
ProGIP: Protecting Gradient-based Input Perturbation
Approaches for OOD Detection From Soft Errors
SUMEDH JOSHI∗, Arizona State University, USA
HWISOO SO∗, Kyungpook National University, Korea (the Republic of), Yonsei University, Korea (the
Republic of), and Arizona State University, USA
SOYEONG PARK, Yonsei University, Korea (the Republic of)
WOOBIN KO, Yonsei University, Korea (the Republic of)
JINHYO JUNG, Yonsei University, Korea (the Republic of)
YOHAN KO†, Yonsei University, Korea (the Republic of)
UIWON HWANG, Ewha Womans University, Korea (the Republic of)
KYOUNGWOO LEE, Yonsei University, Korea (the Republic of)
AVIRAL SHRIVASTAVA, Arizona State University, USA

Undetected out-of-distribution (OOD) inputs pose a significant threat to the reliability of deep learning models,
as they may lead to unexpected behaviors during inference. Several studies have proposed effective OOD
input detection methods. However, soft errors—another significant threat to reliability-can impact both the
classification results of neural network models and the ID/OOD detections of OOD detection methods. To
provide a resilient OOD detection solution against soft errors, we analyze the effect of soft errors on neural
network models with gradient-based input perturbation (GIP) approaches, which are representative methods
for OOD detection. Building on our analysis, we propose ProGIP, which incorporates two software-level
range-based fault detectors to protect all execution phases of GIP approaches, including two forward passes
and one backward pass. Because it is purely software-based and adds just two scalar comparisons, ProGIP
is readily deployable even on resource-constrained embedded platforms. Our ProGIP solution enables GIP
approaches to distinguish between ID, OOD, and fault-affected inferences, detecting 97.7% of critical faults
with a negligible runtime overhead of only 0.84%. Experimental results with 2.4 million fault injections
across various neural networks and OOD detection methods demonstrate ProGIP’s effectiveness in ensuring
comprehensive reliability against non-malicious threats.

CCS Concepts: • Hardware → Safety critical systems; Error detection and error correction; • Comput-
ing methodologies→ Neural networks.

∗Both authors contributed equally to this research.
†Corresponding author.

Authors’ Contact Information: Sumedh Joshi, sjoshi65@asu.edu, Arizona State University, Tempe, Arizona, USA; Hwisoo
So, hwisoo.so@knu.ac.kr, Kyungpook National University, Daegu, Korea (the Republic of) and Yonsei University, Seoul,
Korea (the Republic of) and Arizona State University, Tempe, Arizona, USA; Soyeong Park, psy980823@yonsei.ac.kr,
Yonsei University, Seoul, Korea (the Republic of); Woobin Ko, woobin.ko@yonsei.ac.kr, Yonsei University, Seoul, Korea
(the Republic of); Jinhyo Jung, jinhyo.jung@yonsei.ac.kr, Yonsei University, Seoul, Korea (the Republic of); Yohan Ko,
yohan.ko@yonsei.ac.kr, Yonsei University, Seoul, Korea (the Republic of); Uiwon Hwang, uiwon.hwang@ewha.ac.kr, Ewha
Womans University, Seoul, Korea (the Republic of); Kyoungwoo Lee, kyoungwoo.lee@yonsei.ac.kr, Yonsei University, Seoul,
Korea (the Republic of); Aviral Shrivastava, Aviral.Shrivastava@asu.edu, Arizona State University, Tempe, Arizona, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 1557-735X/2018/8-ART111
https://doi.org/XXXXXXX.XXXXXXX

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://orcid.org/0009-0001-8864-7575
https://orcid.org/0000-0002-3496-6079
https://orcid.org/0009-0008-8251-8028
https://orcid.org/0009-0001-8637-1333
https://orcid.org/0000-0003-0741-1438
https://orcid.org/0000-0002-9456-0927
https://orcid.org/0000-0001-5054-2236
https://orcid.org/0000-0001-5082-3775
https://orcid.org/0000-0002-1075-897X
https://orcid.org/0009-0001-8864-7575
https://orcid.org/0000-0002-3496-6079
https://orcid.org/0000-0002-3496-6079
https://orcid.org/0009-0008-8251-8028
https://orcid.org/0009-0001-8637-1333
https://orcid.org/0000-0003-0741-1438
https://orcid.org/0000-0002-9456-0927
https://orcid.org/0000-0001-5054-2236
https://orcid.org/0000-0001-5082-3775
https://orcid.org/0000-0002-1075-897X
https://doi.org/XXXXXXX.XXXXXXX


111:2 Trovato et al.

Additional Key Words and Phrases: Soft error, Transient fault, Out-of-distribution (OOD), Reliability, Fault
tolerance, Neural network

ACM Reference Format:
Sumedh Joshi, Hwisoo So, Soyeong Park, Woobin Ko, Jinhyo Jung, Yohan Ko, Uiwon Hwang, Kyoungwoo
Lee, and Aviral Shrivastava. 2018. ProGIP: Protecting Gradient-based Input Perturbation Approaches for OOD
Detection From Soft Errors. J. ACM 37, 4, Article 111 (August 2018), 25 pages. https://doi.org/XXXXXXX.
XXXXXXX

1 Introduction
With the remarkable success of deep neural networks, machine learning has become pivotal in
embedded systems. Out-of-distribution (OOD) data represents one major non-malicious threat to
safety-critical machine learning systems. Since machine learning models are designed to learn from
training datasets with specific distributions, they often lack the necessary information to process
OOD data, which deviates significantly from in-distribution (ID) data.

Such OOD data may have various inputs with the same label as ID or completely different labels
from ID [52]. Inference with the former case can significantly decrease the model’s classification
accuracy. Furthermore, correct inference in the latter case is often impossible, as the original model
provides no information for the unknown labels.

Therefore, to ensure the reliability of artificial intelligence systems, it is essential to detect OOD
data and reject such unfamiliar cases before the machine learning system behaves abnormally
by producing unreliable inference results with OOD data [46]. For instance, if an autonomous
driving system encounters objects that were not encountered during training, it should recognize
the anomaly and issue a warning [5, 52].

Among various OOD detection approaches, Gradient-based Input Perturbation (GIP) is theoreti-
cally appealing due to its conceptual simplicity and effectiveness. By introducing small perturbations
derived from input gradients, GIP explicitly maximizes the model’s confidence disparity between
ID and OOD inputs, thereby improving discriminative performance for OOD detection. GIP-based
methods—most notably ODIN [32] and Mahalanobis [27]—are now used as standard baselines in
recent public OOD benchmark suites, such as OpenOOD [54] and G-OSR [9].

1.1 Why Protecting Gip Solutions is Important?
GIP, although effective at OOD detection, is itself vulnerable to another reliability threat: soft
errors. A soft error is a transient fault—a single-event bit flip in a transistor-typically induced by
alpha particles, thermal neutrons, or cosmic rays. [34]. Previous research has observed that a single
bit-flip can alter the classification result of deep learning models [28].
Our experiments also show that soft errors in neural networks can induce not only incorrect

classification results but also erroneous ID/OOD decisions of GIP solutions. In neural networks,
these bit-flips on execution units can alter neuron outputs. The architectures of GIP solutions
involve multiple passes (forward, backward, and forward), which we will explain in detail in the
upcoming sections. Even a single bit-flip can severely distort gradients and confidence scores
compared to standard inference.
GIP methods require a precise computation of gradients and confidence scores. Soft errors can

severely affect their effectiveness by introducing miscalculations. We define two types of critical
failure that can occur in neural networks with GIP-based OOD detection due to soft errors.

• Classification failures:When a model correctly classifies an input in the absence of soft
errors but misclassifies it due to a soft error.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


ProGIP: Protecting Gradient-based Input Perturbation Approaches for OOD Detection From Soft Errors 111:3

• ID/OOD detection failures:When a model correctly distinguishes between ID and OOD
inputs in the absence of soft errors but incorrectly classifies ID as OOD or vice versa due to a
soft error.

Soft errors are highly unpredictable and can occur randomly at any time, potentially causing
catastrophic misjudgments in intelligent, real-time systems. The existing OOD detection systems
do not consider soft errors. This represents a significant gap in achieving reliability in intelligent
safety-critical systems.
Existing solutions do not provide comprehensive reliability against both OOD data and soft

errors. Few solutions can detect both threats as outliers, but they cannot distinguish whether the
detected outlier is a case of OOD data or a soft error.
Distinguishing between OOD data and soft errors is crucial for developing targeted counter-

measures against specific threats. For example, operators of machine learning applications can
collect detected OOD inputs as potential learning resources for future use [38, 40, 52]. On the other
hand, since voltage and frequency affect the soft error rate [10], system designers can monitor
soft error occurrences to adjust dynamic voltage and frequency scaling (DVFS) settings [44]. Such
threat-specific actions are impossible without a method to distinguish between different threats.
Combining GIP approaches and soft error detection solutions for comprehensive reliability is

challenging due to the structure of GIP approaches. GIP approaches [15, 20, 22, 27, 32, 48, 51, 53]
require one forward and one backward pass to obtain the gradients for input perturbation and an
extra forward pass to generate the confidence scores of the perturbed input. Due to the need for
multiple executions, GIP solutions are extremely sensitive to additional runtime overhead incurred
by applying soft error detection solutions.
Furthermore, most soft error detection solutions only provide detection methodologies for the

forward pass, although GIP solutions also require a backward pass. To achieve comprehensive
reliability against non-malicious threats, we propose ProGIP (Protecting Gradient-based Input
Perturbation), which protects GIP approaches for OOD detection against soft errors with minimal
software-level detectors.

Our approach is based on range-based checkers [3, 12] that can distinguish between ID, OOD, and
fault-affected cases. Inspired by the observation in previous studies [3, 12] that faults in high-order
bits of the model primarily contribute to failures, this paper analyzes the effects and symptoms of
high-order bit-flips in ID/OOD detection results, along with classification results.

While we primarily focus on high-order bit-flips due to their significant impact and detectability,
we acknowledge that lower and middle-order bit-flips can also cause marginal classification errors.
Based on our analysis, we develop ProGIP, which inserts two software-level range-based checkers
to detect the majority of high-order bit-flips in all three passes of GIP approaches. One checker is
placed immediately after the backward pass to cover the first forward and backward passes, and
another is placed after the second forward pass to cover that pass. The main contributions of this
paper are:

• We analyze the impact of soft errors on neural networks using gradient-based input pertur-
bation (GIP) approaches, identifying vulnerabilities in existing out-of-distribution (OOD)
detection methods.

• We propose ProGIP, a holistic reliability solution that integrates only two fault detectors to
cover all three (forward, backward, forward) passes in GIP approaches, effectively distin-
guishing between OOD data and soft errors.

• Our method detects 97.7% of critical failures in neural network models using the GIP solution,
with only 0.84% runtime overhead, ensuring comprehensive reliability for deep learning
models against non-malicious threats.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.



111:4 Trovato et al.

Classification

Input

Second
forward 

pass
Logits

Confidence
scoring*

ID / OOD
decision

Perturbed input

*varying depending on OOD detection schemes

Gradient
Backward 

pass

First
forward 

pass
Loss

Loss
function*Logits

Input
perturbation

Input
perturbation

process

Fig. 1. Gradient-based input perturbation (GIP) solutions process first forward and backward passes to
perturb the input and second forward pass to distinguish ID and OOD.

• Our approach provides a versatile protection framework, where a minimal core of just two
range checks ensures scalability from GPUs to microcontrollers. The optional addition of a
single checker before the activation-modification stage effectively hardens a broader class of
state-of-the-art OOD detectors.

2 Background
2.1 Gradient-based Input Perturbation (Gip) Solutions for Out-of-distribution (Ood)

Detection
Out-of-distribution detection can be approached in several ways [52], with the two broader cate-
gories being supervised and semi-supervised [49]. The supervised approaches include different
threshold-based [47], distance-based [25, 52], and density-based [33] methods. The semi-supervised
approach primarily includes reconstruction error measurements from autoencoders to determine
whether a sample is ID or OOD. Ran et al. [28] proposed an improved noise contrast prior (INCP)
method to obtain reliable uncertainty estimates using standard VAE.

A fundamental strategy for distinguishing ID and OOD data is to score the confidence of inference
results based on softmax values, building on the observation that the highest softmax values of
ID inferences tend to be higher than those of OOD inferences [18]. No existing single method can
consistently outperform others across all benchmarks, and their performance ranking varies from
one dataset to another [54].
In this paper, we focus on the gradient-based input perturbation (GIP) approach, one of the

most representative methods in OOD detection. For simplicity, instead of introducing all GIP
solutions [15, 20, 22, 27, 32, 48, 51, 53] that share similar structures, this paper primarily discusses
two representative GIP solutions: ODIN [32] and Mahalanobis [27].

2.2 GIP Approach Overview
The primary objective of the GIP approach is to maximize the confidence score gaps between ID
and OOD data by perturbing the input based on the gradient, thereby enabling GIP solutions to
distinguish ID and OOD data more effectively. Figure 1 shows the high-level view of GIP solutions.

In figure 1, the GIP approach first generates the perturbed input through an input perturbation
process, which includes first forward and backward passes to generate the gradients. Inspired by
the fast gradient sign method [13], the input perturbation in this process maximizes the confidence
gap between ID and OOD inputs using Equation (1).

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.



ProGIP: Protecting Gradient-based Input Perturbation Approaches for OOD Detection From Soft Errors 111:5

𝑥 = 𝑥 − 𝜖 ∗ 𝑠𝑖𝑔𝑛(−∇𝑥𝑠𝑐𝑜𝑟𝑒 (𝑥)) (1)
In Equation (1), 𝑥 and 𝑥 represent the original and perturbed inputs, respectively. (−∇𝑥𝑠𝑐𝑜𝑟𝑒 (𝑥))

represents the gradient of the scoring function concerning the sample input, where the scoring
function varies based on solutions. The 𝑠𝑖𝑔𝑛 function preserves only the sign of the gradient values
regardless of their magnitudes: 1 if the value is positive and -1 if the value is negative. The theoretical
background for gradient-based input perturbation is well-discussed in the ODIN paper [32].
After the input perturbation process, GIP solutions process a second forward pass with the

perturbed input and score the confidence with logits. Based on the confidence scores, GIP solutions
judge whether the input is ID or OOD.

2.3 Confidence Scoring Functions
The confidence scoring function in the GIP approach varies depending on the specific solution.
ODIN [32] uses the maximum softmax value with temperature-scaled logits, which is utilized
to distill knowledge in a neural network [19] or to calibrate confidence [14]. On the other hand,
Mahalanobis [27] calculates the Mahalanobis distance between the logits generated with perturbed
input and the mean of logits generated with ID inputs for each class, using the negative of the
maximum Mahalanobis distance value as a confidence score. The higher the distance further the
input is from the mean of the ID input class. In both solutions, the confidence scores of ID inputs
tend to be higher than those of OOD inputs. Therefore, both solutions distinguish between ID and
OOD by applying Equation (2):

𝑔(𝑥) =
{
𝑂𝑂𝐷 𝑖 𝑓 𝑠𝑐𝑜𝑟𝑒 (𝑥) ≤ 𝛿

𝐼𝐷 𝑖 𝑓 𝑠𝑐𝑜𝑟𝑒 (𝑥) > 𝛿
(2)

2.4 Threshold Selection and Classification Results
In Equation (2), 𝛿 represents the threshold to classify ID/OOD, 𝑔(𝑥) represents the final confidence
score of the respectivemethods, and𝑥 and𝑥 represent the original and perturbed inputs, respectively.
If the confidence is higher than the threshold 𝛿 , then the input is classified as ID; otherwise, it is
classified as OOD. A higher threshold increases the chances of correctly detecting OOD input, but
also increases the likelihood of incorrectly classifying ID inputs with lower confidence scores as
OOD. For the implementation of ODIN and Mahalanobis, we consider ID as positive and OOD
as negative according to the metric of ODIN [32] and set the threshold at 95% true positive rate
(TPR), i.e., the threshold that misidentifies 5% of IDs as OOD and correctly identifies 95% of IDs
as ID. It is important to note that the GIP solutions in Figure 1 do not utilize the classification
results of the second forward pass with perturbed input, as the input perturbation may alter the
classification results. Instead, they utilize the result of the first forward pass with the original input
as the classification result.

3 Proposed Method: ProGIP
This section proposes ProGIP to combat silent data corruption (SDC), one of the most critical threats
to the reliability of machine learning models. An SDC is a system-invisible failure: the model yields
an erroneous result without any discernible symptoms (e.g., a crash or hang). Because the system
remains unaware of the fault, it cannot initiate recovery actions. This stands in stark contrast to
system-visible failures, which can be mitigated by strategies such as re-execution. ProGIP is a
lightweight mechanism explicitly designed to detect the critical faults within gradient-based input
perturbation (GIP) solutions that lead to SDCs. The complete failure taxonomy is presented in
Table 1.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.



111:6 Trovato et al.

Table 1. Taxonomy of failures

Category Failure type Description Target of ProGIP

Silent data corruption
(SDC, system-invisible
failures)

Classification
failure

The model would correctly predict the class of an
in-distribution (ID) input when fault-free, but a
transient bit-flip causes it to misclassify.

Yes

ID/OOD
detection failure
(ID to OOD and
OOD to ID)

The model would correctly distinguish an input
between ID vs. OOD input when fault-free, but
a bit-flip affects ID/OOD detection—either marking
ID as OOD (ID to OOD) or vice versa (OOD to ID).

Yes

System-visible failures Crash The machine learning model execution has crashed
(e.g., segmentation fault) due to a bit-flip No

Hang (timeout)
The machine learning model execution exceeds
the expected execution time (e.g., infinite loop)
due to a bit-flip

No

ProGIP aims to prevent two types of failures: (i) classification failures and (ii) ID/OOD detection
failures. We define these failures as follows: Classification failure: A neural network model with
an existing GIP solution can correctly classify the input in the absence of soft errors, but a soft
error causes the model to misclassify the input. ID/OOD detection failure: A neural network
model with a GIP solution can correctly distinguish the input as ID or OOD in the absence of soft
errors, but a soft error causes the model to misclassify an ID as OOD (ID to OOD) or vice versa
(OOD to ID). We term any bit-flip that induces one or both of these failures a ’critical fault’ in this
work. Several studies have demonstrated that the majority of soft-error-induced failures in neural
networks are caused by high-order bit-flips [3, 12, 28].

3.1 Threat Analysis and Design Principles
Motivated by these observations, we analyze how high-order bit-flips on the three execution passes
of GIP solutions induce these failures and what visible symptoms these bit-flips produce. Based on
this analysis, ProGIP strategically places two fault detectors that can protect all three execution
passes of GIP solutions with minimal overhead. While we primarily focus on high-order bit-flips
due to their significant impact on neural network outputs and their relatively straightforward
detectability, we acknowledge that lower and middle-order bit-flips can also cause errors that might
be harder to detect. Section 5 discusses this further and provides insights into the effectiveness
of ProGIP against various types of bit-flips. The first fault detector (Section 3.2) detects abnormal
gradient values to protect the first forward and backward passes. The second fault detector (Section
3.3) detects abnormal confidence scores to protect the second forward pass.
ProGIP is a purely software-based approach without internal modification of target neural

networks. The two fault detectors of ProGIP only utilize the outputs of the passes in GIP approaches
(gradient from the backward pass and OOD score from the second forward pass). Therefore, ProGIP
does not require modification of the inference engine and can operate outside of the execution of
the inference.
The goal of ProGIP is to provide lightweight fault detection. Once ProGIP detects a fault, the

system offers several fallback options depending on the application’s safety requirements: for
example, the system can re-execute the exact inference pass to confirm the error (re-execution) or
trigger a fail-safe mode in safety-critical scenarios (e.g., autonomous driving). For re-execution, if
the system detects a fault at the second fault detector of ProGIP, it only needs to re-execute the
second forward pass of the GIP approach rather than fully re-executing from the first forward pass.
We leave detailed system-level responses after the detection for future work.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.



ProGIP: Protecting Gradient-based Input Perturbation Approaches for OOD Detection From Soft Errors 111:7

ProGIP
Fault detector 1:
checking gradient

(equation 4)

Gradient
Backward 

pass

First
forward 

pass
Loss

Loss
functionLogits

Input perturbation process

Input

Effect of
high-order bit-flip

on the
first forward pass

High-order
bit-flip

high logits

ODIN:
0 loss

Maha.:
high loss

ODIN:
0 gradient

Maha.:
high gradient

Detected 
by

fault
detector 1Effect of

high-order bit-flip
on the

backward pass

High-order
bit-flip

High
gradient

Input
perturbation
(equation 1)

Perturbed input

Classification

Wrongly
perturbed input

& wrong
classification

Wrongly
perturbed input

(in the absence
of detector1 )

Fig. 2. High-order bit-flips on the first forward and backward passes in GIP solutions induce extremely high
or near zero gradients, which is tricky to observe in error-free inferences. The first fault detector of ProGIP
checks the gradient based on this observation to cover high-order bit-flips on such passes.

3.2 First Fault Detector: Gradient Checker for the First Forward and Backward Passes
3.2.1 Analysis of effects of high-order bit-flips. Figure 2 illustrates the effects of high-order bit-flips
on the first forward and backward passes of GIP solutions. A high-order bit-flip on the first forward
pass results in unusually high logits. These logits are used for classification and fed to the backward
pass to generate gradients for input perturbation. Therefore, such incorrect logits can directly
induce classification failures and can also indirectly induce ID/OOD detection failures by affecting
the gradient for the input perturbation.
The effect of high-value logits on the gradient varies depending on the loss functions used in

ODIN and Mahalanobis. ODIN employs softmax-based confidence scoring and cross-entropy loss.
When logits are high, the cross-entropy loss approaches zero, leading to an almost zero gradient
in the backward pass. On the other hand, Mahalanobis uses distance-based confidence scoring,
calculating the Mahalanobis distance using the logits of the input 𝑓 (𝑥) and the mean and covariance
of logits of ID samples for a class ((𝜇𝑐 and Σ̂𝑐 , respectively). Then, the confidence score is defined as
the closest Mahalanobis distance among classes:

𝑚𝑎𝑥𝑐 {−(𝑓 (𝑥) − 𝜇𝑐 )𝑇 Σ̂−1
𝑐 (𝑓 (𝑥) − 𝜇𝑐 )} (3)

In Equation (3), as the logits 𝑓 (𝑥) increase, the confidence scores decrease since the confidence is
the negative of the distance. Consequently, the loss will increase, resulting in a higher gradient in
the backward pass.

High-order bit-flips on the backward pass directly result in a high-value gradient, as illustrated
in Figure 2, regardless of the types of loss functions. Similar to the high-order bit-flips on the
first forward pass of Mahalanobis, such high gradient values can indirectly induce ID/OOD detec-
tion failures by affecting the input perturbation, but bit-flips in the backward pass do not affect
classification results.

3.2.2 Designing fault detector. The symptom of high-order bit-flips on the first forward and back-
ward passes found by the above analysis is extremely high or near-zero gradient values. However,
such high deviations disappear after the input perturbation since the input perturbation with
Equation (1) only utilizes the sign of the gradient and disregards the magnitude. Note that this does
not mean that the input perturbation process masks the effects of high-order bit-flips entirely since
the signs of gradient values can also be affected by faults. Therefore, as illustrated by the black box
in Figure 2, ProGIP places the first fault detector right before the input perturbation, which can be

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.



111:8 Trovato et al.

Second
forward 

pass
Logits

ID / OOD
/ faulty
decision

Perturbed input

Effect of
high-order bit-flip

on the
second forward pass

High-order
bit-flip

High
logits

ODIN:
high score

Maha.:
low score

ID / OOD
detection failure

Detected 
by

fault
detector 2

ProGIP fault 
detector 2:

checking 
confidence score 

(equation 5/6)

Confidence 
scoring

(in the absence
of detector 2)

…

Fig. 3. High-order bit-flips on the second forward pass of GIP solutions induce extremely high or low
confidence scores compared to fault-free inferences. Based on this observation, the second fault detector of
ProGIP checks the confidence score to detect high-order bit-flips on the second forward pass.

implemented at the software level with Equation (4).

𝑐ℎ𝑒𝑐𝑘 (𝑔𝑟𝑎𝑑) =

𝐹𝑎𝑢𝑙𝑡𝑦 𝑖 𝑓 𝑚𝑎𝑥 (𝑎𝑏𝑠 (𝑔𝑟𝑎𝑑)) ≈ 0,
𝐹𝑎𝑢𝑙𝑡𝑦 𝑖 𝑓 𝑚𝑎𝑥 (𝑎𝑏𝑠 (𝑔𝑟𝑎𝑑)) > 𝛿𝐹1,

𝐹𝑖𝑛𝑒 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(4)

The first fault detector operates during the backward pass and requires minimal computational
resources, as it performs only a simple comparison between the maximum gradient magnitude
and predefined thresholds. This design choice ensures that ProGIP adds negligible overhead to the
overall execution time.

3.2.3 Threshold selection. In Equation (4), 𝑔𝑟𝑎𝑑 indicates the gradient from the backward pass of
GIP solutions, and 𝛿𝐹1 indicates the fault detection threshold for the first fault detector of ProGIP.
For Equation(4), we considered any value less than 10−11 as near zero for the first comparison.
Note that since high-order bit-flips never induce near-zero gradients in Mahalanobis, the first fault
detector can skip the comparison against zero in Mahalanobis. To select the fault detection threshold
𝛿𝐹1, we profile the𝑚𝑎𝑥 (𝑎𝑏𝑠 (𝑔𝑟𝑎𝑑)) values from the inferences with the ID training dataset and
find the maximum value of𝑚𝑎𝑥 (𝑎𝑏𝑠 (𝑔𝑟𝑎𝑑)). Since naturally large gradients from the fault-free
inference with a test dataset can cause false fault detection alarms, we conservatively add a 200%
margin to the selected maximum value, i.e., triple it.

3.3 Second Fault Detector: OOD Score Checker for the Second Forward Pass
3.3.1 Analysis of effects of high-order bit-flips. Figure 3 illustrates the effects of high-order bit-flips
on the second forward pass of GIP solutions. High-order bit-flips in the second forward pass induce
extremely high logits. Since the confidence scoring functions of GIP solutions utilize logits from
the second forward pass, such faults can directly induce ID/OOD detection failures. Specifically,
the unusually high logits result in different scores based on the confidence scoring functions of
ODIN and Mahalanobis.

The softmax-based confidence scoring of ODIN adopts drastic temperature scaling. The fault-free
confidence scores of ODIN for both ID and OOD inputs are relatively small, typically near the
reciprocal of the number of classes. In contrast, high logits resulting from high-order bit-flips during
the second forward pass lead to extremely high confidence scores in ODIN, even higher than the
fault-free scores for ID inputs. Therefore, if a high-order bit-flip affects the second forward pass of
ODIN during the inference of an OOD input, the binary classification in Equation (2) will classify
the input as ID, resulting in an ID/OOD detection failure (OOD to ID). For example, in ResNet

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.



ProGIP: Protecting Gradient-based Input Perturbation Approaches for OOD Detection From Soft Errors 111:9

with ODIN, we observed fault-affected confidence scores reaching values near 1, while the average
confidence scores of ID and OOD inferences were 0.10104 and 0.10082, respectively.

On the other hand, fault-induced high logits in a neural network with Mahalanobis can produce
low confidence scores: that is, scores with a high absolute value but negative. This happens because
such high logits are extremely distant from the distribution of fault-free outputs. If a high-order
bit-flip affects the second forward pass of Mahalanobis during the inference of an ID input, the
confidence score will decrease significantly. Therefore, the binary classification will classify the
input as OOD, resulting in an ID/OOD detection failure (ID to OOD). For example, in ResNet with
Mahalanobis, we observed a fault-affected confidence score of −2.2𝑒11, while the average confidence
scores of ID and OOD inferences were −172.07 and −125.95, respectively.

3.3.2 Designing fault detector. The symptom of high-order bit-flips on the second forward pass
found by the above analyses is an extremely high confidence score in the case of ODIN and an
extremely low confidence score in the case of Mahalanobis. Therefore, as illustrated by the black
box in Figure 3, ProGIP places the software-level second fault detector, which jointly checks the
logits with the confidence scoring function to distinguish ID, OOD, and faulty inferences. Since
symptoms vary depending on the confidence scoring function, ProGIP also provides different fault
detectors for ODIN and Mahalanobis. Equation (5) shows how the second fault detector with the
scoring function of ODIN distinguishes between ID, OOD, and faulty inferences.

𝑔′𝑂 (𝑥) =

𝑂𝑂𝐷 𝑖 𝑓 𝑠𝑐𝑜𝑟𝑒𝑂 (𝑥) ≤ 𝛿𝑂𝑂𝐷 ,

𝐼𝐷 𝑖 𝑓 𝛿𝑂𝑂𝐷 < 𝑠𝑐𝑜𝑟𝑒𝑂 (𝑥) ≤ 𝛿𝐹2,

𝐹𝑎𝑢𝑙𝑡𝑦 𝑖 𝑓 𝑠𝑐𝑜𝑟𝑒𝑂 (𝑥) > 𝛿𝐹2 .
(5)

In Equation (5),𝑥 represents the original input, and𝑥 represents the perturbed input.𝑔′
𝑂
represents

the modified ODIN OOD detector with the second fault detector of ProGIP. This detector compares
the confidence score of ODIN (𝑠𝑐𝑜𝑟𝑒𝑂 ), i.e., maximum softmax with the temperature scaled logits
from the second forward pass, against the ID/OOD threshold 𝛿𝑂𝑂𝐷 and fault detection threshold
𝛿𝐹2. Since high-order bit-flips in the second forward pass of ODIN mostly result in high confidence,
the second detector of ProGIP considers the inference as faulty if 𝑠𝑐𝑜𝑟𝑒𝑂 (𝑋̃ ) is higher than the
threshold 𝛿𝐹2. Equation (6) shows how the second fault detector with the scoring function of
Mahalanobis distinguishes between ID, OOD, and faulty inferences.

𝑔′𝑀 (𝑥) =

𝐹𝑎𝑢𝑙𝑡 𝑖 𝑓 𝑠𝑐𝑜𝑟𝑒𝑀 (𝑥) ≤ 𝛿𝐹2,

𝑂𝑂𝐷 𝑖 𝑓 𝛿𝐹2 < 𝑠𝑐𝑜𝑟𝑒𝑀 (𝑥) ≤ 𝛿𝑂𝑂𝐷 ,

𝐼𝐷 𝑖 𝑓 𝛿𝑂𝑂𝐷 < 𝑠𝑐𝑜𝑟𝑒𝑀 (𝑥).
(6)

In Equation(6), 𝑔′
𝑀

and 𝑠𝑐𝑜𝑟𝑒𝑀 represent the modified Mahalanobis OOD detection and the
confidence scoring function of Mahalanobis, respectively. High-order bit-flips in the second forward
pass of Mahalanobis usually result in low confidence, and therefore, the second detector of ProGIP
detects the faulty inference if 𝑠𝑐𝑜𝑟𝑒𝑀 (𝑋̃ ) is lower than the threshold 𝛿𝐹2.
Similar to the first fault detector, the second fault detector requires minimal computational

resources as it is implemented within the existing ID/OOD decision logic, requiring only an
additional threshold comparison. This efficient design ensures that ProGIPmaintains a low overhead
while providing comprehensive protection against soft errors.

3.3.3 Threshold selection. As discussed in Section 2.1, we select ID/OOD threshold 𝛿𝑂𝑂𝐷 at 95%
TPR for ID/OOD classification. To select the fault detection threshold 𝛿𝐹2, we profile the confidence
scores with the ID training dataset without injecting faults and add a 200% margin, similar to the
threshold for the first fault detector in Section 3.2. For 𝛿𝐹2 of ODIN, we first find the logits that

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.



111:10 Trovato et al.

result in the maximum confidence score during the training phase and then increase it by 200%.
For 𝛿𝐹2 of Mahalanobis, we find the minimum score during the training phase and triple it.

3.4 Handling Not a Number (NaN) and Infinity Values
In addition to the range-based checks described in Sections 3.2 and 3.3, ProGIP also incorporates
checks for not a number (NaN) and infinity values. These special floating-point values often occur
when high-order bit-flips lead to operations such as division by zero or the square root of a negative
number. NaN values are particularly problematic because they propagate through computations: any
operation involving a NaN results in another NaN. Infinity values, while mathematically defined, can
also lead to unexpected behaviors in neural networks. Both NaN and infinity values can significantly
impact the classification and ID/OOD detection results. To address this issue, ProGIP includes
NaN and infinity checks at both fault detection points. This ensures that computations producing
these special values are identified as faulty, preventing incorrect classification or ID/OOD detection
decisions. These checks add minimal overhead to the fault detection process while significantly
enhancing the fault coverage of ProGIP.

4 Experimental Setup
We conducted comprehensive fault injection and runtime measurement experiments to evaluate
the efficiency and fault coverage of ProGIP. This section details our experimental methodology,
including the networks and datasets used, the OOD detection methods implemented, the soft error
detection techniques compared, and the fault injection and runtime measurement procedures.

4.1 Network, Dataset, and OOD Detection Methods
We adopted DenseNet-BC [21], ResNet-34 [55], and MobileNetV2 [41] as our neural network
architectures 1, trained to classify the CIFAR-10 [23] dataset. CIFAR-10 consists of 60k 32×32 color
images in 10 classes, with 50k training images and 10k test images. For the OOD dataset, we used
the Tiny ImageNet [6] test dataset consisting of 10k images resized to 32×32. For the DenseNet-
BC implementation, we used the pre-trained network provided by the official implementation
of ODIN [31], which was trained with a growth rate of 12 for 300 epochs with a weight decay
of 10−4. For ResNet34, we trained the network for 200 epochs with a weight decay of 5x10−4.
For MobileNetV2, we used the implementation in an open-source repository [24] that adapted
MobileNetV2 for the CIFAR-10 dataset and trained the MobileNetV2 for 200 epochs with a weight
decay of 5x10−4. All models used a Stochastic Gradient Descent (SGD) optimizer and a learning
rate of 0.1 (ResNet34, DenseNet-BC) or 0.01 (MobileNetV2), which was divided by 10 at 50% and
75% of the total number of training epochs. Table 2 summarizes the ID classification accuracy and
OOD detection capability of each network and OOD detection scheme.

4.2 Soft Error Detection Methods
We implemented two software-level ProGIP checkers, as described in Sections 3.2 and 3.3, into
the ODIN and Mahalanobis implementations. Further, we included checks for not a number (NaN)

1We intentionally chose three canonical CNN families that span the design space most often discussed in the embed-
ded–systems literature. DenseNet-BC, in its 100-layer, k=12 variant (0.8M parameters), is characterized by a dense connec-
tivity pattern that is extremely parameter-efficient but induces high feature-reuse traffic. ResNet-34 (21.8M parameters, 3.6
GFLOPs) is the de-facto medium-scale residual baseline [16] appearing in numerous software- and hardware-optimization
studies [2, 50]. MobileNetV2 (3.5M parameters, 0.3 GFLOPs) represents the edge/IoT class. It couples depth-wise separable
convolutions with inverted bottlenecks to minimize computing and memory and is widely deployed on mobile SoCs. There-
fore, using these three networks lets us stress-test ProGIP across (i) densely connected, (ii) residual, and (iii) lightweight
architectures with different compute–memory footprints.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.



ProGIP: Protecting Gradient-based Input Perturbation Approaches for OOD Detection From Soft Errors 111:11

Table 2. Network and OOD detection information

Network ID Dataset OOD
detection

ID Classification
accuracy

AUROC for
TPR vs FPR curve

FPR at
95% TPR

DenseNet-BC [21]

CIFAR-10 [23]

ODIN [32] 95.19% 98.52% 7.46%
Mahalanobis [27] 96.28% 15.36%

ResNet-34 [55] ODIN [32] 94.61% 90.62% 38.25%
Mahalanobis [27] 93.35% 33.53%

MobileNetV2 [41] ODIN [32] 94.05% 93.50% 24.24%
Mahalanobis [27] 90.44% 52.80%

and infinity values as these exceptional cases have unexpected behaviors in PyTorch’s comparison
operations.
To our knowledge, there is no existing solution specifically designed to provide soft error

detection for GIP solutions. To establish a baseline for comparison, we implemented a detection-
only version of Ranger [3], a state-of-the-art soft error detection method for neural networks. This
detection-only Ranger checks for abnormal values at the outputs of all activation function layers as
well as the last layer of the forward and backward passes using PyTorch’s built-in hook methods.
The original Ranger approach also attempts to correct faults by replacing abnormal values with
predetermined safe values. However, to ensure a fair comparison with ProGIP, which only provides
fault detection, our detection-only Ranger implementation only raises the alarm when abnormal
values are detected without attempting correction. The NaN and infinity value checking is done by
a checker shared by Ranger and ProGIP at the end of the backward pass and the second forward
pass. Note that this detection-only Ranger shares the same fault detection methodology as the
original Ranger with fault correction. The only difference between the original Ranger and the
detection-only Ranger is how to deal with the detected fault, correcting the fault with the boundary
value in the original Ranger and just raising the fault detection alarm in the detection-only Ranger.
Still, we acknowledge that the fine-grained fault detection of Ranger is to prevent fault propagation
from one faulty neuron to other neurons.
To select the threshold values for both ProGIP and detection-only Ranger, we profiled the ID

training dataset and found the maximum values in fault-free inferences. As discussed in Sections 3.1
and 3.2, we profiled two values for ProGIP and selected them as thresholds with a 200% margin. For
the detection-only Ranger, we profiled the maximum and minimum values of the layers with the
fault detector and added a 300% margin to utilize them as thresholds. The 200% and 300% margins
were selected by increasing the margin by 50% until there was no false fault detection in fault-free
inferences with ID and OOD test datasets.

4.3 Fault Injection Setup
We designed our fault injection experiments to simulate soft errors in the datapath of neural
networks. Following the approach of several prior studies [3, 4, 28, 29, 43], we assumed that existing
Error Correction Code (ECC) or parity mechanisms could effectively cover faults in memory [39],
and therefore focused on faults occurring during computation.

To simulate bit-flips in the datapath, we implemented a fault injector that directly flips a random
bit in one of the outputs of a randomly selected layer via PyTorch’s hook methods. The rationale
behind affecting only one output is that a transient fault on a logic component in the datapath for
neural networks such as multiply-accumulate (MAC) units affects one output [17], while a fault
on a memory component, which can be covered by ECC or parity, can affect multiple outputs.
This approach allows us to mimic the effects of soft errors on the computation pipeline without

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.



111:12 Trovato et al.

modifying the underlying hardware. All fault injections other than runtime measurements were
conducted on NVIDIA RTX 4070 and NVIDIA RTX A6000.

For each fault injection trial, we followed this procedure:
• Randomly select a layer in the execution pass (first forward, backward, or second forward).
• Execute an inference of the GIP solution with both ProGIP and the detection-only Ranger.
• Just before the execution of the selected pass, add a fault injection hook that will flip a random
bit in the output of the selected layer.

• Execute the selected pass with the fault injection hook active.
• Remove the hook and continue the remaining execution.
• Collect classification and ID/OOD detection results, along with soft error detection results
from both protection methods.

To identify classification and ID/OOD detection failures, we also executed the inference with the
same input and random seeds without injecting faults and then compared the results between fault
injection and fault-free runs.
We executed 100,000 fault injection trials per configuration, considering the OOD detection

schemes (ODIN or Mahalanobis), data types (ID or OOD), network types (DenseNet-BC, ResNet-34,
and MobileNetV2), and the passes affected by the fault (first forward, backward, or second forward
pass)

Overall, We executed a total of 3.6M fault injection runs—100,000 injections × 2 (OOD detection
schemes) × 2 (data types) × 3 (passes) × 3 (networks). Note that we injected one fault for each
execution of an inference with ODIN or Mahalanobis. Thus, our fault injection experiments aim to
estimate the failure probabilities of GIP approaches without or with the protection schemes if a
fault occurs during the inference.

This comprehensive fault injection campaign allowed us to thoroughly evaluate the effectiveness
of ProGIP across various scenarios and compare it with the detection-only Ranger approach.

4.4 Runtime Measurement
To assess the efficiency of ProGIP, we measured the execution times of ODIN and Mahalanobis
with three configurations:

• No soft error protection
• With the detection-only Ranger
• With ProGIP

We measured execution times of ODIN and Mahalanobis, without soft error protection, with
the detection-only Ranger, and with ProGIP on Google Colab with NVIDIA T4 GPU to ensure a
realistic and consistent execution environment. Each runtime measurement iteration consisted of
executing inferences on 1,000 ID inputs and 1,000 OOD inputs without batching. We repeated this
process for 20 iterations for each configuration.

To ensure robust results, we computed the mean execution time for each configuration, excluding
the top and bottom 10% of iterations (to remove outliers). The results are normalized to the execution
time of the unprotected baseline to quantify the overhead introduced by each protection mechanism.
This experimental setup allowed us to thoroughly evaluate both the effectiveness and efficiency of
ProGIP, providing comprehensive insights into its performance compared to existing approaches.
The results of these experiments are presented and analyzed in the following section.

5 Experimental Results
In this section, we present and analyze the results of our experiments, focusing on two key aspects:
runtime overhead and fault coverage. We first examine the efficiency of ProGIP by comparing its

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.



ProGIP: Protecting Gradient-based Input Perturbation Approaches for OOD Detection From Soft Errors 111:13

Table 3. Runtime measurement results

Network
OOD

detection
Normalized execution time

Detection-only Ranger ProGIP

DenseNet-BC [21]
ODIN [32] 256.58% 100.93%

Mahalanobis [27] 259.01% 100.68%

ResNet-34 [55]
ODIN [32] 240.32% 101.07%

Mahalanobis [27] 234.17% 100.56%

MobileNetV2 [41]
ODIN [32] 214.22% 100.97%

Mahalanobis [27] 206.15% 100.85%
Average 235.07% 100.84%

Table 4. Summary of the fault injection experiments with CIFAR-10 as ID dataset

Method
Fault injection

run
Originally
correct run*

Classification
failure

ID/OOD detection
failure

Unprotected (Original)
3,600,000 2,922,540

7,673 10,217
Detection-only Ranger 20 273

ProGIP (Ours) 33 379
* The execution that can produce correct classification and ID/OOD results if no fault is injected.

runtime overhead with that of the detection-only Ranger. Then, we analyze the fault coverage of
ProGIP, detailing its effectiveness in detecting classification and ID/OOD detection failures across
different execution passes, neural networks, and OOD detection methods.

5.1 Runtime Overhead Analysis
Table 3 shows the execution times of ODIN and Mahalanobis with the detection-only Ranger
or ProGIP, normalized by the execution times of unprotected ODIN and Mahalanobis. These
results demonstrate that ProGIP achieves significantly lower runtime overhead compared to the
detection-only Ranger.

The detection-only Ranger induces an average runtime overhead of 135.07% across all configura-
tions. This substantial overhead is primarily due to the backward hook methods applied to every
ReLU layer, which significantly slows down the execution. Note that it is usual to customize the
backward pass via hooks in PyTorch [25, 30, 35].

Delicately optimized custom kernel can reduce the runtime overhead of Ranger implementation.
Still, Ranger should check values from all ReLU layers, while ProGIP only needs to check values
from two detection points. In contrast to Ranger, ProGIP introduces only 0.84% average runtime
overhead on average. This minimal overhead is achieved by strategically placing just two checkers
at key points in the execution flow rather than monitoring every layer. The first checker is placed
after the backward pass, and the second is integrated with the existing ID/OOD detection logic,
requiring only an additional threshold comparison.
The low overhead of ProGIP makes it particularly suitable for real-time applications where

execution speed is critical, such as autonomous driving systems. Further, the low overhead of
ProGIP demonstrates that ProGIP is suitable for protecting machine learning models in embedded
systems, where the computing resource is strictly constrained. By adding less than 1% to the
execution time, ProGIP provides an efficient solution to improve the reliability of neural networks
with GIP-based OOD detection.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.



111:14 Trovato et al.

Unprotected (Original) Detection-only Ranger ProGIP (Ours)

1127
253

1

235

12

1273

5 2 1
12

1
7

2 1
8 12 11

1

100

10000
Number of failures in DenseNet-BC with ODIN

Lo
g-

sc
al

e 0 0 0

Class.
failure

ID→OOD
failure

OOD→ID
failure

ID→OOD
failure

OOD→ID
failure

ID→OOD
failure

OOD→ID
failure

First forward Backward Second forward

1204
215

7

127
28

1103

2 4 7
1

10
23 5 7

1
5 2

1

100

10000
Number of failures in DenseNet-BC with Mahalanobis

Lo
g-

sc
al

e 0 0 0

Class.
failure

ID→OOD
failure

OOD→ID
failure

ID→OOD
failure

OOD→ID
failure

ID→OOD
failure

OOD→ID
failure

First forward Backward Second forward

0

1043
135

5

172

7

833

6 3 5 7 168 4 5
20

7
22

1

100

10000
Number of failures in ResNet34 with ODIN

Lo
g-

sc
al

e 0 0 0

Class.
failure

ID→OOD
failure

OOD→ID
failure

ID→OOD
failure

OOD→ID
failure

ID→OOD
failure

OOD→ID
failure

First forward Backward Second forward

1020
288

8

309

12

847

1
4 8 10 10

1
5 8

2
10 4

1

100

10000
Number of failures in ResNet34 with Mahalanobis

Lo
g-

sc
al

e

Class.
failure

ID→OOD
failure

OOD→ID
failure

ID→OOD
failure

OOD→ID
failure

ID→OOD
failure

OOD→ID
failure

First forward Backward Second forward

0 0 0 00

1628
254

2

193

14

1525

4 4 2 4 10 208 6
2

20 14 27

1

100

10000
Number of failures in MobileNetV2 with ODIN

Lo
g-

sc
al

e 0 0 0

Class.
failure

ID→OOD
failure

OOD→ID
failure

ID→OOD
failure

OOD→ID
failure

ID→OOD
failure

OOD→ID
failure

First forward Backward Second forward

1651
577

47

688

7
44

996

2
23 45

5 5
26 26

6
29 47 17

6
39 31

1

100

10000
Number of failures in MobileNetV2 with Mahalanobis

Lo
g-

sc
al

e

Class.
failure

ID→OOD
failure

OOD→ID
failure

ID→OOD
failure

OOD→ID
failure

ID→OOD
failure

OOD→ID
failure

First forward Backward Second forward

Fig. 4. The detailed fault injection results show that the coverage of ProGIP is comparable to the one of the
detection-only Ranger, and ProGIP even outperforms the detection-only Ranger for a few cases (ID to OOD
in DenseNet-BC with Mahalanobis and OOD to ID in ResNet34 with Mahalanobis).

5.2 Detailed Analysis of Fault Injection Experiments
Table 4 summarizes the fault injection results. In this table, the originally correct run represents the
executions that produce correct classification (for ID inputs) and ID/OOD detection results if no fault
occurs. Without protection, 0.263% and 0.350% of the faults resulted in classification and ID/OOD
detection failures for the originally correct runs, respectively. The low failure probabilities upon a
fault emphasize the necessity of efficient fault detection solutions with minimal runtime overhead.
Detection-only Ranger detected 98.36% of total failures by detecting 99.74% classification failures
and 97.33% ID/OOD detection failures. ProGIP detected 97.70% of total failures by detecting 99.57%
classification failures and 96.29% ID/OOD detection failures. Overall, ProGIP shows comparable
fault detection capability compared to the detection-only Ranger, while ProGIP induces 0.84%
runtime overhead on average, as discussed in Section 5.1.
Figure 4 provides a detailed breakdown of the fault injection results, showing the number of

failures for different types (classification, ID→OOD, OOD→ID), different execution passes (first
forward, backward, second forward), and different configurations (unprotected, detection-only
Ranger, ProGIP). In Figure 4, white bars represent the number of failures in the unprotected version,
gray bars represent the detection-only Ranger version and black bars represent the ProGIP version.
A closer examination of the results for specific networks and OOD detection methods reveals
additional insights, as shown in Figure 4. Several key observations are as follows:
• High coverage for critical faults: Both ProGIP and the detection-only Ranger effectively detect the
vast majority of faults that cause classification or ID/OOD detection failures. This is particularly
evident for high-order bit-flips, which typically result in extreme output values. Extremely large
values resulting from high-order bit-flips.

• OOD to ID failures in the second forward pass: In the second forward pass, OOD to ID failures
are dominant compared to the ID to OOD failures in both ODIN and Mahalanobis. For ODIN,
this is because abnormally high values resulted in high confidence scores. On the other hand, in
Mahalanobis, most OOD to ID failures are due to the not a number (NaN) values. Mahalanobis

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.



ProGIP: Protecting Gradient-based Input Perturbation Approaches for OOD Detection From Soft Errors 111:15

scoring with abnormally high values usually resulted in NaN scores, which will be discussed in
Section 5.3.

• Limitations of the range-based solutions: Both detection-only Ranger and ProGIP cannot detect
most of the ID to OOD failures in the second forward pass of ODIN. This is because such
failures are due to the decreased confidence scores, while both solutions are designed to detect
abnormally high values. Similarly, both solutions are hard to detect OOD to ID failures in the
second forward pass of Mahalanobis except for such failures involving NaN scores; still, most of
the OOD to ID failures in the second forward pass of Mahalanobis in Figure 2 produced NaN
scores, and therefore both detection-only Ranger and ProGIP could detect them.

• A secondary effect of fault detection on the scores: While detection-only Ranger more frequently
checks the faults compared to ProGIP, ProGIP shows better coverage for a few cases in Figure 4.
At first, ProGIP outperforms detection-only Ranger for the ID to OOD failures in the second
forward pass of DenseNet-BC with Mahalanobis. This is because we give a 200% margin for the
fault thresholds of ProGIP, while we give a 300% margin for the ones of detection-only Ranger.
Note that such different margins are selected by finding margin values that never induce false
fault detection; selecting the proper margin for each layer can eliminate such gap, but it is hard
to find such proper layer-wise margin in the design phase of the real-world environment that is
hard to obtain OOD test set. In addition, ProGIP also outperforms detection-only Ranger for
the OOD to ID failures in the second forward pass of ResNet34 with Mahalanobis. We observed
that some failure-inducing faulty activation values do not show abnormally high maximum
values, but they result in abnormally high Mahalanobis scores after the distance-based scoring.
Since ProGIP directly checks the Mahalanobis scores while detection-only Ranger checks the
activation values, such faults can only be detected by ProGIP.

5.3 Analysis of Not a Number (NaN) and Infinity Values
Equation (3) shows the scoring function of Mahalanobis where 𝑓 (𝑥) is the logits and Σ̂−1

𝑐 and
𝜇𝑐 are the covariance and mean of logits of ID samples for a class 𝑐 . In this equation, high logits
𝑓 (𝑥) can easily produce NaN values in PyTorch when the values are extremely large. In our
PyTorch implementation, NaN values always result in a classification output of 0 (first label).
Additionally, comparisons in PyTorch involving at least one NaN value always return false. Since
the implementation of Mahalanobis considers an inference as OOD if the confidence score is less
than or equal to the threshold, it treats a confidence score with NaN as OOD. Such behavior with
NaN values cannot be detected without explicit NaN checking, which we have embedded in our
ProGIP implementation. We observed that around 58.3% of classification and ID/OOD detection
failures (91.1% for ODIN and 25.19% for Mahalanobis) are detected by comparing gradients and
ODIN/Mahalanobis scores with 𝛿𝐹1 and 𝛿𝐹2 based on Equations (4), (5), and (6) rather than detected
by NaN handling as resulted in Tables 5 and 6, demonstrating its effectiveness beyond just handling
NaN cases.

5.4 Impact of Bit Position on Fault Coverage
While our primary focus was on high-order bit-flips due to their significant impact on neural
network outputs, we also analyzed the effect of bit position on fault coverage. As acknowledged in
the reviewer feedback, lower and middle-order bit-flips can also cause errors, particularly marginal
classification errors where the decision boundaries are close. Tables 5 and 6 show the bit-wise
fault injection results for ODIN and Mahalanobis, respectively. Our analysis revealed that faults in
the sign bit (bit 31) and the highest exponent bits (bits 30–27) accounted for around 98.49% of the

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.



111:16 Trovato et al.

Table 5. Bit-wise fault injection results for ODIN with and without ProGIP

Faulty bit

ODIN
Classification failure ID/OOD detection failure

Number
of

failures

Detected by ProGIP based on Number
of

failures

Detected by ProGIP based on
NaN
check

Inf
check

𝛿𝐹 1
check Undetected NaN

check
Inf

check
𝛿𝐹 1, 𝛿𝐹 2
check Undetected

31 (sign bit) 4 0 0 0 4 10 0 0 0 10
30 3774 198 0 3567 9 4630 237 0 4367 26
29 2 0 0 2 0 19 0 0 18 1
28 8 0 0 8 0 29 0 0 22 7
27 2 0 0 0 2 130 0 0 93 37
26 2 0 0 0 2 38 0 0 13 25
25 3 0 0 0 3 24 0 0 3 21
24 3 0 0 0 3 18 0 0 0 18
23 0 0 0 0 0 9 0 0 0 9
22 0 0 0 0 0 3 0 0 0 3
21 0 0 0 0 0 4 0 0 0 4

20 – 0 0 0 0 0 0 0 0 0 0 0
Total 3798 198 0 3577 23 4914 237 0 4516 161

Table 6. Bit-wise fault injection results for Mahalanobis with and without ProGIP

Faulty bit

Mahalanobis
Classification failure ID/OOD detection failure

Number
of

failures

Detected by ProGIP based on Number
of

failures

Detected by ProGIP based on
NaN
check

Inf
check

𝛿𝐹 1
check Undetected NaN

check
Inf

check
𝛿𝐹 1, 𝛿𝐹 2
check Undetected

31 (sign bit) 2 0 0 0 2 21 0 0 0 21
30 3858 3359 0 495 4 4229 3917 4 272 36
29 4 0 0 4 0 341 0 0 328 13
28 2 0 0 2 0 343 0 0 332 11
27 5 0 0 5 0 243 0 0 229 14
26 2 0 0 0 2 46 0 0 2 44
25 2 0 0 0 2 35 0 0 1 34
24 0 0 0 0 0 14 0 0 0 14
23 0 0 0 0 0 11 0 0 0 11
22 0 0 0 0 0 6 0 0 0 6
21 0 0 0 0 0 14 0 0 0 14

20 – 0 0 0 0 0 0 0 0 0 0 0
Total 3875 3359 0 506 10 5303 3917 4 1164 218

classification and ID/OOD detection failures. Specifically, faults on the highest exponent bit (30)
accounted for 92.18% of the total failures.

ProGIP achieved excellent coverage for these high-order bit-flips, with 99.47% detection rates for
bits 30–31 and 92.46% for bits 27–29. However, for middle-order bits (26–23), which primarily affect
the exponent field of the floating-point representation, ProGIP can only detect 9.18% of critical
faults. Further, for lower-order bits (22–0), which mostly affect the mantissa field, ProGIP cannot
detect any faults. This lower coverage for mantissa bits is expected, as these bits typically cause
smaller deviations that might not exceed the threshold values used in ProGIP. It’s worth noting
that despite the lower detection rate for lower exponent bits and mantissa bits, these bits also
caused significantly fewer failures overall. In our experiments, bits 26–23 and 22–0 collectively
accounted for less than 1.16% and 0.15% of all failures, respectively, limiting the impact of their
lower detection rate on the overall effectiveness of ProGIP.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.



ProGIP: Protecting Gradient-based Input Perturbation Approaches for OOD Detection From Soft Errors 111:17

Table 7. Fault injection results of individual ProGIP checkers and complete ProGIP with both checkers

OOD
detection
method

Faulty
pass

Classification failure ID/OOD detection failure
Number

of
failures

Detected by Number
of

failures

Detected by
𝛿𝐹 1 only
check

𝛿𝐹 2 only
check

ProGIP
(𝛿𝐹 1, 𝛿𝐹 2)

𝛿𝐹 1 only
check

𝛿𝐹 2 only
check

ProGIP
(𝛿𝐹 1, 𝛿𝐹 2)

ODIN

First
forward 3798 3775

(99.39%)
0

(0.00%)
3775

(99.39%) 650 630
(96.92%)

0
(0.00%)

630
(96.92%)

Backward
pass - - - - 600 552

(92.00%)
0

(0.00%)
552

(92.00%)
Second
forward - - - - 3664 0

(0.00%)
3571

(97.46%)
3571

(97.46%)

Total 3798 3775
(99.39%)

0
(0.00%)

3775
(99.39%) 4914 1182

(24.05%)
3571

(72.67%)
4753

(96.72%)

Maha

First
forward 3875 3865

(99.74%)
0

(0.00%)
3865

(99.74%) 1142 1041
(91.16%)

0
(0.00%)

1041
(91.16%)

Backward - - - - 1131 1105
(97.70%)

0
(0.00%)

1105
(97.70%)

Second
forward - - - - 3030 0

(0.00%)
2939

(97.00%)
2939

(97.00%)

Total 3875 3865
(99.74%)

0
(0.00%)

3865
(99.74%) 5303 2146

(40.46%)
2939

(55.42%)
5085

(95.89%)

5.5 Ablation Study: Fault Coverage of the First and Second Detectors of ProGIP
To evaluate the fault coverage of each of the two checkers in ProGIP, we analyzed the number of
classification and ID/OOD detection failures detected by each detector. Table 7 shows the number of
detected failures when (i) only the first detector is enabled with threshold 𝛿𝐹1, (ii) only the second
detector is enabled with threshold 𝛿𝐹2, and (iii) both are enabled (full ProGIP). The first detector
with 𝛿𝐹1 can protect the first forward and backward passes but cannot detect any faults on the
second forward pass since it checks the gradient before the second forward pass. On the other hand,
the second detector with 𝛿𝐹2 covers the second forward pass, while it cannot prevent failures at
the first forward and backward passes. This is because the GIP process based on Equation (1) only
utilizes the sign of the gradient values and drops the magnitudes of the gradient, as discussed in
Section 3.2.2. Thus, the ablation confirms that both detectors are required to achieve near-complete
fault coverage.

5.6 Summary of Results
Our experimental results demonstrate that ProGIP achieves comprehensive protection against soft
errors in neural networks with GIP-based OOD detection methods, with several key advantages:

• High fault coverage: ProGIP detects 97.70% of critical failures across different neural
networks, OOD detection methods, and execution passes, providing robust protection against
soft errors.

• Minimal runtime overhead:With just 0.84% average runtime overhead, ProGIP is signifi-
cantly more efficient than the detection-only Ranger, which incurs 135.07% overhead.

• Comprehensive protection: ProGIP effectively protects all three execution passes of GIP
solutions (first forward, backward, and second forward).

• Adaptability: ProGIP works effectively with different GIP-based OOD detection methods
like ODIN and Mahalanobis and neural network architectures such as DenseNet-BC and
ResNet34, demonstrating its versatility.

These results confirm that ProGIP provides an efficient and effective solution for protecting
GIP-based OOD detection approaches from soft errors, significantly enhancing the reliability of
deep learning systems in real-world environments.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.



111:18 Trovato et al.

6 Applicability: Activation Modification Approaches with ProGIP
To evaluate the applicability of ProGIP for other OOD detection solutions, this section examines how
ProGIP can be extended to two representative activation-modification OOD detectors: ReAct [45]
and ASH [8].

6.1 ReAct and ASH
ReAct [45] rectifies the activation values at the penultimate layer by clamping the activation
values larger than a certain threshold to the threshold. This activation modification is based on the
observation that activation values of OOD inputs at the penultimate layer tend to be biased, i.e., few
values have sharp positive values, while the ones of ID inputs are usually well-distributed. Therefore,
the activation rectification of ReAct can decrease the confidence of OOD samples while affecting
the confidence of ID samples less. Figure 5a shows an example of the activation rectification of
ReAct with a fixed threshold value of 1.5.

On the other hand, ASH [8] shapes the activation values at a late layer such as penultimate layer
by removing a large portion, e.g., 90% of activation values based on a simple top-K criterion and
adjusting the modified activation values for sparsification. ASH provides multiple options to adjust
the modified activations, and we utilize ASH-P (prunning), which just removes the low activation
values and does nothing since it provides better results in our environment compared to other
adjustment approaches. Figure 5b shows an example of the activation shaping of ASH with pruning
the bottom 90% of activation values at the penultimate layer.

ReAct, and ASH can utilize various OOD scoring, such as the softmax score [18], energy score [33],
and ODIN [32]. In this section, we apply ProGIP to ODIN + ReAct based on their official implemen-
tation [26], which performs the ODIN scoring with GIP but rectifies the activation values at the
penultimate layers of the first and second forward passes. On the other hand, we apply ProGIP
to Softmax score + ASH without GIP to follow their official implementation [7] and showcase
the adaptability of ProGIP for non-GIP solutions. For Softmax score + ASH, we observed that the
confidence of softmax scores, i.e., maximum softmax value, usually becomes 1, so we applied the
temperature scaling similarly to ODIN. Therefore, Softmax score + ASH works similar to the ODIN
but with the activation shaping of ASH and without GIP.

6.2 Applying ProGIP to the activation modification approaches
Applying ProGIP to the OOD detection approaches with the activation modification, such as ReAct
and ASH, should carefully add additional detector(s) before the activation modification. This is
because clamping or pruning can mask the very outliers that ProGIP relies on; fault symptoms can
disappear before the detection. For example, a fault on a high-order bit in ODIN + ReAct can result
in abnormally high activation values, but such high values are clamped as the threshold value of
ReAct at the penultimate layer so that ODIN cannot detect such a fault. Note that such clamping
hides the symptoms of faults, but does not eliminate the effects of faults; the faulty neuron can
propagate the effect of the fault for multiple outputs after forwarding one layer, and the neurons
affected by the fault propagation are replaced with the threshold values by the clamping, losing
their original values with information.

To protect ODIN + ReAct with GIP, ProGIP adds the first fault detector that checks the gradient
after the backward pass, the second fault detector that checks the ODIN score after the second
forward pass, and the scoring function based on Equations (4) and (5). Further, ProGIP adds
extra fault detectors that check abnormally high values in the activation values right before the
rectification of ReAct, i.e., clamping, at the penultimate layers of the first and second forward passes.
On the other hand, since Softmax score + ASH does not adopt GIP, it has just one forward pass

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.



ProGIP: Protecting Gradient-based Input Perturbation Approaches for OOD Detection From Soft Errors 111:19

Forward pass with ReAct

P
en

u
ltim

ate 
layer

Last
layer

…

Layers before
penultimate layer

Activation
rectification
(clamping)

Example: activation rectification of ReAct with threshold 1.5

0.1956 1.9398 … 0.3137 0.2822

0.1956 1.500 … 0.3137 0.2822

< 1.5 > 1.5 < 1.5 < 1.5

(a) Example of ReAct [45] activation rectification

Forward pass with ASH

P
en

u
ltim

ate 
layer

Last
layer

…

Layers before
penultimate layer

Activation
shaping

(pruning 90%)

Example: activation rectification of ReAct with threshold 1.5

0.1956 1.9398 … 0.3137 0.2822

0.0000 1.9398 … 0.0000 0.0000

Bottom 90% Top 10% Bottom 90% Bottom 90%

(b) Example of ASH [8] activation shaping

Fig. 5. Both ReAct and ASH modify the activation values at the penultimate layer of the forward pass.

without extra forward or backward passes. Therefore, ProGIP adds one fault detector that checks
the softmax score with temperature scaling based on Equation (5) and another fault detector that
checks abnormally high values in the activation values right before the activation shaping of ASH,
i.e., pruning, at the penultimate layer.

6.3 Experiments for ASH and ReAct
To evaluate the fault coverage of ProGIP for ReAct and ASH, we applied Ranger and ProGIP to
ODIN + ReAct and softmax score + ASH and conducted fault injection experiments for them.
Specifically, we apply ProGIP without or with extra detectors before the activation modification
to evaluate the effectiveness of the extra detectors for activation modification approaches. We
utilize DenseNet-BC [21], ResNet-34 [55], and MobileNetV2 [41] models in Section 4.1 and the fault
injection setup described in Section 4.3. For ODIN + ReAct with GIP, we selected the clamping
threshold as 1.5 for DenseNet-BC and ResNet-34 and 0.5 for MobileNetV2 by profiling the ID vs
OOD AUROC results between thresholds 0.5, 1.0, and 1.5. For softmax score + ASH, we use ASP-P90,
which prunes the 90% bottom of the activation values at the penultimate layer.

We injected 100,000 faults for each datatype (ID/OOD) and pass, including the first forward,
backward, and second forward passes of ODIN + ReAct with GIP and the forward pass of Softmax
score + ASH without GIP. We executed a total of 1.8M fault injection runs—100,000 injections × 2
(data types) × 3 (passes) × 3 (networks) for ReAct and a total of 600k faults–100,000 injections × 2
(data types) × 1 (pass) × 3 (networks) for ASH.

Table 8 shows the fault injection results of detection-only Ranger and ProGIP with and without
checker(s) right before the activation modification for ODIN + ReAct with GIP and Softmax score +
ASH without GIP. Several key observations from the fault injection results are as follows:
• Overall, the results show that ProGIP provides fault coverage comparable to detection-only
Ranger for the activation modification schemes by adding an additional fault detector right
before the activation modification for the forward pass(es).

• ProGIP, without additional checkers right before the activation modification, cannot effectively
detect faults for ODIN + ReAct. As discussed in Section 6.2, this is because the activation
rectification of ReAct in Figure 5a clamps abnormally high values induced by the fault. On the
other hand, it provides the same fault coverage as ProGIP with an additional checker right before
the activation modification for softmax score + ASH. This is because the activation shaping of
ASH keeps the top 10% of the activation values, and therefore, abnormally high values remain

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.



111:20 Trovato et al.

Table 8. Fault injection results of ProGIP and detection-only Ranger for ReAct and ASH

OOD detection
and activation
modification

Method
Fault

injection
runs

Originally
correct
run*

Classification
failure

ID to OOD
detection
failure

OOD to ID
detection
failure

ODIN + ReAct
with GIP

Unprotected
(Original)

1,800,000 1,493,970

3,651 4,885 451

Detection-only
Ranger 19 52 63

ProGIP without checkers
before activation modification 704 3845 323

ProGIP with checkers
before activation modification 23 105 69

Softmax score
+ ASH

without GIP

Unprotected
(Original)

600,000 471,560

3,962 28 3,199

Detection-only
Ranger 17 20 64

ProGIP without checker
before activation modification 22 28 80

ProGIP with checker
before activation modification 22 28 80

* The execution that can produce correct classification and ID/OOD results if no fault is injected.

Table 9. Runtime measurement results of ProGIP and detection-only Ranger for ReAct and ASH

Network OOD detection Normalized execution time

Detection-only
Ranger

ProGIP without
additional detector(s)
before the activation

modification

ProGIP with
additional detector(s)
before the activation

modification

DenseNet-BC [21] ODIN [32] + ReAct [45] 253.54% 100.83% 101.97%
Softmax score [18] + ASH [8] 193.70% 100.64% 101.01%

ResNet-34 [55] ODIN [32] + ReAct [45] 241.12% 100.46% 101.29%
Softmax score [18] + ASH [8] 179.73% 100.48% 101.24%

MobileNetV2 [41] ODIN [32] + ReAct [45] 211.37% 101.38% 102.06%
Softmax score [18] + ASH [8] 165.86% 100.57% 100.88%
Average 207.55% 100.73% 101.41%

after the activation shaping and right before the fault detector of ProGIP for the softmax scores.
Considering this observation, ProGIP does not need the additional fault detection right before
the activation modification for ASH, while the additional detector is essential for ReAct.

• As shown in the fault injection results for ODIN in Figure 4, high-order bit-flips on the second
forward pass tend to result in OOD to ID detection failures in ODIN. However, we observed that
high-order bit-flips on the second forward pass tend to result in ID to OOD detection failures in
ODIN + ReAct. This is due to the activation rectification of ReAct that clamps higher values. A
fault in a high-order bit affects the magnitude of a value. When this value passes a layer, the
outputs of the layer that multiplied the faulty value and weights can be either an abnormally
high positive value or abnormally low negative value, based on the sign of the fault value
and weights. At the penultimate layer, the activation rectification of ReAct clamps abnormally
high positive values, but all of the negative values and other values affected by the abnormally
negative values remain the same. Consequently, high-order bit-flips in ODIN + ReAct tend to
decrease the confidence scores, while they tend to increase the confidence scores of the original
ODIN without ReAct.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.



ProGIP: Protecting Gradient-based Input Perturbation Approaches for OOD Detection From Soft Errors 111:21

We also measured the runtime of ODIN + ReAct and softmax score + ASHwith the detection-only
Ranger and ProGIP with the same setup in Section 4.4. Table 9 shows the runtime measurement
results. Similar to the evaluation in Section 5.1, ProGIP only incurs 0.73% average runtime overhead
without additional checker(s) for the activation modification and 1.41% average runtime overhead
with additional checker(s) for the activation modification. In Table 9, the detection-only Ranger
for softmax score + ASH shows lower overhead compared to the detection-only Ranger for ODIN
+ ReAct. Note that softmax score + ASH does not proceed with GIP; it only has a forward pass,
while ODIN + ReAct incurs the GIP process and, therefore, executes two forward passes and
one backward pass. This runtime overhead gap implies a higher runtime overhead of PyTorch
hook-based protection for the backward pass.

7 Related Work: Soft Error Mitigation for Neural Networks
Soft errors are transient faults that result in temporary bit-flip errors in transistors induced by
external sources such as alpha particles, thermal neutrons, or cosmic rays [34]. These external
sources can cause fluctuations in signal voltage that lead to the flipping of bit values from 1 to 0 or
vice versa. These errors pose a significant challenge as they can lead to application malfunction
even when the software and hardware components are flawless, making them a central focus in
the design of safety-critical systems.
Traditional redundancy schemes against soft errors, such as dual modular redundancy (DMR),

are difficult to apply to neural networks due to their significant hardware cost or runtime overhead.
Therefore, soft error protection for neural networks focuses on efficient redundancy mechanisms.
For example, algorithm-based fault tolerance (ABFT) solutions [1, 36] exploit mathematical proper-
ties of matrix multiplication operations to introduce efficient checksums. Another approach [43]
trains a small network that can detect and correct fault-affected executions of the target network
based on the fault-free and fault-affected execution traces.
Range-based solutions [3, 12] insert checkers between layers of the target network to detect

abnormally high values affected by faults. These studies observed that faults on high-order bits
contribute to the majority of soft-error-induced failures in neural networks [3, 12], and such large
deviations can be easily detected since they induce significantly large values in layer outputs that
rarely appear in the absence of faults [3, 12, 28]. For example, a single-bit fault on the highest-order
exponent bit in the IEEE-754 floating-point representation can change a value from 0.5 to over
1038. Such large deviations can change the final classification result of the model regardless of the
original small values in the network.

While high-order bit-flips account for most critical failures and are relatively easy to detect, it’s
important to acknowledge that lower and middle-order bit-flips can also cause errors. These more
subtle faults might lead to marginal classification errors where the output still appears reasonable
but is incorrect. Traditional range-based detection methods may not effectively identify these types
of errors, as the resulting values often remain within expected ranges. This limitation is particularly
relevant in classification tasks with fine decision boundaries, where even small deviations can cause
misclassifications.
Detecting soft errors in OOD detection solutions is crucial since soft errors in neural networks

not only affect the classification result but can also change the ID/OOD detection result. Only a few
solutions [11, 42] have the potential to provide holistic reliability against non-malicious threats,
including both hardware faults and OOD inputs, by considering soft errors (or permanent faults)
and OOD as anomalies. However, such solutions cannot distinguish between faults and OOD inputs,
which is crucial for system designers who want to establish appropriate mitigation solutions for
each anomaly type.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.



111:22 Trovato et al.

While previous works have made significant progress in addressing either OOD detection or
soft error mitigation, there remains a gap in effectively combining both approaches, especially for
neural networks using gradient-based input perturbation methods. Our work addresses this gap
by proposing ProGIP, which specifically targets the protection of GIP approaches from soft errors
with minimal overhead.

8 Conclusion and Future Directions
In this paper, we presented ProGIP, a novel approach to protect gradient-based input perturbation
(GIP) methods for out-of-distribution (OOD) detection from soft errors. As deep neural networks
become increasingly integrated into safety-critical systems, ensuring their reliability against non-
malicious threats such as OOD inputs and soft errors is paramount. ProGIP addresses this challenge
by distinguishing between ID inputs, OOD inputs, and fault-affected inferences with minimal
overhead. Our key insight was to analyze how high-order bit-flips affect different execution passes
of GIP solutions and to strategically place fault detectors at critical points in the computation
pipeline. By inserting just two software-level range-based checkers, ProGIP achieves 97.7% fault
coverage while incurring only 0.84% runtime overhead. We conducted extensive experiments with
3.6 million fault injections across three neural network architectures and two OOD detection
methods. The results demonstrated that ProGIP effectively protects against both classification
failures and ID/OOD detection failures across all execution passes, significantly enhancing the
reliability of GIP-based OOD detection. Compared to a detection-only implementation of Ranger,
ProGIP achieves comparable fault coverage with significantly lower overhead (0.84% vs. 135.07%).
This efficiency makes ProGIP particularly suitable for real-time applications where execution speed
is critical. ProGIP represents an important step toward developing holistic reliability solutions
for deep learning systems that must operate in challenging real-world environments. By enabling
the distinction between different types of threats, ProGIP allows system designers to implement
appropriate countermeasures for each scenario, such as collecting OOD inputs for future training
or adjusting system parameters to reduce soft error rates.
ProGIP currently addresses soft errors only in the classification context. Future work might

expand the scope of our technique to segmentation or object detection contexts. For example, per-
pixel logits and gradient maps in segmentation networks behave like the class logits in classification.
Therefore, range checks on these maps (e.g., detecting NaN, infinity values, or huge gradient
magnitudes) would catch faults that corrupt region predictions. On the other hand, object detection
pipelines produce bounding-box scores and class confidences. Two-point detectors of ProGIP
could first validate gradients used in box refinement (backward pass) and then threshold the final
confidence scores for each proposed box.
The coarse-grained fault detection of ProGIP enables lightweight fault detection. However, it

also makes instant fault detection, such as Ranger [3], hard for ProGIP. This is because a faulty
neuron with an abnormally high value propagates the faulty value to all output neurons for a layer
where the faulty neuron is an input neuron, except for output neurons that have zero weight from
the faulty neuron. If the instant fault correction approach (e.g., assigning a specific value such as
zero [37] or bounding the range of value [3]) detects the fault after this propagation, the approach
will incorrectly correct the fault-propagated neurons, which will lose the original information of
multiple neurons in the layer. A coarse-grained fault detection scheme such as ProGIP can only
recover such cases by re-executing the faulty inference. In other words, ProGIP trades off the
fault-detection latency to minimize the runtime overhead to protect the target network, while
Ranger utilizes the instant fault detection latency for the correction. Future work might suggest a
better fault recovery scheme that fits with ProGIP.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.



ProGIP: Protecting Gradient-based Input Perturbation Approaches for OOD Detection From Soft Errors 111:23

Finally, we used an empirical 200% margin for ProGIP, while the margin can be narrowed for
each network, OOD detection scheme, and fault detector. For example, we observed that ODIN
scores in our ID and OOD test never exceeded the maximum ODIN score profiled from the ID train
set. Still, we do not have a good methodology to select a minimum margin that can prevent false
detection without an extra test set. A methodology to select the proper margin without any test set
can improve the fault coverage of ProGIP.

Acknowledgments
This work was partially supported by funding from National Science Foundation grants ACED
2436016 and Semiconductor Research Corporation (SRC) project 3154; by the MSIT (Ministry
of Science and ICT), Korea, under the National Program in Medical AI Semiconductor) (2024-0-
0097) supervised by the IITP (Institute of Information & Communications Technology Planning
& Evaluation) in 2025; by Institute of Information & Communications Technology Planning &
Evaluation (IITP) grant funded by the Korea government (MSIT) (No.RS-2025-02304331,Digital
Columbus Project); by the National Research Foundation of Korea (NRF) grant funded by the
Korea government (MSIT) (RS-2025-00561169); by Institute of Information & communications
Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No.
RS-2022-00155966, Artificial Intelligence Convergence Innovation Human Resources Development
(Ewha Womans University)); by the National Research Foundation of Korea (NRF) grant funded by
the Korea government (MSIT) (RS-2024-00341794); by National Research Foundation of Korea (NRF)
grant funded by the Korea government (MSIT) (No. RS-2022-00165225); by the Korean Government
(MSIT) (No. RS-2020-II201361 , Artificial Intelligence Graduate School Program (Yonsei University));
by the Regional Innovation System & Education (RISE) program through the Gangwon RISE Center,
funded by the Ministry of Education (MOE) and the Gangwon State (G.S.), Republic of Korea.
(2025-RISE-10-006).

References
[1] Sandeep Bal, Chandra Sekhar Mummidi, Victor Da Cruz Ferreira, Sudarshan Srinivasan, and Sandip Kundu. 2023. A

novel fault-tolerant architecture for tiled matrix multiplication. In 2023 Design, Automation & Test in Europe Conference
& Exhibition (DATE). IEEE, 1–6.

[2] Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, and Vivienne Sze. 2019. Eyeriss v2: A Flexible Accelerator for Emerging Deep
Neural Networks on Mobile Devices. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 9, 2 (2019),
292–308. doi:10.1109/JETCAS.2019.2910232

[3] Zitao Chen, Guanpeng Li, and Karthik Pattabiraman. 2021. A low-cost fault corrector for deep neural networks through
range restriction. In 2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN).
IEEE, 1–13.

[4] Zitao Chen, Guanpeng Li, Karthik Pattabiraman, and Nathan DeBardeleben. 2019. Binfi: An efficient fault injector for
safety-critical machine learning systems. In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. 1–23.

[5] Charles Corbière. 2022. Robust deep learning for autonomous driving. arXiv preprint arXiv:2211.07772 (2022).
[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet: A large-scale hierarchical image

database. In 2009 IEEE conference on computer vision and pattern recognition. Ieee, 248–255.
[7] Andrija Djurisic. 2022. https://github.com/andrijazz/ash
[8] Andrija Djurisic, Nebojsa Bozanic, Arjun Ashok, and Rosanne Liu. 2022. Extremely simple activation shaping for

out-of-distribution detection. arXiv preprint arXiv:2209.09858 (2022).
[9] Yicong Dong, Rundong He, Guangyao Chen, Wentao Zhang, Zhongyi Han, Jieming Shi, and Yilong Yin. 2025. G-OSR:

A Comprehensive Benchmark for Graph Open-Set Recognition. arXiv preprint arXiv:2503.00476 (2025).
[10] Farshad Firouzi, Mostafa E Salehi, Fan Wang, and Sied Mehdi Fakhraie. 2011. An accurate model for soft error rate

estimation considering dynamic voltage and frequency scaling effects. Microelectronics Reliability 51, 2 (2011), 460–467.
[11] Gabriele Gavarini, Diego Stucchi, Annachiara Ruospo, Giacomo Boracchi, and Ernesto Sanchez. 2022. Open-set

recognition: an inexpensive strategy to increase dnn reliability. In 2022 IEEE 28th International Symposium on On-Line
Testing and Robust System Design (IOLTS). IEEE, 1–7.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://doi.org/10.1109/JETCAS.2019.2910232
https://github.com/andrijazz/ash


111:24 Trovato et al.

[12] Behnam Ghavami, Mani Sadati, Zhenman Fang, and Lesley Shannon. 2022. FitAct: Error resilient deep neural networks
via fine-grained post-trainable activation functions. In 2022 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 1239–1244.

[13] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining and Harnessing Adversarial Examples. In
International Conference on Learning Representations (ICLR).

[14] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. 2017. On calibration of modern neural networks. In
International conference on machine learning. PMLR, 1321–1330.

[15] Shafinul Haque, Andy Wei Liu, Serena Liu, and Jonathan H. Chan. 2021. Improving the Robustness of a Convolutional
Neural Network with Out-of-Distribution Data Fine-Tuning and Image Preprocessing. In Proceedings of the 12th
International Conference on Advances in Information Technology. 1–7.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition. 770–778.

[17] Yi He, Prasanna Balaprakash, and Yanjing Li. 2020. Fidelity: Efficient resilience analysis framework for deep learning
accelerators. In 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE, 270–281.

[18] Dan Hendrycks and Kevin Gimpel. 2017. A Baseline for Detecting Misclassified and Out-of-Distribution Examples in
Neural Networks. In International Conference on Learning Representations (ICLR).

[19] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in a neural network. arXiv preprint
arXiv:1503.02531 (2015).

[20] Yen-Chang Hsu, Yilin Shen, Hongxia Jin, and Zsolt Kira. 2020. Generalized odin: Detecting out-of-distribution image
without learning from out-of-distribution data. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. 10951–10960.

[21] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. 2017. Densely connected convolutional
networks. In Proceedings of the IEEE conference on computer vision and pattern recognition. 4700–4708.

[22] Wenyu Jiang, Yuxin Ge, Hao Cheng, Mingcai Chen, Shuai Feng, and Chongjun Wang. 2023. Read: Aggregating
reconstruction error into out-of-distribution detection. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 37. 14910–14918.

[23] Alex Krizhevsky. 2009. Learning multiple layers of features from tiny images. Master’s thesis. University of Toronto,
Toronto, Ontario. (2009).

[24] kuangliu. 2018. https://github.com/kuangliu/pytorch-cifar/blob/master/models/mobilenetv2.py
[25] Zeqiang Lai, Kaixuan Wei, Ying Fu, Philipp Härtel, and Felix Heide. 2023. -prox: Differentiable proximal algorithm

modeling for large-scale optimization. ACM Transactions on Graphics (TOG) 42, 4 (2023), 1–19.
[26] CS Research Group led by Prof. Sharon Li. 2021. https://github.com/deeplearning-wisc/react
[27] Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. 2018. A simple unified framework for detecting out-of-distribution

samples and adversarial attacks. Advances in neural information processing systems 31 (2018).
[28] Guanpeng Li, Siva Kumar Sastry Hari, Michael Sullivan, Timothy Tsai, Karthik Pattabiraman, Joel Emer, and StephenW

Keckler. 2017. Understanding error propagation in deep learning neural network (DNN) accelerators and applications.
In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. 1–12.

[29] Guanpeng Li, Karthik Pattabiraman, and Nathan DeBardeleben. 2018. Tensorfi: A configurable fault injector for
tensorflow applications. In 2018 IEEE International symposium on software reliability engineering workshops (ISSREW).
IEEE.

[30] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li, Adam Paszke, Jeff Smith, Brian Vaughan,
Pritam Damania, et al. 2020. Pytorch distributed: Experiences on accelerating data parallel training. arXiv preprint
arXiv:2006.15704 (2020).

[31] Yixuan Li. 2018. https://github.com/facebookresearch/odin
[32] Shiyu Liang, Yixuan Li, and R Srikant. 2018. Enhancing The Reliability of Out-of-distribution Image Detection in

Neural Networks. In International Conference on Learning Representations (ICLR).
[33] Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan Li. 2020. Energy-based out-of-distribution detection. Advances

in neural information processing systems 33 (2020), 21464–21475.
[34] Shubhendu S Mukherjee, Joel Emer, and Steven K Reinhardt. 2005. The soft error problem: An architectural perspective.

In 11th International Symposium on High-Performance Computer Architecture. IEEE, 243–247.
[35] Hyungjun Oh, Junyeol Lee, Hyeongju Kim, and Jiwon Seo. 2022. Out-of-order backprop: An effective scheduling

technique for deep learning. In Proceedings of the Seventeenth European Conference on Computer Systems. 435–452.
[36] Elbruz Ozen and Alex Orailoglu. 2019. Sanity-check: Boosting the reliability of safety-critical deep neural network

applications. In 2019 IEEE 28th Asian Test Symposium (ATS). IEEE, 7–75.
[37] Elbruz Ozen and Alex Orailoglu. 2020. Just say zero: Containing critical bit-error propagation in deep neural networks

with anomalous feature suppression. In Proceedings of the 39th International Conference on Computer-Aided Design.
1–9.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://github.com/kuangliu/pytorch-cifar/blob/master/models/mobilenetv2.py
https://github.com/deeplearning-wisc/react
https://github.com/facebookresearch/odin


ProGIP: Protecting Gradient-based Input Perturbation Approaches for OOD Detection From Soft Errors 111:25

[38] Guansong Pang, Chunhua Shen, Longbing Cao, and Anton Van Den Hengel. 2021. Deep learning for anomaly detection:
A review. ACM computing surveys (CSUR) 54, 2 (2021), 1–38.

[39] George A Reis, Jonathan Chang, Neil Vachharajani, Ram Rangan, and David I August. 2005. SWIFT: Software
implemented fault tolerance. In International symposium on Code generation and optimization. IEEE, 243–254.

[40] Lukas Ruff, Jacob R Kauffmann, Robert A Vandermeulen, Grégoire Montavon, Wojciech Samek, Marius Kloft, Thomas G
Dietterich, and Klaus-Robert Müller. 2021. A unifying review of deep and shallow anomaly detection. Proc. IEEE 109, 5
(2021), 756–795.

[41] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. 2018. Mobilenetv2:
Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and pattern recognition.
4510–4520.

[42] Christoph Schorn and Lydia Gauerhof. 2020. Facer: A universal framework for detecting anomalous operation of deep
neural networks. In 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC). IEEE, 1–6.

[43] Christoph Schorn, Andre Guntoro, and Gerd Ascheid. 2018. Efficient on-line error detection and mitigation for deep
neural network accelerators. In Computer Safety, Reliability, and Security: 37th International Conference, SAFECOMP
2018, Västerås, Sweden, September 19-21, 2018, Proceedings 37. Springer, 205–219.

[44] Muhammad Shafique, Alberto Marchisio, Rachmad Vidya Wicaksana Putra, and Muhammad Abdullah Hanif. 2021.
Towards energy-efficient and secure edge AI: A cross-layer framework ICCAD special session paper. In 2021 IEEE/ACM
International Conference On Computer Aided Design (ICCAD). IEEE, 1–9.

[45] Yiyou Sun, Chuan Guo, and Yixuan Li. 2021. React: Out-of-distribution detection with rectified activations. Advances
in neural information processing systems 34 (2021), 144–157.

[46] Yongqiang Tian, Shiqing Ma, Ming Wen, Yepang Liu, Shing-Chi Cheung, and Xiangyu Zhang. 2021. To what extent do
dnn-based image classification models make unreliable inferences? Empirical Software Engineering 26, 5 (2021), 84.

[47] Sachin Vernekar, Ashish Gaurav, Vahdat Abdelzad, Taylor Denouden, Rick Salay, and Krzysztof Czarnecki. 2019.
Out-of-distribution detection in classifiers via generation. arXiv preprint arXiv:1910.04241 (2019).

[48] Apoorv Vyas, Nataraj Jammalamadaka, Xia Zhu, Dipankar Das, Bharat Kaul, and Theodore L Willke. 2018. Out-
of-distribution detection using an ensemble of self supervised leave-out classifiers. In Proceedings of the European
conference on computer vision (ECCV). 550–564.

[49] Zishen Wan, Aqeel Anwar, Abdulrahman Mahmoud, Tianyu Jia, Yu-Shun Hsiao, Vijay Janapa Reddi, and Arijit
Raychowdhury. 2022. Frl-fi: Transient fault analysis for federated reinforcement learning-based navigation systems. In
2022 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 430–435.

[50] Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han. 2019. HAQ: Hardware-aware automated quantization with
mixed precision. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 8612–8620.

[51] Donghun Yang, Kien Mai Ngoc, Iksoo Shin, Kyong-Ha Lee, and Myunggwon Hwang. 2021. Ensemble-based out-of-
distribution detection. Electronics 10, 5 (2021), 567.

[52] Jingkang Yang, Kaiyang Zhou, Yixuan Li, and Ziwei Liu. 2024. Generalized out-of-distribution detection: A survey.
International Journal of Computer Vision (2024), 1–28.

[53] Jinsong Zhang, Qiang Fu, Xu Chen, Lun Du, Zelin Li, Gang Wang, Shi Han, Dongmei Zhang, et al. 2022. Out-of-
distribution detection based on in-distribution data patterns memorization with modern hopfield energy. In The
Eleventh International Conference on Learning Representations.

[54] Jingyang Zhang, Jingkang Yang, Pengyun Wang, Haoqi Wang, Yueqian Lin, Haoran Zhang, Yiyou Sun, Xuefeng
Du, Kaiyang Zhou, Wayne Zhang, Yixuan Li, Ziwei Liu, Yiran Chen, and Hai Li. 2023. OpenOOD v1.5: Enhanced
Benchmark for Out-of-Distribution Detection. arXiv preprint arXiv:2306.09301 (2023).

[55] Ev Zisselman and Aviv Tamar. 2020. Deep residual flow for out of distribution detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 13994–14003.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.


	Abstract
	1 Introduction
	1.1 Why Protecting Gip Solutions is Important?

	2 Background
	2.1 Gradient-based Input Perturbation (Gip) Solutions for Out-of-distribution (Ood) Detection
	2.2 GIP Approach Overview
	2.3 Confidence Scoring Functions
	2.4 Threshold Selection and Classification Results

	3 Proposed Method: ProGIP
	3.1 Threat Analysis and Design Principles
	3.2 First Fault Detector: Gradient Checker for the First Forward and Backward Passes
	3.3 Second Fault Detector: OOD Score Checker for the Second Forward Pass
	3.4 Handling Not a Number (NaN) and Infinity Values

	4 Experimental Setup
	4.1 Network, Dataset, and OOD Detection Methods
	4.2 Soft Error Detection Methods
	4.3 Fault Injection Setup
	4.4 Runtime Measurement

	5 Experimental Results
	5.1 Runtime Overhead Analysis
	5.2 Detailed Analysis of Fault Injection Experiments
	5.3 Analysis of Not a Number (NaN) and Infinity Values
	5.4 Impact of Bit Position on Fault Coverage
	5.5 Ablation Study: Fault Coverage of the First and Second Detectors of ProGIP
	5.6 Summary of Results

	6 Applicability: Activation Modification Approaches with ProGIP
	6.1 ReAct and ASH
	6.2 Applying ProGIP to the activation modification approaches
	6.3 Experiments for ASH and ReAct

	7 Related Work: Soft Error Mitigation for Neural Networks
	8 Conclusion and Future Directions
	Acknowledgments
	References

