
R2IM – Robust and Resilient Intersection Management of Connected
Autonomous Vehicles

Mohammad Khayatian, Rachel Dedinsky, Sarthake Choudhary, Mohammadreza Mehrabian
and Aviral Shrivastava

Arizona State University

Abstract— Intersection management of Connected Au-
tonomous Vehicles (CAVs) has the potential to significantly
improve safety and mobility. While numerous intersection man-
agement designs have been proposed in the past few decades,
most of them assume that the CAVs will precisely follow the
directions of the Intersection Manager (IM) and prove the safety
and demonstrate the efficiency based on this assumption. In real
life, however, a CAV that is crossing the intersection may break
down, accelerate out-of-control or lie about its information (e.g.
intended outgoing lane) and cause an accident. In this paper,
we first define a fault model called “rogue vehicle”, which is
essentially a CAV that either is dishonest or does not follow
the IM’s directions and then, propose a novel management
algorithm (R2IM) that will ensure safe operation, even if a CAV
becomes “rogue” at any point in time. We prove that there can
be no accidents inside the intersection, as long as there is no
more than one “rogue vehicle” at a time. We demonstrate the
safety of R2IM by performing experiments on 1/10 scale model
CAVs and in simulation. We also show that our approach can
recover after the rogue vehicle leaves/is removed.

I. INTRODUCTION

According to the American Automobile Association
(AAA), more than two people are killed every day in the
U.S. due to accidents caused by red lights runners [1]. When
vehicles become autonomous and connected, however, the
number of accidents caused by human errors can dramati-
cally be reduced. In the past few decades, many works [2],
[3] have been devoted to developing algorithms for safe
and efficient management of connected autonomous vehicles
(CAVs) at road intersections, in which CAVs do not have to
come to a complete stop at the intersection, rather, they can
just slow down a bit to pass each other safely.

Most broadly, existing algorithms for intersection manage-
ment of CAVs [4], [5] can be classified into two categories:
centralized and distributed. In centralized techniques, CAVs
interact with an intersection manager (IM), which schedules
the arrival time of CAVs while in distributed approaches,
CAVs interact with each other to determine how to cross
the intersection. Because of security concerns, centralized in-
tersection management approaches are sometimes preferred.
This is because the CAVs only have to communicate with
the IM –which is a part of the infrastructure– rather than
communicating with other CAVs. On the other hand, cen-
tralized approaches require support from the infrastructure
and therefore, their deployment at all intersections may not
be feasible.

Although various intersection management algorithms

have been proposed, almost all of them make strong as-
sumptions to ensure safety. First, it is assumed that a CAV
shares correct and accurate information with the IM, while
in reality; a CAV may unintentionally or deliberately send
wrong information. For example, a CAV may send a wrong
position, velocity, or even intended outgoing lane. Secondly,
it is assumed that a CAV behaves as the IM expects and
follows the assigned trajectory. However, a CAV may break
down and suddenly stop in the middle of the intersection
or accelerate out-of-control and enter the intersection earlier
than expected which in turn can result in an accident. We
believe that real-life intersection management techniques
need to account for such failures and use a mechanism to
avoid accidents if such scenarios happen.

This paper then presents R2IM – a robust intersection
management algorithm that is resilient against a rogue ve-
hicle that may be present. Our approach uses an external
surveillance system that can detect if a vehicle is not fol-
lowing the expected trajectory beyond a tolerance limit, and
declares it as rogue. The safety is achieved essentially by
scheduling the cross-time of approaching CAVs with enough
temporal buffer, so that an accident becomes impossible,
even if a CAV becomes “rogue” at any point of time. To
evaluate the correctness of R2IM, we built a 1/10 scale model
intersection and injected faults on vehicles by forcing them to
accelerate/decelerate and showcased the safety of the CAVs.

II. RELATED WORKS

In the past few decades, intersection management of CAVs
has extensively been studied [4]. Many researchers have
focused on distributed management techniques where CAVs
communicate with each other and decide who should cross
first [6]–[11]. On the contrary, other studies were focused
on centralized intersection management approaches where
CAVs communicate with the infrastructure to get a reser-
vation. Some centralized techniques follow a query-based
intersection management scheme where CAVs query safe
crossing from the IM and the IM either accepts or rejects the
request [12]–[15] while other centralized approaches follow
an assignment-based management technique where CAVs
share their information with the IM and the IM assigns a
reservation to them [2], [16]–[19].

Although many research studies were focused on improv-
ing the throughput of the intersection, not much research
is done on improving the safety and robustness of the

intersection management technique. Responsibility-Sensitive
Safety rules are proposed to ensure the safety of CAVs in
different scenarios [20] but they do not explicitly support
intersection scenarios.

To tackle uncertainty issues for the intersection man-
agement problem, researchers have proposed methods to
mitigate faults that can happen in the intersection manage-
ment system. In Crossroads technique [18], [19], authors
highlighted the need for having the same notion of time
between IM and CAVs and safety issues that arises due to
communication delay and IM’s processing time. In RIM [16],
authors showed that the existence of model mismatch and
external disturbances can cause an error in the eventual
arrival time of CAVs. In [21], [22], Bentjen et al. considered
a scenario where a malicious CAV blocks the intersection.
They have presented some initial thoughts on how to mitigate
such vulnerabilities. Dedinsky et al. [23] has provided some
initial thoughts on how to employ a surveillance system
to detect rogue vehicles at the intersection. In almost all
previous works, it was assumed that all CAVs share correct
information with the IM and precisely follow IM’s command.

In the next section, we first explain the interaction between
IM and CAV when no rogue vehicle is present and then
define the fault model for the rogue vehicle and discuss how
R2IM accommodates a rogue vehicle.

III. R2IM WITHOUT ROGUE VEHICLES

When a CAV is within the communication range of the
intersection, it synchronizes its internal clock with the IM
and then sends a request to the IM by sharing its position,
velocity, and corresponding timestamp as well as CAV’s
ID and the intended outgoing lane. Accordingly, the IM
calculates a safe Time of Arrival (TOA) and Velocity of
Arrival (VOA) and sends it back to the CAV. Upon receiving
the VOA and TOA, the CAV determines an optimal reference
trajectory and lets the IM know by sharing the trajectory
parameters, A0 and B0 (explained later). Next, the IM adds
CAV’s information to its list of “active CAVs” and sends
an acknowledgment (ACK) to the CAV. After receiving the
ACK from the IM, the CAV follows its reference trajectory
until it reaches the intersection where it continues at the
constant velocity of VOA. If a CAV fails to synchronize
its clock or at any stage, does not receive a response from
the IM within the set timeout, it will apply break and starts
over by synchronizing its clock as its clock may be out of
sync. IM and CAV’s algorithms are presented in Alg. 1 and
Alg. 2.

A. Reference Trajectory Calculation and Tracking

When a CAV receives the VOA and TOA values from the
IM, it needs to make a plan to arrive at the intersection
at time TOA with speed VOA. The plan is essentially
a position-vs-time graph that specifies where the vehicle
should be at any point in time. For simplicity, we consider a
double integrator model for the behavior of the CAVs before

Algorithm 1: Algorithm for CAVs
1: while True do
2: if (within the intersection range) then
3: synchronize the clock
4: if sync is not successful or timed out then
5: apply brake and goto line 3
6: end if
7: send a request to IM
8: receive the TOA and VOA from IM
9: if response is timed out then

10: apply brake and goto line 3
11: end if
12: calculate reference trajectory
13: send trajectory information to the IM
14: receive the ACK from the IM
15: if ACK is timed out then
16: apply brake and goto line 3
17: end if
18: inquiry emergency state from IM
19: if emergency state is active or timed out then
20: if (After point of no return (PONR)) then
21: follow reference trajectory and goto line 18
22: else
23: apply brake and goto line 3
24: end if
25: else
26: if (if entered the intersection) then
27: drive at a constant velocity (VOA)
28: else
29: follow reference trajectory goto line 18
30: end if
31: end if
32: end if
33: end while

entering the intersection:{
ṗ = v

v̇ = a
(1)

where p is the longitudinal position of the vehicle, v is the
velocity and a is the input acceleration. Since acceleration
and deceleration rates of a CAV are bounded in real life,
we consider limits for the acceleration as a ∈ [amin, amax],
where amax and amin are the maximum acceleration and
deceleration rates of the CAV. Similarly, we consider an
upper bound and a lower bound for the velocity of the
CAV as v ∈ [vmin, vmax], where vmax is the maximum
velocity of the vehicle and is the same as speed limit and
vmin is the minimum velocity of the vehicle. We determine
the reference trajectory by minimizing the total amount of
acceleration/deceleration for each CAV, which is linear:

ar = A0t+B0 (2)

where A0 and B0 are constants that can be determined from
initial and final conditions similar to [16]. Each CAV utilizes
a PID (Proportional-Integral-Derivative) controller to track

Algorithm 2: Algorithm for the Intersection Manager
1: while True do
2: check emergency state
3: broadcast emergency state
4: if a request is received then
5: if emergency state is active then
6: reject the request
7: else
8: calculate the optimal TOA and VOA
9: send TOA and VOA to the vehicle

10: end if
11: end if
12: if trajectory information is received then
13: store the CAV’s trajectory information
14: send the ACK message
15: end if
16: end while

the reference position trajectory:

a = kP e+ kIeI + kDeD (3)

where a is the control input (acceleration), e is the position
error defined as e = pr − p, eI is the integral of the error
(eI =

∫
e), eD is the derivative of e (eD = vr − v) and kP ,

kI , and kD are positive constants which are referred to as
PID gains.

IV. R2IM WITH ROUGE VEHICLES

In this section, we first present the fault model and then
show the interaction of IM with CAVs to handle rogue
vehicles.

A. Fault Model – Rouge Vehicle

The Rogue vehicle is a CAV that intentionally or uninten-
tionally is lying when sharing its information to the IM, or
does not follow IM’s directions. The rogue CAV may either
accelerate or decelerates but it never drives outside the road
boundary. To generalized the rogue vehicle’s definition, we
use the following definition:

Definition 1: A CAV is deemed rogue if it deviates from
its expected position by a pre-set threshold.
This fault model covers many scenarios including following
extreme cases:
Acceleration (ACC) Fault Scenario: The rogue vehicle
suddenly accelerates with a = amax toward the intersection
and enters the intersection earlier than it was scheduled.
Deceleration (DEC) Fault Scenario: The rogue vehicle
breaks down and suddenly stops a = −∞ inside the
intersection.
Lying about outgoing Lane: The rogue vehicle lies about
its outgoing lane and takes another path once it enters the
intersection. Next, we define some of the terms that we use
in the algorithm.

Definition 2: Point of No Return (PONR) is the farthest
point from the intersection that if after passing this point a
CAV starts applying full brake (a = amin), it cannot fully
stop without entering the intersection.

The distance of the PONR from the edge of the intersection
(POA) is dPONR and can be calculated as:

dPONR =
v2PONR
2|amin|

+
V L

2
(4)

V L is vehicle length and vPONR is the velocity of the CAV
at the PONR. Since p represents the longitudinal location of
the center of a CAV, V L

2 is added to account for the length
of the CAV.

Definition 3: Critical zone for a CAV is defined as the
area between its PONR and the point it exits the intersection.

Definition 4: Critical time window is the time it takes
for a CAV to travel through the critical zone.
The critical window (∆tcrit) can be calculated as the sum-
mation of time to reach the intersection and time to travel
inside the intersection:

∆tcrit = (TOA− tPONR) +
dI + 0.5V L

V OA
(5)

where dI is the traveled distance inside the intersection and
can be determined from the dimensions of the intersection.
For left and right turns, the dI is 3πLW

2 and πLW
2 respec-

tively and for going straight dI is 2LW where LW is the
lane width.

Definition 5: Safety Barrier (SB) is the maximum dis-
tance that a CAV may travel when the previously scheduled
CAV is in its critical zone.
Since the velocity of a CAV is bounded by vmax, the
maximum distance that a CAV can travel corresponds to the
case where its initial velocity is equal to vmax. As a result,
the size of the safety barrier is:

dSB = ∆tcritvmax (6)

For a practical design, the IM should account for the
worst-case execution time of the IM (CIM) and CAVs
(CCAV), and the period of emergency inquiry by a CAV
(T) to ensure safety. As a result, Eq. (4) and (6) is modified
as follows to account for them:

dPONR =
v2PONR
2|amin|

+
V L

2
+ ρvmax (7)

dSB = (∆tcrit + ρ)vmax (8)

where ρ = T + CIM + CCAV is the worst-case end-to-end
delay from the moment a CAV becomes rogue to the moment
other CAVs are notified and react.

B. IM and CAV Interaction In Presence of A Rogue Vehicle

The IM periodically calculates the distance between the
estimated position of CAVs – which is determined from a
CNN-based perception system like [24] – and their expected
position. If the distance is greater than a threshold, eth, it set
the emergency state to active. Whether the emergency state
is active or not, the IM periodically broadcasts it. When a
CAV notifies that the emergency state is active, it checks if
its position is before its Point of No Return (PONR) (Eq. (4))
and can safely stop without entering the intersection. If the
CAV is after its PONR, it ignores the emergency state and

continues with its trajectory. If a CAV does not receive the
emergency state within the set timeout, it assumes that the
emergency state is active and applies the brake. During the
emergency state, the IM rejects all the requests that are
received from CAVs. When the emergency is resolved the
IM sets the emergency state to false and starts processing
the requests that it receives.

The IM adopts a First-Come First-Served (FCFS) policy
for scheduling. Given the request time, position, and velocity
of the requesting CAV, and expected trajectories of other
CAVs are known, the IM determines a VOA and TOA pair
for the requesting CAV such that the earliest arrival time is
achieved. To do so, the IM solves the following optimization
problem:

minTOA (9)

subjected to following constraint:

pi(tPONR,i−1) < pSB,i

pi(texit,i−1) < pPONR,i + ρvmax

pi(t) > pi,front(t) + dPONR,i ∀i > 1

amin < ai(t) < amax

vmin < vi(t) < vmax

V OA < vturn
(10)

where pi(tPONR,i−1) is the position of the requesting CAV
(i) when the last scheduled CAV (i− 1) is at its PONR and
pSB,i is the safety barrier point that is dSB,i meters away
from the intersection. The first constraint ensures that the
requesting CAV (i) is far enough from the intersection when
the last scheduled CAV (i− 1) is at its PONR and does not
cause a conflict for the last scheduled CAV. pi(texit,i−1) is
the position of the CAV (i) when the last scheduled CAV
(i − 1) leaves the intersection and pPONR,i is the position
the PONR for the requesting CAV. The second constraint
ensures that the requesting CAV has enough time to stop
if the last scheduled CAV slows down and stops inside the
intersection. pi,front(t) is the position of the last scheduled
CAV in the same lane as the requesting CAV or simply
CAV i’s front CAV if any. The third constraint ensures
the requesting CAV’s trajectory has always a minimum safe
distance from its front CAV. Fourth and fifth constraints are
considered to ensure that the velocity and acceleration of
the requesting CAV are within the feasible range. Finally,
vturn is the maximum safe velocity for making a turn to
avoid rollover. For driving straight, vturn = vmax. To ensure
that constraints in Eq.(10) are met, the IM reconstructs the
trajectory of the last scheduled CAV (i− 1) and the CAV’s
front CAV (if any) from the request information (t0, v0, p0),
schedule information (TOA, V OA,POA) and trajectory
information (A0, B0).

V. SAFETY PROOF

We assume that only one rogue vehicle is present at
a time and prove that no accident will happen inside the
intersection area. We are limiting our proof to provide safety
for the intersection area only because a rogue vehicle may

accelerates or steer to the opposite lane and hits another
vehicle and in such cases, an accident may be unavoidable.
We will show that the rogue vehicle cannot get involved in an
accident with the last scheduled CAV or the next scheduled
CAV (if any). For a better intuition, we have depicted these
two corner cases in Figure 1.

𝒅𝐏𝐎𝐍𝐑,𝟏

❷

❶

𝒅𝐒𝐁,𝟐
The rogue vehicle

(red) accelerates at

maximum rate (𝑎𝑚𝑎𝑥)

𝒑𝐏𝐎𝐍𝐑,𝟏

𝒑𝐒𝐁,𝟐

The rogue vehicle

(red) suddenly stops

inside the

intersection area

❷

𝒅𝐏𝐎𝐍𝐑,𝟐

❶

𝒑𝐏𝐎𝐍𝐑,𝟐

Fig. 1. Two corner cases where a CAV becomes rogue.

A. Interaction of Rogue Vehicle with Last Scheduled CAV

Let us assume that vehicle i becomes rogue and accelerates
at time trogue. If the distance of the rogue vehicle from the
intersection when it becomes rogue is more than dSB , the
earliest time that it can enter the intersection is after trogue+
∆tcrit + ρ. Since the last scheduled CAV will reach and
leave the intersection by ∆trogue, the rogue vehicle enters
the intersection when the last scheduled CAV has already left
the intersection. If the distance of the rogue vehicle from the
intersection when it becomes rogue is less than dSB , the
last scheduled CAV will be behind its point of no return
according to Eq. (10). Therefore the last scheduled CAV can
stop safely without entering the intersection.

B. Interaction of Rogue Vehicle with Next Scheduled CAV

If the rogue vehicle breaks down and suddenly stops
before exiting the intersection, the next scheduled CAV will
have at least dPONR +ρvmax distance from the intersection
(see Eq.(10)). As a result, even if it takes ρ milliseconds to
notify the next scheduled CAV, it will have enough distance
to stop without entering the intersection.

If a CAV lies about its outgoing lane and suddenly changes
its direction inside the intersection, (e.g. makes a left turn
instead of going straight), the next scheduled CAV will be
beyond its PONR (see Eq. (10)) and therefore has enough
distance to stop without entering the intersection similar to
the deceleration case.

VI. TESTBED AND RESULTS

We performed two types of experiments to validate the
safety of our approach when a rouge vehicle is present: 1)
systematically injecting a fault on a CAV and 2) randomly
injecting a fault.

A. Safety Validation by Systematic Fault Injection

Our experimental testbed is an intersection with 1/10 scale
model CAVs that are 57 cm long and 30 cm wide. An
ESP8266 NodeMCU v3 board is utilized to enable wireless

communication of CAVs with the IM and perform real-time
motion control by adjusting the steering angle and speed for
the DC motors that run the CAV. A set of markers is installed
on each vehicle and the OptiTrack monitoring system is used
to track CAVs’ positions. Figure 2 shows an overview of the
intersection. The pose data and the emergency state packet

Fig. 2. Our testbed is a single-lane intersection with 1/10 scale model
CAVs. CAVs position is tracked by the OptiTrack system.

is broadcast every 20 ms. Timing constraints of each AV
are also monitored at the runtime [25]. CAVs start from
arbitrary positions and track a set of way-points to drive
within the lane and cross the intersection. The maximum
velocity of CAVs is 3m/s, and the maximum acceleration
and deceleration rates are measured as 2m/s2 and −1.5m/s2

respectively. We set the minimum velocity to be 0.2m/s.
For the systematic fault injection, we created a scenario

where two CAVs are scheduled to cross the intersection
and the CAV that is scheduled to cross second becomes
rogue after some time and accelerates. We created the same
scenario and repeated our fault injection but at different
times. Using the brute-force approach, we injected a set of
ACC fault on the secondly scheduled CAV at every 0.1s
where the fault injection time varies from 34.5 to 36. Figure 3
shows the distance between CAVs and the unsafe area. When

Fig. 3. Systematic fault injection of an ACC fault on our 1/10 scale
model intersection. By increasing the fault time, the distance between CAVs
decreases until the tPONR and then it increases.

the fault is injected before the tPONR, the other CAV stops
but when the fault injection time is after the tPONR, the other
vehicle continues. It can be observed that for all experiments,
the distance between vehicles is always greater than 0.5m.

To check the scalability of our approach for a real-size
intersection with variable traffic patterns and also do fault
injection more precisely, we built a simulator in Matlab and
performed the same fault injection experiment. The length of
CAVs is 5m and their width is 2m, the maximum velocity of
CAVs is set to 20.1m/s (45mph), and maximum acceleration
and deceleration rates are measured as 6m/s2 and −7m/s2

respectively.

B. Randomized Fault Injection:

We performed another experiment where the fault injection
is done randomly. This experiment was done on our simulator
where the fault injection time was selected between [0,
10]s after the spawn time of a CAV, the traffic flow was
randomly selected between [0.01, 0.15] car/second/lane and
the probability of injecting a DEC fault was equal to an ACC
fault. In total, 500 faults were injected during 20 hours of
simulation, out of which 110 could cause an accident but
they were avoided.

C. Recovery Analysis

To check if the intersection can recover after a rogue
vehicle leaves the intersection area (for an ACC fault) or is
removed (for a DEC fault) by a tow truck, we measured the
average travel time of CAVs when a fault is injected. We first
measured the average travel time for the normal operation of
the intersection where no rogue vehicle is present and then
repeated the same experiment and injected an ACC fault with
the same traffic pattern and measured the average travel time.
Next, we repeated the same experiment and injected a DEC
fault with the same traffic pattern and measured the average
travel time. These three experiments were repeated 20 times
with different traffic patterns and the results were averaged.
The final results for the average travel time of CAVs are
shown in Figure 4. For the DEC fault, the rogue vehicle stops

50

55

60

65

70

75

80

0 50 100 150 200 250

A
v

e
ra

g
e

 T
ra

v
e

l
T

im
e

 (
s

)

Time (s)

IM Recovers After Emergency Situations

No Fault

ACC Fault

DEC Fault

Fault Injection Time

Fig. 4. Average travel time of CAVs increases when an ACC or DEC fault
is injected but the intersection recovers.

for 10 seconds and then is removed. As can be expected,
a DEC fault results in larger travel times compared to an
ACC one since the duration of the emergency state is longer.
Results show that the average travel time of CAVs increases
when a fault is injected but the IM is able to recover and
reduce the average travel time once the emergency situation
is resolved.

D. Comparison with Traffic Light
To fairly compare the throughput of the R2IM with other

scheduling approaches, we developed a simulator for one of
the state-of-the-art technique Robust Intersection Manage-
ment (RIM) [16] and a simulator for an intersection that
is managed by a traffic light. The green time of the traffic
light is set to be 25 s, yellow time 5 s and red time 30 s.
The same input flow and traffic patterns (spawn times) were
used for all experiments to fairly compare the throughput
of the intersection. Figure 5 shows the output flow rate of

0.01

0.03

0.05

0.07

0.09

0.11

0.13

0.01 0.03 0.05 0.07 0.09 0.11 0.13 0.15

O
u

tp
u

t
F

lo
w

(C

a
r/

L
a

n
e

/S
e

c
o

n
d

)

Input Flow (Car/Lane/Second)

Throughput Analysis

R2IM

RIM

Traffic Light

Fig. 5. Comparing the output flow rate of an intersection managed by a
traffic light, R2IM and RIM approaches.

CAVs vs the input flow rate for R2IM, traffic light and the
RIM approach when the input flow rate varies from 0.01
to 0.16 car/lane/second. The output flow is measured by
counting the number of CAVs that leave the intersection
in a 5-second time interval divided by the length of the
interval (5). It can be observed that R2IM always achieves
a lower throughput compared to the RIM technique and this
is because R2IM allocates a larger temporal buffer between
arrival times of CAVs for protecting CAV from a rogue
vehicle. When comparing our approach with a traffic light,
the R2IM performs better than traffic light for low traffic
flows ([0.01 to 0.05]) while traffic light performs better for
higher flows. However, it should be noted that R2IM can
avoid accidents that cannot be avoided if the intersection is
managed by a traffic light or RIM approach.

VII. CONCLUSION AND FUTURE WORKS

In this paper, we presented a resilient and robust intersec-
tion management algorithm that can detect rogue vehicles
at the intersection which do not follow IM’s command or
are dishonest. Upon detection of a rogue vehicle, the IM
broadcasts an emergency message to all CAVs. Enough
space is considered between the cross-time of CAVs to
ensure the safety of CAVs when a rogue vehicle is present.
The resiliency of R2IM is verified through both a formal
proof and also conducting experiments on our 1/10 scale
model intersection of CAVs and simulation. Future works
include considering more sophisticated scheduling policies
and extending the work to multi-lane intersections.

VIII. ACKNOWLEDGEMENT

This work was partially supported by funding from NIST
Award 70NANB19H144, and by National Science Founda-
tion grants CNS 1525855 and CPS 1645578.

REFERENCES

[1] AAA News Room. Red Light Running Deaths Hit 10 Year High.
shorturl.at/bdjrH, 2019. [Online; accessed 03-March-2020].

[2] Joyoung Lee and Byungkyu Park. Development and evaluation of a
cooperative vehicle intersection control algorithm under the connected
vehicles environment. ITS Transactions, pages 81–90, 2012.

[3] Kurt Dresner and Peter Stone. A multiagent approach to autonomous
intersection management. Journal of artificial intelligence research,
31:591–656, 2008.

[4] Elnaz Namazi, Jingyue Li, and Chaoru Lu. Intelligent intersection
management systems considering autonomous vehicles: a systematic
literature review. IEEE Access, 7:91946–91965, 2019.

[5] Mohammad Khayatian et al. A survey on intersection management of
connected autonomous vehicles. ACM Transactions on Cyber-Physical
Systems, 2020.

[6] Li Li and Fei-Yue Wang. Cooperative driving at blind crossings
using intervehicle communication. IEEE Transactions on Vehicular
technology, 55(6):1712–1724, 2006.

[7] Reza Azimi et al. Stip: Spatio-temporal intersection protocols for
autonomous vehicles. In ICCPS’14: ACM/IEEE 5th International
Conference on Cyber-Physical Systems, pages 1–12. IEEE, 2014.

[8] Shunsuke Aoki and Ragunathan Raj Rajkumar. Dynamic intersections
and self-driving vehicles. In Proceedings of the ICCPS, pages 320–
330. IEEE, 2018.

[9] Changliu Liu, Chung-Wei Lin, Shinichi Shiraishi, and Masayoshi
Tomizuka. Distributed conflict resolution for connected autonomous
vehicles. IEEE Transactions on Intelligent Vehicles, 3(1):18–29, 2018.

[10] Fethi Belkhouche. Collaboration and optimal conflict resolution
at an unsignalized intersection. IEEE Transactions on Intelligent
Transportation Systems, 2018.

[11] Xiaoyuan Liang, Tan Yan, Joyoung Lee, and Guiling Wang. A
distributed intersection management protocol for safety, efficiency, and
driver’s comfort. internet of things journal, 5(3):1924–1935, 2018.

[12] Chien-Liang Fok et al. A platform for evaluating autonomous inter-
section management policies. In 2012 IEEE/ACM Third International
Conference on Cyber-Physical Systems, pages 87–96. IEEE, 2012.

[13] Masoud Bashiri et al. Paim: Platoon-based autonomous intersection
management. In 21st Conference on Intelligent Transportation Sys-
tems, pages 374–380, Maui, HI, USA, 2018. IEEE.

[14] Qiu Jin et al. Platoon-based multi-agent intersection management
for connected vehicle. In ITSC, pages 1462–1467, The Hague,
Netherlands, 2013. IEEE.

[15] Luis Conde Bento et al. Intelligent traffic management at intersections
supported by v2v and v2i communications. In 15th Conference on
Intelligent Transportation Systems, pages 1495–1502. IEEE, 2012.

[16] Mohammad Khayatian et al. RIM: Robust Intersection Management
for Connected Autonomous Vehicles. In IEEE Real-Time Systems
Symposium, pages 35–44, Nashville, TN, USA, 2018. IEEE.

[17] Muhammed O Sayin et al. Information-driven autonomous intersection
control via incentive compatible mechanisms. IEEE Transactions on
Intelligent Transportation Systems, (99):1–13, 2018.

[18] Mohammad Khayatian et al. Crossroads+: A time-aware approach
for intersection management of connected autonomous vehicles. ACM
Transactions on Cyber-Physical Systems, 4(2):20, 2019.

[19] Edward Andert et al. Crossroads: Time-sensitive autonomous inter-
section management technique. In DAC, page 50. ACM, 2017.

[20] Mohammad Hekmatnejad et al. Encoding and monitoring responsi-
bility sensitive safety rules for automated vehicles in signal temporal
logic. In MEMOCODE’19, pages 1–11, 2019.

[21] Karl C Bentjen. Mitigating the effects of cyber attacks and human
control in an autonomous intersection. Technical report, Air Force
Institute Of Technology Wright-Patterson AFB OH, 2018.

[22] Karl Bentjen et al. Modelling misbehaviour in automated vehicle
intersections in a synthetic environment. In International Conference
on Cyber Warfare and Security, pages 584–XI. ACIL, 2018.

[23] Rachel Dedinsky et al. A dependable detection mechanism for inter-
section management of connected autonomous vehicles. In Workshop
on Autonomous Systems Design (ASD). Dagstuhl, 2019.

[24] Mohammad Farhadi et al. A novel design of adaptive and hierarchical
convolutional neural networks using partial reconfiguration on fpga.
In High Performance Extreme Computing Conference. IEEE, 2019.

[25] Mohammadreza Mehrabian et al. An efficient timestamp-based mon-
itoring approach to test timing constraints of cyber-physical systems.
In Proceedings of the 55th Annual Design Automation Conference
(DAC), pages 1–6, 2018.

