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ABSTRACT

The pursuit for higher performance and higher power-efficiency in computing has led

to the evolution of multi-core processor architectures. Early multi-core processors pri-

marily used the shared memory multi-processing paradigm. However, the conventional

shared memory architecture, due to its limited scalability becomes a performance bottle-

neck. Newer architectures like the IBM Cell with 10 cores have adopted new memory ar-

chitectures to truly enable the peak computing performance available. In order to achieve

higher performance, it is necessary to re-design not only the bus topology, but also the

memory hierarchy. The distributed memory model used in non-uniform memory access

(NUMA) architectures is becoming popular in these modern processors.

Conventional on-chip memory like caches have been replaced by a low power, low area

alternative called scratch pad memory (SPM). Caches perform the data and code transfers

in hardware in an automated fashion. Unlike caches, the transfers in SPM need to be

explicitly managed by the compiler. In order to achieve a power-efficient operation, it is

important to map the most frequently used objects onto the SPM. In this thesis, a dynamic

scratch pad memory management scheme is proposed for program stack data with the ob-

jective of processor power reduction. As opposed to previous efforts, this technique does not

need the SPM size at compile-time, does not mandate any hardware changes, does not need

profile information and seamlessly integrates support for recursive functions. This solution

manages stack frames on SPM using a software scratch pad memory manager (SPMM), in-

tegrated into the application binary by the compiler. The experiments on benchmarks from

MiBench suite show average energy savings of 37% along with a performance improvement

of 18%.
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I. Introduction

Over the past two decades, computers have evolved from simple number crunching

machines in the size of a boiler room to the extremely high performance, general purpose,

compact devices like the iPhone [3]. During the course of this evolution, the improvements

in processor architecture have been mainly performance-centric. The processor became

increasingly complex with out-of-order execution, instruction level parallelism, involved

branch prediction mechanisms just to name a few. The process technology, following the

Moore’s law has played a very important factor in enabling this complexity. Intel is already

producing chips with 45nm technology (code name ‘Penryn’) which allows packing 410

million transistors on a single die [18]. But, it was not until the turn of the millennium,

that other significant challenges in design related to leakage power, thermal effects became

dominant. These factors not only increase power consumption and cooling costs, but can

severely hamper performance.

Given these challenges, it has become imperative to design processors with a good

power-performance ratio. Over the recent years, multi-core processor designs have become

increasingly popular. These architectures have two or more processors on the same die.

Each of the cores are simpler and operate on a lower frequency as compared to their uni-

processor ancestors. The hardware support for parallelism available in multi-core processors

can be utilized by the application to achieve higher performance and lower power. Intel

Core2 Duo [17] with two cores were among the first multi-core processors to be used in

consumer markets followed by the Intel Quad-Core [19] with four cores launched in the

server market. These processors use the shared memory architecture meaning all the cores

share a common bus to the main memory and have their own caches. This introduces

cache coherency problems and reduced aggregate bandwidth available to each core, thus
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limiting their full potential. Such a design, although feasible with lesser number of cores, is

not a scalable solution for future processors with 100’s of cores. The shift from multi-core

to many-core design has already begun with newer architectures like the IBM Cell [16]

and Intel Tera-Scale [20]. IBM Cell [16] processor used in the Sony Playstation3 [31]

gaming console has two master PowerPC [15] processors and eight synergistic processing

units (SPU). Intel’s Tera-Scale computing is building a scalable multi-core architecture

and currently has an 80− core prototype. These modern processors are using new memory

architectures and bus topologies to achieve the goals of high bandwidth, low power and

scalability. The IBM Cell [16] processor has a cache-less NUMA architecture; each of the

eight SPUs have fast access to their own local memory (called Local Store).

Power consumption is an important concern in all computing systems ranging from

embedded devices to large server systems. Battery operated embedded devices need to be

extremely power efficient for longer operation times, whereas server farms need to reduce

their cooling costs. The cache has been identified as the single most power hungry compo-

nent in the processor [8]. It is also worth noting that the cache also occupies a majority

of the silicon real estate. The experiments conducted by Banakar et. al [8] show that the

cache in StrongARM 110 consumes about 45% of the total dynamic processor power [8].

More disturbing is the trend of rapidly increasing leakage power of the cache [23].

Due to the aforementioned problems, the use of alternative low-latency, low-power,

on-chip memory known as Scratch Pad Memory (SPM) has become very popular. Banakar

et al. [8] observed that SPMs consume about 40% less power, and occupy 34% less area as

compared to a cache of similar capacity. The IBM Cell processor uses SPM for the Local

Store memory for its low-power synergistic processor units. Network Processors like the
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Fig. 1. Energy per access pyramid

Intel IXP1200 [1] also rely on SPMs in their micro-engines for power-efficient processing.

The pyramid shown in Figure 1 shows the energy per access trend for all types of memory.

It can be seen that the energy per access increases as we move further away from the

processor. It is important to note here that although, SPM is shown at a level lower than

the L1 cache in terms of energy, it is still at the same level as the L1 cache in terms of

memory hierarchy.

A. Cache vs SPM

Caches are used to achieve better performance by exploiting the temporal and spatial

locality of accesses in a program. Figures 2(a) and 2(b) show the basic components of a

cache and SPM respectively.

As seen from the Figure 2(a), the cache is primarily an SRAM array. The tag array

and comparator logic in hardware is used to perform the checks to locate a recently used

datum. During the execution of the program, this logic is active for each memory access
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Fig. 2. Cache and SPM architecture

made by the program. Thus, it is no surprise that the cache consumes a lot of power while

making those checks.

The SPM, on the other hand, does not use any extra logic. It is simply an SRAM

array supplemented by the required address decoding logic as shown in Figure 2(b). This

explains the lower area and lower power ratings for the SPM. In case of a cache based

system, the application is oblivious to the existence of an underlying cache. This enables

binary compatibility and portability of applications. The SPM, however, is not transparent

to the application as it is an explicitly addressed region of memory in the processor’s

address space. Thus, the application or the compiler needs to be SPM aware in order to

fully utilize this memory. Caches are not preferred in real-time systems due to the tighter

timing guarantees demanded by tasks. SPMs are very suitable in these systems as the data

present in SPM is always known to the application and can be accessed in a fixed number of

cycles. Overall, the compiler plays an important role in the efficient management of SPM.
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B. Challenges in the Compiler

The advantages of using SPM come with a new set of challenges. In SPMs, data trans-

fers to/from memory have to be explicitly managed by the application. This is challenging,

as it may not be possible to predict the data access pattern at compile-time due to the

inherently dynamic nature of programs. In order to maximize the power gains by using

SPM, it is essential to map data objects that are most frequently referenced onto the SPM.

Each of the types of application data i.e. global, stack and heap have different char-

acteristics and need to be treated separately when mapping to SPM. Global data is ‘live’

throughout the program execution and is the easiest to map onto SPM. Stack data is more

involved as the ‘liveness’ changes for data objects depending on the call-path traversed.

The address of stack objects may not be constant. One can also have multiple instances

of the same object (recursive functions). Heap data is the most challenging as the size of

allocated object is unknown at compile time.

In this thesis, we propose a solution for managing stack data of an application on

SPM. Our experiments in Figure 3 show that stack data enjoys an average of 64.29% of

total data accesses for the embedded applications in the Mibench [5] suite.

Mapping data onto SPM is known to be NP-complete. Early techniques proposed

static data mapping of stack variables onto SPM [7,33]. However, in static mapping tech-

niques, the data mapping does not change with time, and hence they are unable to exploit

the dynamically changing data access pattern of program. Consequently, dynamic map-

ping techniques were proposed. However, most dynamic mapping techniques are profile-

based [9, 10, 32, 33]. The use of profile limits their scope of application, not only because

of the difficulty in obtaining reasonable profiles, but also due to high space and time re-
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quirements to generate a profile. Techniques that do not require profile information are

preferred; however, there are only a few profile-independent dynamic mapping techniques

for SPM. One of them [22] uses static analysis to minimize data transfers between SPM and

external memory, but they concentrate on only array data structures and increase re-use

in SPM using source transformations. This approach, though effective, works well only

in well structured kernels of code. Work in [26] requires hardware support, which in turn

reduces its applicability.

While static analysis based, profile-independent dynamic mapping techniques for

SPMs are desirable, the challenge is to achieve significant power and performance improve-

ments using them. In this thesis, we propose a complete software solution for dynamic

management of SPM without requiring profile information. Unlike previous approaches,

except for [24, 26], our solution does not require the SPM size until run-time, thus giving
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the advantage of binary compatibility. Our approach to map stack data on the SPM is to

manage the active stack frames in a circular fashion. The application is enhanced with a

software SPM manager at compile-time. When the SPM is filled and unable to accommo-

date the stack frame for a new function call, a software manager makes space by evicting

the oldest frame at the beginning of the SPM to off-chip memory. We achieve an average

of 32% reduction in energy with this technique with an average performance improvement

of 13%.

Although effective, the SPM manager overhead can be significant in some cases due

to the SPM manager calls around each function invocation. We use static analysis to

reduce these calls by grouping them. This optimization reduces the software overhead and

achieves an average energy reduction of 37% with an average performance improvement of

18%. Applications which have pointers can pose problems when used with circular stack

management. It is worth noting that only the pointers to stack variables get affected by

circular stack management. In order to ensure correctness of execution in the presence of

pointers, we propose an extension to the circular stack management scheme in chapter V.



II. Related work

Banakar et. al [8] provide a comprehensive comparison between caches and scratch

pad memories. They demonstrate SPM as an energy efficient alternative to cache and

report a performance improvement of 18% with a 34% reduction in area. Figure 4 shows a

taxonomy of the SPM mapping techniques.

SPM

Static Dynamic

Profile-based Non-Profile

Hardware Software

Fig. 4. Taxonomy

All the existing work on SPM mapping can be classified as static and dynamic tech-

niques. Static techniques map certain data objects to the SPM and the contents of SPM

remain constant throughout the execution of the program. Dynamic techniques, however,

adapt themselves to the changing data access patterns of a program and can change the

contents of SPM depending upon the point of execution. It is no surprise that the dynamic

techniques in [9, 10,22,32] outperform the static technique in [7, 33].

We can further classify the dynamic methods into profile-based and non-profile meth-

ods. Stack management has been studied in few works [10, 32] using profile based tech-

niques. Udayakumaran et. al [32] propose a dynamic technique to map global and stack

data to SPM. They perform a profile analysis on the application and use it to propose

an ILP solution. But, due to the limited scalability of the ILP, they propose a greedy

heuristic which achieves near-optimal results in their benchmarks. However, the basis of
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both the solutions is in the profile data. An application profile may heavily depend on the

input data. The profile based techniques discussed above are proposed to be built into the

compiler. It should be noted that getting profile data before every compilation will not

only increase complexity of compilation, but also may be infeasible in terms of time. These

methods are unable to handle recursive functions and are forced to spill them to the off-chip

memory. This inherent limitation is evident in the fact that there is a separate work [10]

which maps recursive stack data on SPM. The authors propose to identify the levels of

recursion which use a lot of stack data by profiling and map only those stack frames onto

SPM. These approaches are a deterrent in target architectures similar to the Cell SPE,

TI MSP430 which requires the code or data to be brought into the SPM before accessing

it. Our SPM management technique works well even on this architecture and seamlessly

handles recursive as well as non-recursive functions on SPM. Moreover, all the works using

profiling information, except [24] need to know the SPM size at compile-time restricting

their binary compatibility. On the other hand, our technique does not need the SPM size

information until run-time. Thus, there is a need for profile-independent techniques for a

scalable and feasible SPM mapping solution. Our technique does not depend on profiling

and thus can scale well for any size of application.

Work in [9, 12, 26] perform SPM mapping in systems with hardware support from

the memory management unit (MMU). Our work is inspired from the approach in [26],

where the authors modify the MMU permission fault handler to perform circular stack

management. But, the hardware approach works only on systems with MMU limiting its

flexibility. This method uses the access permission bits of a page to perform its manage-

ment. This raises security concerns as any malicious application can take undue advantage
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of this management technique to get access to other processes. In [9], stack pages are man-

aged based on profile information and modifying the page fault handler of MMU to bring

pages to SPM on demand. Though the hardware techniques show promise, they lack the

flexibility and ease of implementation, since they need architectural modification.

Thus, there is a need for developing SPM mapping techniques which are dynamic,

profile-independent and built in software. Our technique is a dynamic, profile-independent,

pure-software technique which ensures a feasible and scalable solution to the problem of

stack data mapping. We present our approach in the next section followed by analysis and

experimental results.



III. Circular Stack Management

A. Active Stack Management

Our focus is to keep the active stack data on the SPM. In order to keep the book-

keeping overhead to a minimum, we consider stack data at the granularity of function

stack frames. At first, this may seem too coarse, but we demonstrate significant power-

performance savings even at this level.

We will consider a small sample program to explain our technique. Let us consider

an SPM of size 128 bytes. Table I shows the stack frame sizes for all the functions in

the program and the call graph is shown in Figure 5. Assuming an upward growing (in

address) stack, the stack state after the call to F3 is depicted in Figure 6(a). It can be

seen that in this example, the stack space requirement of our toy program is much larger

than the available SPM size. In order to make room for the stack frame for function F4,

we evict the oldest frame(s) in the SPM to the SDRAM. The evicted frames are kept

in stack order in a designated SDRAM location. Figure 6(b) shows the state of stack

after eviction of the older frames. Similarly, on the return path, when F3 returns, the

evicted frames i.e. F1 and F2 need to be brought back from SDRAM into the SPM at

their previous location. The movement of data between the SDRAM and SPM is per-

formed in software. Future implementations will incorporate the transfer by means of DMA.

TABLE I

Stack frame sizes for sample program

Function Frame Size(Bytes)
F1 28
F2 40
F3 60
F4 54
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F1
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Fig. 5. Sample program call graph

F1

F2

F3

Old 0

28

68

128

(a) Stack before eviction
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Old

0
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(b) Stack after eviction

Fig. 6. Stack state for sample program

The decision to remove the oldest frame is facilitated by the natural growth order of

call stack. We can evict only the number of bytes required to accommodate the new frame.

But, then we have to keep track of all such partial frames. It can also happen that there is

insufficient space at the bottom to accommodate a new frame. In such an event, one would

think of allocating the frame partially in the remaining space at the bottom and place the

rest from the top of SPM. However, this is not possible as the stack management is done at

run-time whereas the code has already resolved references to the stack objects with respect

to the frame pointer at compile-time. Thus, we choose to perform eviction at frame level

and keep the management overhead to a minimum.
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B. Software SPM Manager

Our technique is pure-software and hence, the management of stack is performed by

a software SPM Manager (SPMM). The key functions of SPMM can be summarized as

follows.

• Check for available stack space before a function call

• Maintain the exact map of all stack frames residing in SPM/SDRAM

• Keep track of the oldest frame in SPM at all times

• Transfer frames to/from the SPM to SDRAM

The SPMM needs a few important data structures to perform its functions. Some of

these structures are populated by the compiler by static analysis whereas others are used

by the manager to maintain run-time state.

• Function Table - The function table, as the name suggests, holds statically gener-

ated information for each function in the application. For each function, the table

holds the function’s stack frame size and some meta-data required for the pointer

extension discussed in chapter V.

• SPM State List - This structure is populated and managed at run-time by the

SPM Manager. It is the list of all the active stack frames currently residing in the

SPM/SDRAM. For each node in the ‘SPM State List’, we maintain the function Id,

its start address in SPM, and linear address. The ‘Start Address’ is nothing but an

address in the range of the SPM and multiple active frames can have overlapping

addresses due to circular management. ‘Linear Address’, on the other hand, is the
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start address of frame assuming an infinite SPM size. Thus, the addresses of different

active stack frames never overlap. This field is used in pointer extension discussed in

chapter V. Another important piece of information is the number of ‘Evicted Bytes’.

A non-zero value in this field indicates that the function before this node is present

in SDRAM. Thus, before returning to that function, SPM Manager needs to fetch

this frame from SDRAM to SPM.

The SPMM is implemented as a highly optimized library to be linked with the appli-

cation. The library provides three basic APIs to carry out manager functions. They are

briefly described below:

• spmm init() - This API is used to initialize the SPM Manager structures and gen-

erally inserted in the ‘main’ function of the application. This is also the place where

the SPM Manager can query a system register to obtain the SPM size on the target.

• spmm check in() - This API is used to notify a function call invocation to the

SPMM. The SPM Manager uses the function Id to look up the frame size in the

‘Function Table’. It uses inline assembly statements to read current values of pro-

cessor registers SP and registers containing function arguments. After estimating

the space available for the next function call, the SPM Manager may evict certain

number of frames to SDRAM in order to accommodate the new frame. This manager

call needs to be inserted before a user function call in the application.

• spmm check out() - This API is inserted after each user function call in the appli-

cation. It essentially updates the SPM State List to indicate successful return from a

user function. At the same time, it inspects the ‘Evicted Bytes’ field and may fetch
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<asm switch to mgr stack>
spmm_check_in(F2); 
<asm switch to prog stack> 
F2();
<asm switch to mgr stack> 
spmm_check_out(F2); 
<asm switch to prog stack> 

Fig. 7. Library calls inserted in application

frames from SDRAM before returning.

Since the SPM Manager queries for the SPM size at run-time, this gives us the advan-

tage of working with an unknown SPM size at compile time making our software portable

and binary compatible. The application can thus be supported by the SPMM on any SPM

size without the need for re-compilation. The SPM manager library calls are inserted by

the compiler in pairs, before and after each function call as shown in Figure 7.

The SPMM call to spmm check in() is necessary to check if there is space available

for F2 and handle a possible overflow required to accommodate it. When F2 returns, it is

necessary for the SPMM to verify that the call returns to a valid stack frame. For example,

if we consider the SPM state shown in Figure 6(b), if F3 simply returns, the stack pointer

will point to corrupt data. Thus, a check is made inside the spmm check out() to detect

this situation and fetch the old stack frames from external memory.

The SPMM functions need stack space for their own execution. This is allocated

in a reserved area of the SPM. The manager is carefully implemented without using any

standard library calls to ensure minimal stack space overhead. Assembly code is inserted

as shown in Figure 7 to switch the stack pointer between the ‘prog’ and ‘mgr’ stack areas

between these calls.



IV. Optimizations

The previous section describes the core functionality of the SPM manager in main-

taining the active stack of an application on SPM. The SPM Manager data is mapped

permanently to a reserved portion of the SPM to reduce performance overhead. Even so,

using the circular management of stack may lead to a performance overhead due to the

extra manager library calls before and after each user function call as shown in Figure 7.

But, there are opportunities to reduce these overheads by examining the call and control

flow of the application.

A. Call Reduction Opportunities

We use the sample program shown in Figure 8 to illustrate the opportunities for call

reduction. Using the SPMM technique requires a SPM manager call pair to be inserted

around each function call. We would like to reduce the total number of manager calls by

consolidating them for a group of functions.

F1() { 
F2(); 
for { 

F3();
F4();

}
F(5);

}

F5() {
if(…){

F5();
}

}

F4() {
F6();

}

Fig. 8. Sample program

For the example in Figure 8, if we consider F4, it has a nested call to F6. Here, it is

possible to avoid inserting a separate manager call around F6 as seen in Figure 9(a), if we

can request the space for F6 in the manager call for F4. In this case, the requested stack

space will be equal to the requirement of (F4+F6) as shown in Figure 9(b).
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F1() { 
F2(); 
for { 

F3();
spmm_check_in(F4);
F4();
spmm_check_out(F4);

}
F(5);

}

F4() {
spmm_check_in(F6);
F6();
spmm_check_out(F6);

}

(a) Un-optimized code

F1() { 
F2(); 
for { 

F3();
spmm_check_in(F4+F6);
F4();
spmm_check_out(F4+F6);

}
F(5);

}

F4() {
F6();

}

(b) Optimized code

Fig. 9. Opportunity in nested function calls

Another opportunity can be seen in F1, where F3 and F4 are always called in sequence.

Here, instead of making multiple manager calls for F3 and F4 as seen in Figure 10(a), we

can insert a single call pair around F3 and F4 together, requesting for a stack space of

max(F3, F4) as shown in Figure 10(b).

F1() { 
F2(); 
for { 

spmm_check_in(F3);
F3();
spmm_check_out(F3);
spmm_check_in(F4+F6);
F4();
spmm_check_out(F4+F6);

}
F(5);

}

(a) Un-optimized code

F1() { 
F2(); 
for { 

spmm_check_in(max{F3,F4+F6});
F3();
F4();
spmm_check_out(max{F3,F4+F6});

}
F(5);

}

(b) Optimized code

Fig. 10. Opportunity in sequential function calls

Loops in the program also give an opportunity to avoid repeated manager calls. Since

F3 and F4 are executed in a loop, it is possible to make the manager call outside the

loop construct. It can be seen how it is possible to chain these individual optimizations
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to considerably reduce the manager call overhead. The final optimized version of the

instrumented code is shown in Figure 11.

F1() { 
F2();
spmm_check_in(max{F3,F4+F6});
for { 

F3();
F4();

}
spmm_check_out(max{F3,F4+F6});
F(5);

}

Fig. 11. Final optimized code

B. Global Call Control Flow Graph

We introduce a novel data structure called Global Call Control Flow Graph (GCCFG)

to perform this analysis. The GCCFG is an extension to the standard control flow graph

(CFG). It is a directed graph G = (V,U,E), where an F-node v ε V represents a function,

an L-node u ε U represents a loop and a directed edge e ε E in V
⋃
U represents a function

call or a nested loop. It is constructed in two simple steps. Firstly, a CFG is constructed

for each function. Then, the loop headers and loop branches are identified to form the

L−Nodes in the graph. If a function is called inside a loop, the corresponding F-node is

joined to the loop header L-node with an edge. Further, all L-nodes representing nested

loops, if any, are also joined. F-nodes not inside any loop are joined to the first node of

the CFG. For conditional statements, it is assumed that both paths will be executed. The

first node, F-nodes , L-nodes and corresponding edges are retained, while all other nodes

and edges are removed. This step trims the CFG and retains the control flow and call flow

information.
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In the next step, all CFGs are merged by combining each F-node with the first node

of the corresponding CFG. Recursion can be detected while constructing the graph and is

indicated by a self-loop on the F-node. The merge ensures that strict ordering is maintained

between the CFGs, i.e. if two functions are called one after another, the first function is

a left child and the other function is a right child of the caller function. The GCCFG is

an approximate representation of the runtime execution flow of the program. The GCCFG

for the sample program in Figure 8 is shown in Figure 12.

F5

F1

F2 L1

F3 F4

F6

Fig. 12. GCCFG for sample program

Each node v ε V , u ε U stores some information required to statically analyze the code

and traverse the GCCFG. The members comprising each node are explained below:

• nodeType - This field indicates if the node is an F-node or an L-node.

• frameSize - This gives the stack frame size for F-nodes. This field has a value of ‘0’

for L-node.

• requestSize - This field is populated by the call reduction analysis. It holds the stack
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size to be requested from SPMM in the presence of optimizations.

• parent - This field holds a pointer to the parent F-node. In case of nested loops, the

parent will be the containing function.

• recursive - This flag is set if the F-node is recursive. It is ignored for L-nodes.

• start - This field holds the start address for F-nodes during static analysis.

• children - This field holds the list of children F-nodes/L-nodes in call order.

C. Manager Call Consolidation

Now that we have identified the circumstances in which optimization is possible, we

outline an algorithm which will systematically explore the GCCFG and insert the manager

calls only where absolutely necessary. In order to perform the manager call consolidation,

we explore the GCCFG in a depth-first fashion (done by the routine Consolidate shown in

Algorithm 1). Starting from the leaf functions, we check to see if any of the aforementioned

optimizations are possible and if so, fill the requestSize field. It must be noted that each call

instance of the same function may be optimized differently depending upon its parent and

siblings i.e. the call path traversed. But, the optimization inside a particular function will

be performed once, when the graph first explores the function and will remain unchanged

thereafter.

Once the GCCFG exploration is complete, the requestSize field of each node indicates

the action to be taken as given in Table II.

We can now insert the appropriate manager calls by exploring each of the GCCFG

nodes for the requestSize field. The exploration always starts at the F-node representing
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TABLE II

GCCFG request size field

Value of requestSize Action
= 0 Insert manager call before this node using frameSize value

(applies only to F-nodes)
> 0 Insert manager call before this node using requestSize value

= −1 Do not insert manager call

the ‘main’ function of the application. The algorithm for the manager call consolidation

follows:

Algorithm 1 Consolidate (Vf)

1: for all children, Vi ε children(Vf ) do
2: Consolidate(Vi)
3: end for
4: Classify(Vi)

The routine ‘ComputeStackReq’ in Algorithm 3 computes the maximum stack space

required by children of a node. This routine also detects recursion and marks a flag in the

GCCFG node. This information is used by the routine ‘Classify’ in Algorithm 2 to check if

the given size of SPM can hold both, the node and its children’s stack in the available space.

The conditional statement in step 4 and step 11 of ‘Classify’ checks to see if there is enough

space either before or after the parent function. This is important as any optimization

should not end up requiring eviction of its immediate parent’s stack frame.

To understand this, let us go back to the sample program in Figure 8. Consider that

there are a few statements between F3 and F4 which access F1’s stack frame. Now, if the

consolidation of manager calls to F3 and F4 lead to eviction of the stack frame of F1, the

program will access corrupt stack data when executing the statements between F3 and F4.

This does not happen in the un-optimized case, as we call the manager immediately after



22

Algorithm 2 Classify (Vf)

1: ComputeStackReq(Vf )
2: if (nodeType(Vf ) is L-Node then
3: Find parent F-node Vp for Vf

4: if (condition)† then
5: requestSize(Vf ) = stackReq
6: for all F/L-Nodes, Vi ε children(Vf ) do
7: requestSize(Vi) = −1
8: end for
9: end if

10: else if (nodeType(Vf ) is F-Node then
11: if (condition)† then
12: requestSize(Vi) = frameSize(Vi) + stackReq
13: for all F/L-Nodes, Vi ε children(Vf ) do
14: requestSize(Vi) = −1
15: end for
16: end if
17: end if
†Check to see if there is enough space for the children function(s) either before or after the
parent function in SPM.

returning from F3. Here, if the stack frame of F1 was evicted, the manager would fetch it

from external memory before proceeding ahead.

In the event that the maximum program stack requirement is less than the SPM size,

the algorithm would suggest insertion of only one consolidated manager call at the ‘main’

function. Thus, for such cases, the SPM manager overhead is at its minimum. Since this

analysis is carried out at compile time, it is not possible to optimize for recursive functions

as the depth of recursion may vary with program input. We therefore leave the recursive

functions un-optimized.

This optimization is implemented as a compiler pass which scans the source files to

generate the GCCFG. Once the GCCFG is generated, for a given SPM size, the manager call

consolidation algorithm is applied to insert the SPMM calls. The compiler then generates

the Function Table for the application which is embedded into the binary. The Function
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Algorithm 3 ComputeStackReq (Vf)

1: stackReq = 0
2: for all F/L-Nodes, Vi ε Vf do
3: if recursive(Vi) is TRUE then
4: stackReq = SPMSize
5: break
6: end if
7: if requestSize(Vi) > 0 then
8: size = requestSize(Vi)
9: else

10: size = frameSize(Vi)
11: end if
12: stackReq = max{stackReq,size}
13: end for
14: if stackReq = 0 then
15: stackReq = SPMSize
16: end if

Table generated here has entries for each function as well as entries for certain consolidated

blocks (loops, groups of functions).

It is also important to note that the target SPM size is required at compile-time to

perform this optimization. Thus, the application programmer has a choice to optimize if

he knows the system SPM size. If not, the programmer can always fall back on the base

method described in chapter III.



V. Extension for Pointer support

The stack management technique described in chapter III manages the active portion

of application stack on SPM. Applications which contain pointers can be used with this

approach, but need more analysis in order to ensure correctness of execution. Correctness

can be a concern with SPMM in presence of pointers, since the stack data is managed in a

circular fashion and stack frames change their locations during execution. This may cause

certain pointers to stack data to become invalid. In the following sections, we propose

an extension to the circular stack management technique to handle pointers and illustrate

using an example in section B.

A. Run-time Pointer-to-stack Resolution

We would like to expand the applicability of the circular stack management technique

described in chapter III to applications with pointers. Our technique is for the management

of stack data and hence, we consider all the pointer variables pointing to stack data. We

need to analyze the source code to detect these pointers. The extension proposed in this

section has a few restrictions and is unable to handle all possible cases of programmatically

using stack values by pointers. We discuss these limitations and the underlying assumptions

before explaining the extension.

• Functions will access data from other stack frames only through use of pointers passed

as arguments to it.

• The source language is strongly typed (no type-casting). We cannot detect pointers

if they are disguised as other types when passed in function arguments.

• Pointers to stack data are not passed within other structures.
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The assumptions given above may seem too restrictive when applied to programs

written in C, but actually, they conform well with good programming practices to be

followed. The extension comprises of two components:

• Compile-time analysis to detect function signatures (function prototypes).

• Run-time analysis to resolve pointer-to-stack addresses.

A.1. Compile-time Component

Since we assume that the pointers-to-stack data originate and propagate only through

function arguments, it is essential to know all the function signatures of the application. We

obtain this information by parsing this information from the abstract syntax tree (AST)

of the application. For each function, we record the type of each argument and add this

information to the SPMM Function Table data structure described in section B. The

following subsection describes the run-time component which uses this function signature

information.

A.2. Run-time Component

The run-time component is activated as part of the SPMM library calls themselves.

The function of this component is to validate all pointer arguments in the function signature.

We use the SPM State List structure of the SPMM for this validation. The SPM State List

described in section B holds vital information about the current call path executing in the

program. For this discussion, the ’owner frame’ is the frame to which the pointed-to-data

of a pointer belongs. The validation is comprised of three simple steps:

1. We first find the owner frame for that pointer argument value. The SPM State List

stores the starting address for each frame and also knows the size of all the frames
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in the current call graph path. Since it is possible that multiple frames in the SPM

State List may contain this address, we scan the list in the reverse direction (i.e.

latest node to oldest node).

2. Once the owner frame is found, we need to check if it is present in SPM/SDRAM.

This can be achieved by inspecting the ‘Evicted Bytes’ field of the next frame. If this

field is greater than zero, it indicates that the frame is currently residing in SDRAM.

If ‘Evicted Bytes’ is zero, it implies that the function resides in SPM and the pointer

is still valid causing no further action to be taken.

3. The last step is to compute the new address and is necessary if the owner frame was

detected to have moved to SDRAM. The evicted frames are stored in stack order in

SDRAM in a linear fashion. The ‘Linear Address’ field in the SPM State List gives

the start address of a frame assuming an infinite SPM starting from address 0. We

can now simply add the ‘Linear Address’ value to the SDRAM eviction area base

address to locate the owner frame in SDRAM. Now, it is possible to find the new

address of the pointer since the offset within the frame remains unchanged.

B. Illustrative example

Let us consider the sample program in Figure 13 to understand the pointer problem.

In order to succinctly explain the problem, we construct a toy program which is recursive

in nature. However, it is important to note that the extension proposed can also work

with non-recursive programs. The Table III gives the stack frame sizes of the functions in

the sample program. Let the SPM size be 256 bytes.
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TABLE III

Stack frame sizes for pointer sample program

Function Frame Size(Bytes)
main 40

ptrRecursion 28

int main(void) {
int k = 8;
int var1 = -1, var2 = -2;
int *ptrVar2 = &var2;
int **p_ptrVar2 = &ptrVar2;

ptrRecursion(k,&var1,p_ptrVar2);
printf(“%d %d”,var1, var2);

}

void ptrRecursion(int k, int *ptrVar1, int **p_ptrVar2) {

if (k == 1){
*ptrVar1 = 1000;
**p_ptrVar2 = 2000;
return;

}
ptrRecursion(--k,ptrVar1,p_ptrVar2);

}

Fig. 13. Pointer sample program

In Figure 13, the value of the variable k in the function main decides the level of

recursion i.e. the stack depth. Pointers to local variables of main viz. var1 and var2 are

passed to the function ptrRecursion. The pointer to var2 in the third argument is passed

as a two-level pointer reference, whereas that of var1 in the second argument is a single

level pointer reference. At the tail of the recursion, the values of local variables var1 and

var2 are changed through their respective pointers inside ptrRecursion. This example uses

the common programming practice of using pointers to local variables and reading/writing

to them in other functions. Essentially, the function stack for the active function accesses

data in other stack frames in its call path.

Given the stack frame sizes in Table III and the SPM size of 256 bytes, the stack depth

is depth = framesize(main) + k ∗ framesize(ptrRecursion). In this example, for k = 7,

the value of depth = 236 bytes and will not cause a stack overflow. But, if k = 8, the depth
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Fig. 14. Pointer sample program stack state

value is greater than 256 bytes and will try to overflow the SPM stack. The SPMM will

accommodate the new stack frame by evicting the oldest frame in the SPM (i.e. main) as

shown in Figure 14. The new frame i.e. ptrRecursion with k = 1 receives the address of

var1 and ptrV ar2 of main in its arguments. But, the SPMM has already moved the stack

frame of main to SDRAM. In this case, any writes/reads using the pointer arguments will

cause a corruption of stack or incorrect operation of the program. This is shown by the

dotted lines in Figure 14.

In order to ensure correctness, it is necessary for the SPMM to update the pointer

address argument such that the reads/writes will happen at the correct location in SDRAM.

This is shown by the dashed lines in Figure 14. For single level pointers like the second

argument (int ∗ ptrV ar1)of ptrRecursion, this will suffice. But, for multi-level pointers like

the third argument (int ∗ ∗p ptrV ar2), SPMM needs to update the address at each level of
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de-reference.

It is important to note that we are concerned with only pointers to stack data. All

other pointers in the application (pointers to heap data, pointers to global data) are not a

problem since the SPMM never touches those data. We already have the function signature

information for each function generated at compile-time and stored in the Function Table

structure. This tells us the pointer arguments present in each function which need to be

validated during run-time.

For the correct execution of application, it is necessary for stack data references shown

by the dotted line in Figure 14 be re-directed to the location shown by the dashed line.

This implies that the SPMM should change the value of the pointer argument that is to be

passed on to the Function ptrRecursion.

Let us assume the address values of the local variables of main as address(var1) = 20,

address(var2) = 24 and address(ptrV ar2) = 28. The SPMM is called (spmm check in)

before the function call to ptrRecursion (k = 1). Due to insufficient space, the SPMM evicts

main, causing the local variables of main to now reside at an SDRAM location changing

their addresses to address(var1) = 4020, address(var2) = 4024 and address(ptrV ar2) =

4028. However, the pointer argument values for Function ptrRecursion (k = 1) still hold

the old addresses. This is the point where the SPMM call has to update these values before

letting Function ptrRecursion (k = 1) start its execution.

We use the SPM State List structure described in section B to achieve this. The SPM

State List holds the entire list of functions in the active call path traversed as shown in

Figure 15. We also need to query the Function Table to get the list of pointer arguments

to be inspected. For each pointer argument in the function ptrRecursion, we perform three



30

main ptrRecursion(k=8) ptrRecursion(k=7) ptrRecursion(k=1)

SPM State List

Id = ‘main’
startAddress = 0
evictedBytes = 0

Id = ‘ptrRecursion’
startAddress = 40
evictedBytes = 40

Id = ‘ptrRecursion’
startAddress = 0
evictedBytes = 0

Fig. 15. SPM state list

simple steps:

1. We first want to find the owning frame for that pointed-to-data. Since, we store the

starting address for each frame and also know the size of the frame, this is achievable

by simply scanning the list. In the example above, the owner frame is main.

2. We need to check the current location of main i.e. if it is present in SPM/SDRAM.

This can be achieved by inspecting the ‘Evicted Bytes’ field of the next frame i.e.

ptrRecursion(k=7). If this field is greater than zero, it indicates that main is currently

residing in SDRAM. If ‘Evicted Bytes’ is zero, it implies that the function resides in

SPM and we do not need to update the address.

3. The last step is to compute the new address. The evicted frames are stored in stack

order in SDRAM in a linear fashion. The ‘Linear Address’ field in the SPM State List

gives the start address of a frame assuming an infinite SPM starting from address 0.

We can now simply add the ‘Linear Address’ value to the SDRAM eviction area base
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address to locate main in SDRAM. Once found, we can find the new address of the

local variables var1 and ptrV ar2 and var2.

After finding the new address, the SPMM modifies the argument values passed to the

function ptrRecursion(k=1). An important aspect of this method is that the pointers need

to be updated only once. In the sample program given in Figure 13, if k > 8, then too,

the pointers are updated when the pointed-to-data changes its address. But the pointers

do not need to be updated for every subsequent frame, since the new argument values are

being propagated after the update.



VI. Experiments

A. Experimental Setup

We use the cycle-accurate SimpleScalar simulator [6] to model an architecture without

a cache, but consisting of an SPM and an external SDRAM memory. The processor uses

the ARMV5TE ISA [4]. The static analysis algorithm is implemented as a pass during the

compilation using the GCC compiler ported for ARM. We use the MiBench suite [5] of

embedded applications to demonstrate the effectiveness of our technique. Table IV shows

the maximum stack depth and SPM size used for different benchmarks.

TABLE IV

Benchmarks

Name Stack Depth(Bytes) SPM Size(Bytes)
Dijkstra 424 256

Blowfish-Encryption 12440 8192
Rijndael-Encryption 796 1024
Blowfish-Decryption 11984 8192
Rijndael-Decryption 812 1024

SHA 2240 2048
JPEG 10570 8192

Susan-Smoothing 14380 12288
Susan-Corners 14124 12288
Susan-Edges 14960 12288

B. Energy Models

We use the CACTI tool [30] for the SPM energy model with 0.13µ technology. For

an SPM of size 1k, the energy per read (ESPM/RD) and write (ESPM/WR) access are

0.33nJ and 0.13nJ respectively. It should be noted that the per access energy increases

with SPM size. The external memory energy model is for a 64MB Samsung K4X51163PC

SDRAM [28]. The energy per read burst(ESDR/RD) for the SDRAM is 3.3nJ, whereas,

a write burst(ESDR/WR) is 1.69nJ. The following equations are used to calculate energy

consumed:
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ETOTAL = ESPM−TOTAL + ESDR−TOTAL

ESPM−TOTAL = (NRD ∗ ESPM/RD) + (NWR ∗ ESPM/WR)

ESDR−TOTAL = (NSDR−RD ∗ ESDR/RD) + (NSDR−WR ∗ ESDR/WR)

C. Results and Analysis

We evaluate the effectiveness of the circular stack management technique and the con-

solidation algorithm by comparing the energy consumption and performance improvement

for:

1. System with only SDRAM, 1k cache (Baseline)

2. System with SPM and circular stack management (SPMM)

3. System with optimized circular stack management (GCCFG)

4. System with circular stack management and pointer extension (SPMM-Pointer)

The SPM sizes are chosen such that they are at least as much as the largest function

stack frame in the benchmark. Figure 16 shows the normalized energy reduction obtained

for the benchmarks.

The average reduction in energy using SPMM against the Baseline is 32% with a

maximum energy reduction of 49% for the SHA benchmark. The dynamic profiling based

technique in [10] focuses on mapping recursive stack data to SPM and achieves an average

reduction in energy of 31.1%. It should be noted that the authors suggest taking multiple

profiles and averaging them in order to reduce profile dependence In contrast, we achieve
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Fig. 16. Normalized energy reduction

32% energy savings by simply managing the entire stack from SPM seamlessly for recur-

sive and non-recursive functions without the time-consuming profiling process. Also, our

solution does not require the SPM size till run-time making it binary compatible.

We improve upon our results further by reducing the SPM manager calls using the

consolidation algorithm. We observe a further average energy reduction of 5%. The SHA

benchmark contains many nested function calls within loop structures making it a good

candidate for optimization using our consolidation algorithm. It should be noted that the

GCCFG consolidation reduces only the SPM manager call overheads while the data move-

ment between SPM and SDRAM in case of overflows remains constant. Call consolidation

causes evictions to occur in bigger chunks. This happens so, because the manager may al-

locate and de-allocate stack space for groups of functions rather than individual functions.

The SPM manager function table is accessed from SDRAM whereas only a limited set of
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Fig. 17. Normalized performance overhead

manager data objects are kept in SPM. This is done to keep a minimal space overhead in

SPM. The overhead of the SPM Manager is well compensated for by the reduction in total

number of SDRAM accesses.

The performance trends shown in Figure 17 are normalized with the Baseline case. It

is important to note that the performance obtained using the Baseline system is 16x better

than a system without any on-chip memory. In case of processors which only have an SPM

and no cache, our technique is extremely beneficial for performance as well as power.

We observe an average performance improvement of 13% for SPMM technique with

a maximum improvement of 34% for Blowfish-Decryption. It is interesting to note that

the hardware assisted circular stack management in [26] achieves a similar performance

improvement. But, our solution does not require any hardware support and can be ported

to any architecture using SPM. We observed performance degradation up to 6% in the
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SHA and JPEG benchmarks. But, the manager call consolidation algorithm completely

eliminates this degradation and results in further average performance improvement of 5%.

The pointer extension proposed in chapter V is extremely useful in situations where the

application programmer is already given a fixed SPM size on the system. If the application

uses pointers to stack data and wants to use the Circular Stack Management, this may

lead to incorrect execution as demonstrated in section B unless the suggested extension

is used with SPMM. Due to the SPMM with pointer extension (SPMM-Pointer), we are

able to run more benchmarks like Blowfish and JPEG which use a lot of pointer-to-stack

references.

We observe an average energy reduction of 29.6% with SPMM-Pointer. The reduced

energy savings by 3.3% as compared to SPMM can be attributed to the extra instructions

executed to validate pointers in the program during the SPMM calls. It is no surprise that

we also see reduced performance improvement from 13% for SPMM to 10% for SPMM-

Pointer. However, as pointed out before, a programmer can now run his application with

pointers even when he does not have the liberty to choose the SPM size.



VII. Conclusions

A simple, yet effective, dynamic circular stack management scheme which does not

require system SPM size at compile-time was proposed. The static analysis method to

reduce the software overhead achieved average energy reduction of 37% with an average

performance improvement of 18%. The stack management demonstrated is not restricted

to cache-less architectures and can also be used in general purpose systems and scales well

with application size.

There are many interesting dimensions to extend this method. The pointer extension

suggested can be combined with static analysis methods to detect all types of pointers and

resolve them at run-time. When the stack frame size is greater than SPM itself, the function

stack cannot be brought into the stack and needs to be used from the main memory. One

can investigate approaches to break the function stack and bring it into the SPM in parts.

The solution presented is promising as there is a clear need, but lack of SPM mapping

techniques which are dynamic, profile-independent, pure software and binary compatible.
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