future waypoints and safe velocities to calculate

the reference heading angle θref and the safe velocity vref for the CAV. For the

desired heading angle (θref ), the motion controller selects a look-ahead point similar

to the pure pursuit algorithm Coulter (1992) and calculates the bearing angle from
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its current location (x, y) to the look-ahead point:

θref = atan2(x− xl, y − yl) (6.13)

where xl and yl correspond to the x-y coordinate of the look-ahead point. We

assume that each vehicle has an initial desired velocity of v0 and never drives faster

than that. The motion controller uses the weight of the next edge to determine the

reference velocity (vref = di
wi

). If the calculated velocity is greater than CAV’s initial

desired velocity (v0), it sets the reference velocity to be v0. If the reference velocity

is close to zero, (v < ε), it is set to zero. Once the reference heading and velocity are

calculated, they are passed to two Proportional Integral Derivative (PID) controllers

to calculate the steering angle and acceleration for the vehicle:


ψ = kP eθ + kI

∫
eθ + kDėθ

a = k′P ev + k′I
∫
ev + k′Dėv

(6.14)

where kP , kI , kD and k′P , k
′
I , k
′
D are constant (controller gains) that are tuned to

achieve a fast response while the overshoot is small (short settling time), eθ = θr − θ

and ev = vSAFE − v, and ėv and ėθ are the derivative of ev and eθ, respectively.

6.3 Deadlock Detection and Resolution

In order to detect and resolve deadlocks, all CAVs create a directed graph called

the dependency graph. Nodes of the dependency graph are vehicle IDs and edges

represent that if a CAV is yielding to another CAV over a conflict zone. There will

be a directed edge from node Vi to node Vj if CAV Vi is yielding to the CAV Vj

over a conflict zone. Since a CAV determines only the conflicts between itself and

other CAVs –and not the conflicts between other CAVs, the constructed dependency
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graph is not complete. We refer to the dependency graph of each CAV as the “partial

dependency graph” or PDG. To compute the complete graph, each CAV broadcasts

its PDG to inform other CAVs about its conflict zones with other CAVs and to receive

other CAVs’ PDG. From the received PDGs of other CAVs and the PDG of the ego

CAV, the complete dependency graph (CDG) is constructed. To build the CDG, the

PDG is incrementally updated by adding nodes and edges for each received PDG.

Finally, all edges between two nodes are merged into one. Figure 6.8 shows a scenario

with 5 CAVs that have determined their PDG and the final consensual CDG.

(1)

(2)

(3)

(4)

(5)

𝑉1𝑉2

𝑉1𝑉2𝑉3

𝑉4 𝑉5

𝑉5𝑉2 𝑉4

𝑉2𝑉3𝑉4

𝑉4𝑉5 𝑉3

𝑉2
𝑉1𝑉2𝑉3

𝑉4 𝑉5

Reconstructed CCG

Figure 6.8: Each CAV Determines and Broadcasts Its PDG. After Receiving Other
CAVs’ PDG, CAVs Construct the CDG and Can Resolve Deadlocks.

After constructing the CDG, each CAV checks if the CDG has a cycle. We use

the Depth-First Search (DFS) algorithm to detect cycles. If a deadlock is detected,

each CAV calculates a score for each CAV that is involved in the cycle based on its

average time of arrival at corresponding conflict zones. If a CAV has m conflicts, its
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score is calculated as:

S =

∑m
i=1 TOAi
m

where TOAi is the time of arrival of the CAV at its ith conflict zone. We select

the CAV with the least average time of arrival to have the advantage over all of its

conflict zones because on average, it can reach its conflict zone earlier than others.

We refer to this CAV as the leader. Once the leader is determined, the direction of

all incoming edges to the leader’s node is reversed. If two CAVs have the same score,

the CAV with the lower ID number will be selected as the leader. Since there can be

more than one cycle in a graph, this process is repeated until all cycles are removed.

Lemma 2 If the CDG has no cycles, then there is no deadlock involving the ego

CAV.

Proof 2 Once the CDG is modified to be acyclic, there is no path (set of sequential

edges) starting at node Vego that eventually loops back to node Vego again, which means

the ego CAV never yields to other CAVs that are yielding to the ego CAV and therefore,

there is no deadlock involving the ego CAV.

It takes some time to resolve a deadlock due to the vehicle’s dynamic –CAVs

cannot change their velocity and expected arrival time instantly. As a result, CAVs

may face the same deadline again when they compute the CDG after T . It can be

shown that the result of deadlock resolution will be the same (the same CAV will

be selected as the leader) until the deadlock is resolved. Since the leader has the

least average time of arrival in the first iteration, it does not yield to any other CAV

while other CAVs involved in the deadlock slow down to yield to at least one CAV.

Therefore, the average time of arrival of the leader will be less than other CAVs in

the second iteration and so on.
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Figure 6.9: A Snapshot of a Map Retrieved from the OpenStreetMap (Left), Its
Corresponding Directed Graph in Matlab (Middle) and a Scenario with Randomly
Spawned Vehicles on the Map (Right).

6.4 Testbed 4 - City-Wide Traffic Simulation using OpenStreetMap

We evaluated our algorithm on a simulator that is developed in Matlab. We

created a tool in Python to automatically extract a desired map from the Open-

StreetMap1 (OSM format) and then generate the world map graph for it. Once the

map is generated, a driving scenario is created where initial position and velocity

and the destination of CAVs are randomly selected. We used differential equations

represented in (3.7) to model vehicle’s dynamics. The size of each vehicle is 5x2 m,

the lane width is 5 m and the distance between waypoints of the map is 0.5 m. Gains

of the controller for both heading and velocity control are KP = 5 and KD = 0.1.

Other parameters of the vehicle are listed in Table 6.1. CAVs communication delay

vmin vmax amin amax ψmin ψmax T ρ
0m
s

23m
s
−8m

s2
5m
s2

−π
3
rad π

3
rad 0.1s 0.2s

Table 6.1: Parameters of the CAVs for Simulation.

is modeled by queuing the broadcast packets. In Figure 6.9, a randomly generated

map from openStreetMap, its corresponding map graph and a random scenario with

20 CAVs are depicted.

1https://www.openstreetmap.org/
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6.5 Results

We performed three experiment to demo our RSS-based conflict resolution algo-

rithm: 1) Safety evaluation for corner cases, 2) Deadlock detection and resolution

and 3) Performance evaluation.

6.5.1 Safety Evaluation

To demonstrate the safety of the proposed algorithm, we created a merge and an

intersection scenario where two CAVs have a conflict on their future path as it is

depicted in Figure 6.10.

Figure 6.10: An Intersection and a Merge Scenario Are Created. The CAV with
Advantage Suddenly Decelerates and Stops.

To verify that CAVs are always safe, we force the CAV with the advantage to sud-

denly decelerate at different times. We show that no accident will happen regardless

of the deceleration time and CAVs maintain a minimum safe distance of 5 meters.

Using brute-force testing, the deceleration time of the CAV with the advantage varies

in a 30-second interval with a 0.1 s increment that includes critical times that stops

inside the conflict zone. Figure 6.11 and 6.12 show the distance between CAVs for the

intersection and merge scenarios, respectively. In the intersection scenario, the CAV
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Figure 6.11: Brute-force Evaluation of an Intersection Scenario. CAVs Distance Is
Always Greater than a Threshold Regardless of the Deceleration Time of the CAV
with the Advantage –if It Stops Before Entering the Conflict Zone (Dark Green),
Inside the Conflict Zone (Yellow), or after the Conflict Zone (Blue).

with the advantage may stop before, inside, or after the conflict zone where distances

between CAVs are depicted in dark green, yellow, and blue colors, respectively. For

cases that the CAV with advantage stops before or after the conflict zone, the CAV

with disadvantage continues while in cases that the CAV with advantage stops inside

the conflict zone, the CAV with advantage slows down and stops (depicted in yellow).

In the merge scenario, the conflict zone moves with the CAV with the advantage

after it reaches the merging point. As a result, the CAV with the advantage either

stops before the conflict zone or inside it. For cases that the CAV with the advantage

stops before the merging point, the CAV with the advantage continues and enters

the merge (depicted in dark green) and for the rest of the cases, the CAV with the

disadvantage slows down and stops (depicted in yellow).

6.5.2 Deadlock Resolution Demonstration

To evaluate our deadlock detection and resolution approach, we created a dead-

lock situation at the intersection (Figure 6.13). The right part of Figure 6.13 shows
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Figure 6.12: Merge Scenario - CAVs Distance Remains Greater than a Threshold for
All Cases Where the CAV with Advantage Stops Before Entering the Merge (Yellow)
or after the Merge (Dark Green).

the CCG for the scenario. We fixed the paths of CAVs to make a left turn at the

3
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2

1
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3

Z1
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Z4

Figure 6.13: A Deadlock Scenario Where 4 CAVs Approach the Intersection with
Same Velocity (Left) and the Corresponding CDG (Right).

intersection while having the same distance from the intersection and the same veloc-

ity. We simulated CAVs’ behavior with and with our deadlock detection. Figure 6.14

shows the velocities of CAVs for both cases. For the case that no deadlock resolution

is done, CAVs slow down to yield to other CAVs and eventually stop and will wait

forever. For the case with deadlock resolution, CAVs slow down at first but speed up
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when their conflict zone is cleared. We can observe that after 7s, all CAVs reach their
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Figure 6.14: Velocity Profiles of CAVs with and Without Deadlock Resolution for the
Scenario in Figure 6.13

desired velocity (10m/s) while in no deadlock detection case, their velocity converges

to zero.

6.5.3 Efficiency Evaluation

To evaluate the efficiency of our approach, we compared the performance of our

approach with the case that vehicles are autonomous but not connected. For the

non-connected case, the intersections are managed by stop signs and all other con-

flicts among CAVs are handled by the AV’s perception system e.g. adaptive cruise

control (ACC) system. We extracted a map from the OpenStreetMap (Figure 6.9)

and simulated three scenarios, i) light traffic with 5 vehicles, ii) moderate traffic with

10 vehicles, and iii) heavy traffic with 20 vehicles being present at the same time.

When a vehicle exits the map boundary, a new vehicle is spawned. We measured

the average velocities of CAVs and reported them in Table 6.2. We also computed
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the fuel consumption of CAVs using the following model Akçelik et al. (2012) and

reported them in Table 6.2:

f =


0 if PT > 0

fi
3600

+ β1PT + β2aPI otherwise

(6.15)

where PT = min(Pmax, PC + PI) is the total tractive power (kW), PC = b1v + b2v
3

is the cruise component of total power (kW), PI = mav
1000

is the inertia component of

the total power (kW), fi = 888.8mL/h is the instantaneous fuel consumption rate

(mL/s), Pmax is the maximum engine power (kW), m is the vehicle mass, a and v are

the instantaneous acceleration and velocity, b1 is rolling resistant factor (kN), and b2

is the aerodynamic drag factor (kN/(m/s)2), β1 and β2 are the efficiency factors for

non-accelerating and accelerating cases.

Light Traffic Moderate
Traffic

Heavy Traffic

AVs CAVs AVs CAVs AVs CAVs
Average Veloc-
ity (m/s)

11.21 11.96 10.91 11.83 10.51 11.55

Average Fuel
Consumption
(mL/s)

1.017 0.485 1.089 0.479 1.271 0.495

Table 6.2: Comparing the Average Velocity and Fuel Consumption of Vehicles When
They Navigate Autonomously (Non-connected) and Cooperatively (Connected).

With the help of shared information, CAVs not only drive at higher velocities,

they drive smoother than non-connected case because they slow down and stop less

frequently and therefore, their fuel consumption is less than the connected case.
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Chapter 7

CONTRIBUTIONS

Title: Crossroads: Time-Sensitive Autonomous Intersection Management Technique

Authors: Andert, Edward, Mohammad Khayatian, and Aviral Shrivastava

Contributions: developed an intersection management algorithm for CAVs that is

resilient against roundtrip delay

Title: Crossroads+: A Time-aware Approach for Intersection Management of Con-

nected Autonomous Vehicles

Authors: Khayatian, Mohammad, Yingyan Lou, Mohammadreza Mehrabian, and

Aviral Shirvastava

Contributions: Develop an algorithm that compensates for the response time of the

controller presented in Crossroads work

Title: RIM: Robust Intersection Management for Connected Autonomous Vehicles

Authors: Khayatian, Mohammad, Mohammadreza Mehrabian, and Aviral Shrivas-

tava

Contributions: Developed an algorithm that is robust to bounded model mis-

matches and external disturbances

Title: A Dependable Detection Mechanism for Intersection Management of Con-

nected Autonomous Vehicles

Authors: Dedinsky, Rachel, Mohammad Khayatian, Mohammadreza Mehrabian,

and Aviral Shrivastava
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Contributions: Developed an algorithm to detect rogue vehicles at intersection

Title: A Survey on Intersection Management of Connected Autonomous Vehicles

Authors: Khayatian, Mohammad, Mohammadreza Mehrabian, Edward Andert,

Rachel Dedinsky, Sarthake Choudhary, Yingyan Lou, and Aviral Shirvastava

Contributions: studied more than 100 papers that are published on intersection

management of CAVs and analyzed their pros and cons from different perspectives

Title: R2IM – Robust and Resilient Intersection Management of Connected Au-

tonomous Vehicles.

Authors: Khayatian, Mohammad, Rachel Dedinsky, Sarthake Choudhary, Moham-

madreza Mehrabian, and Aviral Shrivastava

Contributions: Developed an algorithm for robust intersection management of

CAVs against rogue vehicles

Title: Cooperative driving of connected autonomous vehicles using responsibility-

sensitive safety (RSS) rules.

Authors: Mohammad Khayatian, Mohammadreza Mehrabian, Harshith Allamsetti,

Kai-Wei Liu, Po-Yu Huang, Chung-Wei Lin, Aviral Shrivastava

Contributions: Developed a generic V2V algorithm for safe and deadlock-free con-

flict resolution of connected autonomous vehicle
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Akçelik, R., R. Smit and M. Besley, “Calibrating fuel consumption and emission
models for modern vehicles”, in “IPENZ transportation group conference, Rotorua,
New Zealand”, (2012).

Andert, E., M. Khayatian and A. Shrivastava, “Crossroads: Time-sensitive au-
tonomous intersection management technique”, in “Proceedings of the 54th Annual
Design Automation Conference 2017”, p. 50 (ACM, 2017).

Aoki, S. and R. Rajkumar, “A merging protocol for self-driving vehicles”, in “2017
ACM/IEEE 8th International Conference on Cyber-Physical Systems (ICCPS)”,
pp. 219–228 (IEEE, 2017).

Aoki, S. and R. R. Rajkumar, “Dynamic intersections and self-driving vehicles”, in
“Proceedings of the 9th ACM/IEEE International Conference on Cyber-Physical
Systems”, pp. 320–330 (IEEE Press, 2018).

Ashtiani, F., S. A. Fayazi and A. Vahidi, “Multi-intersection traffic management for
autonomous vehicles via distributed mixed integer linear programming”, in “2018
Annual American Control Conference (ACC)”, pp. 6341–6346 (IEEE, 2018).

Au, T.-C. and P. Stone, “Motion planning algorithms for autonomous intersection
management.”, in “Bridging the gap between task and motion planning”, (2010).

AutoSIM, “Driving simulators and simulator software”, https://www.autosim.no/,
[Online; accessed 03-June-2019] (2019).

Azimi, R., G. Bhatia, R. Rajkumar and P. Mudalige, “Intersection management using
vehicular networks”, Tech. rep., SAE Technical Paper (2012).

Azimi, R., G. Bhatia, R. Rajkumar and P. Mudalige, “V2v-intersection management
at roundabouts”, SAE International Journal of Passenger Cars-Mechanical Systems
6, 2013-01-0722, 681–690 (2013a).

Azimi, R., G. Bhatia, R. Rajkumar and P. Mudalige, “Ballroom intersection pro-
tocol: Synchronous autonomous driving at intersections”, in “2015 IEEE 21st
International Conference on Embedded and Real-Time Computing Systems and
Applications”, pp. 167–175 (IEEE, 2015).

145



Azimi, R., G. Bhatia, R. R. Rajkumar and P. Mudalige, “Stip: Spatio-temporal
intersection protocols for autonomous vehicles”, in “ICCPS’14: ACM/IEEE 5th
International Conference on Cyber-Physical Systems (with CPS Week 2014)”, pp.
1–12 (IEEE Computer Society, 2014).

Azimi, S. R., G. Bhatia, R. R. Rajkumar and P. Mudalige, “Reliable intersection
protocols using vehicular networks”, in “Proceedings of the ACM/IEEE 4th Inter-
national Conference on Cyber-Physical Systems”, pp. 1–10 (ACM, 2013b).

Bailey, T. and H. Durrant-Whyte, “Simultaneous localization and mapping (slam):
Part ii”, IEEE Robotics & Automation Magazine 13, 3, 108–117 (2006).

Bashiri, M. and C. H. Fleming, “A platoon-based intersection management system
for autonomous vehicles”, in “Intelligent Vehicles Symposium (IV), 2017 IEEE”,
pp. 667–672 (IEEE, 2017).

Bashiri, M., H. Jafarzadeh and C. H. Fleming, “Paim: Platoon-based autonomous
intersection management”, in “2018 21st International Conference on Intelligent
Transportation Systems (ITSC)”, pp. 374–380 (IEEE, 2018).

Beaver, L. E., B. Chalaki, A. Mahbub, L. Zhao, R. Zayas and A. A. Malikopoulos,
“Demonstration of a time-efficient mobility system using a scaled smart city”, arXiv
preprint arXiv:1903.01632 (2019).

Behrisch, M., L. Bieker, J. Erdmann and D. Krajzewicz, “Sumo–simulation of urban
mobility: an overview”, in “Proceedings of SIMUL 2011, The Third International
Conference on Advances in System Simulation”, (ThinkMind, 2011).

Bekris, K. E., K. I. Tsianos and L. E. Kavraki, “A decentralized planner that guar-
antees the safety of communicating vehicles with complex dynamics that replan
online”, in “2007 IEEE/RSJ International Conference on Intelligent Robots and
Systems”, pp. 3784–3790 (IEEE, 2007).

Belkhouche, F., “Collaboration and optimal conflict resolution at an unsignalized
intersection”, IEEE Transactions on Intelligent Transportation Systems (2018).

Bentjen, K. C., “Mitigating the effects of cyber attacks and human control in an
autonomous intersection”, Tech. rep., Air Force Institute Of Technology Wright-
Patterson AFB OH (2018).

Bento, L. C., R. Parafita and U. Nunes, “Intelligent traffic management at inter-
sections supported by v2v and v2i communications”, in “2012 15th International
IEEE Conference on Intelligent Transportation Systems”, pp. 1495–1502 (IEEE,
2012).

Bian, Y., S. E. Li, W. Ren, J. Wang, K. Li and H. Liu, “Cooperation of multiple con-
nected vehicles at unsignalized intersections: Distributed observation, optimization,
and control”, IEEE Transactions on Industrial Electronics (2019).

146



Bichiou, Y. and H. A. Rakha, “Developing an optimal intersection control system for
automated connected vehicles”, IEEE Transactions on Intelligent Transportation
Systems 20, 5, 1908–1916 (2018).

Briefs, U., “Mcity grand opening”, Research Review 46, 3 (2015).

Bruni, L., A. Colombo and D. Del Vecchio, “Robust multi-agent collision avoidance
through scheduling”, in “52nd IEEE Conference on Decision and Control”, pp.
3944–3950 (IEEE, 2013).

Buckman, N., A. Pierson, W. Schwarting, S. Karaman and D. Rus, “Sharing is caring:
Socially-compliant autonomous intersection negotiation”, in “2019 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS)”, pp. 6136–6143
(IEEE, 2019).

Center, G. A., “Simulation of urban mobility (sumo)”, http://sumo.sourceforge.
net/, [Online; accessed 03-June-2019] (2019).

Chattopadhyay, S. and A. Roychoudhury, “Unified Cache Modeling for WCET Anal-
ysis and Layout Optimizations”, in “Real-Time Systems Symposium, 2009, RTSS
2009. 30th IEEE”, pp. 47–56 (IEEE, 2009).

Checkoway, S., D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Savage,
K. Koscher, A. Czeskis, F. Roesner, T. Kohno et al., “Comprehensive experimen-
tal analyses of automotive attack surfaces.”, in “USENIX Security Symposium”,
vol. 4, pp. 447–462 (San Francisco, 2011).

Chen, L. and C. Englund, “Cooperative intersection management: A survey”, IEEE
Transactions on Intelligent Transportation Systems 17, 2, 570–586 (2015).

Chen, Q., D. Jiang and L. Delgrossi, “Ieee 1609.4 dsrc multi-channel operations and
its implications on vehicle safety communications”, in “Vehicular Networking Con-
ference (VNC), 2009 IEEE”, pp. 1–8 (IEEE, 2009).

Chen, Q. A., Y. Yin, Y. Feng, Z. M. Mao and H. X. Liu, “Exposing congestion
attack on emerging connected vehicle based traffic signal control”, in “Network
and Distributed Systems Security (NDSS) Symposium 2018”, (2018).

Choi, M., A. Rubenecia and H. H. Choi, “Reservation-based traffic management
for autonomous intersection crossing”, International Journal of Distributed Sensor
Networks 15, 12, 1550147719895956 (2019).

CNBC, “California now allows driverless truck and cargo van testing on public roads”,
https://tinyurl.com/wkoqpj4, [Online; accessed 16-March-2020] (2020).

Colombo, A. and D. Del Vecchio, “Efficient algorithms for collision avoidance at
intersections”, in “Proceedings of the 15th ACM international conference on Hybrid
Systems: Computation and Control”, pp. 145–154 (ACM, 2012).

147



Cosgun, A., L. Ma, J. Chiu, J. Huang, M. Demir, A. M. Anon, T. Lian, H. Tafish and
S. Al-Stouhi, “Towards full automated drive in urban environments: A demonstra-
tion in gomentum station, california”, in “2017 IEEE Intelligent Vehicles Sympo-
sium (IV)”, pp. 1811–1818 (IEEE, 2017).

Coulter, R. C., “Implementation of the pure pursuit path tracking algorithm”, Tech.
rep., Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992).

Dedinsky, R., M. Khayatian, M. Mehrabian and A. Shrivastava, “A dependable de-
tection mechanism for intersection management of connected autonomous vehicles
(interactive presentation)”, in “Workshop on Autonomous Systems Design (ASD
2019)”, (Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019).

Douceur, J. R., “The sybil attack”, in “International workshop on peer-to-peer sys-
tems”, pp. 251–260 (Springer, 2002).

Dresner, K. and P. Stone, “Mitigating catastrophic failure at intersections of au-
tonomous vehicles”, in “Proceedings of the 7th international joint conference on
Autonomous agents and multiagent systems-Volume 3”, pp. 1393–1396 (Interna-
tional Foundation for Autonomous Agents and Multiagent Systems, 2008a).

Dresner, K. and P. Stone, “A multiagent approach to autonomous intersection man-
agement”, Journal of artificial intelligence research 31, 591–656 (2008b).

Dresner, K. M. and P. Stone, “Sharing the road: Autonomous vehicles meet human
drivers.”, in “IJCAI”, vol. 7, pp. 1263–1268 (2007).

Durrant-Whyte, H. and T. Bailey, “Simultaneous localization and mapping: part i”,
IEEE robotics & automation magazine 13, 2, 99–110 (2006).

Elhadef, M., “An adaptable invanets-based intersection traffic control algorithm”,
in “Computer and Information Technology; Ubiquitous Computing and Commu-
nications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence
and Computing (CIT/IUCC/DASC/PICOM), 2015 IEEE International Conference
on”, pp. 2387–2392 (IEEE, 2015).

Elhenawy, M., A. A. Elbery, A. A. Hassan and H. A. Rakha, “An intersection game-
theory-based traffic control algorithm in a connected vehicle environment”, in “In-
telligent Transportation Systems (ITSC), 2015 IEEE 18th International Conference
on”, pp. 343–347 (IEEE, 2015).

Emami, P., M. Pourmehrab, M. Martin-Gasulla, S. Ranka and L. Elefteriadou,
“A comparison of intelligent signalized intersection controllers under mixed traf-
fic”, in “2018 21st International Conference on Intelligent Transportation Systems
(ITSC)”, pp. 341–348 (IEEE, 2018).

Erdmann, M. and T. Lozano-Perez, “On multiple moving objects”, Algorithmica 2,
1-4, 477 (1987).

148



Fajardo, D., T.-C. Au, S. Waller, P. Stone and D. Yang, “Automated intersection
control: Performance of future innovation versus current traffic signal control”,
Transportation Research Record: Journal of the Transportation Research Board 0,
2259, 223–232 (2011).

Farhadi, M. et al., “A novel design of adaptive and hierarchical convolutional neural
networks using partial reconfiguration on fpga”, in “High Performance Extreme
Computing Conference”, (IEEE, 2019).

Fayazi, S. A. and A. Vahidi, “Vehicle-in-the-loop (vil) verification of a smart city
intersection control scheme for autonomous vehicles”, in “2017 IEEE Conference
on Control Technology and Applications (CCTA)”, pp. 1575–1580 (IEEE, 2017).

Fayazi, S. A. and A. Vahidi, “Mixed-integer linear programming for optimal schedul-
ing of autonomous vehicle intersection crossing”, IEEE Transactions on Intelligent
Vehicles 3, 3, 287–299 (2018).

Fayazi, S. A., A. Vahidi and A. Luckow, “Optimal scheduling of autonomous vehicle
arrivals at intelligent intersections via milp”, in “American Control Conference
(ACC), 2017”, pp. 4920–4925 (IEEE, 2017).

Feng, Y., C. Yu and H. X. Liu, “Spatiotemporal intersection control in a connected
and automated vehicle environment”, Transportation Research Part C: Emerging
Technologies 89, 364–383 (2018).

Filocamo, B., J. A. Ruiz and M. A. Sotelo, “Efficient management of road inter-
sections for automated vehicles—the frfp system applied to the various types of
intersections and roundabouts”, Applied Sciences 10, 1, 316 (2020).

Fitzpatrick, K., W. Schneider and H. William, “Turn Speeds and Crashes within
Right-turn Lanes”, Tech. rep., Texas Transportation Institute, Texas A & M Uni-
versity System (2005).

Fok, C.-L., M. Hanna, S. Gee, T.-C. Au, P. Stone, C. Julien and S. Vishwanath, “A
platform for evaluating autonomous intersection management policies”, in “Cyber-
Physical Systems (ICCPS), 2012 IEEE/ACM Third International Conference on”,
pp. 87–96 (IEEE, 2012).

Fuentes-Pacheco, J., J. Ruiz-Ascencio and J. M. Rendón-Mancha, “Visual simulta-
neous localization and mapping: a survey”, Artificial Intelligence Review 43, 1,
55–81 (2015).

Gazebo, “Robot simulator”, http://gazebosim.org/, [Online; accessed 03-June-
2019] (2019).

Gelfand, I. M., R. A. Silverman et al., Calculus of Variations (Courier Corporation,
2000).

Gregoire, J., S. Bonnabel and A. de La Fortelle, “Optimal cooperative motion plan-
ning for vehicles at intersections”, arXiv preprint arXiv:1310.7729 (2013).

149



Gross, J., Y. Gu, S. Gururajan, B. Seanor and M. Napolitano, “A comparison of
extended kalman filter, sigma-point kalman filter, and particle filter in gps/ins
sensor fusion”, in “AIAA guidance, navigation, and control conference”, p. 8332
(2010).

Guler, S. I., M. Menendez and L. Meier, “Using connected vehicle technology to
improve the efficiency of intersections”, Transportation Research Part C: Emerging
Technologies 46, 121–131 (2014).

Guney, M. A. and I. A. Raptis, “Scheduling-based optimization for motion coordina-
tion of autonomous vehicles at multilane intersections”, Journal of Robotics 2020
(2020).

Gustafsson, J., A. Ermedahl, C. Sandberg and B. Lisper, “Automatic Derivation of
Loop Bounds and Infeasible Paths for WCET Analysis using Abstract Execution”,
in “Real-Time Systems Symposium, 2006. RTSS’06. 27th IEEE International”, pp.
57–66 (IEEE, 2006).

Hadjigeorgiou, A. and S. Timotheou, “Optimizing the trade-off between fuel con-
sumption and travel time in an unsignalized autonomous intersection crossing”, in
“2019 IEEE Intelligent Transportation Systems Conference (ITSC)”, pp. 2443–2448
(IEEE, 2019).

Hafizulazwan, B. M. N. M., “Optimal scheduling of connected and automated vehicles
at urban intersections via milp”, in “Proceedings of Joint Conference on Automatic
Control”, pp. 160–165 (J-Stage, 2018).

Hardy, D. and I. Puaut, “WCET Analysis of Multi-level non-inclusive Set-associative
Instruction Caches”, in “Real-Time Systems Symposium, 2008”, pp. 456–466
(IEEE, 2008).

Hausknecht, M., T.-C. Au and P. Stone, “Autonomous intersection management:
Multi-intersection optimization”, in “Intelligent Robots and Systems (IROS), 2011
IEEE/RSJ International Conference on”, pp. 4581–4586 (IEEE, 2011).

Hubmann, C., M. Becker, D. Althoff, D. Lenz and C. Stiller, “Decision making for
autonomous driving considering interaction and uncertain prediction of surrounding
vehicles”, in “2017 IEEE Intelligent Vehicles Symposium (IV)”, pp. 1671–1678
(IEEE, 2017).

Jin, Q., G. Wu, K. Boriboonsomsin and M. Barth, “Advanced intersection manage-
ment for connected vehicles using a multi-agent systems approach”, in “Intelligent
Vehicles Symposium (IV), 2012 IEEE”, pp. 932–937 (IEEE, 2012a).

Jin, Q., G. Wu, K. Boriboonsomsin and M. Barth, “Multi-agent intersection man-
agement for connected vehicles using an optimal scheduling approach”, in “Con-
nected Vehicles and Expo (ICCVE), 2012 International Conference on”, pp. 185–
190 (IEEE, 2012b).

Jin, Q., G. Wu, K. Boriboonsomsin, M. J. Barth et al., “Platoon-based multi-agent
intersection management for connected vehicle.”, in “ITSC”, pp. 1462–1467 (2013).

150



Kant, K. and S. W. Zucker, “Toward efficient trajectory planning: The path-velocity
decomposition”, The international journal of robotics research 5, 3, 72–89 (1986).
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APPENDIX A

CONTROLLER DESIGN OF CROSSROADS+
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For controller design, there are three gains to be determined: KP , KI , and KD.
Different values of KP , KI , and KD will lead to different response times to achieve
the target velocity. It is desired that the PID gains are such that the target velocity is
achieved quickly. We use settling time as a metric for the CAV response time, which
is defined as “the time it takes to reach and stay within 2% of the final value” and
can be calculated as Tay et al. (2012):

Ts =
3.9

ζωn
(A.1)

where ζ is the damping ratio and ωn is the natural frequency of the system Tay et al.
(2012):

ζ =
KP√

KI(1 +KD)

ωn =

√
KI

1 +KD

We define a cost function to minimize the settling time of the system:

min
1

ζωn
(A.2)

Based on the values of the PID controller (KP , KI , KD), roots of the characteristic
Equation (3.11) can be pure real or complex that correspond to overdamped and
underdamped responses respectively. An underdamped response is not suitable for
controlling the velocity because CAV’s velocity will oscillate (around the set target
velocity) before reaching the steady state. As a result, we only consider an over-
damped situation (no oscillation). We rewrite the this requirement as a constraint
for the optimization problem:

K2
P − 4KI(1 +KD) > 0

Also, to ensure the stability of the closed-loop system, we have:

KP >
√
K2
P − 4KI(1 +KD)

A.1 Position Discrepancy for Saturated Case

The acceleration at time zero for the saturate case will be:

ȧ(0) = A2c1 +B2c2

=
(vT − v0)
A−B

(−BA2 + AB2)

= (v0 − vT )(A2 +B2)

Since the value of A or B is selected to be large, the initial acceleration will be large
enough.
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We can calculate the position error for the actual behavior with saturated accel-
eration:

e =

∫
vTdt−

∫
v′(t)dt

=

∫ ts

0

vTdt− (A.3)(∫ tSAT

0

(v0 + amaxt)dt+

∫ ts

tSAT

(c′1e
At + c′2e

Bt + vT )dt

)
We can use a change of variable (t′ = t− tSAT ) in the last integral as:∫ ts−tSAT

0

(c′1e
At′ + c′2e

Bt′ + vT )dt′

Finally, we can calculate the error as:

e = vT ts−(amax(tSAT )2

2
+ v0tSAT + vT (tc − tSAT −

c′1
A
− c′2
B

)
)

(A.4)

A.2 Real-life Projection

In this section, we elaborate on details of how Crossroads+ can be implemented
in real-life.

A.2.1 Slow-down Line

Slow-down lines are computed according to the max velocity and maximum decel-
eration rate of each CAV. Assuming a CAV is driving at velocity v and has maximum
deceleration amin, it will take

tSD =
v

amin
(A.5)

seconds to come to a complete stop if the settling time of the response is short.
Plugging in the deceleration time into the equation of motion of CAV, we can calculate
the travel distance:

DSDL =
1

2
amin

( v

amin

)2
+ v
( v

amin

)
(A.6)

Simplifying, we can obtain the distance of the slow-down line (DSDL) from the stop
lines (transmit line and edge of the intersection):

DSDL =
3v2

2amin
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A.2.2 Transmit Line

As we have discussed in previous sections, a key assumption is that CAVs are able
to reach the assigned velocity before they reach the conflict point (xc). As a result,
we need to ensure that the transmit line is set sufficiently back from the intersection.
By doing so, the IM would also be more flexible to assign a safe velocity to CAVs
because not all CAVs are able to accelerate/decelerate quickly when the distance for
the response is short.

According to Equation (3.3), the actuation time will be set ∆tWCRTD seconds after
the request time. As a result, the CAV requires v0(∆tWCRTD) meters space while it’s
waiting for the response. Additionally, a CAV requires some time to maintain the
target velocity which will be the summation of acceleration time under saturated
acceleration (if any) and settling time of the controller. We can find the required
distance as:

𝚫𝐭𝐖𝐂𝐑𝐓𝐃 + 𝛜

Time

Target Velocity is 

Maintained.

Receive 

Time

Actuation 

Time

Round-trip Delay

Request 

Time 

(Transmit 

Line)

𝑣𝑚𝑎𝑥

𝑣𝑇

Vehicle

IM

Time

Figure A.1: In the Worst-case Behavior, a CAV Is Driving at the Maximum Velocity
and the Assigned Target Velocity Is the Minimum Possible Velocity.

DTL = v0(∆tWCRTD) +
vT − v0
amin

(vT − v0
2

)
+ Ts(v

AV G
S ) (A.7)

In this equation, DTL is the required distance for the transmit line, v0 is the initial ve-
locity of the CAV, vT is the target velocity assigned to the CAV, amax is the maximum
acceleration during the saturated behavior, Ts is the settling time of the controller
(see Equations (A.1) and (A.2)) and vAV Gs is the average velocity of the CAV during
the settling time. We can find the worst-case scenario (maximum required distance)
as:

DTL = vmax(∆tWCRTD) +
vmax
aslowestmin

(
vmax

2
) + Ts(vmax) (A.8)

aslowestmin is the slowest deceleration rate among all CAVs. We use an upper bound for
vAV GS and replace it with vmax to make the calculation easier. Figure A.1 shows the
scenario where the traveled distance is longest. Assuming that vmax = 20m/s (≈ 45
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mph), aslowestmin = 3m/s2, ∆tWCRTD + ε = 1s and Ts = 0.1s, we can find the distance of
the transmit line from the edge of the intersection for a real scenario as DTL = 88.6m.
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