
Root cause analysis of soft-error-induced failures from hardware and
software perspectives
Jinhyo Junga, Yohan Kob,∗, Hwisoo Soa, Kyoungwoo Leea and Aviral Shrivastavac

aYonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic Of Korea
bYonsei University, 1 Yonseidae-gil, Gangwon-do, 26493, Republic Of Korea
cArizona State University, 660 S Mill Ave, Tempe, AZ 85281, United States

A R T I C L E I N F O

Keywords:
Soft Error
Transient Fault
Fault Injection
Failure Analysis
Reliability

A B S T R A C T

Because the dangers of soft errors are increasing with continued technology scaling, reliability against
soft errors is becoming an important design concern for modern embedded systems. Various schemes
have been proposed to protect embedded systems from the threat of soft errors, but they incur considerable
overheads in terms of cost and performance. Selective protection techniques seem promising because they
can achieve high levels of protection with low overhead. Though these techniques can be applied to any
system, the most vulnerable parts must first be identified. We, therefore, present CFA, a comprehensive
failure analysis framework that can analyze the vulnerability of microarchitectural components and software
instructions through intensive fault injection campaigns. With CFA, we also explore the vulnerability of
ten benchmarks from the MiBench benchmark suite. We found that protecting a part of the system heavily
affects the reliability of the other parts. Therefore, all combinations of protection methods must be examined
to present the most efficient and effective protection guidelines. Throughout the experiments, we observed
that protection methods offered by single-perspective analyses are sub-optimal. On the other hand, CFA
finds the optimal solution in every case, reducing the AVF of a system by up to 82% with minimal protection.

1. Introduction
Soft errors, or transient faults, are caused by external radiation such

as alpha particles, thermal neutrons, cross-talks, and cosmic rays [36].
If the radiation-induced charge exceeds a certain threshold, known as
the critical charge, a soft error can occur and cause bit flips in the hard-
ware, leading to timeouts, system failures, or incorrect outputs. The
critical charge of contemporary devices is continuously decreasing ow-
ing to the reduction in chip size and supply voltage, and accordingly,
soft error rates are exponentially increasing [2, 25]. Thus, reliability
against soft errors is an essential concern in modern embedded sys-
tems [28] because of the small form factor and aggressive dynamic
voltage scaling [16, 39].

Several techniques have been proposed to protect the embedded
systems against soft errors. Hardware-based techniques based on mod-
ular [23] and information redundancy schemes [3] can protect proces-
sors by adding redundant hardware [24, 35]. Software-based protection
techniques, such as instruction duplication [30, 38], have been proposed
to avoid additional hardware costs. These schemes detect or correct
soft errors by duplicating the instructions and validating the results be-
tween the original and duplicated instructions. However, these protec-
tion techniques are inappropriate for resource-constrained embedded
systems because they are expensive and ineffective due to additional
hardware modules or duplicated instructions.

Various efficient solutions have been proposed to mitigate protec-
tion overheads. Some techniques use unique characteristics of oper-
ations to provide low-cost protection. For example, algorithm-based
fault tolerance techniques [7, 14] use the mathematical traits of matrix
multiplication to generate efficient checksums. Some works claim to
achieve low-cost protection for deep neural networks by restricting the
magnitudes of activation functions [9, 13]. These techniques, however,
are only applicable to specific operations. They also do not consider
the vulnerability of their targets, which may lead to over-protection of
resilient parts or under-protection of vulnerable parts of the system.

Selective or partial protection techniques are attractive alternatives,
∗Corresponding author

E-mail address: Yohan.Ko@yonsei.ac.kr

as the targets for protection are chosen flexibly. From the hardware
perspective, system designers may choose to protect only the most vul-
nerable microarchitectural components. For example, the register file
can be a candidate because soft errors in the register file can quickly
propagate to other components [29]. The pipeline register is also con-
sidered vulnerable because it contains essential information between
the pipeline stages [15]. From the software perspective, designers may
choose to protect only the most vulnerable instructions. For example,
Reis et al. [33] claimed that the program always returns the correct out-
put if all memory write operations and control-flow instructions are ex-
ecuted correctly. However, these ideas are mainly based on heuristics,
and the vulnerabilities of microarchitectural components and instruc-
tions against soft errors have not been comprehensively studied.

In this work, we present CFA, a comprehensive failure analysis
framework to find the microarchitectural components and software in-
structions that are most vulnerable to soft errors [18]. Our failure anal-
ysis framework is based on the cycle-accurate system-level gem5 sim-
ulator [5]. It can inject soft-error-modeled faults into a microarchitec-
tural component, log their impacts on system behaviors, and analyze
system failures from both hardware and software perspectives. For the
hardware perspective analysis, CFA injects faults into specific microar-
chitectural components to estimate the vulnerability of each component
separately. For the software perspective analysis, CFA performs the
root cause instruction analysis, a novel technique to find the software
instructions responsible for system failure. CFA is publicly available
at https://github.com/dependablecomputinglab/CFA-framework.

We perform vulnerability analysis from various perspectives on ten
benchmarks from the MiBench [12] benchmark suite using our frame-
work. From the hardware perspective, the pipeline register must be
protected with the utmost priority because it contains essential meta-
data. From the software viewpoint, compare instructions showed the
highest Architectural Vulnerability Factors. However, the results from
individual perspectives are subject to change depending on the target
application or the protection method. Therefore, choosing the hard-
ware component or software instructions to protect must be decided
comprehensively, taking multiple factors into account. To the best of
our knowledge, this study is the first to highlight the various attributes

Jung et al.: Root cause analysis of soft-error-induced failures from hardware and software perspectives Page 1 of 10

 https://github.com/dependablecomputinglab/CFA-framework

Root cause analysis of soft-error-induced failures from hardware and software perspectives

of instructions, hardware components, and the target system as a whole.

2. Related Works
2.1. Protection Techniques against Soft Errors

Several techniques have been proposed to protect the processors
from soft errors. These techniques can be classified into two categories:
hardware protection and software protection. Hardware solutions re-
quire the addition of redundant hardware [3, 23, 24, 35], which makes
these solutions inflexible and expensive. The large area-overhead and
high cost-overhead of full hardware protection techniques hinder them
from being applied to resource-constrained embedded systems. For ex-
ample, concrete shielding suggests shielding the system from external
radiation by surrounding it with many feet of concrete [4, 20], which is
simply inapplicable to such systems.

Software protection techniques do not apply any hardware modifi-
cations and instead rely on software methods such as instruction dupli-
cation. Oh et al. [30] proposed duplicating instructions and comparing
the results between original and duplicated instructions to detect soft er-
rors. While these techniques do not have the disadvantages of hardware
protection techniques, software-based protection methods induce huge
performance overheads since all instructions need to be duplicated [17].
This type of overhead is also intolerable for most embedded systems.

Because full protection is impractical for resource-constrained em-
bedded systems, many techniques that reduce overheads in terms of
area and performance have been proposed. One solution is to take ad-
vantage of the characteristics of specific operations to protect the op-
erations with a much lower overhead than full replication. For exam-
ple, algorithm-based fault tolerance techniques [7, 14] produce low-
cost checksums for matrix multiplication operations. Another target is
the activation function in deep neural networks. Simply limiting the
range of these function outputs can effectively correct errors in the pre-
vious layers [9, 13]. Unfortunately, these techniques are inflexible as
they can only protect their designated targets. They cannot be applied
to systems that do not include the target operations.

Selective protection is a more flexible solution that offers high lev-
els of error resilience with minimal overhead by protecting only the
most vulnerable microarchitectural components and software instruc-
tions. Although selective protection is applicable to any system, the
programmer must first know the most vulnerable parts of the system.
Several arguments exist for the most vulnerable microarchitectural com-
ponents. Naseer et al. [29] suggested that the register file could be
the most vulnerable because errors in the register file can quickly and
easily propagate to other components. Other candidates include the
pipeline register, which holds essential information between pipeline
stages [15], and the scoreboard, in which errors may destroy the data
dependency between instructions [26].

There are various ideas on the most vulnerable software instruction
types. In [33], store instructions were considered the most critical. The
argument is that in memory-mapped I/O, a program always returns the
correct output if all store instructions are executed correctly. Control-
flow instructions are also considered vulnerable because an incorrect
control-flow can execute incorrect store instructions or omit the exe-
cution of correct store instructions. On the other hand, Wei et al. [41]
suggest that store instructions need not be protected. Most data stored
by store instructions are overwritten before they are used, and there-
fore, protecting store instructions could result in a waste of resources.
Instead, the authors claim that add instructions are the most vulnerable
because they are frequently used to control loop index variables. Liu et
al. [22] consider add instructions to be vulnerable for similar reasons.

2.2. Reliability Evaluation Techniques
Because soft errors are rare events in real-world environments, it is

unrealistic to record the actual occurrence of soft errors to measure the
reliability of a system. Therefore, reliability evaluation techniques in-
volve numerous trials with manually induced soft errors and the analy-
sis of the effect of those errors on the processor. One notable method for
manually inducing errors is neutron beam testing [11]. Neutron beam
testing exposes a processor to neutron-induced soft errors by placing a
test processor in a cyclotron. Because this experimental environment
is very similar to how soft errors occur, the results are highly accurate.
However, beam testing experiments are costly to perform and require
real hardware of the finished product [6]. Furthermore, beam testing
experiments cannot show the reliability distribution among microar-
chitectural components in a processor because all components are si-
multaneously exposed to soft errors.

Fault injection campaigns have been presented as alternatives to
expensive and complicated beam testing [1, 31, 32]. Fault injection
campaigns intentionally inject faults into the system by reversing the
value of a bit in the processor at a specific cycle during execution.
These experiments can be performed even in the early design phase
using a simulator. It is commonly considered that all bits in the system
are equally likely to experience a soft error, and the bit and cycle are,
therefore, chosen in a uniform random. With fault injection campaigns,
it is possible to calculate the component-wise reliability. The vulnera-
bility of each component can be estimated independently by injecting
faults into the selected microarchitectural components.

Ideally, the reliability of a system can be measured by injecting
soft errors into all the bits in each cycle. However, exhaustive injec-
tion experiments are impractical due to the tremendous number of tri-
als needed, which is directly proportional to the number of bits in the
program [10]. Therefore, most studies adopt the idea of statistical fault
injection [21]. The idea is to perform a number of trials sufficient to
make the results statistically significant but much less than the num-
ber required by exhaustive fault injection. For example, a statistical
fault injection experiment may involve 10,000 injections. According
to probability theory, a sample size of 10,000 is sufficient to achieve
a 1% margin of error with a 95% confidence level, regardless of the
population size.

Using the results from these experiments, one can calculate the
system’s Architectural Vulnerability Factor (AVF) [27]. This metric
represents the probability of a fault to lead to a system failure and is
defined as: 𝑇 𝑜𝑡𝑎𝑙 𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑦 𝑜𝑓 𝐴𝐶𝐸 𝑏𝑖𝑡𝑠

𝑇 𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑡𝑠 × 𝑇 𝑜𝑡𝑎𝑙 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑐𝑦𝑐𝑙𝑒𝑠
, where ACE bits repre-

sent the bits that lead to failures when a fault is injected. If we consider
failure cases of the injection trials as injections to ACE bits, this equa-
tion can be rewritten as: 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝐶𝑎𝑠𝑒𝑠

𝑇 𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑇 𝑟𝑖𝑎𝑙𝑠
. Finally, multiplying

the obtained AVF with the natural fault rate yields the FIT rate of the
system.

3. Comprehensive Failure Analysis Framework
The most vulnerable hardware components or software instruc-

tions must be correctly identified to provide effective selective protec-
tion. However, existing selective protection methods rely primarily on
heuristics when finding the vulnerable parts of a system. In addition,
previous works approach this problem from only one perspective, and
the vulnerabilities of the system against soft errors have not been stud-
ied comprehensively. Therefore, we developed CFA, a failure analysis
framework based on the cycle-accurate gem5 simulator [5]. Our frame-
work can inject soft error modeled faults into a microarchitectural com-
ponent in an in-order CPU, log its impacts on system behaviors, and
analyze system failures from both perspectives, as shown in Fig. 1.

The fault injection module enables the injection of single-bit soft

Jung et al.: Root cause analysis of soft-error-induced failures from hardware and software perspectives Page 2 of 10

Root cause analysis of soft-error-induced failures from hardware and software perspectives

Figure 1: Our gem5-based framework consists of a fault injection module to model soft errors, a failure analysis module to classify failure
types, and a system trace module to analyze system failures from hardware and software perspectives.

errors to an in-order CPU by modifying the gem5 simulator. We found
that too many injection cases in processors supporting out-of-order ex-
ecution resulted in non-failures and chose to target the in-order CPU
to reduce the number of non-failure cases. The in-order CPU also
has the advantage of being easier to trace. The single-bit error is in-
jected into a randomly selected bit at a randomly selected cycle within
the execution time in one of the four main components (register file,
pipeline register, load store queue (LSQ), and scoreboard). These com-
ponents are representative of the other components, and similar targets
have been chosen for fault injection in previous works [37, 38]. No-
tably, we did not inject errors into the cache. Due to the large size of
the cache, errors occur much more frequently in caches than in other
components, and therefore caches should be protected before any other
components. In addition, previous works also excluded the cache and
memory from their analyses, assuming that they are protected with par-
ity or ECC [9, 33, 37]. With the fault injection module, CFA executes
several iterations of a cross-compiled benchmark with the fault injec-
tions and returns simulation statistics, program outputs, and simula-
tion traces composed of hardware-level microarchitectural behaviors
and software-level instructions.

At the end of each injection trial, the failure analysis module classi-
fies the type of system failure that occurred by comparing the program
outputs and stats of the trial to those of the golden trial, the original
trial with no injections. Based on the comparison results, the trial is
classified as a non-failure case or one of four failure cases, as shown in
Fig. 1. If the injected fault causes a system crash, such as a page table
fault or segmentation fault during the simulation, it is categorized as
system halt failure. If not, the runtime of the injected trial is checked to
determine whether an infinite loop has occurred. We consider any trial
executed for more than twice the original runtime as a case of an infi-
nite loop. If the program terminates within twice the original runtime,
but the output differs from the golden output, the trial is classified as
a silent data corruption failure. If the program output is equal to that
of the golden run, but the runtime differs from the original runtime, we
classify it as a timing failure. Note that timing failures can be ignored if
execution time is inconsequential, but they are considered for detailed
analyses in this study. Finally, if the injected trial does not cause sys-
tem failures and terminates within the same output and runtime as the
original case, it is considered a non-failure case.

The system trace module analyzes each case of system failure to
find the hardware component or software instruction responsible for
the failure. Traces of hardware behaviors are used to evaluate the AVF
of each microarchitectural component. The trace module analyzes all
instructions that access the corrupted data for software instruction anal-
ysis. For example, suppose a fault is injected into the register file. In
that case, instructions that read from the corrupted register file are con-

sidered vulnerable because they can cause erroneous system behaviors
or propagate the fault to other components. When another instruction
writes to the injected register file, it overwrites the faulty data and stops
the error from impacting the system. Then, instructions following the
write instructions become non-vulnerable.

Our framework can be used to perform extensive fault injection ex-
periments over various benchmarks and calculate the vulnerability of
the microarchitectural components and software instructions. The trace
data and logs from injection trials can be used for further analyses. For
example, if a trial resulted in one of the four failure cases, the informa-
tion is used to pinpoint the root cause of the failure. Otherwise, it can
help analyze how the induced fault was masked from the perspective of
the system. Thus, our framework can act as a toolset for a comprehen-
sive investigation of the impact of soft errors on the system from both
hardware and software perspectives.

Figure 2: Microarchitectural components in a processor, where
the shaded regions represent the fault injection targets.

3.1. Failures in Hardware Components
Injection-based failure analysis from the hardware perspective is

relatively simple. Because we inject faults at the hardware level, we
can directly map each fault to the injected microarchitectural compo-
nent. Then, the injection trials for each microarchitectural component
can be accumulated to calculate the component-wise AVFs. Trace data
and logs of each trial are carefully analyzed to determine whether the
injected fault becomes masked and determine the type of failure caused
by the fault when it propagates to other components. We performed
our analysis on the four main microarchitectural components shown in
Fig. 2.

An error in the data caused by an injection propagates when it is
read by the processor. Therefore, our framework keeps track of the
reads and writes on the error-injected bit after the cycle in which the
error is injected. We use the instruction load r1, r2, which loads the

Jung et al.: Root cause analysis of soft-error-induced failures from hardware and software perspectives Page 3 of 10

Root cause analysis of soft-error-induced failures from hardware and software perspectives

Register A (rA)

…

I1 Read

I2 Read

…

IN Read

IN+1 Write

…

Result:
Failure

Soft error

corrupts rA

instructions

affected by

error

Value of rA is

overwritten

(a) First-level analysis: Find all
instructions that read corrupted
data. In this case, 𝐼1 ∼ 𝐼𝑁 are the
candidate root cause instructions.

Register A (rA)

…

I1 Read

Correct error

I2 Read

…

IN Read

IN+1 Write

…

Result: Non-Failure

Error!Iteration 1

Register A (rA)

…

I1 Read

I2 Read

Correct error

I3 Read

…

IN Read

IN+1 Write

…

Result: Non-Failure

Iteration 2

…

Error!

instructions affected by error

instructions unaffected by error

Register A (rA)

…

I1 Read

…

IM-1 Read

Correct error

IM Read

…

IN Read

IN+1 Write

…

Result: Non-Failure

Iteration M-1 Error!

Register A (rA)

…

I1 Read

…

IM-1 Read

IM Read

Correct error

IM+1 Read

…

IN Read

IN+1 Write

…

Result: Failure

Iteration M Error!

(b) Second-level analysis: Correct the corrupted data after 𝑚 instructions access the value. 𝑚 starts from 1 and is
incremented every iteration until system failure occurs. In this case, 𝐼𝑀 is the root cause instruction since it is the
first instruction to induce system failures.

Figure 3: Two-level analysis to identify the root cause instructions when faults are injected into the register file

data in the memory address designated by register r2 to register r1,
to illustrate this process. First, consider the case in which the fault is
injected into the register file. If the data in r2 becomes corrupted, the
processor may access the wrong data or, even worse, an invalid memory
segment. If the data in r1 becomes corrupted, the error is overwritten
to a correct value and becomes masked. Our framework ceases to track
the reads and writes on the corrupted bit in this case.

The process is similar when an error is injected into the load store
queue (LSQ). When the exemplary instruction load r1, r2 is executed,
the memory address is first inserted into the LSQ by reading the data in
r2. Then, the LSQ accesses the data cache to load the data designated
by the memory address, and the data is inserted into the memory data
in the LSQ. Finally, r1 is updated using the memory data in the LSQ.
If the memory address is corrupted before the LSQ accesses the data
cache, system failures, such as silent data corruption or system halt,
can occur. Injection in the memory data after the LSQ loads the data
from memory, but before r1 is updated, would likely lead to silent data
corruption. Other types of system failures may occur in rarer cases
depending on where r1 is used. For example, incorrect values of r1

can induce timing failures if r1 is used as the index of a loop or induce
system halts if r1 is used as the memory address in another memory
instruction.

Now consider the case in which the error is injected into the pipeline
register. During the pipeline stages, the pipeline register stores impor-
tant information about the instructions, such as the opcode and indexes
of the source and destination registers. If the injected fault corrupts the
opcode, the load instruction could become any other type of instruction.
This corruption may cause any of the four types of system failures. If
one of the operands is changed due to the fault injection, the instruction
will read data from an incorrect register (e.g., load r1, r3) or refer to
an incorrect register as the destination (e.g., load r3, r2). The failure
type due to this error depends on the program context, with silent data
corruption being the most likely.

Finally, consider the case in which the error is injected into the
scoreboard. Prior to the execution of the instruction load r1, r2, the
destination register index (r1) is logged in the scoreboard. The register
index stays on the scoreboard until the load instruction is completed to
prevent any violations of data dependency. Other instructions using r1

as a source register check the scoreboard and stall their execution. If the
error causes the scoreboard to log r0 instead of r1, the instructions using
r1 may not wait for the load instruction to complete. These instructions
would then read the data of r1 before the update. Using the incorrect
value of r1 could lead to various system failures. The error may also

cause other instructions using r0 to wait for the completion of the load
instruction, which would most likely cause timing failures.

3.2. Failures in Software Instructions
Failure analysis of software instructions is more complicated than

that of hardware components. In injection experiments, faults are in-
jected into hardware components to imitate the behavior of soft errors
in the real world. An additional step must be taken to determine the
software instructions affected by the injected fault. In some instances,
more than one instruction may access the injected bit, further com-
plicating the issue. Previous works evaluating software vulnerabilities
avoid this problem by injecting faults at the software level or restrict-
ing the injection sites to register files [22, 41]. To meet this issue, we
propose the novel root cause instruction analysis, which maps each in-
jected fault that causes a system failure to the root cause instruction,
the single instruction responsible for the failure.

When faults are injected into microarchitectural components other
than the register file, it is relatively simple to point out the root cause
instruction. For example, if an error injected in the LSQ modifies a
memory data or memory address, the instruction that inserts the value
is labeled the root cause instruction. Likewise, if the injected fault al-
ters an opcode or operands of an instruction, that instruction is the root
cause instruction. The same applies to the scoreboard. In these compo-
nents, the targeted bit can always be traced back to a single instruction,
and the instruction is designated as the root cause instruction.

However, finding the root cause instruction is more challenging
when errors are injected into register files. If a fault injected into a
register is read by two or more instructions, and the system results in
a failure, it is difficult to determine the single instruction responsible
for the system failure. In this case, CFA follows a two-level analysis to
identify the root cause instruction, as shown in Fig. 3. Assume that the
data in a register file becomes corrupted, and the program results in a
system failure. In the first-level analysis, CFA finds all the candidates of
the root cause instruction, which are the instructions that read data from
the corrupted register. If there is only one instruction, the instruction is
designated as the root cause instruction without conducting the second-
level analysis. In the other case where multiple instructions read the
erroneous data, we conduct the second-level analysis to find the root
cause instruction.

The core idea behind the second-level analysis is to isolate the ef-
fect of the error on one instruction at a time. The idea involves multi-
ple iterations of the program with an error-correction function, which
we implemented in our framework. To illustrate a sample run of the

Jung et al.: Root cause analysis of soft-error-induced failures from hardware and software perspectives Page 4 of 10

Root cause analysis of soft-error-induced failures from hardware and software perspectives

second-level analysis, assume that a failure-causing fault is injected into
register A (rA) and is read by 𝑁 instructions, as shown in Fig. 3(a). In
the first iteration, we correct the value of rA immediately after the first
instruction (𝐼1) uses the value. In this way, the effect of the error is iso-
lated to 𝐼1. If the iteration does not result in a system failure despite 𝐼1
reading the wrong value, then 𝐼1 is not the root cause instruction. In this
case, we proceed to the second iteration, in which the error is corrected
after the execution of the second instruction. We repeat this process of
incrementing the number of instructions that read the erroneous value
of rA until an iteration results in a system failure. For example, consider
the 𝑀 𝑡ℎ iteration in which the error is corrected after the 𝑀 𝑡ℎ instruc-
tion reads the faulty value, and the iteration results in a system failure.
Because the application did not fail when the first 𝑀 − 1 instructions
read the faulty value, our framework deduces that the 𝑀 𝑡ℎ instruction
is the root cause instruction. This process is illustrated in Fig. 3(b).

With the novel root cause instruction analysis, each injected fault
that causes system failures can be traced to the instruction responsi-
ble for the failure. Then, the injected faults can be abstracted to the
software instruction level without worrying about the details of the un-
derlying hardware. This software perspective analysis can weigh the
vulnerabilities of each instruction type in the benchmarks and explain
which instructions should be protected when selective protection tech-
niques are applied.

4. Failure Analysis and Protection Guidelines
We use our failure analysis framework to perform a comprehensive

failure analysis on ten benchmarks from the MiBench [12] benchmark
suite as a case study. We first perform analyses from each perspec-
tive to gain a fundamental understanding of the overall vulnerability
of the hardware components and software instructions. This step in-
corporates the distribution of failure types to determine whether cer-
tain components or instructions are especially vulnerable to specific
failures. Then, we examine how protection from one perspective af-
fects vulnerability from the other perspective. We also explore how
the system’s resilience to certain failures affects the AVFs calculated
from different perspectives. Finally, we present efficient selective pro-
tection guidelines for resource-constrained embedded systems based on
the multi-perspective analysis results.

For ease of failure analysis, the scope of our experiments covers
only single-bit errors. Not only are multi-bit errors much rarer than
single-bit errors [19], but they also follow similar error propagation pat-
terns as single-bit errors [34]. In addition, experiments performed by
Chatzidimitriou et al. confirmed that error rates calculated from single-
bit fault injection experiments are similar to those obtained from beam
testing experiments [8]. Our analysis incorporates extensive fault in-
jection campaigns targeting an in-order 32-bit ARM architecture sim-
ulated with the gem5 simulator [5]. The injection campaigns cover
ten benchmarks (basicmath, bitcount, crc, dijkstra, gsm, jpeg, matmul,
qsort, stringsearch, and susan) from the MiBench benchmark suite,
with each injection trial consisting of a full execution of the applica-
tion with one injected fault.

We performed a total of 400,000 fault injection campaigns, with
10,000 random faults per component for each benchmark. From the in-
jection trials, we calculate the AVF as: 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝐶𝑎𝑠𝑒𝑠

𝑇 𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑇 𝑟𝑖𝑎𝑙𝑠
. Ac-

cording to probability theory, 10,000 trials are sufficient to achieve a
margin of error of 1% with a 95% confidence interval [21]. We exe-
cuted additional simulations to confirm that this is true in our experi-
ments. Incremental injection into the bitcount benchmark showed that
the AVF varied within 1% after approximately 500 iterations. Thus,
10,000 injections are sufficient to analyze and validate system failures
both theoretically and empirically.

Table 1
AVFs of each microarchitectural component

Pipeline
Register

Register
File LSQ Scoreboard

AVF 44.05% 39.37% 31.19% 6.35%

We use the AVF metric to compare the relative vulnerabilities be-
tween components or instructions. Another popular metric is the FIT
rate. The FIT rate also considers the size of the component and the fault
rates and more accurately represents the system’s reliability. However,
using FIT rates has two main disadvantages in our domain. First, a
larger hardware area results in higher protection costs as well as higher
FIT rates. To apply the most efficient protection, we require a met-
ric that represents the average vulnerability regardless of the size of
the component. In addition, fault rates are usually calculated through
complicated beam testing experiments. With the assumption that fault
rates per bit are equal in all bits, the exact fault rates need not be known
when comparing relative vulnerabilities between components of a sys-
tem. For these reasons, we use the more simple AVF over FIT rates in
our analysis.

4.1. Hardware-perspective Analysis Results
Table 1 summarizes the overall AVFs of the four microarchitectural

components: pipeline register, register file, load store queue(LSQ), and
scoreboard. The pipeline register is the most vulnerable microarchitec-
tural component, with an AVF of 44%, closely followed by the register
file with an AVF of 39%. The high AVF of the pipeline register is
mainly because the pipeline register contains information crucial for
correct execution, such as the operations and operands. Moreover, the
pipeline register is filled with data to be used, making it experience less
masking effects than other components. On the other hand, the score-
board is the least vulnerable because faults in the scoreboard only affect
the data dependency between instructions. If the register indicated by
the injected bit shares no data dependency with other instructions, the
corrupted data in the scoreboard is not used, and the error is immedi-
ately masked.

Figure 4: Detailed failure analysis of the LSQ. The chances of
system failures are much higher when faults are injected in the
memory data as opposed to the memory address.

Despite the general assumption that memory instructions are criti-
cal to correct execution, the AVF of the LSQ is not exceptionally high.
Therefore, we examine in detail the LSQ in Fig. 4, which illustrates
the classification of failures in the LSQ specifically. In this graph,
the x-axis represents the distribution of system failures, including non-
failures. The y-axis shows where the fault was injected: Address mean-
ing that faults were injected into the memory address, and Data mean-
ing that faults were injected into the memory data. Note that the rate of
failures in the memory data is almost four times higher than that of the
memory address (46% compared to 13%). The low failure rate of the
memory address, and in turn the low failure rate of LSQ as a whole, is
due to the mechanism of the LSQ. For load instructions, the memory

Jung et al.: Root cause analysis of soft-error-induced failures from hardware and software perspectives Page 5 of 10

Root cause analysis of soft-error-induced failures from hardware and software perspectives

Table 2
AVFs of each type of instruction

Store Load Arith Logic Cmp Branch

AVF 38.23% 25.79% 29.03% 37.93% 39.45% 36.73%

data portion of the LSQ is non-vulnerable until the data is loaded from
memory because the load will overwrite any errors that may have oc-
curred. After the memory is accessed, the memory address is no longer
needed and becomes non-vulnerable. The memory data and address
for stores also become non-vulnerable as soon as the memory access is
complete. The higher failure rates of memory data imply that memory
is accessed soon after the data and address are loaded to the LSQ, but
that information stays in the LSQ for a longer time after the memory
access. Therefore, in contrast to other memory components, the bits
in the LSQ are only vulnerable for a limited amount of time. Then,
the bits that become non-vulnerable shield the rest of the LSQ through
spatial masking, reducing the AVF of the LSQ to approximately 30%.

Figure 5: Component-wise distribution of system failures. Most
components are particularly more vulnerable to a specific type of
failure.

We also found that different hardware components are more vulner-
able to specific types of failures. Fig. 5 shows a detailed failure analysis
from the hardware perspective. The x-axis represents the distribution of
system failures, and the y-axis lists the microarchitectural components.
The graph shows that the failure cases of some components are concen-
trated in one type of failure. Nearly 47% of failures in the LSQ are silent
data corruption failures, and system halt failures account for 55% and
51% of failures for the register file and scoreboard, respectively. These
components can benefit from environments in which particular types
of failures are tolerable. For example, if the target application is re-
silient against wrong outputs (e.g., multimedia applications), the LSQ
becomes safer than the other components. In the case of the register file
and scoreboard, the AVF can be effectively reduced by over 50% if the
hardware allows recovery from system halt failures. However, the fail-
ure types are more evenly distributed in the case of the pipeline register.
This implies that the pipeline register would remain the most vulnera-
ble component across different environments, even when specific types
of failures are no longer a concern.

4.2. Software-perspective Analysis Results
In our software-perspective analysis, we first categorized software

instructions into six types: load, store, arithmetic, logical, compare,
and branch. We then performed the root cause instruction analysis to
pinpoint each failure to a single instruction. On average, the second
step of the root cause instruction analysis was required for about 60%

of the failure cases from the injections to register files. However, the
computational overhead from the additional trials was only around 6%
since around 80% of the cases required less than five additional trials.
Note that the overhead could be further reduced by incorporating check-
pointing ideas. Thus, the root cause instruction analysis is an effective
and efficient technique to pinpoint the root cause instruction. With this
novel technique, we could analyze system failures with different types
of software instructions, as we did with hardware microarchitectural
components.

Figure 6: Distribution of dynamic instructions and root cause in-
structions. The metrics of store instructions show that protecting
12% of all instructions can reduce total failures by 24%.

We first compared the distribution of the dynamic instructions with
the distribution of failure-inducing dynamic instructions, as shown in
Fig. 6. The row on the top represents the occurrence rate of all dynamic
instructions. For example, about 12% of all instructions are store in-
structions. The row on the bottom represents the distribution of root
cause instructions; the graph shows that about 25% of all root cause in-
structions are store instructions. While store instructions take up only
12% of all dynamic instructions, about a quarter of all system failures
were caused by store instructions. On the other hand, branch instruc-
tions have a similar dynamic occurrence rate to store instructions but
are responsible for less than 5% of all failures. The disparity between
these two statistics supports the case for efficient selective software in-
struction duplication. A similar conclusion was also noted by Liu et
al. [22].

The AVFs of each type of root cause instruction are summarized
in Table 2. It is interesting to note the disparity between the AVFs of
memory instructions. Load instructions show relatively low AVFs of
25%, while store instructions have the second-highest AVF of 38%. We
believe this is due to software-level masking opportunities. Load in-
structions are abundant at the beginning of functions, as they are used
to initialize data. Therefore, faults in load instructions have plentiful
opportunities to become masked before propagating to the final output.
However, store instructions are frequently used at the end of functions
or programs to return the final output. Faults in store operations di-
rectly affect the output, resulting in significantly higher AVFs for store
instructions. This result is in tandem with previous works that sug-
gested the protection of storing instructions.

We also considered the distribution of failure types for each type
of instruction. In Fig. 7, the x-axis represents the distribution of sys-
tem failures, and the y-axis represents the categorization of root cause
instructions. Depending on the type of instruction that caused the fail-
ure, the most frequently occurring failure type is different. For instance,
system halt failures are the most frequent in memory instructions, ac-
counting for 45% and 58% of system failures when the type of root
cause instruction is store and load, respectively. On the other hand,
silent data corruption failures are most frequent in logical instructions
(57%). This imbalance in failure types can be exploited for selective
protection. For example, if wrong outputs are not a problem, system
designers can prioritize the protection of instructions other than logical
instructions.

The compare instructions have the highest proportion of timing

Jung et al.: Root cause analysis of soft-error-induced failures from hardware and software perspectives Page 6 of 10

Root cause analysis of soft-error-induced failures from hardware and software perspectives

Figure 7: Distribution of system failures depending on the type of
instruction. Most system failures caused by load and store instruc-
tions are system halt failures, while errors in arithmetic and logical
instructions commonly lead to silent data corruption failures.

failures. Nearly 30% of failures caused by compare instructions are
timing failures, and if timing failures are considered non-failure cases,
the AVF of control-flow instructions becomes less than 30%. The high
proportion of timing failures is because compare instructions are often
used to determine the direction of the branch instruction. This is in
agreement with the study by Wang et al. [40], which states that even
if incorrect branches are taken, programs can still terminate with cor-
rect outputs and slightly increased runtime. Another notable fact is that
while LSQ showed a high vulnerability to silent data corruption failures
(Fig. 5), memory instructions are generally more vulnerable to system
halt failures. This implies that when faults are injected into hardware
components other than the LSQ, there is a much higher chance of errors
in the memory address being read. This causes memory instructions to
access prohibited areas, leading to system halt failures. A deeper anal-
ysis from both the hardware and software perspectives is presented in
the next section.

4.3. Multi-Perspective Comprehensive Analysis
This section draws intriguing conclusions by synchronously ana-

lyzing the vulnerabilities from the two perspectives. Fig. 8 summarizes
the vulnerability of each component from a comprehensive viewpoint,
showing the distribution of the types of root cause instructions for each
microarchitectural component. The final row shows the overall distri-
bution of instruction types that cause failures in the system. Note that
the LSQ only contains memory instructions for apparent reasons. Store
and compare instructions are excluded from the scoreboard because
they do not have destination registers and do not access the scoreboard.

The pipeline register and register file in the first two rows have fairly
similar distributions of instruction types. The proportion of logical in-
structions is notably different, covering only 3.1% of the register files
but over 8.3% of the pipeline register. This difference is because of
how easily logical instructions are masked in the register file. Assume
an instruction calculates the and of two values, say 1100 and 0011. With-
out any faults, the result is 0000 (1100 & 0011). However, even if a fault
corrupts the value 1100 to 0100, the result is still 0000 (0100 & 0011). In
summary, if one source bit of logical and instruction is 0, the resulting
bit is 0 regardless of the other source bit. In the case of logical or in-
struction, the result is always 1 if one source bit is 1. Because faults in
the register files only corrupt the data, there is a high chance that the
fault will be masked if the data is used in a logical operation. On the
other hand, the pipeline register also contains the opcode or operands of
logical instructions. When these metadata are corrupted in the pipeline

Figure 8: Distribution of failure-inducing instructions for each
hardware component. Load instructions and arithmetic instruc-
tions account for the majority of failure cases.

Table 3
AVFs of instruction types before and after applying protection on
the pipeline register

AVFs Store Load Arith Logic Cmp Branch

Before 38.23% 25.79% 29.03% 37.93% 39.45% 36.73%

After 33.34% 19.00% 15.79% 14.22% 16.99% 13.58%

Table 4
AVFs of microarchitectural components before and after applying
protection on store instructions

AVFs Pipeline
Register

Register
File LSQ Scoreboard

Before 44.05% 39.37% 31.19% 6.35%
After 39.89% 30.39% 17.59% 6.35%

register, the fault is not so easily masked and leads to failures. This
supports the result from the hardware perspective, which suggests that
the pipeline register is the most vulnerable hardware component.

We also explore how the protection applied from one perspective
affects the analysis from another perspective. Since from Section 4.1
we concluded that the pipeline register is the most vulnerable, we ob-
served the effects of protecting the pipeline register on the AVFs of
software instructions. The results in Table 3 show that the AVFs of the
instructions drop significantly when the pipeline register is protected.
Because the branch and compare instructions are handled only by the
pipeline register and register file, protecting one of the two components
is sufficient to reduce these instructions’ vulnerabilities drastically. On
the other hand, the AVFs of the memory instructions remain relatively
unaffected because significant portions of the memory instructions are
handled in the LSQ. When the LSQ is protected instead, the AVFs of
store and load instructions dropped to 15.39% and 12.10%, respectively.

Conversely, Table 4 shows how the protection of store instructions
affects the AVFs of microarchitectural components. As expected, the
AVF of the LSQ is affected the most, dropping from 31.19% to 17.59%.
The AVF of the pipeline register remains the highest among the four mi-
croarchitectural components, implying that protecting the pipeline reg-
ister and store instructions is a reasonable solution in terms of AVFs.
Indeed, applying protection on the pipeline register and store instruc-
tions reduces the overall AVF of the system to 13.98%.

Jung et al.: Root cause analysis of soft-error-induced failures from hardware and software perspectives Page 7 of 10

Root cause analysis of soft-error-induced failures from hardware and software perspectives

Table 5
The resulting AVFs and AVF reduction rates of protection tech-
niques

None HW/SW CFA MIN AVG

AVF 30.37% 13.98% 11.90% 27.77% 18.98%
Reduce
Rate 0% 53.97% 60.83% 8.55% 37.50%

However, an exhaustive search of the 24 possible combinations of
software and hardware protection techniques showed that protecting the
LSQ and arithmetic instructions results in the lowest AVFs. While ex-
ploring protection techniques from the two perspectives in a sequential
manner may reveal seemingly promising solutions, the two perspec-
tives must be examined synchronously to find the optimal protection
method. Another significant element to consider is the system’s re-
silience to different types of failures, meaning that the system does not
experience the type of failure owing to applied protection or natural
characteristics. For example, if the system incorporates a watchdog
to avoid system halt failures, the register file and branch instructions,
which show the highest distribution of system halt failures from each
category, could be left unprotected. Although applicable cases may not
be common, these factors can dynamically reduce the overall AVF of
the system without incurring any overhead.

4.4. Protection Guidelines using CFA
This section presents efficient selective protection guidelines for

resource-constrained embedded systems in various environments based
on our previous observations. In each environment, we assume that the
system is resilient to a type of system failure. We then use our frame-
work to find the best combination of software and hardware protection
techniques and present its failure reduction rate compared to the system
with no protection.

First, consider the case where the target architecture has no natural
resilience to any system failure. Without any protection applied, the
system has an overall AVF of 30.37%, as shown in Table 5. The hard-
ware perspective analysis claims it is generally most efficient to protect
the pipeline register. From the software perspective, compare instruc-
tions have the highest AVFs, but Table 3 shows that store instructions
become the most vulnerable after the protection of the pipeline register.
This combination of protecting the pipeline register and store instruc-
tions is represented as HW/SW in the table. The CFA column repre-
sents the combination we found using our framework, which protects
the LSQ and arithmetic instructions. On the contrary, MIN represents
the least optimal combination. Finally, AVG represents the average
AVF of the 24 possible combinations. The final row labeled Reduce
Rate measures the percentage decrease in AVF after applying the pro-
tection. From the table, it is clear that the multi-perspective failure
analysis of our framework reaches a lower AVF (11.90%) compared to
the method derived from single-perspective analyses (13.98%).

We also summarized the results for the cases where the target ar-
chitecture is naturally resilient to a specific type of failure in Fig. 9.
For example, some environments may have loose time constraints al-
lowing timing failures to occur, while others may incorporate simple
watchdog hardware to avoid system halt failures. We list four differ-
ent metrics for each case, HW/SW, CFA, MIN, and AVG, as we did
in Table 5. Again, we see that HW/SW fails to identify the optimal
protection method. In the absence of SDC failures, HW/SW performs
only slightly better than the average case, and when timing failures can
be ignored, HW/SW performs worse than the average case. Contrarily,
CFA finds the optimal protection method in every case, reducing the

Figure 9: The AVF reduction rates in failure-resilient systems.
CFA finds the optimal protection method for each case.

AVF by up to 82%. These results demonstrate the usefulness of our
comprehensive failure analysis framework for selective protection of
resource-constrained embedded systems.

5. Conclusions
Soft errors are important reliability issues in the early design phase,

but full protection against soft errors incurs severe hardware area and
performance overheads. Efficient protection techniques have been pro-
posed for resource-constrained embedded systems, but their robustness
must be validated. Therefore, we present our comprehensive failure
analysis framework, which can find the most vulnerable hardware com-
ponent and software instruction through extensive fault injection cam-
paigns. To the best of our knowledge, this framework is the first to
consider how the protection of hardware components impacts the vul-
nerability of software instructions and vice versa to find the most effi-
cient protection method for the system. We also use our framework
to analyze the vulnerabilities of ten benchmarks from the MiBench
benchmark suite. From each independent perspective, protecting the
pipeline register (hardware) and store instructions (software) is consid-
ered the most effective. To maximize efficiency, however, the charac-
teristics of the target application and the protection techniques from the
two perspectives must be considered synchronously. With the multi-
perspective analysis of CFA, we could reduce the AVF of a system by
82% (from 30.37% to 5.44%) by simply adding a watchdog and protect-
ing the LSQ and arithmetic instructions.

6. Acknowledgments
This work was partially supported by funding from National Sci-

ence Foundation Grants No. CNS 1525855, CPS 1646235, CCF 1723476
- the NSF/Intel joint research center for Computer Assisted Program-
ming for Heterogeneous Architectures (CAPA), Institute of Informa-
tion Communications Technology Planning Evaluation (IITP) grant
funded by the Korean government (MSIT) (No. 2021-0-00155, Con-
text and Activity Analysis-based Solution for Safe Childcare), and Sam-
sung Electronics Co., Ltd(FOUNDRY-202108DD007F). We would like
to thank Editage (www.editage.co.kr) for English language editing.

References
[1] Azimi, S., Du, B., Sterpone, L., 2017. Evaluation of transient errors in

gpgpus for safety critical applications: An effective simulation-based fault
injection environment. Journal of Systems Architecture 75, 95–106.

[2] Baumann, R., 2002. The impact of technology scaling on soft error rate
performance and limits to the efficacy of error correction, in: IEDM.

Jung et al.: Root cause analysis of soft-error-induced failures from hardware and software perspectives Page 8 of 10

Root cause analysis of soft-error-induced failures from hardware and software perspectives

[3] Baumann, R., 2005. Soft errors in advanced computer systems. IEEE
Design & Test of Computers 22, 258–266.

[4] Baumann, R.C., 2001. Soft errors in advanced semiconductor devices-part
i: the three radiation sources. IEEE Transactions on Device and Materials
Reliability 1, 17–22.

[5] Binkert, N., Beckmann, B., Black, G., Reinhardt, S.K., Saidi, A., Basu, A.,
Hestness, J., Hower, D.R., Krishna, T., Sardashti, S., Sen, R., Sewell, K.,
Shoaib, M., Vaish, N., Hill, M.D., Wood, D.A., 2011. The gem5 simulator.
SIGARCH Computer Architecture News 39, 1–7.

[6] Bodmann, P., Papadimitriou, G., Rech Junior, R.L., Gizopoulos, D., Rech,
P., 2021. Soft error effects on arm microprocessors: Early estimations vs.
chip measurements. IEEE Transactions on Computers , 1–1doi:10.1109/
TC.2021.3128501.

[7] Bosilca, G., Delmas, R., Dongarra, J., Langou, J., 2009. Algorithm-based
fault tolerance applied to high performance computing. Journal of Parallel
and Distributed Computing 69, 410–416.

[8] Chatzidimitriou, A., Bodmann, P., Papadimitriou, G., Gizopoulos, D.,
Rech, P., 2019. Demystifying soft error assessment strategies on arm cpus:
Microarchitectural fault injection vs. neutron beam experiments, in: 2019
49th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), IEEE. pp. 26–38.

[9] Chen, Z., Li, G., Pattabiraman, K., 2021. A low-cost fault corrector for
deep neural networks through range restriction, in: 2021 51st Annual
IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN), IEEE. pp. 1–13.

[10] Chen, Z., Li, G., Pattabiraman, K., DeBardeleben, N., 2019. Binfi: an ef-
ficient fault injector for safety-critical machine learning systems, in: Pro-
ceedings of the International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, pp. 1–23.

[11] Dixit, A., Wood, A., 2011. The impact of new technology on soft error
rates, in: IRPS, pp. 5B.4.1–5B.4.7.

[12] Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T.,
Brown, R.B., 2001. MiBench: A free, commercially representative em-
bedded benchmark suite, in: WWC, pp. 3–14.

[13] Hong, S., Frigo, P., Kaya, Y., Giuffrida, C., Dumitras, , T., 2019. Ter-
minal brain damage: Exposing the graceless degradation in deep neural
networks under hardware fault attacks, in: 28th USENIX Security Sym-
posium (USENIX Security 19), pp. 497–514.

[14] Huang, K.H., Abraham, J.A., 1984. Algorithm-based fault tolerance for
matrix operations. IEEE transactions on computers 100, 518–528.

[15] Jeyapaul, R., Flores, R., Avila, A., Shrivastava, A., 2016. Systematic
methodology for the quantitative analysis of pipeline-register reliability.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems PP,
1–9.

[16] Kastensmidt, F.L., Tonfat, J., Both, T., Rech, P., Wirth, G., Reis, R.,
Bruguier, F., Benoit, P., Torres, L., Frost, C., 2014. Voltage scaling and
aging effects on soft error rate in SRAM-based FPGAs. Elsevier Micro-
electronics Reliability 54, 2344–2348.

[17] Ko, Y., Kang, J., Lee, J., Kim, Y., Kim, J., So, H., Lee, K., Paek, Y.,
2016. Software-based selective validation techniques for robust cgras
against soft errors. ACM Transactions on Embedded Computing Systems
15, 20:1–20:26.

[18] Ko, Y., So, H., Jung, J., Lee, K., Shrivastava, A., 2021. Comprehensive
failure analysis against soft errors from hardware and software perspec-
tives, in: 2021 IEEE 39th International Conference on Computer Design
(ICCD), IEEE.

[19] Lee, K., Shrivastava, A., Kim, M., Dutt, N., Venkatasubramanian, N.,
2008. Mitigating the impact of hardware defects on multimedia appli-
cations: A cross-layer approach, in: MM, pp. 319–328.

[20] Lesea, A., Drimer, S., Fabula, J.J., Carmichael, C., Alfke, P., 2005. The
rosetta experiment: atmospheric soft error rate testing in differing tech-
nology FPGAs. IEEE Transactions on Device and Materials Reliability 5,
317–328.

[21] Leveugle, R., Calvez, A., Maistri, P., Vanhauwaert, P., 2009. Statistical
fault injection: Quantified error and confidence, in: DATE, pp. 502–506.

[22] Liu, Z., Liu, Y., Chen, Z., Guo, G., Wang, H., 2021. Analyzing and
increasing soft error resilience of deep neural networks on arm proces-
sors. Microelectronics Reliability 124, 114331. URL: https://www.

sciencedirect.com/science/article/pii/S0026271421002973, doi:https://
doi.org/10.1016/j.microrel.2021.114331.

[23] Lyons, R.E., Vanderkulk, W., 1962. The use of triple-modular redundancy
to improve computer reliability. IBM Journal of Research and Develop-
ment 6, 200–209.

[24] Mallavarapu, P., Upadhyay, H.N., Rajkumar, G., Elamaran, V., 2017.
Fault-tolerant digital filters on fpga using hardware redundancy tech-
niques, in: 2017 International conference of Electronics, Communication
and Aerospace Technology (ICECA), IEEE. pp. 256–259.

[25] Mittal, S., Inukonda, M.S., 2018. A survey of techniques for improving
error-resilience of dram. Journal of Systems Architecture 91, 11–40.

[26] Monferrer, P.C., Vera, X., Abella, J., Casado, J.C., 2007. Mechanism
for soft error detection and recovery in issue queues. US Patent App.
11/999,787.

[27] Mukherjee, S.S., Weaver, C., Emer, J., Reinhardt, S.K., Austin, T., 2003.
A systematic methodology to compute the architectural vulnerability fac-
tors for a high-performance microprocessor, in: Proceedings. 36th An-
nual IEEE/ACM International Symposium on Microarchitecture, 2003.
MICRO-36., IEEE. pp. 29–40.

[28] Narayanan, V., Xie, Y., 2006. Reliability concerns in embedded system
designs. Computer 39, 118–120.

[29] Naseer, R., Bhatti, R.Z., Draper, J., 2006. Analysis of soft error miti-
gation techniques for register files in IBM Cu-08 90nm technology, in:
MWSCAS, pp. 515–519.

[30] Oh, N., Shirvani, P.P., McCluskey, E.J., 2002. Error detection by dupli-
cated instructions in super-scalar processors. IEEE Transactions on Reli-
ability 51, 63–75.

[31] Parasyris, K., Tziantzoulis, G., Antonopoulos, C.D., Bellas, N., 2014.
GemFI: A fault injection tool for studying the behavior of applications
on unreliable substrates, in: DSN, pp. 622–629.

[32] Reagen, B., Gupta, U., Pentecost, L., Whatmough, P., Lee, S.K., Mulhol-
land, N., Brooks, D., Wei, G.Y., 2018. Ares: A framework for quantifying
the resilience of deep neural networks, in: 2018 55th ACM/ESDA/IEEE
Design Automation Conference (DAC), IEEE. pp. 1–6.

[33] Reis, G.A., Chang, J., Vachharajani, N., Rangan, R., August, D.I., 2005.
SWIFT: Software implemented fault tolerance, in: CGO, pp. 243–254.

[34] Sangchoolie, B., Pattabiraman, K., Karlsson, J., 2017. One bit is (not)
enough: An empirical study of the impact of single and multiple bit-flip
errors, in: 2017 47th annual IEEE/IFIP international conference on de-
pendable systems and networks (DSN), IEEE. pp. 97–108.

[35] Schweizer, T., Schlicker, P., Eisenhardt, S., Kuhn, T., Rosenstiel, W.,
2011. Low-cost tmr for fault-tolerance on coarse-grained reconfigurable
architectures, in: 2011 International Conference on Reconfigurable Com-
puting and FPGAs, IEEE. pp. 135–140.

[36] Seifert, N., Gill, B., Jahinuzzaman, S., Basile, J., Ambrose, V., Shi, Q.,
Allmon, R., Bramnik, A., 2012. Soft error susceptibilities of 22 nm tri-
gate devices. IEEE Transactions on Nuclear Science 59, 2666–2673.

[37] So, H., Didehban, M., Ko, Y., Shrivastava, A., Lee, K., 2018. Expert: Ef-
fective and flexible error protection by redundant multithreading, in: 2018
Design, Automation & Test in Europe Conference & Exhibition (DATE),
IEEE. pp. 533–538.

[38] So, H., Didehban, M., Shrivastava, A., Lee, K., 2019. A software-level re-
dundant multithreading for soft/hard error detection and recovery, in: 2019
Design, Automation & Test in Europe Conference & Exhibition (DATE),
IEEE. pp. 1559–1562.

[39] Wang, L., Skadron, K., 2013. Implications of the power wall: Dim cores
and reconfigurable logic. IEEE Micro 33, 40–48.

[40] Wang, N., Fertig, M., Patel, S., 2003. Y-branches: when you come to a
fork in the road, take it, in: PACT, pp. 56–66.

[41] Wei, X., Yue, H., Gao, S., Li, L., Zhang, R., Tan, J., 2020. G-seap: Analyz-
ing and characterizing soft-error aware approximation in gpgpus. Future
Generation Computer Systems 109, 262–274.

Jung et al.: Root cause analysis of soft-error-induced failures from hardware and software perspectives Page 9 of 10

http://dx.doi.org/10.1109/TC.2021.3128501
http://dx.doi.org/10.1109/TC.2021.3128501
https://www.sciencedirect.com/science/article/pii/S0026271421002973
https://www.sciencedirect.com/science/article/pii/S0026271421002973
http://dx.doi.org/https://doi.org/10.1016/j.microrel.2021.114331
http://dx.doi.org/https://doi.org/10.1016/j.microrel.2021.114331

Root cause analysis of soft-error-induced failures from hardware and software perspectives

Jinhyo Jung is a PhD student in Depend-
able Computing Lab (DClab) at Yonsei Univer-
sity (http://http://dclab.yonsei.ac.kr/). He received
Bachelor’s degree in Computer science from Yon-
sei University, and currently he is in integrated PhD
Course at the same university. His research inter-
ests include reliability issues such as comprehen-
sive vulnerability estimation of computer architec-
ture and protection schemes against soft and hard
errors for deep neural networks.

Yohan Ko is currently an assistant professor
in the Division of Software at Yonsei University,
Wonju, Gangwon, Republic of Korea. He received
his Ph.D. at the Department of Computer Science
and Engineering at Yonsei University, Seoul, Re-
public of Korea.

Hwisoo So is a PhD student in Depend-
able Computing Lab (DClab) at Yonsei Univer-
sity (http://http://dclab.yonsei.ac.kr/). He received
Bachelor’s degree in Computer science from Yon-
sei University, and currently he is in integrated
PhD Course at the same university. He is partic-
ipating for Global PhD fellowship in National Re-
search Foundation of Korea. His research interests
include reliability issues such as comprehensive
vulnerability estimation of computer architecture
and hardware/software based protection schemes
against soft and hard errors based on redundancy.

Kyoungwoo Lee is an associate professor in
the department of computer science and engineer-
ing at Yonsei University, Seoul, South Korea.He
received B.S. and M.S. degrees in computer sci-
ence from Yonsei University in 1995 and 1997,
respectively, and Ph.D. degree in information and
computer science at the University of California
at Irvine in 2008. His research is in the area of
embedded systems, with a specific focus on cross-
layer design and optimization for error-aware and
energy-efficient embedded systems.

Aviral Shrivastava is an Associate Profes-
sor in the School of Computing Informatics and
Decision Systems Engineering at the Arizona
State University, where he has established and
heads the Make Programming Simple (MPS) Lab
(http://aviral.lab.asu.edu/).

He received his Ph.D. and Masters in Infor-
mation and Computer Science from the University
of California, Irvine, and bachelors in Computer
Science and Engineering from Indian Institute of
Technology, Delhi. Prof. Shrivastava’s research
lies in the broad area of Software for Embedded
and Cyber-Physical Systems. He is currently serv-
ing as associate editor for ACM Transactions Em-
bedded Computing Systems (ACM TECS), IEEE
Transactions on MultiScale Computing (IEEE
TMSC), IEEE Transactions on Computer-Aided
Design (IEEE TCAD), and Springer International
Journal on Parallel Processing (Springer IJPP), and

Springer Design Automation for Embedded Sys-
tems (Springer DAEM). He is currently the pro-
gram chair of CODES+ISSS 2017, one of the top
conferences in embedded systems.

Jung et al.: Root cause analysis of soft-error-induced failures from hardware and software perspectives Page 10 of 10

