
Cooperative Driving of Connected Autonomous Vehicles Using
Responsibility-Sensitive Safety (RSS) Rules

Mohammad Khayatian
1
, Mohammadreza Mehrabian

1
, Harshith Allamsetti

2
, Kai-Wei Liu

3
, Po-Yu

Huang
3
, Chung-Wei Lin

3
, Aviral Shrivastava

1

1
Arizona State University,

2
Western Digital,

3
National Taiwan University

ABSTRACT
Connected Autonomous Vehicles (CAVs) are expected to enable

reliable and efficient transportation systems. Most motion planning

algorithms for multi-agent systems are not completely safe because

they implicitly assume that all vehicles/agents will execute the

expected plan with a small error. This assumption, however, is hard

to keep for CAVs since they may have to slow down (e.g., to yield to

a jaywalker) or are forced to stop (e.g. break down), sometimes even

without a notice. Responsibility-Sensitive Safety (RSS) defines a set

of safety rules for each driving scenario to ensure that a vehicle

will not cause an accident irrespective of other vehicles’ behavior.

RSS rules, however, are hard to evaluate for merge, intersection,

and unstructured road scenarios. In addition, deadlock situations

can happen that are not considered by the RSS. In this paper, we

propose a generic version of RSS rules for CAVs that can be applied

to any driving scenario. We integrate the proposed RSS rules with

the CAV’s motion planning algorithm to enable cooperative driving

of CAVs. Our approach can also detect and resolve deadlocks in a

decentralized manner. We have conducted experiments to verify

that a CAV does not cause an accident no matter when other CAVs

slow down or stop. We also showcase our deadlock detection and

resolution mechanism. Finally, we compare the average velocity

and fuel consumption of vehicles when they drive autonomously

but not connected with the case that they are connected.

CCS CONCEPTS
• Computer systems organization→ Robotic autonomy.

KEYWORDS
Connected Autonomous Vehicles, City-Wide Traffic Management,

Intelligent Transportation Systems

1 INTRODUCTION
Autonomous Vehicles (AVs) have the potential to make transporta-

tion safer by reducing the number of accidents that are caused due

to human error. When AVs become connected (which are referred

to as Connected Autonomous Vehicles (CAVs)), they can further

improve road safety by sharing their information with each other

such as position, velocity, future plans, etc. In addition, CAVs are

projected to improve fuel consumption, travel time, and passenger

comfort through cooperative driving.

Achieving cooperative behaviors among robots is typically stud-

ied under multi-agent motion planning in the robotics domain [1, 2].

In the Intelligent Transportation Systems (ITS) domain, many tech-

niques [3] are proposed where CAVs share their information with

each other (through V2V) or the infrastructure (through V2I) to

perform traffic management at intersections [4–7], or merge points

[8–10].

In general, existing motion planning algorithms and traffic man-

agement techniques consider a safety buffer around each vehicle

to cover for uncertainties in the localization and trajectory track-

ing, and then a reference trajectory is determined. A trajectory

is considered to be safe if the safety buffer of a vehicle does not

overlap with obstacles or other vehicles’ safety buffer at any point

in time. While reasonable, this definition may not provide absolute

safety because it implicitly assumes that all vehicles will follow the

expected plan (with small errors that are within the safety buffer).

However, any disruption in the plan can result in an accident. For

example, consider a scenario when two vehicles are driving on a

street, one behind the other. If the front vehicle suddenly stops for

any unplanned reason (e.g. yielding to a jaywalker), then the rear

vehicle may hit the front car. In common driving parlance – the

rear vehicle should not tail-gate the front vehicle.

Responsibility-Sensitive Safety (RSS) approach [11] from Mobil-

eye+Intel addresses the safety issue from the legal/blame perspec-

tive and allows vehicles that have the right-of-the-way according

to the rules of the road to change their plans. RSS proposes a set

of safety rules such that if a vehicle abides by these rules, then it

cannot be blamed for an accident. In the scenario that is mentioned

above, RSS rules are used to determine the minimum distance at

which the rear vehicle should follow the front one so that it will be

able to stop without causing an accident even in the worst-case sce-

nario. RSS uses a lane-based coordinate system to define lateral and

longitudinal distances between vehicles depending on the driving

scenario. The main shortcoming of RSS is that it is scenario-based

and not all scenarios can be evaluated intuitively because longitu-

dinal and lateral distances are vague for merges, intersections, and

unstructured roads where lane markings are not provided. The first

contribution of this paper is to provide a trajectory-based defini-

tion for RSS rules, that works in all situations, including merges,

intersections, and unstructured roads.

When CAVs interact with each other, they may face a dead-

lock situation where they yield to each other for an indefinite

time. Researchers have proposed methods to detect and resolve

deadlocks at intersections [6, 12, 13] and roundabouts [14]. In ex-

isting approaches, the intersection/roundabout area is divided into

a grid of zones, and vehicles that intend to occupy the same zone

are said to have a conflict. Then, the dependencies between CAVs

(who should enter a conflict zone first and who enters second) are

represented with a directed graph, and deadlocks are resolved by

removing cycles in the graph. One of the limitations of existing

approaches is that they use fixed grid of zones to detect conflicts

between vehicles and the size of each zone affects the efficiency

of the conflict detection algorithm since using coarse grids makes

the schedule pessimistic and using fine grids increases the number

of checks. Furthermore, in existing approaches, the dependency

graph is computed individually by each CAV, which is extremely

inefficient because the same computing is done redundantly and

the overhead grows as the number of vehicles increases. As the

second contribution of this paper, we propose an efficient and de-

centralized approach to detect and resolve deadlock where each

CAV determines only its own conflicts.

In this paper, we present a cooperative driving and deadlock

resolution approach for CAVs. Instead of a lane-based coordinate

system, we use future trajectories of CAVs to represent their con-

flicts, which can be applied to any road geometries and situations.

Inspired by the RSS legal/blame perspective, we develop a new set

of safety rules for CAVs to guarantee that no accidents happen if

CAVs abide by proposed RSS rules. We also provide an efficient

and decentralized deadlock detection and resolution algorithm for

CAVs. The integration of the proposed RSS safety rules and dead-

lock resolution algorithms with motion planning is also provided.

Results from conducting experiments on our realistic simulator

–that considers vehicle dynamics and network delay– demonstrate

that all CAVs remain safe even if one or more CAVs slow down or

stop at any point in time. We evaluate the efficiency of our approach

by comparing the average travel time of CAVs with a case that ve-

hicles are autonomous but not connected. Finally, we showcase our

deadlock resolution mechanism for an intersection scenario.

2 RELATEDWORK
In the ITS domain, many researchers have proposed methods to

cooperatively manage CAVs at intersections [3–7, 15–18], round-

abouts [19], ramp-merging [8–10], performing cooperative lane

changing [20, 21], forming platooning in highways [22, 23]. Such

approaches can only be applied to a specific scenario and do not

scale. There have been a number of cooperative approaches that

are not scenario-based. In the method proposed by During et al.
[24, 25], the ego CAV first determines a set of possible maneuvers

that can resolve the conflict and then, select the one that has the

lowest cost. The cost is determined based on energy consumption,

time of maneuver, and driving comfort. In another work, Chen et
al. [26] proposed a cooperative driving algorithm where the driv-

ing information of neighboring CAVs is obtained and the desired

velocity is predicted using a Recursive Neural Network (RNN). A

motion planner is developed using the predicted velocity using a

fuzzy path-following controller. These approaches, however, do

not consider cases where a CAV is unable to perform the desired

maneuver/follow the assigned trajectory.

In the robotics domain, many researchers have focused on multi-

agent motion planning algorithms problem [1, 2]. In general, co-

operative motion planning algorithms can be categorized as dis-

tributed [27] and centralized [28]. In distributed approaches, each

agent computes a path such that it avoids obstacles and other agents

while in centralized approaches, a central planner (could be on each

agent) computes the plan for all agents by exploring the whole

design space. In general, distributed approaches are more popular

as they require less computation and more resilient to changes in

the plan or uncertainty. Existing motion planning algorithms for

multi-agent systems and traffic management approaches for CAVs

provide safety proofs based on the assumption that all agents stick

to their plan or error is small. In the real world, CAVs may have

to slow down and stop due to unforeseen reasons e.g. a CAV may

break down. As a result, existing techniques are not absolutely safe

for CAVs.

In 2017, researchers from Mobileye proposed a set of rules called

RSS [11], which determines the minimum distance that an AV must

maintain from other vehicles in order to remain safe and not being

blamed for an accident. RSS rules consider the worst-case scenario

for other vehicles and the ego vehicle (during the response time) to

provide safety guarantees. RSS rules have been used to develop a

monitoring system [29] and are implemented in the Carla simulator.

In [5], researchers have proposed to use surveillance cameras [30]

to check for rogue cars at the intersection and provide safety con-

sidering the worst-case scenario similar to RSS.

The main issue with RSS is that it uses a lane-based coordinate

system and safety rules are defined based on longitudinal (towards

the lane) and lateral (perpendicular to the lane) distances, which

is hard to evaluate for intersections, merges or unstructured road

scenarios where no roadmarkings are present. In addition, RSS rules

do not consider the interaction among other CAVs and therefore,

cannot detect cases where a deadlock happens.

Researchers have proposed algorithms to detect and resolve

deadlocks at intersections [6, 12], roundabouts [14] and network of

intersections[13]. In such approaches, a set of pre-defined zones is

used to represent the occupancy of CAVs. Next, a wait-for graph

is created to represent dependency between vehicles for entering

conflict zones, and deadlocks are identified by detecting cycles in

the graph. However, using fixed conflict zones to detect a conflict

and perform deadlock resolution is either inefficient (for coarse

zones) or compute-intensive (for fine zones). Furthermore, existing

approaches do not consider vehicle dynamics when resolving a

deadlock and assume that a deadlock is resolved in one-shot. While

in reality, it takes some time for CAVs to slow down/speed up and

resolve a deadlock.

3 GENERIC FORMULATION OF RSS RULES
In this section, we introduce a trajectory-based formulation for RSS

rules. The advantage of this approach is that the rules are generic

and can be applied to all cases, including unstructured roads.

Given the future paths of CAVs are known, each CAV can deter-

mine the set of conflict zone C . A conflict zone, Ci ⊂ C is defined

as a convex contour that includes a subset of two CAVs’ future path

(FP) where the distance between the future paths is less than a

threshold, dth . Since two CAVs may have more than one conflict,

only consecutive edges that have a distance of less than dth are

considered to be a part of the same conflict zone. The midpoints

of the edges are used to calculate the distance between two edges

from two future paths. To specify the boundaries of a conflict zone,

midpoints of first and last edges are used.

Based on the road geometry and rules of the road, every pair of

CAVs can determine who has the advantage to enter the conflict

zone first and who has the disadvantage. For simplicity, we assume

the CAV with the earlier arrival time has the advantage. Without

loss of generality, we assume that one of the CAVs has the advantage

and the other one has disadvantage. We represent the distance of

2

the CAV with the advantage from the beginning of the conflict

zone and from the end of the conflict zone with dAbeдin and dAend ,

respectively. Similarly, we represent the distance of the CAV with

disadvantage from the beginning of the conflict zone with dDbeдin .

Figures 1, 2, and 3 show different scenario where the dAbeдin , d
A
end

and dDbeдin are shown. We assume that Equation (1) represents the

dynamics of each CAV. We assume the following vehicle dynamics

for the CAV.
Ûx = v cos(ϕ);

Ûy = v sin(ϕ);
Ûϕ = v

L tan(ψ);

Ûv = a,

(1)

where x and y represents the position of the ego CAV in Carte-

sian coordinates, ϕ is the CAV’s heading angle from the x-axis,

v and a are linear velocity and acceleration of the CAV respec-

tively, L is CAV’s wheelbase distance and ψ is steering angle of

front wheels with respect to the heading of the CAV. In order to

make the model more realistic, we consider an upper bound and a

lower bound on the acceleration rate and steering angle of a CAV

as: a ∈ [amin,amax] andψ ∈ [ψmin,ψmax] where amax and amin
are the maximum acceleration and deceleration rates and ψmax
andψmin are the maximum and minimum steering angles of the

vehicle.

For simplicity, the trajectory of each CAV is projected onto its

path and represented with the double-integrator model. As a result,

the stop distance of the CAV with advantage is calculated as:

dAstop =
v2A

2|abrake |
. (2)

We assume that each CAV broadcast its information every T mil-

liseconds and the worst-case end-to-end delay (ρ) is 2T . Taking into
account the delay, the worst-case stop distance of the CAV with

disadvantage is calculated as:

dDstop = vDρ +
1

2

aACCρ
2 +

(vD + aACCρ)
2

|2abrake |
. (3)

The first two terms (vDρ and
1

2
aACCρ

2
) indicate that the CAV with

disadvantage may be accelerating in the worst-case scenario while

waiting for broadcast information from the CAV with advantage. If

the distance of the CAV with advantage form the end of the con-

flict zone is greater or equal to the stop distance of the CAV with

advantage (dAend ≥ dAstop), there is a possibility that it may slow

down and stop inside the conflict zone and block the CAV with

the disadvantage. Otherwise, there is no conflict. Accordingly, we

define the modified RSS rule as:

Definition 1. General RSS Rule: Given the entering order of
CAVs to a conflict zone is known, the minimum safe distance to main-
tain from the conflict zone (dDSAFE) for the CAV with disadvantage
is:

dDSAFE =

{
dDstop − dAscenar io +

V LA+V LD
2

, if dAend > dAstop ;

0, otherwise.
(4)

and
dDSAFE > vDρ +

1

2

aACCρ
2. (5)

where dAscenar io is the scenario-dependent distance that the CAV with
advantage travels inside the conflict zone, and VLA and VLD are
the vehicle length for the vehicle with advantage and disadvantage,
respectively.

Since the distance values are calculated based on the center of

CAVs, the term
V LA+V LD

2
is added. To make sure the travelled

distance during the response time of the CAV with disadvantage is

not greater than the safe distance, the second Equation 5 should be

satisfied too.

Lemma 3.1. If the CAV with disadvantage always maintains a
distance of at least dDSAFE from its conflict zone, it will not hit the
CAV with advantage even if it changes its plan and decelerates at any
point in time.

Proof. If the distance of the CAV with the advantage from the

end of the conflict zone is smaller than its stop distance, dAend <

dAstop , it will stop outside of the conflict zone even if it decelerates

at a rate of smaller than or equal to abrake . If the distance of the
CAV with the advantage from the end of the conflict zone is greater

than its stop distance, dAend > dAstop , it may stop inside the conflict

zone if it decelerates. In this case, the CAV with disadvantage will

be notified after ρ milliseconds in the worst-case scenario. If the

CAVwith disadvantage accelerates at a rate of smaller than or equal

to aACC during this time interval (ρ) and then decelerates at a rate

of abrake , its stop distance will be equal to dDstop (Equation (3))

and it will not enter the conflict zone and no accident will happen.

For scenarios where the scenario-dependent distance is not zero,

dAscenar io > 0 (same lane and merge), the paths of the CAVs overlap

and if the CAV with advantage decelerates, it will allow the CAV

with disadvantage to travel through the conflict zone by dAscenar io
and still be safe. As a result, the required safe distance is dDstop −

dAscenar io . □

Next, we study a few case studies and show how the safe RSS

distance is calculated for each scenario.

3.1 Same Lane
Let us consider a scenario where two CAVs are driving in the same

lane as depicted in Figure 1. The front CAV has the advantage since

Figure 1: An example of a same lane scenario with two CAVs.
The front CAV has the advantage and its distance from the
conflict zone is zero. The conflict zone is highlighted in or-
ange.

its arrival time at the conflict zone is smaller than the rear CAV.

3

Since the paths of the front CAV overlaps with the path of rear

CAV, dAscenar io = d
A
stop , which means the front CAV travels dAstop

meters inside the conflict zone before a complete stop and the rear

CAV has dAstop meters more to stop. According to Equation (4), the

required safe distance for the rear CAV (dDSAFE) to maintain from

the conflict zone/front CAV is:

dDSAFE = d
D
stop − dAstop +

VLD +VLA
2

.

dDstop and dAstop are calculated according to Equations (2) and (3).

3.2 Intersection
Now, let us consider a scenario where two CAVs approach an inter-

section and their future path crosses inside the intersection area as

it is depicted in Figure 2. We assume the arrival time of the green

Figure 2: A scenario with two CAVs approaching an inter-
section and their future path intersect. It is safe to enter the
conflict zone after the other CAV leaves conflict zone.

CAV to be earlier than the blue CAV and therefore, it has the ad-

vantage. If the green CAV stops anywhere inside the conflict zone,

it’s not safe for the blue CAV to enter the conflict zone. Therefore,

the scenario-dependent distance is zero, dAscenar io = 0. As a result,

we have:

dDSAFE =

{
dDstop +

V LA+V LD
2

, if dAend ≥ dAstop ;

0, otherwise.

If the distance of the green CAV from the end of the conflict zone

is smaller than its stop distance, even in the worst-case (if it decel-

erates at the maximum rate), it will stop outside the conflict zone

and does not cause a conflict for the blue CAV. In this case, there

will be no conflicts and dDSAFE = 0.

3.3 Merge
Next, we consider a merge scenario where two CAVs merge into

the same lane as it is shown in Figure 3. Without loss of generality,

we assume one of the CAVs (green one) has the advantage and

the other CAV has disadvantage respectively. In this scenario, the

scenario-dependent distance is

dAscenar io =

{
0, if dAstop < dmerдe ;

dAstop − dAmerдe), if dAstop ≥ dmerдe ,
(6)

Figure 3: A scenario where two CAVs are expected to be
merged into the same lane. The CAV with earlier arrival
time has the advantage.

where dAmerдe is the distance of the CAV with advantage from

the merging point, which is indicated in Figure 3. As a result, the

blue CAV must maintain a minimum distance of

dDSAFE = d
D
stop −min(0,dAstop − dAmerдe) +

VLD +VLA
2

from the conflict zone. Note that once the blue CAV reaches the

merge point, the dAscenar io is changed. The lateral case in the origi-

nal RSS rules (two CAVs driving on adjacent lanes) can be modeled

like a merging case. If any of the CAVs attempts to merge into the

other CAV’s lane, it is only allowed if the created conflict zone is

far enough from the other CAV i.e. at least dmax .

4 COOPERATIVE DRIVING OF CAVS
In this section, we first present the algorithm that runs on each

CAV assuming no deadlock situation happens. In the next section,

we explain the deadlock resolution algorithm.

4.1 Main Algorithm
Given the initial position and final destination of a CAV are known,

the motionPlanner uses the world’s map to determine the shortest

route (R) that connects CAV’s current position to the destination.

We assume at least one feasible path exists that connects CAV’s

current location to its destination. The map,M(N , E), is a directed
graph where N is the set of nodes (waypoints) and E is the set of

edges (connections between waypoints). Each edge has a weight,

w , which indicates the minimum travel time for that segment of

the road. In our algorithm, we assume the ego CAV’s computation

time and communication time are bounded by T .
In a periodic manner, each CAV broadcasts its ID, position, ve-

locity, timestamp, and its future path (FP), which is an array of

x-y coordinates. We assume that all CAVs synchronize their clock

using GPS so that timestamps are captured with clocks that have

almost the same notion of time. When the CAV receives the in-

formation of other CAVs, it checks if their paths intersect or the

distance between their paths is less than a threshold. If so, the

CAV computes a set of conflict zones (C). For each conflict zone,

the CAV determines which vehicle has the advantage to enter the

conflict zone first based on who is expected to reach the conflicting

zone first. To detect possible deadlocks, the CAV computes a graph

called Partial Dependency Graph (PDG), which represents the de-

pendency among other CAVs and itself (who should yield to who

4

Algorithm 1: CAVs algorithm

while has not reached the destination do
FP = compute_future_path();

CAV_info = [x, y, v, ts, FP, ID];

broadcast(CAV_info);

others_info = receive_other_CAVs_info();

for each member of other_CAVs_info do
[C, PDG] = find_conflict_zones(CAV_info,

others_info);

end
broadcast(PDG);

others_PDG = receive_other_PDGs();

CDG = construct_CDG(PDG, other_PDGs);

C = deadlock_resolution(C, CDG);

if ego CAV has disadvantage over a conflict zone then
[FP, velocity] = motion_planner(C , Map);

end
motionController(FP, Velocity);

end

over a conflict zone). Next, the CAV broadcasts the computed PDG,

and after receiving other CAVs PDG, it constructs the Complete

Dependency Graph (CDG) to detect and resolve possible deadlocks.

Finally, if the CAV has disadvantage over a conflict zone, it com-

putes a safe velocity so that it always maintains a safe distance from

that conflict zone. Based on the determined velocity, the weight

of some of the edges are updated to reflect the presence of other

CAVs and to make sure a safe distance is always maintained from

the conflict zone. Then, the motion planner runs the shortest path

algorithm again to check if a shorter path exists that does not cause

a new conflict. Finally, the motion controller uses a subset of future

waypoints and velocities of corresponding edges to determine the

desired velocity and control inputs (steering angle and acceleration)

for the CAV. Alg. 1 shows the pseudo-code of our algorithm that

is executed on each CAV. To have a better understanding of our

algorithm, we have depicted different components of our approach

and their relationship in Figure 4. Next, we will focus on explaining

the functionality of each component of the algorithm.

4.2 Future Path Computation
Each CAV broadcasts its ID, position (x,y), velocity (v), and the cor-
responding timestamp (ts) as well as its future path ((x1,y1), ..., (xn,yn)).
Assuming the CAV’s motion controller is tuned to have a short set-

tling time, the CAV will track its path with a negligible error. As a

result, we represent the future position of the CAV with a subset of

its expected route (R). Given R ⊂ M(N , E) is the route of the CAV,
the future path of the CAV, FP ⊂ R is calculated as follows which

consists from n points:

FP =

{
(xi ,yi) ∈ R

����(i=n∑
i=2

√
(xi − xi−1)2 + (yi − yi−1)2

)
< dmax

}
,

(7)

Map
Graph

Other CAVs'
Future

Trajectories

Motion
Planner

(4.4)

CDG
Construction

(5)

Deadlock
Detection &
Resolution

(5)

Conflict Zone
Detection

(4.3)

Future Path
Computation

(4.2)

Map V2V Module

Other CAVs’
PDGs

PDG

CAV's Future Path

Updated Set
of Conflict
Zones (C)

CDG

Waypoints and Velocities

Set of
Conflict

Zones (C)

Motion
Controller

(4.5)

(())Throttle, Brake,
and Steering

Vehicle State

Figure 4: Overview of our approach. Details of each compo-
nent –except V2X module and map– are explained later.

where dmax is the fixed length of the future path calculated as:

dmax = vmax (ρ + tb). (8)

ρ represents the worst-case end-to-end delay from one CAV captur-

ing its information and broadcasting it, to another CAV’s actuation

based on the received information (see Figure 5) and tb is the worst-

case brake time which can be calculated as tb =
vmax
|abrake |

. Figure 5

shows the execution profile of our algorithm on two CAVs (i and
j). Let us assume that CAVs i and j have a conflict and CAV i (top)
has the advantage. If CAV i slows down due to any reason right

after sensing and broadcasting its info, the CAV j will not be noti-
fied until receiving the next broadcast. As a result, the worst-case

end-to-end delay (ρ) is bounded by 2T as depicted in Figure 5. By

𝑇 𝑇 𝑇

𝐶𝐴𝑉𝑖

𝐶𝐴𝑉𝑗

Sensing Actuation

worst-case end-to-end delay

in
fo

P
D

G

in
fo

P
D

G

in
fo

P
D

G

Figure 5: CAVs perform computation and communication in
a synchronizedmanner. Theworst-case sensing to actuation
delay corresponds to the case that CAVi breaks down right
after sensing.

computing the dmax based on the worst-case info sharing delay

and worst-case braking time, we ensure that for the first time that

two CAVs detect that they have a conflict, the CAV with the disad-

vantage have enough distance to safely stop without entering the

conflict zone, even in the worst-case scenario.

4.3 Conflict Zone Detection
Despite existing approaches that use fixed conflict zones, we use

CAV’s expected trajectory to detect a conflict zone. As mentioned

5

before, CAVs’ future paths (FP) are used to represents their expected
future position. First, CAVs computes the distance between the

mid point of edges on their path. All contiguous edges that have

a distance less than dth are considered to be a part of the same

conflict zone. Two CAVs may have multiple conflicts on their path

as depicted in Figure 6. Each conflict zone Ci is a data structure

Conflict

Zone 1

Conflict

Zone 2

Figure 6: An example of two CAVs with arbitrary paths and
two conflict zones. The conflict zone includes parts of the
CAV path (waypoints) where the distance between paths of
CAVs is less than a threshold.

that includes waypoints that are inside the conflict zones, distance

of CAVs from the the beginning and end of the conflict zone, their

expected arrival time at the conflict zone (Equation 9) and the ID

of the CAV that has the advantage. We compute the arrival time

assuming the CAV drives at a constant velocity.

TOAi =
dibeдin

vi
, (9)

where dibeдin is the distance of the CAV i from the conflict zone

and vi is the velocity of the CAV i . Since the algorithm is executed

periodically (every T ms), the value of TOAi is updated as the

velocity of the CAV changes. If a CAV is stopped inside a conflict

zone, its arrival time is set to zero. By default, the CAV with the

earliest arrival time will have the advantage unless it is changed to

resolve a deadlock (explained in the next section) or the other CAV

has a priority (e.g. opposite direction). If two CAVs have the same

arrival time, the CAV with the lower ID will have the advantage to

break the tie. In addition, if the difference between the arrival times

of two CAVs is within the accuracy of the clock synchronization (±

10 nanoseconds for GPS), they use CAVs ID to determine who has

the advantage.

4.4 Motion Planner
If a CAV has disadvantage over a conflict zone, it first checks if

an alternative path exists such that it avoids all the conflicts. If

such a path exists, the CAV selects that path and if not, the CAV

calculates a safe velocity (vSAFE) to be maintained so that the CAV

is always safe. The safe velocity, vSAFE , is determined based on

the minimum safe distance that the ego CAV must maintain from

the conflict zone given that other CAV –which has the advantage–

may slow down at any point in time and stop inside the conflict

zone.

Maximum Safe Velocity: For each segment of the road that

has a distance of dC from the conflict zone, the maximum safe

velocity is computed using Equation (10).

vSAFE =
−(2ρaACC + 2|abrake |) +

√
∆

2

, (10)

where∆ = 4(a2brake+2aACCρabrake−aACCρ
2abrake−2dC |abrake |).

Equation (10) is determined by solving Equation (3) for vD when

the distance from the conflict zone is dC . dC can be calculated using

Equation (13). Equation (10) ensures that the CAV with disadvan-

tage has always a minimum distance of dDSAFE from the conflict

zone.

Once the safe velocity is determined for each conflict zone (Ci),
the motion planner updates weights of the mapM(N , E), to account
for the presence of other CAVs and generates safe velocities for

the motion controller. To account for the presence of other CAVs,

the motion planner determines,U the set of all edges (ei) that are
connected to waypoints that are on the future path of other CAVs

U = {ei ∈ E |ei ∈ connected(FP)}, (11)

where connected(FP) is the set of all edges that are connected to

waypoints in the set FP . To account for the safe RSS distance, the

motion planner determines UD , the set of all edges that are con-
nected to the waypoints that are on the future path of the CAV with

disadvantage (FPD) and are either a member of the conflict zone

set (C) or within the safe distance (dDSAFE) of the conflict zone.

UD = {ei ∈ E |ei ∈ connected(FPCD)}, (12)

where connected(FPCD) is the set of all edges that are connected to

waypoints in the set FPCD . Figure 7 shows a merge scenario and

CAV’s future paths. Weights of all edges connected to nodes that

are on the path of the CAV with advantage (depicted in green) and

all edges that are on the path of the ego CAV and are either within

the safe distance of or inside the conflict zone are updated. The set

UD andU are highlighted on the path of CAVs. The subset of future

Advantage

Updated

Weights
𝑑𝑆𝐴𝐹𝐸
𝐷

Conflict

Zone

𝑈𝐷

𝑈

Figure 7: Weights of the edges on the path of the other CAV
and edges on path of the ego CAV are updated to account for
the presence of other CAVs as well as the conflict zone and
the required safe distance.

point, FPCD , is determined as:

FPCD = {ni ∈ N |ni ∈ FPD and ni ∈ C or ni ∈ within(Cj)}

within(Cj) is the set of all waypoints that where their distance from

the conflict zone j is less than dSAFE . To calculate the distance

between two waypoints, we use the following equation:

distance =
N∑
i=2

√
(xi − xi−1)2 + (yi − yi−1)2, (13)

6

whereN is the number of waypoints including the first and last way-

points. Finally, weights of each edge in set U and UD are updated

based on their distance from the conflict zone using Equation (10):

wi =
l

viSAFE
, (14)

where i refers to each segment of the road, l is the length of the

corresponding edge and viSAFE is the safe velocity calculated for

each segment of the road (edge). Since the weight of an edge may

be updated multiple times –as it may be involved in more than

one conflict–, the maximum weight is considered (the slowest safe

velocity) for an edge. If the safe velocity (vSAFE is equal to zero,

instead of infinity, the weight is set to be a large constant number.

After updating the weights, the motion planner uses the Dijk-

stra algorithm to find the shortest path to the destination. The

summation of weights (

∑
wi) from the source to the destination

corresponds to the travel duration.

4.5 Motion Controller
The motion controller uses the future waypoints and safe velocities

to calculate the reference heading angle θr ef and the safe velocity

vr ef for the CAV. For the desired heading angle (θr ef), the motion

controller selects a look-ahead point similar to the pure pursuit

algorithm [31] and calculates the bearing angle from its current

location (x,y) to the look-ahead point:

θr ef = atan2(x − xl ,y − yl), (15)

where xl and yl correspond to the x-y coordinate of the look-ahead
point. We assume that each vehicle has an initial desired velocity

of v0 and never drives faster than that. The motion controller uses

the weight of the next edge to determine the reference velocity

(vr ef =
di
wi

). If the calculated velocity is greater than CAV’s initial

desired velocity (v0), it sets the reference velocity to be v0. If the
reference velocity is close to zero, (v < ϵ), it is set to zero. Once the
reference heading and velocity are calculated, they are passed to

two Proportional Integral Derivative (PID) controllers to calculate

the steering angle and acceleration for the vehicle:{
ψ = kPeθ + kI

∫
eθ + kD Ûeθ ;

a = k ′Pev + k
′
I

∫
ev + k

′
D Ûev ,

(16)

where kP ,kI ,kD and k ′P ,k
′
I ,k

′
D are constant (controller gains) that

are tuned to achieve a fast response while the overshoot is small

(short settling time), eθ = θr − θ and ev = vSAFE −v , and Ûev and

Ûeθ are the derivative of ev and eθ , respectively.

5 DEADLOCK DETECTION AND
RESOLUTION

In order to detect and resolve deadlocks, all CAVs create a directed

graph called the dependency graph. Nodes of the dependency graph

are vehicle IDs and edges indicate that if a CAV is yielding to

another CAV over a conflict zone. There will be a directed edge

from node Vi to node Vj if CAV Vi is yielding to the CAV Vj over a
conflict zone. Since a CAV determines only the conflicts between

itself and other CAVs –and not the conflicts between other CAVs,

the constructed dependency graph is not complete. We refer to the

dependency graph of each CAV as the “partial dependency graph”

vmin vmax amin amax ψmin ψmax T ρ

0
m
s 23

m
s −8ms2 5

m
s2 − π

3
rad

π
3
rad 0.1s 0.2s

Table 1: Parameters of the CAVs for simulation.

or PDG. To compute the complete graph, each CAV broadcasts its

PDG to inform other CAVs about its conflict zones with other CAVs

and to receive other CAVs’ PDG. From the received PDGs of other

CAVs and the PDG of the ego CAV, the complete dependency graph

(CDG) is constructed. To build the CDG, the PDG is incrementally

updated by adding nodes and edges for each received PDG. Finally,

all edges between two nodes are merged into one. Figure 9 shows a

scenario with 5 CAVs that have determined their PDG and the final

consensual CDG.

After constructing the CDG, each CAV checks if the CDG has

a cycle. We use the Depth-First Search (DFS) algorithm to detect

cycles. If a deadlock is detected, each CAV calculates a score for

each CAV that is involved in the cycle based on its average time of

arrival at corresponding conflict zones. If a CAV hasm conflicts, its

score is calculated as:

S =

∑m
i=1TOAi

m
,

whereTOAi is the time of arrival of the CAV at its ith conflict zone.

We select the CAV with the least average time of arrival to have

the advantage over all of its conflict zones because on average, it

can reach its conflict zone earlier than others. We refer to this CAV

as the leader. Once the leader is determined, the direction of all

incoming edges to the leader’s node is reversed. If two CAVs have

the same score, the CAV with the lower ID number will be selected

as the leader. Since there can be more than one cycle in a graph,

this process is repeated until all cycles are removed.

Lemma 5.1. If the CDG has no cycles, then there is no deadlock
involving the ego CAV.

Proof. Once the CDG is modified to be acyclic, there is no path

(set of sequential edges) starting at nodeVeдo that eventually loops

back to nodeVeдo again, which means the ego CAV never yields to

other CAVs that are yielding to the ego CAV and therefore, there is

no deadlock involving the ego CAV. □

It takes some time to resolve a deadlock due to the vehicle’s

dynamic –CAVs cannot change their velocity and expected arrival

time instantly. As a result, CAVs may face the same deadline again

when they compute the CDG after T . It can be shown that the

result of deadlock resolution will be the same (the same CAV will

be selected as the leader) until the deadlock is resolved. Since the

leader has the least average time of arrival in the first iteration, it

does not yield to any other CAV while other CAVs involved in the

deadlock slow down to yield to at least one CAV. Therefore, the

average time of arrival of the leader will be less than other CAVs in

the second iteration and so on.

6 EXPERIMENTAL RESULT
We evaluated our algorithm on a simulator that is developed in

Matlab. We created a tool in Python to automatically extract a

7

Figure 8: A snapshot of a map retrieved from the OpenStreetMap (left), its corresponding directed graph in MATLAB (middle)
and a scenario with randomly spawned vehicles on the map (Right).

Figure 9: EachCAVdetermines and broadcasts its PDG.After
receiving other CAVs’ PDG, CAVs construct the CDG and can
resolve deadlocks.

desired map from the OpenStreetMap
1
(OSM format) and then

generate the world map graph for it. Once the map is generated, a

driving scenario is created where initial position and velocity and

the destination of CAVs are randomly selected. We used differential

equations represented in (1) to model vehicle’s dynamics. The size

of each vehicle is 5x2 m, the lane width is 5 m and the distance

between waypoints of the map is 0.5 m. Gains of the controller for

both heading and velocity control are KP = 5 and KD = 0.1. Other

parameters of the vehicle are listed in Table 1. CAVs communication

delay is modeled by queuing the broadcast packets. In Figure 8, a

randomly generated map from openStreetMap, its corresponding

map graph and a random scenario with 20 CAVs are depicted.

6.1 Safety Evaluation
To demonstrate the safety of the proposed algorithm, we created a

merge and an intersection scenario where two CAVs have a conflict

on their future path as it is depicted in Figure 10.

To verify that CAVs are always safe, we force the CAV with

the advantage to suddenly decelerate at different times. We show

that no accident will happen regardless of the deceleration time

and CAVs maintain a minimum safe distance of 5 meters. Using

1
https://www.openstreetmap.org/

Figure 10: An Intersection and a merge scenario are created.
The CAV with advantage suddenly decelerates and stops.

brute-force testing, the deceleration time of the CAV with the ad-

vantage varies in a 30-second interval with a 0.1 s increment that

includes critical times that stops inside the conflict zone. Figures 11

and 12 show the distance between CAVs for the intersection and

merge scenarios, respectively. In the intersection scenario, the CAV

Figure 11: Brute-force evaluation of an intersection scenario.
CAVs distance is always greater than a threshold regardless
of the deceleration time of the CAVwith the advantage –if it
stops before entering the conflict zone (dark green), inside
the conflict zone (yellow), or after the conflict zone (blue).

with the advantage may stop before, inside, or after the conflict

8

zone where distances between CAVs are depicted in dark green,

yellow, and blue colors, respectively. For cases that the CAV with

advantage stops before or after the conflict zone, the CAV with

disadvantage continues while in cases that the CAV with advantage

stops inside the conflict zone, the CAV with advantage slows down

and stops (depicted in yellow). In the merge scenario, the conflict

Figure 12: Merge scenario - CAVs distance remains greater
than a threshold for all cases where the CAVwith advantage
stops before entering the merge (Yellow) or after the merge
(dark green).

zone moves with the CAV with the advantage after it reaches the

merging point. As a result, the CAV with the advantage either stops

before the conflict zone or inside it. For cases that the CAV with

the advantage stops before the merging point, the CAV with the

advantage continues and enters the merge (depicted in dark green)

and for the rest of the cases, the CAV with the disadvantage slows

down and stops (depicted in yellow).

6.2 Deadlock Resolution Demonstration
To evaluate our deadlock detection and resolution approach, we

created a deadlock situation at the intersection (Figure 13). The

right part of Figure 13 shows the CCG for the scenario. We fixed the

3

4

1

2

1

4

2

3

Z1

Z2 Z3

Z4

Figure 13: A deadlock scenario where 4 CAVs approach the
intersection with same velocity (left) and the corresponding
CDG (right).

paths of CAVs to make a left turn at the intersection while having

the same distance from the intersection and the same velocity. We

simulated CAVs’ behavior with and with our deadlock detection.

Figure 14 shows the velocities of CAVs for both cases. For the case

that no deadlock resolution is done, CAVs slow down to yield to

other CAVs and eventually stop and will wait forever. For the case

with deadlock resolution, CAVs slow down at first but speed up

when their conflict zone is cleared. We can observe that after 7s,

Figure 14: Velocity profiles of CAVs with and without dead-
lock resolution for the scenario in Figure 13

all CAVs reach their desired velocity (10m/s) while in no deadlock

detection case, their velocity converges to zero.

6.3 Efficiency Evaluation
To evaluate the efficiency of our approach, we compared the perfor-

mance of our approach with the case that vehicles are autonomous

but not connected. For the non-connected case, the intersections

are managed by stop signs and all other conflicts among CAVs are

handled by the AV’s perception system e.g. adaptive cruise control

(ACC) system. We extracted a map from the OpenStreetMap (Fig-

ure 8) and simulated three scenarios, i) light traffic with 5 vehicles,

ii) moderate traffic with 10 vehicles, and iii) heavy traffic with 20

vehicles being present at the same time. When a vehicle exits the

map boundary, a new vehicle is spawned. We measured the average

velocities of CAVs and reported them in Table 2. We also computed

the fuel consumption of CAVs using the following model [32] and

reported them in Table 2:

f =

{
0, if PT > 0;

fi
3600
+ β1PT + β2aPI , otherwise,

(17)

where PT = min(Pmax , PC + PI) is the total tractive power (kW),

PC = b1v + b2v
3
is the cruise component of total power (kW),

PI =
mav
1000

is the inertia component of the total power (kW), fi =
888.8mL/h is the instantaneous fuel consumption rate (mL/s), Pmax
is the maximum engine power (kW),m is the vehicle mass, a and v
are the instantaneous acceleration and velocity, b1 is rolling resis-
tant factor (kN), and b2 is the aerodynamic drag factor (kN/(m/s)

2
),

β1 and β2 are the efficiency factors for non-accelerating and accel-

erating cases.

With the help of shared information, CAVs not only drive at

higher velocities, they drive smoother than non-connected case

because they slow down and stop less frequently and therefore,

their fuel consumption is less than the connected case.

7 CONCLUSION AND FUTUREWORKS
In this paper, a new definition is introduced for the RSS rules that

can be applied to any scenario, and CAVs’ safety is ensured by

9

Light Moderate Heavy

Traffic Traffic Traffic

AVs CAVs AVs CAVs AVs CAVs

Avg Vel. 10.51 11.55 10.91 11.83 11.21 11.96

Avg Fuel Con. 1.271 0.495 1.089 0.479 1.017 0.485

Table 2: Comparing the average velocity (m/s) and fuel
consumption (mL/s) of vehicles when they navigate au-
tonomously (non-connected) and cooperatively (connected).

considering the worst-case scenario. Next, we presented a coopera-

tive driving algorithm for CAVs based on proposed RSS rules. Our

algorithm can also detect and resolve deadlocks in a distributed

manner. The correctness of our approach is verified by conducting

experiments using our simulator. Future works include taking into

account various fault models (e.g. the network delay is larger than

T or a CAV is unable to communicate, a CAV is being compromised

and lies about its position and/or its future trajectory, etc.) with the

help of infrastructure (e.g. installed cameras).

8 ACKNOWLEDGEMENT
This work was partially supported by funding from NIST Award

70NANB19H144, and by National Science Foundation grants CNS

1525855 and CPS 1645578. This workwas also partially supported by

MOE and MOST in Taiwan under Grant Numbers NTU-109V0901,

MOST-109-2636-E-002-022, and MOST-110-2636-E-002-026.

REFERENCES
[1] MG Mohanan and Ambuja Salgoankar. A survey of robotic motion planning in

dynamic environments. Robotics and Autonomous Systems, 100:171–185, 2018.
[2] Federico Rossi, Saptarshi Bandyopadhyay, Michael Wolf, and Marco Pavone.

Review of multi-agent algorithms for collective behavior: a structural taxonomy.

IFAC-PapersOnLine, 51(12):112–117, 2018.
[3] Mohammad Khayatian, Mohammadreza Mehrabian, Edward Andert, Rachel

Dedinsky, Sarthake Choudhary, Yingyan Lou, andAviral Shirvastava. A survey on

intersection management of connected autonomous vehicles. ACM Transactions
on Cyber-Physical Systems, 4(4):1–27, 2020.

[4] Bowen Zheng, Chung-Wei Lin, Shinichi Shiraishi, and Qi Zhu. Design and

analysis of delay-tolerant intelligent intersection management. ACM Transactions
on Cyber-Physical Systems, 4(1):1–27, 2019.

[5] Mohammad Khayatian, Rachel Dedinsky, Sarthake Choudhary, Mohammadreza

Mehrabian, and Aviral Shrivastava. R 2 im–robust and resilient intersection

management of connected autonomous vehicles. 2020.

[6] Yi-Ting Lin, Hsiang Hsu, Shang-Chien Lin, Chung-Wei Lin, Iris Hui-Ru Jiang, and

Changliu Liu. Graph-basedmodeling, scheduling, and verification for intersection

management of intelligent vehicles. ACM Transactions on Embedded Computing
Systems (TECS), 18(5s):1–21, 2019.

[7] Mohammad Khayatian, Yingyan Lou, Mohammadreza Mehrabian, and Aviral

Shirvastava. Crossroads+ a time-aware approach for intersection management

of connected autonomous vehicles. ACM Transactions on Cyber-Physical Systems,
4(2):1–28, 2019.

[8] Xiao-Yun Lu and J Karl Hedrick. Longitudinal control algorithm for automated

vehicle merging. International Journal of Control, 76(2):193–202, 2003.
[9] Jackeline Rios-Torres and Andreas A Malikopoulos. Automated and cooperative

vehicle merging at highway on-ramps. Transactions on Intelligent Transportation
Systems, 18(4):780–789, 2016.

[10] Shunsuke Aoki and Ragunathan Rajkumar. A merging protocol for self-driving

vehicles. In 2017 ACM/IEEE 8th International Conference on Cyber-Physical Systems
(ICCPS), pages 219–228. IEEE, 2017.

[11] Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. On a formal model

of safe and scalable self-driving cars. arXiv preprint arXiv:1708.06374, 2017.
[12] Changliu Liu, Chung-Wei Lin, Shinichi Shiraishi, and Masayoshi Tomizuka. Dis-

tributed conflict resolution for connected autonomous vehicles. IEEE Transactions
on Intelligent Vehicles, 3(1):18–29, 2017.

[13] Florent Perronnet, Jocelyn Buisson, Alexandre Lombard, Abdeljalil Abbas-Turki,

Mourad Ahmane, and Abdellah El Moudni. Deadlock prevention of self-driving

vehicles in a network of intersections. IEEE Transactions on Intelligent Trans-
portation Systems, 20(11):4219–4233, 2019.

[14] Reza Azimi, Gaurav Bhatia, Ragunathan Raj Rajkumar, and Priyantha Mudalige.

Stip: Spatio-temporal intersection protocols for autonomous vehicles. In ICCPS’14:
ACM/IEEE 5th International Conference on Cyber-Physical Systems (with CPS Week
2014), pages 1–12. IEEE Computer Society, 2014.

[15] Mohammad Khayatian, Mohammadreza Mehrabian, and Aviral Shrivastava. Rim:

Robust intersection management for connected autonomous vehicles. In Real-
Time Systems Symposium, pages 35–44. IEEE, 2018.

[16] Edward Andert, Mohammad Khayatian, and Aviral Shrivastava. Crossroads:

Time-sensitive autonomous intersection management technique. In Proceedings
of the 54th Annual Design Automation Conference 2017, page 50. ACM, 2017.

[17] Masoud Bashiri and Cody H Fleming. A platoon-based intersection management

system for autonomous vehicles. In 2017 IEEE Intelligent Vehicles Symposium (IV),
pages 667–672. IEEE, 2017.

[18] Rachel Dedinsky, Mohammad Khayatian, Mohammadreza Mehrabian, and Aviral

Shrivastava. A dependable detection mechanism for intersection management

of connected autonomous vehicles (interactive presentation). In Workshop on
Autonomous Systems Design (ASD 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer

Informatik, 2019.

[19] Lejla Banjanovic-Mehmedovic et al. Autonomous vehicle-to-vehicle (v2v) de-

cision making in roundabout using game theory. Int. J. Adv. Comput. Sci. Appl,
7:292–298, 2016.

[20] Bai Li, Yue Zhang, Youmin Zhang, and Ning Jia. Cooperative lane change mo-

tion planning of connected and automated vehicles: A stepwise computational

framework. In 2018 IEEE Intelligent Vehicles Symposium (IV), pages 334–338. IEEE,
2018.

[21] Jianqiang Nie, Jian Zhang, Wanting Ding, Xia Wan, Xiaoxuan Chen, and Bin

Ran. Decentralized cooperative lane-changing decision-making for connected

autonomous vehicles. IEEE Access, 4:9413–9420, 2016.
[22] Pedro Fernandes and Urbano Nunes. Platooning of autonomous vehicles with

intervehicle communications in sumo traffic simulator. In 13th International IEEE
Conference on Intelligent Transportation Systems, pages 1313–1318. IEEE, 2010.

[23] Siyuan Gong, Anye Zhou, and Srinivas Peeta. Cooperative adaptive cruise

control for a platoon of connected and autonomous vehicles considering dynamic

information flow topology. Transportation Research Record, 2673(10):185–198,
2019.

[24] Michael Duering and Patrick Pascheka. Cooperative decentralized decision mak-

ing for conflict resolution among autonomous agents. In International Symposium
on Innovations in Intelligent Systems and Applications, pages 154–161. IEEE, 2014.

[25] Michael During and Karsten Lemmer. Cooperative maneuver planning for co-

operative driving. IEEE Intelligent Transportation Systems Magazine, 8(3):8–22,
2016.

[26] Yimin Chen, Chao Lu, and Wenbo Chu. A cooperative driving strategy based on

velocity prediction for connected vehicles with robust path-following control.

IEEE Internet of Things Journal, 2020.
[27] Kostas E Bekris, Konstantinos I Tsianos, and Lydia E Kavraki. A decentralized

planner that guarantees the safety of communicating vehicles with complex dy-

namics that replan online. In 2007 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 3784–3790. IEEE, 2007.

[28] Jufeng Peng and Srinivas Akella. Coordinating multiple robots with kinodynamic

constraints along specified paths. The International Journal of Robotics Research,
24(4):295–310, 2005.

[29] Mohammad Hekmatnejad et al. Encoding and monitoring responsibility sensitive

safety rules for automated vehicles in signal temporal logic. In 17th ACM-IEEE
Conference on Formal Methods and Models for System Design, pages 1–11, 2019.

[30] Mohammad Farhadi, Mehdi Ghasemi, Sarma Vrudhula, and Yezhou Yang. En-

abling incremental knowledge transfer for object detection at the edge. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops, pages 396–397, 2020.

[31] R Craig Coulter. Implementation of the pure pursuit path tracking algorithm.

Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST, 1992.

[32] Rahmi Akçelik, Robin Smit, and Mark Besley. Calibrating fuel consumption and

emission models for modern vehicles. In IPENZ transportation group conference,
Rotorua, New Zealand, 2012.

10

	Abstract
	1 Introduction
	2 Related Work
	3 Generic Formulation of RSS Rules
	3.1 Same Lane
	3.2 Intersection
	3.3 Merge

	4 Cooperative Driving of CAVs
	4.1 Main Algorithm
	4.2 Future Path Computation
	4.3 Conflict Zone Detection
	4.4 Motion Planner
	4.5 Motion Controller

	5 Deadlock Detection and Resolution
	6 Experimental Result
	6.1 Safety Evaluation
	6.2 Deadlock Resolution Demonstration
	6.3 Efficiency Evaluation

	7 Conclusion and Future Works
	8 Acknowledgement
	References

