
DYNAMIC CODE MAPPING FOR LIMITED LOCAL MEMORY SYSTEMS

by

Seung Chul Jung

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

ARIZONA STATE UNIVERSITY

May 2010

DYNAMIC CODE MAPPING FOR LIMITED LOCAL MEMORY SYSTEMS

by

Seung Chul Jung

has been approved

March 2010

Graduate Supervisory Committee:

Aviral Shrivastava, Co-Chair
Lawrence Clark, Co-Chair

Yu Cao

ACCEPTED BY THE GRADUATE COLLEGE

ABSTRACT

This thesis presents heuristics for dynamic management of application code on limited

local memories present in high-performance multi-core processors. Previous techniques

formulate the problem using call graphs, which do not capture the temporal ordering of

functions. In addition, they only use a conservative estimate of the interference cost between

functions to obtain a mapping. As a result, previous techniques are unable to achieve

efficient code mapping. Techniques proposed in this paper overcome both these limitations

and achieve superior code mapping. Experimental results from executing benchmarks from

MiBench onto the Cell processor in the Sony Playstation 3 demonstrate upto 29%, and an

average of 12% performance improvement with a tolerable compile-time overhead.

iii

To

My Family

iv

ACKNOWLEDGMENTS

Foremost, I am heartily thankful to my advisor Dr. Aviral Shrivastava for the con-

tinuous, enthusiastic and energetic support of my MS study and research. His invaluable

guidance and immense knowledge have helped me develope an understanding of the sub-

ject from the beginning to the concluding level. This thesis would not have been possible

without his guidance and patience.

Secondarily, I would like to thank Dr. Jongeun Lee for his invaluable guidance and

patience. The foundation stone of my research would have never been laid down without

his support.

I also would like to thank Dr. Sandeep Gupta and Dr. Joohyung Lee for their en-

couragement in my master’s degree. In addition, I would like to thank my colleagues at

the Compiler Microarchitecture Laboratory, Reiley Jeyapaul, Ke Bai, Yooseong Kim, Fei

Hong, Chuan Huang, Saleel Kudchadker for their continuous support.

Finally, I thank my parents Yoojin Jung and Yeojin Seo, my brother Hunchul Jung

and my sweetheart Kyungeun Lee for their infinite and spiritual support throughout my

life.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

CHAPTER

I. INTRODUCTION . 1

II. MOTIVATING EXAMPLE . 4

III. BACKGROUND AND PROBLEM DEFINITION 7

IV. RELATED WORK . 10

V. OUR APPROACH . 13

A. Function Mapping by Updating and Merging (FMUM) Heuristic 13

B. Function Mapping by Updating and Partitioning (FMUP) Heuristic 15

C. Interference Cost Calculation . 17

VI. EMPIRICAL EVIDENCE . 20

A. Experimental Setup . 20

B. Experimental Results . 22

C. Analysis . 26

D. Static weight assignment and Scalability . 28

VII. CONCLUSION . 31

REFERENCES . 32

vi

LIST OF TABLES

Table Page

I Benchmarks for Experiments . 21

vii

LIST OF FIGURES

Figure Page

1 Interference cost between functions depends on where other functions are

mapped, and updating the interference costs as we map the functions can

lead to a better mapping. 5

2 GCCFG captures both the aggregate and the temporal information about

the execution of the application. 8

3 In embedded systems, typically using the SPM was a choice, and therefore

the code mapping problem was just an optimization problem. In the cell

architecture, all code has to reside in the SPM or local store. 10

4 We perform our experiments on the IBM Cell processor in Sony Playstation

3. Our software framework is developed as a post-pass to the GCC compiler. 20

5 FMUP gives better results for tighter code size constraints, while FMUM

gives better results for relaxed code sizes. 23

6 As an average, FMUM gives a better results than SDRM 57% of time, FMUP

gives a better results 80%of time, and FMUM+FMUP gives better results

87% of the time. 24

7 On an average the mapping generated by FMUM+FMUP executes 12%

faster than that generated by SDRM . 25

8 Compile time overhead is tolerable for applications which are compiled once

and executed several times . 26

9 Limitations of SDRM with dijkstra and susan (smooth); Less utilization of

given code space, Less map-ability . 27

viii

Figure Page

10 Limitations of SDRM with basicmath; Less utilization of given code space,

Inefficient object mapping for in-loop functions, Less map-ability 28

11 With statically estimated weight assignment, FMUM+FMUP heuristic

shows almost the same performance increase. 29

12 FMUM, FMUP heuristics are scalable as the number of cores increases than

SDRM with fft (encoding) . 30

ix

I. Introduction

Multicore architectures are becoming popular since they provide a way to improve

peak performance without much increase in the power consumption. In addition, several

other parameters, e.g., power, temperature and reliability can be more easily managed at

coarser granularity of thread- and core- level [19]. As we transition from few- to many-core

processors, scaling the memory becomes one of the most important challenges. Managing

the memory automatically in the hardware, transparent to the application, is increasingly

becoming infeasible. This is not only because caches consume a lot of power (almost 1/2

of the processor power may be consumed by the caches [20]), but also because ensuring

coherency between the caches makes them slow, and is difficult to scale to a large number

of cores [9]. Consequently, distributed memory systems, in which each core has access to

only a limited local memory seems to be the only memory scaling option. High-end and

futuristic processors are being designed with such memory architecture. Examples are the

network processors [21] and the experimental 80-core processor [29] from Intel, and the

IBM Cell processor [9]. The synergistic processing units or SPUs in the IBM Cell have

access to a limited 256 KB of local memory, but can access the global memory through

explicit DMA requests.

In processor cores with limited local memories, if the whole application fits into the

limited local memory, it executes extremely efficiently. If not, then memory management

– which must be done in software – is needed. Code or data which is needed next must

be explicitly brought into the limited local memory before it can be used. This may in-

clude evicting the not-so-urgently needed code and data out of the limited local memory.

While management is needed for all code and data, in this paper we focus on code manage-

ment, since efficient code management can very significantly impact the performance of the

2

system. To facilitate this code management, the IBM Cell processor provides an overlay

mechanism. In a linker script, user specified regions and specified the mapping of functions

into regions. Functions mapped to one region are mapped to the same physical location in

the limited local memory, and replace each other when called. , the size of region is equal

to the size of the largest object mapped to the region, and the total code space required

is the sum of the sizes of the regions. The goal of code mapping problem is then to gener-

ate a linker script, which minimizes the swapping of functions so that performance can be

improved due to reduced data transfer between the global memory and local memory.

The inputs to this code mapping problem are traditionally, i) the maximum size of

code region, and ii) a call graph, in which the nodes represent functions, and a directed edge

between two functions denotes a caller-callee relationship. The weight on the edge is the

number of times the caller calls (or is expected to call) the callee. Finding the number of

regions, and the mapping of objects to regions, that will minimize the data transfers, both

are shown to be intractable [6, 30]. Consequently, several heuristics have been proposed.

These heuristics define a metric of interference between two functions as the amount of

data that needs to be transferred when two functions are mapped to the same region. All

existing heuristics are greedy, and place one function into a region in each step.

The approach in this paper removes several limitations of previous approaches.

• While call graphs capture the aggregate information about how many times a func-

tion calls another, it does not capture the temporal information about the sequence

in which the functions are called. To accurately estimate the data transfers, this

temporal information is essential. We formulate our problem using GCCFG, which

captures both the aggregate and temporal information about the function calls.

3

• The interference between two functions, i.e., the amount of data transfer required

when two functions are mapped in the same region is dependent on where the other

functions are mapped. Therefore even though our heuristic is also greedy, but we

update the interference cost between functions as the other functions are mapped.

As a result of these two fundamental reasons, our heuristics result in superior (better

runtime) mapping at minimal and tolerable compile-time overhead. We apply our heuristics

to solve the code mapping problem for several benchmarks from the MiBench suite [12],

and demonstrate an average of 12% runtime improvements on the IBM Cell processor.

II. Motivating Example

This section provides an example to illustrate two ideas i) interference cost between two

functions depends on where the other functions are mapped, and ii) updating interference

costs can lead a code mapping to minimize the data transfers between the limited local

memory and the global memory.

Figure 1 (a) shows a simple call graph in which function F1 calls F2, F2 calls F3, and

F3 calls F4, and then they all return. The function nodes also indicate the sizes of each of

the functions. Assume that we have to map all these functions into a local memory of 3.5

KB. Figure 1 (b) shows the interference graph for this application. In this graph, nodes

are functions, and the edge weights represent the amount of data transfers required in the

worst case, when the two functions are mapped to the same region. For example, if the

functions F1 and F2 are mapped to the same region, then they will replace each other two

times. First when F1 calls F2, 1.5 KB of function F2 will need to be brought into the local

store. Note that F1 does not need to be committed back to the main memory, since this

is code, and it does not get “dirty”. When function F2 returns to F1, 2 KB of the code

of F1 needs to be brought into the local store. Therefore a total of 2 KB + 1.5 KB = 3.5

KB of data transfer is required when functions F1 and F2 are mapped to the same region.

Similarly the interference of the direct edges, e.g., F2-F3, and F3-F4 are calculated.

For the indirect edges, the weight calculation is slightly tricky. Consider F1-F3; if F1

and F3 are mapped to the same region, the interference between them depends on where

F2 is mapped. For example, if F2 is mapped to a different region (other than that of F1

and F3), then the interference between F1 and F3 is just sum of their sizes, i.e, 2 KB +

0.4 KB = 2.4 KB. However, if all F1, F2 and F3 are mapped to the same region, then

the interference cost between F1 and F3 is 0. This is because, when F3 is called, F1 is

5

already replaced with F2, and when the program returns to F1, F3 is already replaced. In

a sense, there is interference between F1 and F2, and between F2 and F3, but there is no

interference between F1 and F3.

Fig. 1. Interference cost between functions depends on where other functions are mapped,
and updating the interference costs as we map the functions can lead to a better mapping.

Previous approaches computed the worst case interference cost, i.e., 2.4 KB for F1 -

F3, and never updated it, and therefore obtained inferior mapping. To explain this, Figure

1 (c) shows a state in mapping when F1, F2 and F3 have already been mapped. F1 is

alone in the first region, F2 and F3 are together in the second region. Now is the time

to map function F4. Size of F4 is 0.2 KB, therefore it can be mapped to either region,

without violating the size constraint. The interference cost between region 1 and F4, i.e.,

between F1 and F4 is 2.2 KB. The interference cost between region 2 and F4 is traditionally

computed as the sum of interferences between the functions in region 2 and F4, i.e., 1.7

6

KB between F2 and F4, and 0.6 between F3 and F4, totalling to 2.3 KB. Consequently

traditional techniques will map F4 to region 1 with F1 (shown in Figure 1 (d)).

Clearly there is a discrepency in computing the interference cost between region 2

and function F4. If F3 is also mapped to the same region, the interference cost between

F2 and F4 should be estimated as 0. Otherwise, the interference costs between region 2

and function F4 are incorrectly (over)estimated. With this fixed, the interference between

region 2 and F4 is just the interference between F3 and F4, which is just 0.6 KB. As per

this correct interference calculation, F4 should be mapped to region 2 with functions F2

and F3 (shown in Figure 1 (d)). The required total data transfer between the main memory

and the local storage, in this case 6KB, as compared to 7.6KB with the previous mapping,

resulting in a 21% savings in data transfers.

III. Background and Problem Definition

For code management, both the number of regions and the mapping of functions to

regions needs to be specified. Functions in a region replace each other, and therefore, the

size of a region is the size of largest function in the region, and the total code space required

is equal to the sum of the sizes of the regions. From the performance perspective, it is best

to place each function into a separate region, so that it does not interfere with any other

object, but that may increase the code segment of the local memory too much. On the other

hand, mapping all the application functions into one region utilizes the minimum amount

of code space, but incurs too much data transfer and therefore runtime overhead. The

task of optimizing code management is therefore to organize the application functions into

regions, i.e., how many regions, and function-to-region mapping that will obtain a balance

between the code space used, and the data transfers required for code management.

To do this, it is essential to capture the number of times a function will swap each

another as accurately as possible when they are mapped in the same region. This has been

traditionally achieved through the use of Call Graph. Figure 2 (a) shows the outline of a

program, in which function F1 calls functions F2 and F3. F2 calls F4 in a loop, and then

calls F5 in a loop. F3 calls F6 and F7 in a common loop. The call graph for this example

code is shown in 2 (b). Notice that while call graph captures that F1 calls F2 and F3, it

does not capture the time-order in which they are called. Also, the fact that F6 and F7

are called one after another in a loop, and therefore will have a much higher interference

than F4 and F5 cannot be interpreted from the call graph.

Incidentally this temporal and loop information is present in the control flow graph.

Global Call Control Flow Graph or GCCFG [6] is a hybrid of control flow graph and

a call graph, and capture this information, which is vital in estimating the interference

8

Fig. 2. GCCFG captures both the aggregate and the temporal information about the
execution of the application.

between functions. As shown in Figure 2 (c) GCCFG is an ordered directed graph G =

(Vf , Vl, E, S,W), which contains two kinds of nodes, vf ∈ Vf represents function nodes,

and vl ∈ Vl represents loop nodes. An edge ei,j ∈ E between function nodes represents a

function call, If one of nodes is a loop node, the edge represents a control flow. If both are

loop nodes, the edge represents a nested control flow. The edges are ordered, in the sense

that if there are two or more child nodes of a parent node, then the left child is executed

before the right child. Weights wi ∈ W are assigned to each node vi ∈ Vf ∪ Vl. Weight of

the function node is the size of the function, while the weight on a loop node is the number

of times the loop is executed. Weights on edges wij ∈ W represent how many times the

edge is taken. In summary GCCFG is an approximation of the control flow and call graph

of the application, which intends to capture the function call sequence of the application

9

as closely as possible. Our problem now can be stated as:

Inputs: GCCFG (Vf , Vl, E, S,W) of an application, and the maximum code size on

SPM, S

Outputs: The number of regions nR, and mapping of functions to regions, M : Vf →

(1, nR)

Constraints:

• For each region r ∈ (1, nR), size of region

Sr = MAX [(M(vf) == r)× sf]

•
nR∑
r=1

sr ≤ S

Objective:

• Minimize data transfer.

min
∑

vi,vj∈Vf
IM (vi, vj) × (M(vi) == M(vj)), where IM (vi, vj) is the interference

of Vi and vj under the mapping M .

IV. Related Work

Limited local memory architectures have been popular in embedded systems for some

time now under the name of Scratch Pad Memories or SPMs [5]. They have been exten-

sively used in embedded systems, e.g., the ARM architecture [3] for power reduction, and

techniques have been developed to manage code [2, 6–8, 13, 22, 26–28, 30–32], global vari-

ables [4,15,16,18,27,28,30,31] stack [4,10,18,22,28], and heap data [10] on SPMs. In this

paper, we concentrate only on code mapping on SPMs.

Fig. 3. In embedded systems, typically using the SPM was a choice, and therefore the
code mapping problem was just an optimization problem. In the cell architecture, all code
has to reside in the SPM or local store.

Figure 3 illustrates the major difference between the two use-cases of scratch pad

memories. Figure 3 shows that in the embedded systems e.g. the ARM architecture, the

SPM was present in addition to the regular cache hierarchy of the processor. Programs

could execute correctly without the use of SPM; they could however, use SPM to improve

power and performance. Consequently, a lot of SPM research has focused on the question

of “what to map” on the SPM [2,4,10,22,27,31,32]. Static mapping techniques essentially

selects a portion of code, loaded it onto the SPM at the initialization stage, and it does

not change during the execution of the program. Dynamic code mapping resolves this

inefficiency by changing the code mapping onto the SPM at runtime [6–8,13,15,16,18, 26,

11

28,30]. Bringing new code may require replacing some existing code, and therefore, “where

to map” question is also important for dynamic techniques.

The “what to map” question is not valid for limited local memories present in present

high-performance multi-core processors. For example, in the Synergistic Processing Unit

(SPU) of IBM Cell, all code/data must go through the SPM, or the local memory. “Where

to map” is the only question for code mapping on SPUs. To facilitate code management,

the local store can partitioned into regions, and functions can be mapped onto regions.

Only the functions mapped to the same region will replace each other as they are called.

Consequently, the size of region is the size of the largest function in the region, and the total

code space needed is the sum of the functions. In the SPUs, the local store is shared by all

code and data, therefore it is important to conserve space occupied by code. In addition

there is a clear trade-off between the code space needed and the potential performance.

Consequently, there are two questions to be addressed in code mapping i) “how many

regions”, and ii) “mapping of functions to regions.”

[28] proposes a method to allocate code, stack and global variables and apply a best-

fit heuristic to map those into a local storage at the specific locations. However, they

formulate their problem from call graph, which does not capture temporal information.

[30] formulates an ILP for the problem of dynamic code mapping to determine memory

object to be mapped in the local storage. Since ILP solution is impractical even for small-

sized applications, they propose the first-fit heuristic to assign memory addresses. Even

though [30] formulate their problem using GCCFG, both [28] and [30] assume that the

“how many regions” has already been solved. Note that this problem in itself is NP-

complete, and consequently, there is a phase ordering problem between determining the

12

number of regions and finding the mapping. The closest to our work is [6], in which authors

formulate the code mapping problem from GCCFG, and solve both the problems of “how

many regions” and “mapping of functions to regions”. Because of simultaneously solving

both these problems they achieve better mapping than pervious techniques. However they

assume conservative interference costs. They calculate these costs between every pair of

functions at the beginning, and do not update them as their heuristics maps functions

to regions. In this paper, we alleviate this problem, and develop two heuristics and a

combination of them to achieve much better mapping.

V. Our Approach

When two functions are mapped in the same region, they replace each other when

called. The data transfer cost of mapping two functions in the same region is termed as the

interference cost between the two functions. The objective of code mapping is to cluster

functions into a number of regions such that the sum of interference between functions in

a region, over all regions is minimized. This is equivalent to the max k-cut problem [17],

which is NP-hard even for k = 2. Note however, that the min-cut problem is solvable in

polynomial time for a given k. The max-cut problem however is APX-hard [23], which

implies that there is not even a good way to approximate it in polynomial time.

To partition functions into k clusters, we take two approaches. First is the FMUM

(or Function Mapping by Update and Merging). In this we first map all the functions to

different regions. Then we merge two functions that will cause minimal increase in the

runtime, until the regions fit in the code space S. The second scheme FMUP (or Function

Mapping by Update and Partitioning) is just the reverse of this, in which we start all the

functions in one region. In each step we create a new partition that maximizes performance

improvement. We continue this until we do not overstep the code space constraint S. In

order to correctly compute the interference costs, we note that it is not possible to find the

interference cost without the mapping. Therefore, note that in the algorithms we always

find the interference cost for a given mapping. The next two subsection describe the details

of the two heuristics.

A. Function Mapping by Updating and Merging (FMUM) Heuristic

Algorithm 1 outlines a simplified version of the FMUM heuristic. It starts with M ,

in which all functions are mapped in separate regions (lines 01-02). Now we try to merge

all combinations of two regions until we are within space constraints (while loop, lines 04

14

Algorithm 1 FMUM : Updating and Merging (Vf , S)

1: for all functions vi ∈ Vf do
2: M [vi] = ri
3: end for
4: while (Size(M) < S) do
5: init cost = Interference(M)
6: min cost = MAX COST
7: M ′′ = φ
8: for all combination of regions r1, r2 ∈ R do
9: for all functions vi ∈ Vf do

10: if (vi /∈ r2) then
11: M ′[vi] = M [vi]
12: else
13: M ′[vi] = r1
14: end if
15: end for
16: if (size(M ′) < S) then
17: cost = Interference(M ′)
18: if (cost < min cost) then
19: min cost = cost
20: M ′′ = M ′

21: end if
22: end if
23: end for
24: if (min cost < init cost) then
25: M = M ′′

26: else
27: Return
28: end if
29: end while

- 29). To do this, we choose a region pair (r1, r2) (line 08), and create a new mapping M ′

by moving all the functions from region 2 to region 1 (for loop, lines 09-15). We compute

the cost of this mapping M ′ (line 17), and thereby find out the mapping with the least

interference cost (lines 18-21). Merging only the regions that do not result violation of

code size constraint is allowed (line 16). If the mapping with the minimum interference

cost M ′′ is better than the original mapping M , then the mapping is changed to the one

with minimum interference cost (lines 24-25). Otherwise, the algorithm terminates (line

15

27).

The outermost while loop merges two regions at a time. Since in the worst case, all

regions may have to be merged into one, this loop can execute Vf times. Inside this, the for

loop (lines 08-23) runs for each pair of regions. This adds O(V 2
f) complexity to the time.

Inside this loop, there is a for loop (lines 09-15), which generate a mapping, and take O(vf)

time, and there is a Interference cost calculation, which, assuming for now, has complexity

I. Thus the worst case timing complexity of FMUM is O(V 4
f + V 3

f .I).

B. Function Mapping by Updating and Partitioning (FMUP) Heuristic

Algorithm 2 outlines a simplified version of the FMUP heuristic. It starts with M ,

in which all functions are mapped into the first region (lines 01-02). In each iteration of

the outer while-loop (lines 05-31), we create a new region R+ +, and then move functions

to fill up the new region. The inner while-loop (lines 07-30) picks one function at a time

vi ∈ Vf (for loop, line 11), creates a new mapping M ′ in which this function is in the new

region (lines 12-18). It then computes the difference in interference costs between the initial

mapping M and new mapping M ′ (line 20); the difference implies how much it is beneficial

to move one function into the new region. The function, whose moving to the new region

does not violate code size constraints (line 19), and which has the maximum difference in

cost of moving (lines 19-21), is finally picked, and moved (line 21). When no more function

can be moved, the inner while loop ends. The outer while loop will continue creating new

regions until the code size constraint stops it, and stops the algorithm.

The inner most for loop (lines 12-18) generates a mapping and takes O(Vf) times.

The for loop in lines 11 - 24 is over all functions, and therefore is repeated O(Vf) times.

Each time interference cost calculation is performed. Assume for now, that the interference

16

cost calculation has complexity I. The inner while-loop in lines 07-30 tries to move all the

functions, one at a time. This adds a factor of O(Vf) to the complexity. The outer while

loop creates new regions. In the worst case, it will create Vf regions. Therefore the overall

complexity of this algorithm is O(V 4
f + V 3

f .I).

Algorithm 2 FMUP : Updating and Partitioning (Vf ,S)

1: for all functions vi ∈ Vf do
2: M [vi] = r1
3: R = 1
4: end for
5: while (Size(M) < S) do
6: R+ +
7: while do
8: init cost = Interference(M)
9: max cost = MIN COST

10: M ′′ = φ
11: for all functions vi ∈ Vf do
12: for all functions vj ∈ Vf do
13: if (vi 6= vj) then
14: M ′[vi] = M [vi]
15: else
16: M ′[vi] = rR
17: end if
18: end for
19: if size(M ′) < S then
20: cost = init cost− Interference(M ′)
21: if (cost > max cost) then
22: max cost = cost
23: M ′′ = M ′

24: end if
25: end if
26: end for
27: if (cost > 0) then
28: M = M ′′

29: else
30: Break from while loop
31: end if
32: end while
33: end while

17

C. Interference Cost Calculation

Since the interference cost calculation is very frequently required by both FMUM and

FMUP, making interference cost calculation as fast as possible is important. Given a GC-

CFG, and a mapping M , a naive way to compute interference cost can be by traversing

the GCCFG, (much like simulation) and adding the the function sizes, as we visit function

nodes. However, the complexity of this will be very high. Therefore, we develop an algo-

rithm to compute the interference cost using just 2 Depth First Search (DFS) traversals of

the GCCFG. If two functions are mapped into the same region, and one function is called

after another during the execution, two functions have to swap each other on the SPM,

and it is said that two functions are interfered by each other[]. However, as shown in the

motivating example, the interference between such functions depends upon mappings of

other functions in-between during the execution. Therefore, it is essential to capture the

interferences changes between such functions and compare the cost of interference to cre-

ate a better code mapping which reduces interferences between functions in regions. The

following Algorithm 3 shows the procedure o capture the interference cost between two

functions.

As outlined in above Algorithm 3, we calculate the interference cost between functions

as we traverse the GCCFG in Depth-First Search order including function return. First, it

starts from the initial node of GCCFG (line 1) and search for v1 (line 10) as the GCCFG

is traversed. After finding v1, we assign the first edge weight (line 11) between v1 and the

next node. If the next node is a loop node, it keeps traversing the GCCFG until it meets

a function node, and then it assigns the first edge weight (lines 12-13). However, if there

exists a function which is mapped into the same region as v1 and v2 after v1 is found and

18

Algorithm 3 FMUM : Interference (GCCFG, v1,v2)

1: vcurrent = vinitial
2: while vcurrent 6= vfinal do
3: if v1 is found and v2 is not found then
4: if M(vcurrent) == v1 or M(vcurrent) == v2 then
5: reset all weights
6: else
7: if vcurrent is LCA(v1, v2) then
8: assign weight1
9: end if

10: end if
11: end if
12: if vcurrent == v1 then
13: assign weight1
14: end if
15: if vcurrent.nextNode == loopNode then
16: Find next function node, then assign weight
17: end if
18: if v1 found && v2 found then
19: assign weight2
20: totalWeight+ = min(weight1, weight2)
21: end if
22: vcurrent = vcurrent.nextNode()
23: end while
24: return totalWeight

before v2 is found, the edge weight becomes 0 since there is no interference between v1 and

v2 (lines 4-5). When there is LCA (or least-common-ancestor) of v1 and v2 after v1 is found,

the first edge weight is re-assigned (lines 6-7). When v2 is found after v1 is found while it

is traversing the GCCFG, we assign the second edge weight and add the minimum of edge

weight1 and weight2 to consider the case where there exists a function mapped in the same

region or an LCA between v1 and v2 in the execution sequence. As the final interference

counts between those two functions, we calculate interference count again with switched

order of two functions and take maximum value of two calculations. This is because it is

unknown which function comes first during the execution. For the final interference cost,

19

the cost calculation function is given by the sum of two functions multiplied by the final

interference count. This procedure visits each node in the GCCFG only once, therefore,

the runtime complexity of interference cost calculation is O(Vf).

VI. Empirical Evidence

A. Experimental Setup

We evaluate the effectiveness of all our techniques on the IBM Cell processor in Sony

Playstation 3 running Linux Fedora 7. Our software development environment is on a

laptop with 2GHz Intel Celeron processor with 1 GB memory. We have set up a GNU

cross compiler ver. 4.1 and PS3 SDK ver. 3.1, which supports using linker script for code

management. We compile several benchmarks from MiBench [12] suite on the desktop,

transfer them to PS3, and execute them there to measure the runtime. We tried to execute

all the MiBench applications on the SPUs, but only the ones in our set executed; the data

and code size of the other applications were too large to fit on the local storage of the SPU.

This further underlines the need of data and code memory management schemes, such as

the ones presented in this paper.

Fig. 4. We perform our experiments on the IBM Cell processor in Sony Playstation 3.
Our software framework is developed as a post-pass to the GCC compiler.

We have implemented our code mapping heuristics as a post-pass to the GCC compiler.

We first compile the benchmark to executables and capture their objdump. We analyze the

21

objdump to re-create the call graph and the control flow graph. From these we create

the GCCFG of the application. At this point, we execute the application, and gather

more accurate profile information about the edge costs, and integrate them manually into

the GCCFG to best represent the application execution patterns. Performing this post-

pass analysis at the objdump, instead of inside the compiler, or on assembly, allows us

to analyze library functions too, and consequently, our GCCFG contains library functions

too. Another important clarification here is that in the linker script, object to region

mappings are specified, rather than function to region mappings. For the source code,

each function can be compiled into a separate object (e.g., by placing them in a separate

file, and compiling them), but library objects that contain multiple functions cannot be

easily broken into individual objects. Therefore, all our techniques are at function-level

granularity for source code, but at object level granularity level for the library functions.

However, this in no way affects the generality of problem definition and effectiveness of

heuristics.

TABLE I

Benchmarks for Experiments

Benchmarks Size(Bytes) Description

Stringsearch 800 - 3792 Word Searching (Office)
Dijkstra 2496 - 8080 Shortest Path (network)

Basicmath 3880 - 11360 Math Calculation (Automotive)
FFT (encoding) 2496 - 11520 Signal Processing (telecom)

Susan (smoothing) 8300 - 19144 Image smoothing (Automotive)
Susan (edge) 8300 - 19144 Edge Detection (Automotive)

Adpcm (encoding) 1496 - 4648 Audio Compression (telecom)
Adpcm (decoding) 1496 - 4648 Audio Compression (telecom)

Once we have all the functions and objects (for source code, and library respectively),

22

we can compute the minimum and maximum size of code region required. Table I shows

the size limits for all our benchmarks from MiBench. Note that the maximum code size of

the benchmarks are much smaller than the size of the local store on the SPUs, which is 256

KB. However, remember that the local store is shared between all the data (global, stack,

heap), and the code. Therefore using minimum amount of space for code is extremely

crucial.

After generating the GCCFGs for a benchmark, and given code size constraint we

used our heuristics of FMUM, FMUP, and previous technique SDRM to generate code

mapping in the linker script. This linker script is then compiled with the object files again

to create the binary. The binary is executed 10 times on PS3, and the average runtime

value is used so as to drown the variations due to OS etc. We did these experiments for all

our benchmarks, and for all code size constraints from the minimum to the maximum, in

increments of 100 bytes.

B. Experimental Results

Figure 5 shows the runtime of the binary compiled using the code mapping obtained

from each heuristic for a representative application, stringsearch. The X-axis shows the

size of the given code size constraint. In the graph, the diamond markers represents the

total number of execution cycles with Function-To-Region Mapping by FMUM heuristic,

square markers represents that by FMUP heuristic, and triangle markers represents that by

SDRM heuristic. When the code size constraint is very tight, all heuristics achieve the same

mapping, i.e., mapping all the functions in one region. However, as we start relaxing the

code size constraint, FMUP typically gives better mapping than FMUM. This is because

FMUP has to do very few steps, while FMUM needs to do a lot of merges. The more

23

Fig. 5. FMUP gives better results for tighter code size constraints, while FMUM gives
better results for relaxed code sizes.

steps a heuristic has to take, the errors in each step accrue, and we get a worse mapping.

The reverse effect is also visible. When the code size constraint is extremely relaxed, e.g.,

greater than 2000 bytes, FMUM gives a much better mapping. Note that code mappings

created by the FMUP do not always lead to a better mapping with the relaxed code sizes

compared to that with tight sizes. This is because the FMUP moves one function at a

time if the given code size accommodates the function moving, which may not be the best

decision for functions that are mapped later, therefore, it ends up with a totally new code

mapping with local maximum code mapping. None of the heuristics gives consistently good

results, however our techniques give better results most of the times.

We tested the three heuristics for all code size constraints, from minimum to maximum

in increments of 100 bytes. Figure 6 plots the number of times our techniques obtain a

24

Fig. 6. As an average, FMUM gives a better results than SDRM 57% of time, FMUP
gives a better results 80%of time, and FMUM+FMUP gives better results 87% of the time.

better result than SDRM. For some benchmarks like dijkstra, FMUM in general, gives worse

results than SDRM, however, on average over all benchmarks, FMUM gives a better result

than SDRM 57% of time, but FMUP gives a better result 80% time. In a sense FMUM and

FMUP are complimentary heuristics, because FMUP is likely to give better result for tight

code size constraints, and FMUM for relaxed code size constraints. Therefore we define a

third composite heuristic, FMUP+FMUM, which essentially mean: try both of them, and

pick the better one. FMUM+FMUP gives us better results than SDRM about 87% of the

time. For some applications, like fft and adpcm FMUP+FMUP gives better results 100%

of the time.

Figure 7 plots the average performance improvement (or runtime reduction) we

achieved for each benchmark, over all the SPM sizes. Depending on SPM size and the

25

Fig. 7. On an average the mapping generated by FMUM+FMUP executes 12% faster
than that generated by SDRM

application, the performance improvements can be as high as 50%. At the application

level, the average improvement for any SPM size can be expected to be as high as 29%.

Finally, for any given application and any given SPM size, the performance improvement

compared to SDRM can be expected to be around 12%. This performance increase is

definitely not for free. As compared to SDRM, we spend a lot more time during the com-

pilation, trying to search for a better mapping. In Figure 8, we have measured the time it

takes to generate one linker script using FMUM, FMUP and SDRM heuristics. Left most

bar represents the time by FMUM, the time by FMUP, and the time by SDRM respectively.

Even with the increase, however, the compile-time for our set of benchmarks is always less

than a minute. This is definitely tolerable for several applications which are compiled once,

distributed as binaries, and executed several times: this profile closely fits the kinds of

26

Fig. 8. Compile time overhead is tolerable for applications which are compiled once and
executed several times

applications that are intended for PS3, e.g. games, multimedia and office applications.

C. Analysis

To get more insight into the behavior of FMUM, FMUP, and SDRM, we look at

detailed results for a couple of benchmarks. The followings are some of the limitations of

SDRM, that FMUM and FMUP overcome.

a. Utilization of given code space

All the plots in Figure 9 and Figure Figure 10 show that towards the tail-end, when the

code size constraint is relaxed, SDRM achieves worse mapping than FMUM and FMUP.

Even though SDRM initially makes good use of local store, but once it gets a decent

mapping, it does not relax it for small benefits.

27

Fig. 9. Limitations of SDRM with dijkstra and susan (smooth); Less utilization of given
code space, Less map-ability

b. Inefficient object mapping for in-loop functions

For the basicmath results in Figure 10, the total execution time by function mapping

from the SDRM heuristic increases after code size constraint of 5700 Bytes. This is because

some functions that are called in a loop are mapped together in the same region due to

conservative estimates of interference costs. FMUM and FMUP correctly compute the

interference costs, and map the functions separately, drastically reducing the data transfers

and runtime.

c. Less map-ability

For susan smoothing, if code size constraint of less than 11800 Bytes is given, SDRM

is unable to generate a mapping. Recall from Table I that the minimum code size required

for susan smoothing was 8300 Bytes. SDRM maps one function at a time with the highest

interference cost. As the mapping process goes on, if large sized objects are left, they

cannot be mapped in existing regions or a newly created region since several regions have

28

Fig. 10. Limitations of SDRM with basicmath; Less utilization of given code space,
Inefficient object mapping for in-loop functions, Less map-ability

already been created for smaller regions. FMUM and FMUP heuristics avoid this problem.

Similar effect can be observed for the basicmath benchmark when code size constraint is

less than 4300 Bytes.

D. Static weight assignment and Scalability

We have observed almost the same performance increase when we assigned the weights

of edges in the GCCFG statically; multiply weights of edges by 10 whenever it meets a loop

node while it traverses the GCCFG. In the graph of 11, left bar on each benchmark rep-

resents a performance increase by FMUM+FMUP heuristic when the weights of edges are

assigned through profiling, and the right bar represents a performance increase when the

weights of edges are assigned based on the existence of Loops in GCCFG. Surprisingly,

even though FMUM+FMUP heuristic with profile based edge weights leads to more per-

formance increase with most of benchmarks, the difference in average performance increase

is almost negligible. This can imply that we can eliminate the compile time overhead to

obtain profiling information through the loop based edge weights, in which almost same

performance increase can be expected. Another interesting point we have observed is that

29

Fig. 11. With statically estimated weight assignment, FMUM+FMUP heuristic shows
almost the same performance increase.

our heuristics are more scalable with increase number of SPU threads. In Figure 12, we

measured the difference in runtime with benchmarks from the PPU as we increase the

number of threads running each thread on each SPU. The X-axis represents the number of

threads, and the Y-axis represents the total runtime to finish all threads on all cores. Ac-

cording to the graph, The runtime difference with the increased number of SPU threads is

negligible, which implies that the performance benefit by our heuristics is better with more

number of SPU threads. However, there is drastic runtime increase with adpcm (decoding)

when the number of SPU threads is from 5 and 6. This is because the more number of

running SPU threads, the more data transfer amount between PPU and SPUs is caused so

that the Elemental Interconnect Bus (EIB) is overloaded by the DMA by all SPUs, which

makes each SPU have more runtime.

30

Fig. 12. FMUM, FMUP heuristics are scalable as the number of cores increases than
SDRM with fft (encoding)

VII. Conclusion

Multi-core architectures with limited local memories are becoming popular. In these

processors, e.g, IBM Cell, each core has access to only a limited amount of local memory,

and access to any other memory has to be explicitly specified in the application. To manage

code in the limited code space on the local memory, different functions share the same

address in the local store. The problem of code mapping is therefore to place functions into

regions, so that the replacement is minimized. Previous works have formulated this problem

using call graphs, which do not capture the temporal information about the execution,

and also do not update the estimate of interference cost between two functions as the

other functions are mapped. In this paper, we formulate the code mapping problem using

GCCFG, which captures the temporal information of the application execution, and also

update the interference cost as we generate mapping. As a result, our heuristic can create

more efficient Function-To-Region mapping with the given code size in local storage.

Our experiments on solving the code mapping problem for several benchmarks from

MiBench for the IBM Cell processor demonstrate a speedup of about 12% as compared to

previous approaches at tolerable compile-time overhead. While the experiments in this pa-

per are on a single SPU and PPU, the performance improvement due to our scheme is likely

to scale with the number of cores since reducing the memory transfers becomes ever more

important in a multicore setting. An area of improvement is prefetching code objects. Right

now, we fetch the function code at the last moment. However, based on profile or analysis,

the function code can be fetched beforehand, overlapping computation and communication,

and further improving performance. We have automated our technique in the GCC cross

compiler for SPUs. The compiler binaries and an example benchmark can be downloaded

for review from http://www.public.asu.edu/s̃jung/example binary executable.zip.

REFERENCES

[1] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques,
and Tools (2nd Edition). Addison Wesley, 2 edition, August 2006.

[2] F. Angiolini, F. Menichelli, A. Ferrero, L. Benini, and M. Olivieri. A post-compiler
approach to scratchpad mapping of code. In CASES ’04: Proceedings of the 2004 in-
ternational conference on Compilers, architecture, and synthesis for embedded systems,
pages 259–267, New York, NY, USA, 2004. ACM.

[3] ARM. ”ARM Architecture Reference Manual”.

[4] O. Avissar, R. Barua, and D. Stewart. An optimal memory allocation scheme for
scratch-pad-based embedded systems. ACM Trans. Embed. Comput. Syst., 1(1):6–26,
2002.

[5] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Marwedel. Scratchpad
memory: design alternative for cache on-chip memory in embedded systems. In
CODES ’02: Proceedings of the tenth international symposium on Hardware/software
codesign, pages 73–78, New York, NY, USA, 2002. ACM.

[6] B. Egger, C. Kim, C. Jang, Y. Nam, J. Lee, and S. L. Min. A dynamic code placement
technique for scratchpad memory using postpass optimization. In CASES ’06: Pro-
ceedings of the 2006 international conference on Compilers, architecture and synthesis
for embedded systems, pages 223–233, New York, NY, USA, 2006. ACM.

[7] B. Egger, C. Kim, C. Jang, Y. Nam, J. Lee, and S. L. Min. A dynamic code placement
technique for scratchpad memory using postpass optimization. In CASES ’06: Pro-
ceedings of the 2006 international conference on Compilers, architecture and synthesis
for embedded systems, pages 223–233, New York, NY, USA, 2006. ACM.

[8] B. Egger, J. Lee, and H. Shin. Scratchpad memory management for portable systems
with a memory management unit. In EMSOFT ’06: Proceedings of the 6th ACM &
IEEE International conference on Embedded software, pages 321–330, New York, NY,
USA, 2006. ACM.

[9] A. E. Eichenberger, J. K. O’Brien, K. M. O’Brien, P. Wu, T. Chen, P. H. Oden,
D. A. Prener, J. C. Shepherd, B. So, Z. Sura, A. Wang, T. Zhang, P. Zhao, M. K.
Gschwind, R. Archambault, Y. Gao, and R. Koo. Using advanced compiler technology
to exploit the performance of the cell broadband enginetm architecture. IBM Syst. J.,
45(1):59–84, 2006.

[10] P. Francesco, P. Marchal, D. Atienza, L. Benini, F. Catthoor, and J. M. Mendias.
An integrated hardware/software approach for run-time scratchpad management. In
DAC ’04: Proceedings of the 41st annual Design Automation Conference, pages 238–
243, New York, NY, USA, 2004. ACM.

33

[11] H. N. Gabow and R. E. Tarjan. A linear-time algorithm for a special case of disjoint set
union. In STOC ’83: Proceedings of the fifteenth annual ACM symposium on Theory
of computing, pages 246–251, New York, NY, USA, 1983. ACM.

[12] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B.
Brown. Mibench: A free, commercially representative embedded benchmark suite. In
WWC ’01: Proceedings of the Workload Characterization, 2001. WWC-4. 2001 IEEE
International Workshop, pages 3–14, Washington, DC, USA, 2001. IEEE Computer
Society.

[13] A. Janapsatya, A. Ignjatović, and S. Parameswaran. A novel instruction scratchpad
memory optimization method based on concomitance metric. In ASP-DAC ’06: Pro-
ceedings of the 2006 Asia and South Pacific Design Automation Conference, pages
612–617, Piscataway, NJ, USA, 2006. IEEE Press.

[14] A. Janapsatya, S. Parameswaran, and A. Ignjatovic. Hardware/software managed
scratchpad memory for embedded system. In ICCAD ’04: Proceedings of the
2004 IEEE/ACM International conference on Computer-aided design, pages 370–377,
Washington, DC, USA, 2004. IEEE Computer Society.

[15] M. Kandemir, J. Ramanujam, and A. Choudhary. Exploiting shared scratch pad
memory space in embedded multiprocessor systems. In DAC ’02: Proceedings of the
39th annual Design Automation Conference, pages 219–224, New York, NY, USA,
2002. ACM.

[16] M. Kandemir, J. Ramanujam, J. Irwin, N. Vijaykrishnan, I. Kadayif, and A. Parikh.
Dynamic management of scratch-pad memory space. In DAC ’01: Proceedings of the
38th annual Design Automation Conference, pages 690–695, New York, NY, USA,
2001. ACM.

[17] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W.
Thatcher, editors, Complexity of Computer Computations, pages 85–103. Plenum
Press, 1972.

[18] L. Li, L. Gao, and J. Xue. Memory coloring: a compiler approach for scratchpad
memory management. pages 329 – 338, sept. 2005.

[19] P. Michaud, A. Seznec, D. Fetis, Y. Sazeides, and T. Constantinou. A study of thread
migration in temperature-constrained multicores. ACM Trans. Archit. Code Optim.,
4(2):9, 2007.

[20] J. Montanaro, R. T. Witek, K. Anne, A. J. Black, E. M. Cooper, D. W. Dobberpuhl,
P. M. Donahue, J. Eno, G. W. Hoeppner, D. Kruckemyer, T. H. Lee, P. C. M. Lin,

34

L. Madden, D. Murray, M. H. Pearce, S. Santhanam, K. J. Snyder, R. Stephany, and
S. C. Thierauf. A 160-mhz, 32-b, 0.5-w cmos risc microprocessor. Digital Tech. J.,
9(1):49–62, 1997.

[21] T. J. Network, M. Adiletta, M. Rosenbluth, D. Bernstein, G. Wolrich, and H. Wilkin-
son. The next generation of intel ixp network processors. Intel Technology Journal, 6,
2002.

[22] N. Nguyen, A. Dominguez, and R. Barua. Memory allocation for embedded systems
with a compile-time-unknown scratch-pad size. In CASES ’05: Proceedings of the
2005 international conference on Compilers, architectures and synthesis for embedded
systems, pages 115–125, New York, NY, USA, 2005. ACM.

[23] C. Papadimitriou and M. Yannakakis. Optimization, approximation, and complexity
classes. In STOC ’88: Proceedings of the twentieth annual ACM symposium on Theory
of computing, pages 229–234, New York, NY, USA, 1988. ACM.

[24] A. Shrivastava, I. Issenin, and N. Dutt. Compilation techniques for energy reduction
in horizontally partitioned cache architectures. In CASES ’05: Proceedings of the
2005 international conference on Compilers, architectures and synthesis for embedded
systems, pages 90–96, New York, NY, USA, 2005. ACM.

[25] J. E. Smith. A study of branch prediction strategies. In ISCA ’81: Proceedings of the
8th annual symposium on Computer Architecture, pages 135–148, Los Alamitos, CA,
USA, 1981. IEEE Computer Society Press.

[26] S. Steinke, N. Grunwald, L. Wehmeyer, R. Banakar, M. Balakrishnan, and P. Mar-
wedel. Reducing energy consumption by dynamic copying of instructions onto onchip
memory. In ISSS ’02: Proceedings of the 15th international symposium on System
Synthesis, pages 213–218, New York, NY, USA, 2002. ACM.

[27] S. Steinke, L. Wehmeyer, B. Lee, and P. Marwedel. Assigning program and data objects
to scratchpad for energy reduction. In DATE ’02: Proceedings of the conference on
Design, automation and test in Europe, page 409, Washington, DC, USA, 2002. IEEE
Computer Society.

[28] S. Udayakumaran, A. Dominguez, and R. Barua. Dynamic allocation for scratch-pad
memory using compile-time decisions. ACM Trans. Embed. Comput. Syst., 5(2):472–
511, 2006.

[29] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Finan, A. Singh,
T. Jacob, S. Jain, V. Erraguntla, C. Roberts, Y. Hoskote, N. Borkar, and S. Borkar.

35

An 80-tile sub-100-w teraflops processor in 65-nm cmos. Solid-State Circuits, IEEE
Journal of, 43(1):29 –41, jan. 2008.

[30] M. Verma and P. Marwedel. Overlay techniques for scratchpad memories in low power
embedded processors. Very Large Scale Integration (VLSI) Systems, IEEE Transac-
tions on, 14(8):802 –815, aug. 2006.

[31] M. Verma, K. Petzold, L. Wehmeyer, H. Falk, and P. Marwedel. Scratchpad sharing
strategies for multiprocess embedded systems: a first approach. pages 115 – 120, sept.
2005.

[32] M. Verma, L. Wehmeyer, and P. Marwedel. Cache-aware scratchpad allocation algo-
rithm. volume 2, pages 1264 – 1269 Vol.2, feb. 2004.

