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Abstract—This paper presents heuristics for dynamic man-
agement of application code on limited local memories present
in high-performance multi-core processors. Previous techniques
formulate the problem using call graphs, which do not capture
the temporal ordering of functions. In addition, they only use a
conservative estimate of the interference cost between functions
to obtain a mapping. As a result previous techniques are unable
to achieve efficient code mapping. Techniques proposed in this
paper overcome both these limitations and achieve superior code
mapping. Experimental results from executing benchmarks from
MiBench onto the Cell processor in the Sony Playstation 3
demonstrate upto 29% and average 12% performance improve-
ment, at tolerable compile-time overhead.

I. INTRODUCTION

Multicore architectures are becoming popular since they
provide a way to improve peak performance without much
increase in the power consumption. In addition, several other
parameters, e.g., power, temperature and reliability can be
more easily managed at coarser granularity of thread- and
core- level [15]. As we transition from few- to many-core
processors, scaling the memory becomes one of the most
important challenges. Managing the memory automatically
in the hardware, transparent to the application, is increas-
ingly becoming infeasible. This is not only because caches
consume a lot of power (almost 1/2 of the processor power
may be consumed by the caches [16]), but also because
ensuring coherency between the caches makes them slow,
and is difficult to scale to a large number of cores [7].
Consequently, distributed memory systems, in which each core
has access to only a limited local memory seems to be the only
memory scaling option. High-end and futuristic processors
are being designed with such memory architecture. Examples
are the network processors [17] and the experimental 80-core
processor [24] from Intel, and the IBM Cell processor [7].
The synergistic processing units or SPUs in the IBM Cell
have access to a limited 256 KB of local memory, but can
access the global memory through explicit DMA requests.

In processor cores with limited local memories, if the whole
application fits into the limited local memory, it executes ex-
tremely efficiently. If not, then memory management – which
must be done in software – is needed. Code or data which is
needed next must be explicitly brought into the limited local
memory before it can be used. This may include evicting the
not-so-urgently needed code and data out of the limited local
memory. While management is needed for all code and data, in
this paper we focus on code management, since efficient code

management can very significantly impact the performance of
the system. To facilitate this code management, the IBM Cell
processor provides an overlay mechanism. In a linker script,
user specified regions and specified the mapping of functions
into regions. Functions mapped to one region are mapped to
the same physical location in the limited local memory, and
replace each other when called. , the size of region is equal
to the size of the largest object mapped to the region, and
the total code space required is the sum of the sizes of the
regions. The goal of code mapping problem is then to generate
a linker script, which minimizes the swapping of functions so
that performance can be improved due to reduced data transfer
between the global memory and local memory.

The inputs to this code mapping problem are traditionally,
i) the maximum size of code region, and ii) a call graph,
in which the nodes represent functions, and a directed edge
between two functions denotes a caller-callee relationship. The
weight on the edge is the number of times the caller calls (or
is expected to call) the callee. Finding the number of regions,
and the mapping of objects to regions, that will minimize
the data transfers, both are shown to be intractable [19],
[25]. Consequently, several heuristics have been proposed.
These heuristics define a metric of interference between two
functions as the amount of data that needs to be transferred
when two functions are mapped to the same region. All
existing heuristics are greedy, and place one function into a
region in each step.

The approach in this paper removes several limitations of
previous approaches.

• While call graphs capture the aggregate information
about how many times a function calls another, it does
not capture the temporal information about the sequence
in which the functions are called. To accurately estimate
the data transfers, this temporal information is essential.
We formulate our problem using GCCFG, which captures
both the aggregate and temporal information about the
function calls.

• The interference between two functions, i.e., the amount
of data transfer required when two functions are mapped
in the same region is dependent on where the other func-
tions are mapped. Therefore even though our heuristic is
also greedy, but we update the interference cost between
functions as the other functions are mapped.

As a result of these two fundamental reasons, our heuristics
result in superior (better runtime) mapping at minimal and



tolerable compile-time overhead. We apply our heuristics to
solve the code mapping problem for several benchmarks from
the MiBench suite [9], and demonstrate an average of 12%
runtime improvements on the IBM Cell processor.

II. MOTIVATING EXAMPLE

This section provides an example to illustrate two ideas
i) interference cost between two functions depends on where
the other functions are mapped, and ii) updating interference
costs can lead a code mapping to minimize the data transfers
between the limited local memory and the global memory.

Figure 1 (a) shows a simple call graph in which function
F1 calls F2, F2 calls F3, and F3 calls F4, and then they all
return. The function nodes also indicate the sizes of each of the
functions. Assume that we have to map all these functions into
a local memory of 3.5 KB. Figure 1 (b) shows the interference
graph for this application. In this graph, nodes are functions,
and the edge weights represent the amount of data transfers
required in the worst case, when the two functions are mapped
to the same region. For example, if the functions F1 and F2
are mapped to the same region, then they will replace each
other two times. First when F1 calls F2, 1.5 KB of function
F2 will need to be brought into the local store. Note that F1
does not need to be committed back to the main memory,
since this is code, and it does not get “dirty”. When function
F2 returns to F1, 2 KB of the code of F1 needs to be brought
into the local store. Therefore a total of 2 KB + 1.5 KB = 3.5
KB of data transfer is required when functions F1 and F2 are
mapped to the same region. Similarly the interference of the
direct edges, e.g., F2-F3, and F3-F4 are calculated.

For the indirect edges, the weight calculation is slightly
tricky. Consider F1-F3; if F1 and F3 are mapped to the same
region, the interference between them depends on where F2
is mapped. For example, if F2 is mapped to a different region
(other than that of F1 and F3), then the interference between
F1 and F3 is just sum of their sizes, i.e, 2 KB + 0.4 KB =
2.4 KB. However, if all F1, F2 and F3 are mapped to the
same region, then the interference cost between F1 and F3 is
0. This is because, when F3 is called, F1 is already replaced
with F2, and when the program returns to F1, F3 is already
replaced. In a sense, there is interference between F1 and F2,
and between F2 and F3, but there is no interference between
F1 and F3.

Previous approaches computed the worst case interference
cost, i.e., 2.4 KB for F1 - F3, and never updated it, and
therefore obtained inferior mapping. To explain this, Figure 1
(c) shows a state in mapping when F1, F2 and F3 have already
been mapped. F1 is alone in the first region, F2 and F3 are
together in the second region. Now is the time to map function
F4. Size of F4 is 0.2 KB, therefore it can be mapped to either
region, without violating the size constraint. The interference
cost between region 1 and F4, i.e., between F1 and F4 is
2.2 KB. The interference cost between region 2 and F4 is
traditionally computed as the sum of interferences between the
functions in region 2 and F4, i.e., 1.7 KB between F2 and F4,
and 0.6 between F3 and F4, totalling to 2.3 KB. Consequently
traditional techniques will map F4 to region 1 with F1 (shown
in Figure 1 (d)).

Figure 1. Interference cost between functions depends on where other
functions are mapped, and updating the interference costs as we map the
functions can lead to a better mapping.

Clearly there is a discrepency in computing the interference
cost between region 2 and function F4. If F3 is also mapped
to the same region, the interference cost between F2 and
F4 should be estimated as 0. Otherwise, the interference
costs between region 2 and function F4 are incorrectly
(over)estimated. With this fixed, the interference between
region 2 and F4 is just the interference between F3 and
F4, which is just 0.6 KB. As per this correct interference
calculation, F4 should be mapped to region 2 with functions
F2 and F3 (shown in Figure 1 (d)). The required total data
transfer between the main memory and the local storage,
in this case 6KB, as compared to 7.6KB with the previous
mapping, resulting in a 21% savings in data transfers.

III. BACKGROUND AND PROBLEM DEFINITION

For code management, both the number of regions and
the mapping of functions to regions needs to be specified.
Functions in a region replace each other, and therefore, the
size of a region is the size of largest function in the region,
and the total code space required is equal to the sum of the
sizes of the regions. From the performance perspective, it is
best to place each function into a separate region, so that it
does not interfere with any other object, but that may increase
the code segment of the local memory too much. On the other
hand, mapping all the application functions into one region
utilizes the minimum amount of code space, but incurs too
much data transfer and therefore runtime overhead. The task
of optimizing code management is therefore to organize the
application functions into regions, i.e., how many regions, and
function-to-region mapping that will obtain a balance between
the code space used, and the data transfers required for code
management.

To do this, it is essential to capture the number of times
a function will swap each another as accurately as possible
when they are mapped in the same region. This has been
traditionally achieved through the use of Call Graph. Figure
2 (a) shows the outline of a program, in which function F1
calls functions F2 and F3. F2 calls F4 in a loop, and then
calls F5 in a loop. F3 calls F6 and F7 in a common loop. The



Figure 2. GCCFG captures both the aggregate and the temporal information
about the execution of the application.

call graph for this example code is shown in 2 (b). Notice
that while call graph captures that F1 calls F2 and F3, it does
not capture the time-order in which they are called. Also, the
fact that F6 and F7 are called one after another in a loop, and
therefore will have a much higher interference than F4 and
F5 cannot be interpreted from the call graph.

Incidentally this temporal and loop information is present
in the control flow graph. Global Call Control Flow Graph or
GCCFG [19] is a hybrid of control flow graph and a call graph,
and capture this information, which is vital in estimating the
interference between functions. As shown in Figure 2 (c)
GCCFG is an ordered directed graph G = (Vf , Vl, E, S,W ),
which contains two kinds of nodes, vf ∈ Vf represents
function nodes, and vl ∈ Vl represents loop nodes. An edge
ei,j ∈ E between function nodes represents a function call,
If one of nodes is a loop node, the edge represents a control
flow. If both are loop nodes, the edge represents a nested
control flow. The edges are ordered, in the sense that if there
are two or more child nodes of a parent node, then the left
child is executed before the right child. Weights wi ∈W are
assigned to each node vi ∈ Vf ∪ Vl. Weight of the function
node is the size of the function, while the weight on a loop
node is the number of times the loop is executed. Weights on
edges wij ∈ W represent how many times the edge is taken.
In summary GCCFG is an approximation of the control flow
and call graph of the application, which intends to capture the
function call sequence of the application as closely as possible.
Our problem now can be stated as:

Inputs: GCCFG (Vf , Vl, E, S,W ) of an application, and
the maximum code size on SPM, S

Outputs: The number of regions nR, and mapping of
functions to regions, M : Vf → (1, nR)

Constraints:
• For each region r ∈ (1, nR), size of region
Sr =MAX [(M(vf ) == r)× sf ]

•

nR∑
r=1

sr ≤ S

Objective:
• Minimize data transfer.
min

∑
vi,vj∈Vf

IM (vi, vj)×(M(vi) ==M(vj)), where

Figure 3. In embedded systems, typically using the SPM was a choice, and
therefore the code mapping problem was just an optimization problem. In the
cell architecture, all code has to reside in the SPM or local store.

IM (vi, vj) is the interference of Vi and vj under the
mapping M .

IV. RELATED WORK

Limited local memory architectures have been popular in
embedded systems for some time now under the name of
Scratch Pad Memories or SPMs [4]. They have been exten-
sively used in embedded systems, e.g., the ARM architecture
[2] for power reduction, and techniques have been developed
to manage code [1], [5], [6], [10], [18], [19], [21]–[23], [25]–
[27], global variables [3], [11], [12], [14], [22], [23], [25], [26]
stack [3], [8], [14], [18], [23], and heap data [8] on SPMs. In
this paper, we concentrate only on code mapping on SPMs.

Figure 3 illustrates the major difference between the two
use-cases of scratch pad memories. Figure 3 shows that in
the embedded systems e.g. the ARM architecture, the SPM
was present in addition to the regular cache hierarchy of the
processor. Programs could execute correctly without the use
of SPM; they could however, use SPM to improve power
and performance. Consequently, a lot of SPM research has
focused on the question of “what to map” on the SPM [1],
[3], [8], [18], [22], [26], [27]. Static mapping techniques
essentially selects a portion of code, loaded it onto the SPM
at the initialization stage, and it does not change during the
execution of the program. Dynamic code mapping resolves
this inefficiency by changing the code mapping onto the SPM
at runtime [5], [6], [10]–[12], [14], [19], [21], [23], [25].
Bringing new code may require replacing some existing code,
and therefore, “where to map” question is also important for
dynamic techniques.

The “what to map” question is not valid for limited lo-
cal memories present in present high-performance multi-core
processors. For example, in the Synergistic Processing Unit
(SPU) of IBM Cell, all code/data must go through the SPM,
or the local memory. “Where to map” is the only question
for code mapping on SPUs. To facilitate code management,
the local store can partitioned into regions, and functions
can be mapped onto regions. Only the functions mapped to
the same region will replace each other as they are called.
Consequently, the size of region is the size of the largest
function in the region, and the total code space needed is the
sum of the functions. In the SPUs, the local store is shared
by all code and data, therefore it is important to conserve
space occupied by code. In addition there is a clear trade-off
between the code space needed and the potential performance.
Consequently, there are two questions to be addressed in code
mapping i) “how many regions”, and ii) “mapping of functions
to regions.”



[23] proposes a method to allocate code, stack and global
variables and apply a best-fit heuristic to map those into a local
storage at the specific locations. However, they formulate their
problem from call graph, which does not capture temporal in-
formation. [25] formulates an ILP for the problem of dynamic
code mapping to determine memory object to be mapped in
the local storage. Since ILP solution is impractical even for
small-sized applications, they propose the first-fit heuristic
to assign memory addresses. Even though [25] formulate
their problem using GCCFG, both [23] and [25] assume
that the “how many regions” has already been solved. Note
that this problem in itself is NP-complete, and consequently,
there is a phase ordering problem between determining the
number of regions and finding the mapping. The closest
to our work is [19], in which authors formulate the code
mapping problem from GCCFG, and solve both the problems
of “how many regions” and “mapping of functions to regions”.
Because of simultaneously solving both these problems they
achieve better mapping than previous techniques. However
they assume conservative interference costs. They calculate
these costs between every pair of functions at the beginning,
and do not update them as their heuristics maps functions to
regions. In this paper, we alleviate this problem, and develop
two heuristics and a combination of them to achieve much
better mapping.

V. OUR APPROACH

When two functions are mapped in the same region, they
replace each other when called. The data transfer cost of
mapping two functions in the same region is termed as the
interference cost between the two functions. The objective
of code mapping is to cluster functions into a number of
regions such that the sum of interference between functions
in a region, over all regions is minimized. This is equivalent
to the max k-cut problem [13], which is NP-hard even for
k = 2. Note however, that the min-cut problem is solvable in
polynomial time for a given k. The max-cut problem however
is APX-hard [20], which implies that there is not even a good
way to approximate it in polynomial time.

To partition functions into k clusters, we take two ap-
proaches. First is the FMUM (or Function Mapping by Update
and Merging). In this we first map all the functions to different
regions. Then we merge two functions that will cause minimal
increase in the runtime, until the regions fit in the code
space S. The second scheme FMUP (or Function Mapping
by Update and Partitioning) is just the reverse of this, in
which we start will all the functions in one region. In each
step we create a new partition that maximizes performance
improvement. We continue this until we do not overstep the
code space constraint S. In order to correctly compute the
interference costs, we note that it is not possible to find the
interference cost without the mapping. Therefore, note that in
the algorithms we always find the interference cost for a given
mapping. The next two subsection describe the details of the
two heuristics.

A. Function Mapping by Updating and Merging (FMUM)
Heuristic

Algorithm 1 outlines a simplified version of the FMUM
heuristic. It starts with M , in which all functions are mapped
in separate regions (lines 01-02). Now we try to merge
all combinations of two regions until we are within space
constraints (while loop, lines 04 - 29). To do this, we choose
a region pair (r1, r2) (line 08), and create a new mapping
M ′ by moving all the functions from region 2 to region 1
(for loop, lines 09-15). We compute the cost of this mapping
M ′ (line 17), and thereby find out the mapping with the least
interference cost (lines 18-21). Merging only the regions that
do not result violation of code size constraint is allowed (line
16). If the mapping with the minimum interference cost M ′′

is better than the original mapping M , then the mapping is
changed to the one with minimum interference cost (lines 24-
25). Otherwise, the algorithm terminates (line 27).

The outermost while loop merges two regions at a time.
Since in the worst case, all regions may have to be merged
into one, this loop can execute Vf times. Inside this, the for
loop (lines 08-23) runs for each pair of regions. This adds
O(V 2

f ) complexity to the time. Inside this loop, there is a
for loop (lines 09-15), which generate a mapping, and take
O(Vf ) time, and there is a Interference cost calculation, which,
assuming for now, has complexity I . Thus the worst case
timing complexity of FMUM is O(V 4

f + V 3
f .I).

B. Function Mapping by Updating and Partitioning (FMUP)
Heuristic

Algorithm 2 outlines a simplified version of the FMUP
heuristic. It starts with M , in which all functions are mapped
into the first region (lines 01-02). In each iteration of the
outer while-loop (lines 05-31), we create a new region R++,
and then move functions to fill up the new region. The inner
while-loop (lines 07-30) picks one function at a time vi ∈ Vf
(for loop, line 11), creates a new mapping M ′ in which this
function is in the new region (lines 12-18). It then computes
the difference in interference costs between the initial mapping
M and new mapping M ′ (line 20); the difference implies how
much it is beneficial to move one function into the new region.
The function, whose moving to the new region does not violate
code size constraints (line 19), and which has the maximum
difference in cost of moving (lines 19-21), is finally picked,
and moved (line 21). When no more function can be moved,
the inner while loop ends. The outer while loop will continue
creating new regions until the code size constraint stops it,
and stops the algorithm.

The inner most for loop (lines 12-18) generates a mapping
and takes O(Vf ) times. The for loop in lines 11 - 24 is over all
functions, and therefore is repeated O(Vf ) times. Each time
interference cost calculation is performed. Assume for now,
that the interference cost calculation has complexity I. The
inner while-loop in lines 07-30 tries to move all the functions,
one at a time. This adds a factor of O(Vf ) to the complexity.
The outer while loop creates new regions. In the worst case,
it will create Vf regions. Therefore the overall complexity of
this algorithm is O(V 4

f + V 3
f .I).



Algorithm 1 FMUM : Updating and Merging (Vf ,S)
1: for all functions vi ∈ Vf do
2: M [vi] = ri
3: end for
4: while (Size(M) < S) do
5: init cost = Interference(M)
6: min cost =MAX COST
7: M ′′ = φ
8: for all combination of regions r1, r2 ∈ R do
9: for all functions vi ∈ Vf do

10: if (vi /∈ r2) then
11: M ′[vi] =M [vi]
12: else
13: M ′[vi] = r1
14: end if
15: end for
16: if (size(M ′) < S) then
17: cost = Interference(M ′)
18: if (cost < min cost) then
19: min cost = cost
20: M ′′ =M ′

21: end if
22: end if
23: end for
24: if (min cost < init cost) then
25: M =M ′′

26: else
27: Return
28: end if
29: end while

C. Interference Cost Calculation

Since the interference cost calculation is very frequently
required by both FMUM and FMUP, making interference cost
calculation as fast as possible is important. Given a GCCFG,
and a mapping M , a naive way to compute interference cost
can be by traversing the GCCFG, (much like simulation) and
adding the the function sizes, as we visit function nodes.
However, the complexity of this will be very high. Therefore,
we develop an algorithm to compute the interference cost
using just 2 Depth First Search (DFS) traversals of the
GCCFG. While we are unable to explain it in detail here due
to space considerations, the main idea hinges on the fact that
the function switches depend on the frequency of the edges of
the least common ancestor of the two functions. The runtime
complexity of interference cost calculation is O(Vf ).

VI. EMPIRICAL EVIDENCE

A. Experimental Setup

We evaluate the effectiveness of all our techniques on the
IBM Cell processor in Sony Playstation 3 running Linux
Fedora 7. Our software development environment is on a
laptop with 2GHz Intel Celeron processor with 1 GB memory.
We have set up a GNU cross compiler ver. 4.1 and PS3
SDK ver. 3.1, which supports using linker script for code
management. We compile several benchmarks from MiBench
[9] suite on the desktop, transfer them to PS3, and execute

Algorithm 2 FMUP : Updating and Partitioning (Vf ,S)
1: for all functions vi ∈ Vf do
2: M [vi] = r1
3: R = 1
4: end for
5: while (Size(M) < S) do
6: R++
7: while do
8: init cost = Interference(M)
9: max cost =MIN COST

10: M ′′ = φ
11: for all functions vi ∈ Vf do
12: for all functions vj ∈ Vf do
13: if (vi 6= vj) then
14: M ′[vi] =M [vi]
15: else
16: M ′[vi] = rR
17: end if
18: end for
19: if size(M ′) < S then
20: cost = init cost− Interference(M ′)
21: if (cost > max cost) then
22: max cost = cost
23: M ′′ =M ′

24: end if
25: end if
26: end for
27: if (cost > 0) then
28: M =M ′′

29: else
30: Break from while loop
31: end if
32: end while
33: end while

them there to measure the runtime. We tried to execute all the
MiBench applications on the SPUs, but only the ones in our set
executed; the data and code size of the other applications were
too large to fit on the local storage of the SPU. This further
underlines the need of data and code memory management
schemes, such as the ones presented in this paper.

Figure 4. We perform our experiments on the IBM Cell processor in Sony
Playstation 3. Our software framework is developed as a post-pass to the
GCC compiler.



We have implemented our code mapping heuristics as a
post-pass to the GCC compiler. We first compile the bench-
mark to executables and capture their objdump. We analyze the
objdump to re-create the call graph and the control flow graph.
From these we create the GCCFG of the application. At this
point, we execute the application, and gather more accurate
profile information about the edge costs, and integrate them
manually into the GCCFG to best represent the application
execution patterns. Performing this post-pass analysis at the
objdump, instead of inside the compiler, or on assembly,
allows us to analyze library functions too, and consequently,
our GCCFG contains library functions too. Another important
clarification here is that in the linker script, object to region
mappings are specified, rather than function to region map-
pings. For the source code, each function can be compiled
into a separate object (e.g., by placing them in a separate
file, and compiling them), but library objects that contain
multiple functions cannot be easily broken into individual
objects. Therefore, all our techniques are at function-level
granularity for source code, but at object level granularity
level for the library functions. However, this in no way
affects the generality of problem definition and effectiveness
of heuristics.

Table I
BENCHMARKS FOR EXPERIMENTS

Benchmarks Size(Bytes) Description
Stringsearch 800 - 3792 Word Searching (Office)

Dijkstra 2496 - 8080 Shortest Path (network)
Basicmath 3880 - 11360 Math Calculation (Automotive)

FFT (encoding) 2496 - 11520 Signal Processing (telecom)
Susan (smoothing) 8300 - 19144 Image smoothing (Automotive)

Susan (edge) 8300 - 19144 Edge Detection (Automotive)
Adpcm (encoding) 1496 - 4648 Audio Compression (telecom)
Adpcm (decoding) 1496 - 4648 Audio Compression (telecom)

Once we have all the functions and objects (for source code,
and library respectively), we can compute the minimum and
maximum size of code region required. Table I shows the
size limits for all our benchmarks from MiBench. Note that
the maximum code size of the benchmarks are much smaller
than the size of the local store on the SPUs, which is 256 KB.
However, remember that the local store is shared between all
the data (global, stack, heap), and the code. Therefore using
minimum amount of space for code is extremely crucial.

After generating the GCCFGs for a benchmark, and given
code size constraint we used our heuristics of FMUM, FMUP,
and previous technique SDRM [19], to our knowledge, SDRM
technique is the latest, and it leads to the near-optimal solution
for the code mapping problem, to generate code mapping in
the linker script. This linker script is then compiled with the
object files again to create the binary. The binary is executed
10 times on PS3, and the average runtime value is used so as to
drown the variations due to OS etc. We did these experiments
for all our benchmarks, and for all code size constraints from
the minimum to the maximum, in increments of 100 bytes.

B. Experimental Results

Figure 5 shows the runtime of the binary compiled using the
code mapping obtained from each heuristic for a representative

Figure 5. FMUP gives better results for tighter code size constraints, while
FMUM gives better results for relaxed code sizes.

application, stringsearch. The X-axis shows the size of the
given code size constraint. In the graph, the diamond markers
represents the total number of execution cycles with Function-
To-Region Mapping by FMUM heuristic, square markers
represents that by FMUP heuristic, and triangle markers repre-
sents that by SDRM heuristic. When the code size constraint
is very tight, all heuristics achieve the same mapping, i.e.,
mapping all the functions in one region. However, as we start
relaxing the code size constraint, FMUP typically gives better
mapping than FMUM. This is because FMUP has to do very
few steps, while FMUM needs to do a lot of merges. The
more steps a heuristic has to take, the errors in each step
accrue, and we get a worse mapping. The reverse effect is also
visible. When the code size constraint is extremely relaxed,
e.g., greater than 2000 bytes, FMUM gives a much better
mapping. Note that code mappings created by the FMUP do
not always lead to a better mapping with the relaxed code
sizes compared to that with tight sizes. This is because the
FMUP moves one function at a time if the given code size
accommodates the function moving, which may not be the
best decision for functions that are mapped later, therefore, it
ends up with a totally new code mapping with local maximum
code mapping. None of the heuristics gives consistently good
results, however our techniques give better results most of the
times.

We tested the three heuristics for all code size constraints,
from minimum to maximum in increments of 100 bytes.
Figure 6 plots the number of times our techniques obtain a
better result than SDRM. For some benchmarks like dijkstra,
FMUM in general, gives worse results than SDRM, however,
on average over all benchmarks, FMUM gives a better result
than SDRM 57% of time, but FMUP gives a better result
80% time. In a sense FMUM and FMUP are complimentary
heuristics, because FMUP is likely to give better result for
tight code size constraints, and FMUM for relaxed code size
constraints. Therefore we define a third composite heuristic,
FMUP+FMUM, which essentially mean: try both of them, and
pick the better one. FMUM+FMUP gives us better results than
SDRM about 87% of the time. For some applications, like fft
and adpcm FMUP+FMUP gives better results 100% of the
time.



Figure 8. Limitations of SDRM; Less utilization of given code space, Inefficient object mapping for in-loop functions, Less map-ability

Figure 6. As an average, FMUM gives a better results than SDRM 57%
of time, FMUP gives a better results 80%of time, and FMUM+FMUP gives
better results 87% of the time.

Figure 7. On an average the mapping generated by FMUM+FMUP executes
12% faster than that generated by SDRM

Figure 7 plots the average performance improvement (or
runtime reduction) we achieved for each benchmark, over all
the SPM sizes. Depending on SPM size and the application,
the performance improvements can be as high as 50%. At
the application level, the average improvement for any SPM
size can be expected to be as high as 29%. Finally, for any
given application and any given SPM size, the performance
improvement compared to SDRM can be expected to be
around 12%. This performance increase is definitely not for
free. As compared to SDRM, we spend a lot more time during
the compilation, trying to search for a better mapping. Even
with the increase however, the compile-time for our set of
benchmarks is always less than a minute. This is definitely
tolerable for several applications which are compiled once,
distributed as binaries, and executed several times: this profile
closely fits the kinds of applications that are intended for PS3,
e.g. games, multimedia and office applications.

C. Analysis

To get more insight into the behavior of FMUM, FMUP, and
SDRM, we look at detailed results for a couple of benchmarks.
The following are some of the limitations of SDRM, that
FMUM and FMUP overcome.

1) Utilization of given code space: All the plots in Figure 8
show that towards the tail-end, when the code size constraint
is relaxed, SDRM achieves worse mapping than FMUM and
FMUP. Even though SDRM initially makes good use of local
store, but once it gets a decent mapping, it does not relax it
for small benefits.

2) Inefficient object mapping for in-loop functions: For the
basicmath results in Figure 8, the total execution time by
function mapping from the SDRM heuristic increases after
code size constraint of 5700 Bytes. This is because some
functions that are called in a loop are mapped together in
the same region due to conservative estimates of interference
costs. FMUM and FMUP correctly compute the interference
costs, and map the functions separately, drastically reducing
the data transfers and runtime.

3) Less map-ability: For susan smoothing, if code size
constraint of less than 11800 Bytes is given, SDRM is
unable to generate a mapping. Recall from Table I that the
minimum code size required for susan smoothing was 8300
Bytes. SDRM maps one function at a time with the highest
interference cost. As the mapping process goes on, if large
sized objects are left, they cannot be mapped in existing
regions or a newly created region since several regions have
already been created for smaller regions. FMUM and FMUP
heuristics avoid this problem. Similar effect can be observed
for the basicmath benchmark when code size constraint is less
than 4300 Bytes.

VII. CONCLUSION

Multi-core architectures with limited local memories are
becoming popular. In these processors, e.g, IBM Cell, each
core has access to only a limited amount of local mem-
ory, and access to any other memory has to be explicitly
specified in the application. To manage code in the limited
code space on the local memory, different functions share
the same address in the local store. The problem of code
mapping is therefore to place functions into regions, so that
the replacement is minimized. Previous works have formulated
this problem using call graphs, which do not capture the
temporal information about the execution, and also do not



update the estimate of interference cost between two functions
as the other functions are mapped. In this paper, we formulate
the code mapping problem using GCCFG, which captures the
temporal information of the application execution, and also
update the interference cost as we generate mapping. As a
result, our heuristic can create more efficient Function-To-
Region mapping with the given code size in local storage.

Our experiments on solving the code mapping problem
for several benchmarks from MiBench for the IBM Cell
processor demonstrate a speedup of about 12% as compared
to previous approaches at tolerable compile-time overhead.
While the experiments in this paper are on a single SPU
and PPU, the performance improvement due to our scheme
is likely to scale with the number of cores since reducing
the memory transfers becomes ever more important in a
multicore setting. An area of improvement is prefetching code
objects. Right now, we fetch the function code at the last
moment. However, based on profile or analysis, the function
code can be fetched beforehand, overlapping computation and
communication, and further improving performance. We have
automated our technique in the GCC cross compiler for SPUs.
We have made a software release including all benchmarks,
and it can be downloaded from http://www.public.asu.edu/˜
sjung/thesis/software release Seungchul Jung.zip
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