
ProGIP: Protecting Gradient-based Input Perturbation
Approaches for Out-of-distribution Detection

From Soft Errors

by

Sumedh Shridhar Joshi

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved October 2024 by the
Graduate Supervisory Committee:

Aviral Shrivastava, Chair
Aman Arora
Hokeun Kim

ARIZONA STATE UNIVERSITY

December 2024

ABSTRACT

Undetected out-of-distribution (OOD) inputs, the representative non-malicious threat,

pose a significant menace to the reliability of deep learning models as they can lead

to unexpected behaviors during inference. Several studies proposed novel OOD input

detection methods and proved their effectiveness. However, soft errors, another rep-

resentative non-malicious threat, can impact both the classification results of neural

network models (in-distribution) and ID/OOD detection results of OOD detection

solutions. Therefore, protecting OOD detection solutions from soft errors is crucial

to ensure the reliability of neural networks. Still, none of the existing solutions can

detect and distinguish soft errors from OOD inputs. To provide a resilient OOD

detection solution against soft errors, this thesis analyzes the effect of soft errors

on neural network models with gradient-based input perturbation (GIP) approaches,

which are representative OOD detection solutions. Building on my analysis, I propose

ProGIP, which incorporates two software-level range-based fault detectors to protect

all execution phases of GIP approaches, including two forward and one backward

pass. My ProGIP solution enables GIP approaches to distinguish between ID, OOD,

and fault- affected inferences, detecting nearly 99% of critical faults while introducing

a negligible runtime overhead of less than 1%.

i

ACKNOWLEDGEMENTS

I would like to express my heartfelt gratitude to my thesis supervisor, Dr. Avi-

ral Shrivastava, whose unwavering guidance and support have been instrumental

throughout my research journey. Your expertise and encouragement have inspired

me to push the boundaries of my work. I am also deeply thankful to Dr. Hwisoo So

for his invaluable guidance and support, which has greatly shaped my understanding

of the subject. My sincere appreciation extends to my thesis committee members,

Dr. Aman Arora and Dr. Hokeun Kim, whose insightful feedback and constructive

criticism have significantly enhanced the quality of this thesis. Your contributions

have been vital in enriching my research and deepening my analysis. Thank you all

for your dedication and support; I am truly grateful for your mentorship.

ii

TABLE OF CONTENTS

Page

LIST OF TABLES . iv

LIST OF FIGURES . v

CHAPTER

1 INTRODUCTION . 1

2 RELATED WORK . 4

2.1 Gradient-based input perturbation (GIP) solutions for out-of-distribution

(OOD) detection . 4

2.2 Soft error mitigation for neural networks . 7

3 METHODOLOGY . 9

3.1 First fault detector for first forward and backward passes 9

3.2 Second detector for second forward pass . 11

4 EXPERIMENTAL SETUP . 15

5 EXPERIMENTAL RESULTS . 19

6 CONCLUSION . 22

REFERENCES . 24

APPENDIX

A ADDITIONAL RESULTS . 29

B OOD DETECTION WITH GIP . 31

iii

LIST OF TABLES

Table Page

4.1 Network and OOD detection information . 15

4.2 Runtime measurement results . 17

4.3 Summary of the fault injection experiments . 18

A.1 Bit-wise fault injection results . 30

iv

LIST OF FIGURES

Figure Page

2.1 Gradient-based input perturbation (GIP) solutions process first for-

ward and backward passes to perturb the input, and second forward

pass to distinguish ID and OOD. 5

2.2 High-order bit-flips on the first forward and backward passes in GIP

solutions induce extremely high or near zero gradients, which is tricky

to observe in error-free inferences. The first fault detector of ProGIP

checks the gradient based on this observation to cover high-order bit-

flips on such passes. 7

3.1 High-order bit-flips on the second forward pass of GIP solutions induce

extremely high or low confidence scores compared to fault-free infer-

ences. Based on this observation, the second fault detector of ProGIP

checks the confidence score to detect high-order bit-flips on the second

forward pass. 12

5.1 The detailed fault injection results show the coverage of ProGIP out-

performs the one of the detection-only Ranger for OOD to ID detection

failures induced by faults on the second forward pass of Mahalanobis,

and comparable to the one of the detection-only Ranger for other cases. 19

v

Chapter 1

INTRODUCTION

With the remarkable success of deep neural networks, machine learning has be-

come a pivotal advancement to modern computing systems. Safety-critical systems

such as autonomous driving [11] and disease diagnosis [19] adopt machine learning

techniques as the core algorithm. However, the potential consequences of malfunc-

tions or unexpected behavior in such systems are catastrophic [4]. In real-world

environments, non-malicious threats can severely undermine the reliability of ma-

chine learning models, even in the absence of malicious attacks. As a result, ensuring

the reliability of machine learning models against non-malicious threats has become

a paramount design concern for AI-based safety-critical systems. [42]

Out-of-distribution (OOD) data is a major non-malicious threat to the ma-

chine learning system. Since machine learning models are designed to learn a training

dataset in a particular distribution, they lack the proper information to deal with

OOD data, which deviates significantly from in-distribution data (ID). Therefore,

correct inference of OOD inputs is difficult, or in some cases, even impossible. A

better approach is to detect OOD data and reject such unfamiliar cases. Such an

approach prevents the machine learning models from behaving abnormally due to

unreliable inference results of OOD data [39]. For instance, if an autonomous driving

system encounters objects never encountered during training, it should recognize the

anomaly and deliver a warning [46, 4].

The representative OOD detection category is gradient-based input perturbation

(GIP) [27, 16, 22, 13, 44, 50, 41, 48, 18], which utilizes the gradients to perturb the

input to maximize the confidence gap between ID and OOD inputs. However, such

1

solutions are vulnerable to soft errors, another major threat to reliability. A soft er-

ror is a transient fault resulting in a temporary bit-flip error of the transistor, induced

by external sources such as alpha particles, thermal neutrons, or cosmic rays [29]. My

experiments show that soft errors in neural networks can induce incorrect classifica-

tion results and affect the ID/OOD detection results of GIP solutions. In neural

networks, these bit-flips on execution units can alter neuron results. Given that GIP

methods require precise computation of gradients and confidence scores, soft errors

can severely affect their effectiveness by introducing miscalculations.

No existing solutions provide comprehensive reliability against both OOD data

and soft errors. Few solutions can potentially detect both threats as outliers, but

they cannot distinguish whether the detected outlier is a case of OOD data or soft

error. Distinguishing between OOD data and soft errors is essential for developing

specific countermeasures for different threats. For example, operators of machine

learning applications can collect detected OOD inputs as potential learning resources

for future use. [47, 32, 35]. On the other hand, since voltage and frequency affect

the soft error rate [7], system designers can monitor soft error occurrences to adjust

dynamic voltage and frequency scaling (DVFS) settings [38]. Such threat-specific

actions are impossible without a method of distinction between different threats.

Combining GIP approaches and soft error detection solutions for comprehensive

reliability is challenging due to the structure of GIP approaches. GIP approaches

[27, 16, 22, 13, 44, 41, 48, 18] require one pair of forward and backward passes to

obtain the gradients for input perturbation and an extra forward pass to generate the

confidence scores of the perturbed input. Due to the need for multiple executions, GIP

solutions are extremely sensitive to additional runtime overhead incurred by applying

soft error detection solutions. Furthermore, most soft error detection solutions only

provide detection methodologies for the forward pass, although GIP solutions also

2

require a backward pass.

To achieve comprehensive reliability against non-malicious threats, I propose ProGIP

(Protecting Gradient-based Input Perturbation), which protects GIP approaches for

OOD detection against soft errors with minimum software-level detectors based on

the range-based checkers [2, 9], to distinguish ID, OOD, and fault-affected cases. In-

spired by the observation in previous studies [2, 9] that faults on the high-order bits

in the model mainly contribute to the failures, this thesis analyzes the effects and

symptoms of high-order bit-flips in ID/OOD detection results along with classifica-

tion results. Based on the analysis, I have developed ProGIP , which inserts two

software-level range-based checkers to detect the majority of high-order bit-flips in all

three passes of GIP approaches; one checker right after the backward pass to cover

the first forward and backward passes, and another checker after the second forward

pass to cover that pass. The contribution of this thesis is as follows:

• I analyze the impact of soft errors on neural networks using gradient-based

input perturbation (GIP) approaches, identifying vulnerabilities in existing out-

of-distribution (OOD) detection methods.

• I propose ProGIP , a holistic reliability solution that integrates two fault detec-

tors to protect both forward and backward passes in GIP approaches, effectively

distinguishing between OOD data and soft errors.

• My method detects 98.76% of critical failures on neural network models with

GIP solution with only 0.81% runtime overhead, ensuring comprehensive relia-

bility for deep learning models against non-malicious threats.

3

Chapter 2

RELATED WORK

2.1 Gradient-based input perturbation (GIP) solutions for out-of-distribution

(OOD) detection

A fundamental strategy to distinguish ID and OOD data is to score the con-

fidence of inference results based on the softmax values, based on the observation

that the highest softmax results of ID inferences tend to be higher than the ones of

OOD inferences [14]. No existing single method can consistently outperform others

across benchmarks, and their performance ranking is different from one dataset to

another [49]. In this thesis, I focus on the GIP approach, which is one of the most

representative approaches in OOD detection categories. For the sake of simplicity,

instead of introducing all GIP solutions [27, 16, 22, 13, 44, 41, 48, 18] that share

the similar structure, this thesis mainly discusses two representative GIP solutions,

ODIN [27] and Mahalanobis [22].

The main goal of the GIP approach is to maximize the confidence score gaps

between ID and OOD by perturbing the input based on the gradient so that GIP

solutions can distinguish ID and OOD more effectively. Figure 2.1 shows the high-

level view of GIP solutions. In this figure, the GIP approach first generates the

perturbed input with an input perturbation process, which includes first forward and

backward passes to generate gradients. Inspired by the fast gradient sign method [10],

the input perturbation in this process maximizes the confidence gap between ID and

OOD inputs using Equation 2.1.

4

Classification

Input

Second
forward

pass
Logits

Confidence
scoring*

ID / OOD
decision

Perturbed input

*varying depending on OOD detection schemes

Gradient
Backward

pass

First
forward

pass
Loss

Loss
function*Logits

Input
perturbation

Input
perturbation

process

Figure 2.1: Gradient-based input perturbation (GIP) solutions process first forward
and backward passes to perturb the input, and second forward pass to distinguish ID
and OOD.

x̃ = x− ϵ ∗ sign(−∇xscore(x)) (2.1)

In Equation 2.1, x and x̃ represent the original and perturbed inputs, respectively.

(−∇xscore(x)) represents the gradient of the scoring function with respect to sample

input, where the scoring function varies based on solutions. sign function preserves

the sign of the gradient values regardless of their magnitudes; 1 if the value is positive,

and -1 if the value is negative. The theoretical background for the gradient-based

input perturbation is well discussed in ODIN [27].

After the input perturbation process, GIP solutions process a second forward pass

with the perturbed input and score the confidence with logits. Based on the confi-

dence scores, GIP solutions judge whether the input is ID or OOD. The confidence

scoring function in the GIP approach varies depending on GIP solutions. ODIN [27]

uses maximum softmax value with temperature scaling, which is utilized to distill

the knowledge in a neural network [15] or to calibrate the confidence [12]. On the

other hand, Mahalanobis [22] calculates the Mahalanobis distance between the logits

5

generated with perturbed input and the mean of logits generated with ID inputs for

each class. Mahalanobis utilizes the negative of the maximum Mahalanobis distance

value as a confidence score.

In both solutions, the confidence scores of ID inputs tend to be higher than those

of OOD inputs. Therefore, both solutions distinguishes between ID and OOD by

equation 2.2.

g(x) =

OOD if score(x̃) ≤ δ

ID if score(x̃) > δ
(2.2)

In Equation 2.2, δ represents the threshold to classify ID/OOD, g(x) represents the

final confidence score of the respective methods, x and x̃ represent the original and

perturbed inputs, respectively. If the confidence is higher than the threshold δ, then

the input is classified as ID, else it is classified as OOD. A higher threshold increases

the chances of correctly detecting OOD, but it can also increase the chances of ID

inputs with lower confidence scores being categorized as OOD. For the implementation

of ODIN and Mahalanobis, I consider ID as positive and OOD as negative according

to the metric of ODIN [27], and set the threshold at 95% true positive rate (TPR),

i.e., the threshold that misidentifies 5% of IDs as OOD and correctly identifies 95%

of IDs as ID.

Note that GIP solutions in Figure 2.1 do not utilize the classification results of

the second forward pass with perturbed input since the input perturbation may alter

the classification results. Instead, they can utilize the result of the first forward pass

with the original input as the classification result.

6

Gradient
Backward

pass

First
forward

pass
Loss

Loss
functionLogits

Input
perturbation
(equation 1)

Input perturbation process

Input Perturbed input

Classification

Effect of high-order bit-flip
on the first forward pass

Effect of high-order bit-flip
on the backward pass

High-order
bit-flip

high logits
ODIN: 0 loss

Maha.: high loss
ODIN: 0 gradient

Maha.: high gradient

Wrongly perturbed input
& wrong classification

(in the absence of detector 1)

Wrongly perturbed input
(in the absence of detector1)

ProGIP Fault detector 1:
checking gradient

(equation 3.1)

High-order
bit-flip

High
gradient

Detected
by

fault
detector 1

Figure 2.2: High-order bit-flips on the first forward and backward passes in GIP
solutions induce extremely high or near zero gradients, which is tricky to observe in
error-free inferences. The first fault detector of ProGIP checks the gradient based
on this observation to cover high-order bit-flips on such passes.

2.2 Soft error mitigation for neural networks

Traditional redundancy schemes against soft errors such as dual modular redun-

dancy (DMR) are hard to apply to neural networks due to their hardware cost or

runtime overhead. Therefore, soft error protections for neural networks focus on

efficient redundancy. For example, algorithm-based fault tolerance (ABFT) solu-

tions [31, 1] exploit mathematical properties of matrix multiplication operations to

introduce efficient checksums.

Another solution [37] trains a small network that can detect and correct fault-

affected executions of the target network, based on the fault-free and fault-affected

execution traces. Range-based solutions [2, 9] insert checkers between layers of the

target network to detect abnormally high values affected by faults.

The range-based studies observed that faults on high-order bits contribute to

the majority of soft-error-induced failures of neural networks [2, 9], and such large

deviations can be easily detected since they induce significantly large values in layer

outputs which rarely appear in the absence of the faults [23, 2, 9]. For example,

a single-bit fault on the highest-order exponent bit in the IEEE-754 floating point

representation can change a value from 0.5 to over 1038. Such large deviations can

7

change the final classification result of the model regardless of the original small values

in the network.

Detecting soft errors in OOD detection solutions is crucial since soft errors in neu-

ral networks not only affect the classification result but also can change the ID/OOD

detection result. Only a few solutions [36, 8] have the potential to provide holistic reli-

ability against non-malicious threats including both hardware faults and OOD inputs,

by considering soft error (or permanent fault) and OOD as an anomaly. However,

such solutions cannot distinguish faults and OOD inputs, which is crucial for system

designers who want to establish appropriate mitigation solutions for each anomaly

type.

8

Chapter 3

METHODOLOGY

In this chapter, I propose ProGIP , an efficient mechanism to detect the majority

of critical faults in GIP solutions to prevent two types of failures on GIP solutions. i)

Classification failure: A neural network model with a GIP solution can correctly

classify the input in the absence of soft errors, but a soft error causes the model to

misclassify the input. ii) ID/OOD detection failure: A neural network model

with a GIP solution can correctly distinguish the input as ID or OOD in the absence

of soft errors, but a soft error causes the model to misclassify an ID as OOD (ID to

OOD) or vice versa (OOD to ID).

Several studies have demonstrated that the majority of soft-error-induced fail-

ures in neural networks are caused by high-order bit-flips [23, 2, 9]. Motivated by

these observations, ProGIP analyzes how high-order bit-flips on the three execution

passes of GIP solutions induce these two types of failures and what visible symp-

toms these bit-flips produce, and places two fault detectors that can protect all three

execution passes of GIP solutions. The first fault detector in 3.1 detects abnormal

gradient values to protect the first forward and backward passes. The second fault

detector in 3.2 detects abnormal confidence scores to protect the second forward pass.

3.1 First fault detector for first forward and backward passes

Figure 2.2 illustrates the effects of high-order bit-flips on the first forward and

backward passes of GIP solutions, and the corresponding first fault detector of ProGIP .

A high-order bit-flip on the first forward pass results in unusually high logits. These

9

logits are used for classification and fed to the backward pass to generate gradients for

input perturbation. Therefore, such incorrect logits can directly induce classification

failures, and also can indirectly induce ID/OOD detection failures by affecting the

gradient for the input perturbation.

The effect of high-value logits on the gradient varies depending on the loss func-

tions in ODIN and Mahalanobis. ODIN employs softmax-based confidence scoring

and cross-entropy loss. When logits are high, the cross-entropy loss approaches zero,

leading to an almost zero gradient in the backward pass. On the other hand, Maha-

lanobis uses distance-based confidence scoring, calculating the Mahalanobis distance

using the logits of the input (f(x)) and the mean and covariance of logits of ID samples

for a class (µ̂c and Σ̂c, respectively). Then, the confidence score is defined as the clos-

est Mahalanobis distance among classes, i.e., maxc{−(f(x)− µ̂c)
T Σ̂−1

c (f(x) − µ̂c)}.

In this equation, as the logits f(x) increase, the confidence scores decrease since the

confidence is the negative of distance. Consequently, the loss will increase, resulting

in a higher gradient in the backward pass.

High-order bit-flips on the backward pass directly result in a high value-gradient

as illustrated in Figure 2.2, regardless of the types of loss functions. Similar to the

high-order bit-flips on the first forward pass of Mahalanobis, such high gradient values

can indirectly induce ID/OOD detection failures by affecting the input perturbation,

but bit-flips in the second forward pass do not affect classification results.

The symptom of high-order bit-flips on the first forward and backward passes

found by the above analysis is extremely high or near-zero gradient values. However,

such high deviations disappear after the input perturbation, since the input pertur-

bation with equation 2.1 only utilizes the sign of the gradient and disregards the

magnitude. Note that this does not mean that the input perturbation process masks

the effects of high-order bit-flips entirely, since the signs of gradient values can also

10

be affected by faults.

Therefore, as illustrated by the black box in Figure 2.2, ProGIP places the first

fault detector right before the input perturbation, which can be implemented at the

software level with equation 3.1.

check(grad) =

Faulty if max(abs(grad)) ≈ 0,

Faulty if max(abs(grad)) > δF1,

F ine otherwise.

(3.1)

In Equation 3.1, grad indicates the gradient from the backward pass of GIP so-

lutions, and δF1 indicates the fault detection threshold for the first fault detector of

ProGIP . For Equation 3.1, I considered any value less than 10−11 as near-zero for the

first comparison. Note that since high-order bit-flips never induce near-zero gradients

in Mahalanobis, the first fault detector can skip the comparison against zero in Ma-

halanobis. To select the fault detection threshold δF1, I profile the max(abs(grad))

values from the inferences with the ID training dataset and find the maximum value

of max(abs(grad)). To prevent naturally large gradients from the test dataset from

causing false fault detection alarms, I conservatively add a 200% margin, i.e., triple

it, to the selected maximum value.

3.2 Second detector for second forward pass

Figure 3.1 illustrates the effects of high-order bit-flips on the second forward pass

of GIP solutions, and the corresponding second fault detector of ProGIP . High-order

bit-flips in the second forward pass induce extremely high logits. Since the confidence

scoring functions of GIP solutions utilize logits from the second forward pass, such

faults can directly induce ID/OOD detection failures. Specifically, the unusually high

logits result in different scores based on the confidence scoring functions of ODIN and

11

Second
forward

pass
Logits

ID / OOD
/ faulty
decision

Perturbed input

Effect of
high-order
bit-flip on

the second
forward pass

High-order
bit-flip

High
logits

ODIN:
high score

Maha.:
low score

ID / OOD
detection failure
(in the absence
of detector 2)

Detected
by

fault
detector 2

ProGIP fault detector 2:
checking confidence score

(equation 3.2/3.3)

Confidence scoring

Figure 3.1: High-order bit-flips on the second forward pass of GIP solutions induce
extremely high or low confidence scores compared to fault-free inferences. Based on
this observation, the second fault detector of ProGIP checks the confidence score to
detect high-order bit-flips on the second forward pass.

Mahalanobis.

The softmax-based confidence scoring of ODIN adopts drastic temperature scal-

ing. The fault-free confidence scores of ODIN for both ID and OOD inputs are

relatively small, typically near the reciprocal of the number of classes. In contrast,

high logits resulting from high-order bit-flips during the second forward pass lead to

extremely high confidence scores in ODIN, even higher than the fault-free scores for

ID inputs. Therefore, if a high-order bit-flip affects the second forward pass of ODIN

during the inference of an OOD input, the binary classification in Equation 2.2 will

classify the input as ID, resulting in an ID/OOD detection failure (OOD to ID). For

example, in ResNet with ODIN, I observed fault-affected confidence scores reaching

values near 1, while the average confidence scores of ID and OOD inferences were

0.10104 and 0.10082, respectively.

On the other hand, fault-induced high logits in a neural network with Mahalanobis

can produce low confidence scores: that is, scores with a high absolute value but

negative. This happens because such high logits are extremely distant from the

distribution of fault-free outputs. If a high-order bit-flip affects the second forward

12

pass of Mahalanobis during the inference of an ID input, the confidence score would

decrease significantly. Therefore, the binary classification will classify the input as

OOD, resulting in an ID/OOD detection failure (ID to OOD). For example, in ResNet

with Mahalanobis, I observed a fault-affected confidence score of −2.2e11, while the

average confidence scores of ID and OOD inferences were −172.07 and −125.95,

respectively.

The symptom of high-order bit-flips on the second forward pass found by the above

analyses is an extremely high confidence score in the case of ODIN and an extremely

low confidence score in the case of Mahalanobis. Therefore, as illustrated by the black

box in Figure 3.1, ProGIP places the software-level second fault detector, which

jointly checks the logits with the confidence scoring function to distinguish ID, OOD,

and faulty inferences. Since symptoms vary depending on the confidence scoring

function, ProGIP also provides different fault detectors for ODIN and Mahalanobis.

Equation 3.2 shows how the second fault detector with the scoring function of ODIN

distinguishes between ID, OOD, and faulty inferences.

g′O(x) =

OOD if scoreO(x̃) ≤ δOOD,

ID if δOOD < scoreO(x̃) ≤ δF2,

Faulty if scoreO(x̃) > δF2.

(3.2)

In equation 3.2, x represents the original input, and x̃ represents the perturbed

input. g′O represents the modified ODIN OOD detector with the second fault detector

of ProGIP . This detector compares the confidence score of ODIN (scoreO), i.e.,

maximum softmax with the temperature scaled logits from the second forward pass,

against the ID/OOD threshold δOOD and fault detection threshold δF2. Since high-

order bit-flips in the second forward pass of ODIN mostly result in high confidence,

the second detector of ProGIP considers the inference as faulty if scoreO(X̃) is higher

13

than the threshold δF2.

Equation 3.3 shows how the second fault detector with the scoring function of

Mahalanobis distinguishes between ID, OOD, and faulty inferences.

g′M(x) =

Fault if scoreM(x̃) ≤ δF2,

OOD if δF2 < scoreM(x̃) ≤ δOOD,

ID if δOOD < scoreM(x̃).

(3.3)

In equation 3.3, g′M and scoreM represent the modified Mahalanobis OOD de-

tection and the confidence scoring function of Mahalanobis, respectively. High-order

bit-flips in the second forward pass of Mahalanobis usually result in low confidence,

and therefore the second detector of ProGIP detects the faulty inference if scoreM(X̃)

is loIr than the threshold δF2.

As discussed in Chapter 2, I select ID/OOD threshold δOOD at 95% TPR for

ID/OOD classification. To select the fault detection threshold δF2, I profile the con-

fidence scores with the ID training dataset without injecting faults and add a 200%

margin, similar to the threshold for the first fault detector in 3.1. For δF2 of ODIN, I

first find the logits that result in the maximum confidence score during the training

phase and then increase it by 200%. For δF2 of Mahalanobis, I found the minimum

of the score during the training phase and tripled it.

14

Chapter 4

EXPERIMENTAL SETUP

I have conducted runtime measurement and fault injection experiments to evaluate

the efficiency and fault coverage of ProGIP .

Network, dataset, and OOD detection: I adopt DenseNet-BC [17] and

ResNet34 [50] trained to classify CIFAR-10 dataset. I use the pre-trained DenseNet-

BC provided by the official implementation of ODIN [26], which trains with a growth

rate of 12 for 300 epochs with a Iight decay of e−4. For ResNet34, I trained it for 200

epochs with a Iight decay of 5e−4. Both models use a Stochastic Gradient Descent

(SGD) optimizer and a learning rate of 0.1 divided by 10 at 50% and 75% of the total

number of training epochs. For both model, I apply ODIN [27] and Mahalanobis [22]

by adopting their respective official implementation on GitHub [26, 21]. Table 4.1

summarizes the classification and ID/OOD detection accuracies for the models and

GIP solutions.

Soft error detection: I implement two software-level ProGIP checkers in 3.1

Table 4.1: Network and OOD detection information

Network
OOD

detection

ID

Classification

accuracy

AUROC for

TPR vs FPR

curve

FPR

at 95%

TPR

2*DenseNet-BC ODIN 2*95.19% 98.40% 8.0%

Mahanalobis 96.40% 15.0%

2*ResNet-34 ODIN 2*94.61% 90.30% 39.2%

Mahanalobis 93.00% 35.2%

15

and 3.2 into the implementation of ODIN and Mahalanobis. As discussed in 3.1 and

3.2, the fault detection thresholds are selected based on the profiling with the ID

training dataset. Since the comparison operations in PyTorch may behave differently

in cases of not-a-number (NaN) or infinite numbers, I additionally checked for NaN

and infinite numbers for the two checkers of ProGIP .

There is no existing solution to provide soft error detection for GIP solutions.

To compare the efficiency and effectiveness of ProGIP , I additionally implement a

detection-only Ranger [2] with GIP solutions, which checks the abnormal values of all

activation function layers and following max pool, average pool, and reshape layers,

via built-in hook methods of PyTorch. The Original Ranger also tries to correct faults

by changing the abnormal values, but my detection-only Ranger is implemented to

only provide a fault detection alarm. Similar to the ProGIP implementation, I added

NaN and infinite number checking for the last layers of the execution passes of GIP

solutions with Ranger.

Fault injection setup: I assume that ECC and parity can effectively cover the

faults in memory [34], and therefore I aim to mimic soft errors in the datapath.

Several prior studies flipped bits in the outputs of the layers in a neural network as

virtual soft errors in the datapath [2, 23, 3, 37, 24]. According to the prior studies, I

implemented bit-flips in the outputs of layers1 via hook methods built-in PyTorch.

For one fault injection trial, I randomly select a layer in one execution pass. Then,

I execute an inference of the GIP solution with both ProGIP and the detection-only

Ranger. Just before executing the selected pass, I add a fault injection hook and

execute the pass so that the hook will directly flip a random bit in the output of

the selected layer. After executing the selected pass, I remove the added hook and

continue the remaining execution.

1https://github.com/hidden due to the blind review

16

Table 4.2: Runtime measurement results

2*Network 2*
OOD

detection
Normalized execution time

Detection-only Ranger ProGIP

2*DenseNet-BC ODIN 264.79% 100.74%

Mahanalobis 259.01% 100.68%

2*ResNet-34 ODIN 245.48% 101.24%

Mahanalobis 234.17% 100.56%

Average 250.86% 100.81%

For the fault injection run, I collect classification, ID/OOD detection, and soft er-

ror detection results from both protections. To identify the classification and ID/OOD

detection failures, I also execute the inference with the same input and random seeds

without injecting fault and compare the results between fault injection and fault-free

runs. I have repeated a total of 2.4 million fault injections; 100,000 fault injection

runs × 2 networks × 2 OOD detections × 2 types of dataset (ID or OOD) × 3

execution passes.

Runtime measurement: I measured execution times of ODIN and Mahalanobis,

without soft error protection, with the detection-only Ranger, and with ProGIP on

Google Colab with NVIDIA T4 GPU. I executed inferences with 1,000 ID and 1,000

OOD inputs without batch as one runtime measurement iteration and repeated 20

iterations. I computed the mean of execution times for each version by excluding the

top and bottom 10% of iterations.

17

Table 4.3: Summary of the fault injection experiments

Fault

injection

run

Originally

correct

run*

Classification

failure

ID/OOD

detection

failure

Unprotected 3*2,400,000 3*2,004,945 4,318 5989

Detection-only

Ranger
12 133

ProGIP 17 111

* The execution that can produce correct classification and ID/OOD results

if a fault is not injected.

18

Chapter 5

EXPERIMENTAL RESULTS

Table 4.2 shows the execution times of ODIN and Mahalanobis with the detection-

only Ranger or ProGIP , normalized by the execution times of unprotected ODIN

and Mahalanobis. The detection-only Ranger induces 150.86% runtime overhead

on average. I observed that the backward hook methods for every ReLU layer in-

duce severe overhead. Note that it is usual to custom backward pass via hooks in

PyTorch [25, 20, 30]. On the other hand, ProGIP only induced 0.81% runtime

overhead, since it only inserts two checkers.

Table 4.3 summarizes the fault injection results on ODIN and Mahalanobis, with-

out protection, with the detection-only Ranger, and with ProGIP . In this table, I

only counted classification and ID/OOD failures for the originally correct runs, i.e.,

Unprotected
(original)

Detection-only
Ranger

ProGIP
(ours)

1208
266

1

209

9

1311

3
1

8 45
1

4 9 4

1

100

10000
Number of failures in DenseNet-BC with ODIN

L
o

g
-s

c
a

le 0 0 0 0 0 0

Class.
failure

ID→OOD
failure

OOD→ID
failure

ID→OOD
failure

OOD→ID
failure

ID→OOD
failure

OOD→ID
failure

First forward Backward Second forward

1030
134

1

165

5

872

6
2 1

5
18

6
2 1

13 5
20

1

100

10000
Number of failures in ResNet34 with ODIN

L
o

g
-s

c
a

le

0 0 0

Class.
failure

ID→OOD
failure

OOD→ID
failure

ID→OOD
failure

OOD→ID
failure

ID→OOD
failure

OOD→ID
failure

First forward Backward Second forward

0

1102
194

1

134
14

1243

2 3
1

5
25

5 3
1

7
2

1

100

10000
Number of failures in DenseNet-BC with Mahalanobis

L
o

g
-s

c
a

le 0 0 00 0

Class.
failure

ID→OOD
failure

OOD→ID
failure

ID→OOD
failure

OOD→ID
failure

ID→OOD
failure

OOD→ID
failure

First forward Backward Second forward

N
N

N

978
238

7

299

1

15

870

1
4 7 12

37

1
4 7 5 10 13

1

100

10000
Number of failures in ResNet34 with Mahalanobis

L
o

g
-s

c
a

le

0 0 0

Class.
failure

ID→OOD
failure

OOD→ID
failure

ID→OOD
failure

OOD→ID
failure

ID→OOD
failure

OOD→ID
failure

First forward Backward Second forward

N
N

N

N: not-a-number-dominant (NaN-dominant), which means more than 96% failures produced not-a-number outputs (confidence score for forward passes and gradient for backward pass).

Figure 5.1: The detailed fault injection results show the coverage of ProGIP outper-
forms the one of the detection-only Ranger for OOD to ID detection failures induced
by faults on the second forward pass of Mahalanobis, and comparable to the one of
the detection-only Ranger for other cases.

19

the execution can produce correct results if a fault is not injected. In other words, if

the fault-free run with the same input and seed failed to produce either correct clas-

sification or ID/OOD detection failure, I did not count classification and ID/OOD

detection failures from such failed executions. In Table 4.3, unprotected ODIN and

Mahalanobis encountered a total of 4,318 and 5,989 classification and ID/OOD de-

tection failures, respectively. The detection-only Ranger encountered 12 classification

and 133 ID/OOD detection failures. Finally, ProGIP encountered 17 classification

and 111 ID/OOD detection failures, achieving comparable or even better failure cov-

erage (98.76%) compared to the detection-only ranger with minimum overhead.

Figure 5.1 shows the detailed fault injection results. In this figure, white bars,

grey bars, and black bars represent the number of failures in the unprotected version,

the detection-only ranger version, and ProGIP version, respectively. The number

of failures in unprotected versions marked with red N means not-a-number-dominant

(NaN-dominant), i.e., more than 96% failures produce NaN value output from at least

one forward or backward pass. On the other hand, all of the other numbers of failures

in unprotected versions include around from 0% to 15.3% NaN cases.

The scoring function of Mahalanobis computes maxc{−(f(x)− µ̂c)
T Σ̂−1

c (f(x) −

µ̂c)} where f(x) is logits and Σ̂−1
c and µ̂c are the mean and covariance of logits of

ID samples for a class c. In this equation, high logits (f(x)) can easily produce NaN

in PyTorch. Such NaNs in my PyTorch environment always make the classification

result 0 (first label). Also, comparisons in PyTorch with at least one NaN value

always return false. The implementation of Mahalanobis considers an inference as

OOD if the confidence score is less than or equal to the threshold, and therefore it

considers a confidence score with NaN as OOD. Still, such NaNs cannot be detected

without any NaN checkings, which are embedded in my ProGIP implementation.

In addition, ProGIP still effectively detects other NaN-indominant failures such as

20

ID to OOD failures in the backward pass of Mahalanobis and all types of failures

in ODIN. I observed that excluding all of the NaN cases, ProGIP still can detect

around 96.78% classification and ID/OOD detection failures.

Finally, I analyzed the false soft error detection rate of Ranger and ProGIP in

the absence of faults. The detection-only Ranger encountered 0.0045% false soft er-

ror detection from originally correct executions in fault-free runs. On the other hand,

ProGIP never encountered false soft error detection from originally correct execu-

tions in fault-free runs. ProGIP shows less false detection rate than the detection-

only Ranger, since the lazy checking of ProGIP can expect some of the faults can

be masked before the checking.

21

Chapter 6

CONCLUSION

As deep learning systems increasingly permeate safety-critical domains such as

autonomous driving and disease diagnosis, the demand for reliable performance has

become paramount. To address this urgent need, I present ProGIP , an advanced

mechanism designed to detect soft errors in conjunction with confidence-based out-of-

distribution (OOD) detection systems. By augmenting any existing confidence-based

identification and OOD detection framework, ProGIP aims to enhance the overall

reliability of deep learning applications significantly.

While ProGIP can function independently within a neural network, its true po-

tential is realized through seamless integration with established gradient-based input

perturbation OOD detection systems like ODIN and Mahalanobis. This integration

ensures optimal efficiency and runtime performance. My method has been meticu-

lously developed to identify critical soft errors, achieving impressive detection rates

with minimal checkpoint insertions. Furthermore, ProGIP offers the flexibility to

fine-tune soft error detection thresholds, allowing for tailored adjustments that meet

the specific criticality requirements of various applications.

Importantly, My experiments demonstrate that implementing ProGIP incurs

minimal runtime overhead, preserving the system’s operational efficiency. I also high-

light how variations in the choice of confidence function can influence the manifesta-

tion of errors, while the foundational methodology remains consistent.

Looking ahead, I envision a future where ProGIP can be integrated with other

OOD detection techniques, promising a more comprehensive approach to ensuring the

reliability of deep learning systems. In conclusion, ProGIP represents a crucial ad-

22

vancement in strengthening the reliability of deep learning technologies, safeguarding

their performance across a wide array of safety-critical applications.

23

REFERENCES

[1] Bal, S., C. S. Mummidi, V. D. C. Ferreira, S. Srinivasan and S. Kundu, “A
novel fault-tolerant architecture for tiled matrix multiplication”, in “2023 Design,
Automation & Test in Europe Conference & Exhibition (DATE)”, pp. 1–6 (IEEE,
2023).

[2] Chen, Z., G. Li and K. Pattabiraman, “A low-cost fault corrector for deep neu-
ral networks through range restriction”, in “2021 51st Annual IEEE/IFIP In-
ternational Conference on Dependable Systems and Networks (DSN)”, pp. 1–13
(IEEE, 2021).

[3] Chen, Z., G. Li, K. Pattabiraman and N. DeBardeleben, “Binfi: An efficient
fault injector for safety-critical machine learning systems”, in “Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis”, pp. 1–23 (2019).

[4] Corbière, C., “Robust deep learning for autonomous driving”, arXiv preprint
arXiv:2211.07772 (2022).

[5] Cui, P. and J. Wang, “Out-of-distribution (ood) detection
based on deep learning: A review”, Electronics 11, 21, URL
https://www.mdpi.com/2079-9292/11/21/3500 (2022).

[6] DeVries, T. and G. W. Taylor, “Learning confidence for out-of-distribution de-
tection in neural networks”, arXiv preprint arXiv:1802.04865 (2018).

[7] Firouzi, F., M. E. Salehi, F. Wang and S. M. Fakhraie, “An accurate model
for soft error rate estimation considering dynamic voltage and frequency scaling
effects”, Microelectronics Reliability 51, 2, 460–467 (2011).

[8] Gavarini, G., D. Stucchi, A. Ruospo, G. Boracchi and E. Sanchez, “Open-set
recognition: an inexpensive strategy to increase dnn reliability”, in “2022 IEEE
28th International Symposium on On-Line Testing and Robust System Design
(IOLTS)”, pp. 1–7 (IEEE, 2022).

[9] Ghavami, B., M. Sadati, Z. Fang and L. Shannon, “Fitact: Error resilient deep
neural networks via fine-grained post-trainable activation functions”, in “2022
Design, Automation & Test in Europe Conference & Exhibition (DATE)”, pp.
1239–1244 (IEEE, 2022).

[10] Goodfellow, I. J., J. Shlens and C. Szegedy, “Explaining and harnessing ad-
versarial examples”, in “International Conference on Learning Representations
(ICLR)”, (2015).

[11] Grigorescu, S., B. Trasnea, T. Cocias and G. Macesanu, “A survey of deep
learning techniques for autonomous driving”, Journal of field robotics 37, 3,
362–386 (2020).

24

[12] Guo, C., G. Pleiss, Y. Sun and K. Q. Weinberger, “On calibration of modern
neural networks”, in “International conference on machine learning”, pp. 1321–
1330 (PMLR, 2017).

[13] Haque, S., A. W. Liu, S. Liu and J. H. Chan, “Improving the robustness of a
convolutional neural network with out-of-distribution data fine-tuning and im-
age preprocessing”, in “Proceedings of the 12th International Conference on
Advances in Information Technology”, pp. 1–7 (2021).

[14] Hendrycks, D. and K. Gimpel, “A baseline for detecting misclassified and out-
of-distribution examples in neural networks”, in “International Conference on
Learning Representations (ICLR)”, (2017).

[15] Hinton, G., O. Vinyals and J. Dean, “Distilling the knowledge in a neural net-
work”, arXiv preprint arXiv:1503.02531 (2015).

[16] Hsu, Y.-C., Y. Shen, H. Jin and Z. Kira, “Generalized odin: Detecting out-of-
distribution image without learning from out-of-distribution data”, in “Proceed-
ings of the IEEE/CVF conference on computer vision and pattern recognition”,
pp. 10951–10960 (2020).

[17] Huang, G., Z. Liu, L. Van Der Maaten and K. Q. Weinberger, “Densely connected
convolutional networks”, in “Proceedings of the IEEE conference on computer
vision and pattern recognition”, pp. 4700–4708 (2017).

[18] Jiang, W., Y. Ge, H. Cheng, M. Chen, S. Feng and C. Wang, “Read: Aggregating
reconstruction error into out-of-distribution detection”, in “Proceedings of the
AAAI Conference on Artificial Intelligence”, vol. 37, pp. 14910–14918 (2023).

[19] Kononenko, I., “Machine learning for medical diagnosis: history, state of the art
and perspective”, Artificial Intelligence in medicine 23, 1, 89–109 (2001).

[20] Lai, Z., K. Wei, Y. Fu, P. Härtel and F. Heide, “-prox: Differentiable proximal
algorithm modeling for large-scale optimization”, ACMTransactions on Graphics
(TOG) 42, 4, 1–19 (2023).

[21] Lee, K., URL https://github.com/pokaxpoka/
deep Mahalanobis detector/ (2018).

[22] Lee, K., K. Lee, H. Lee and J. Shin, “A simple unified framework for detecting
out-of-distribution samples and adversarial attacks”, Advances in neural infor-
mation processing systems 31 (2018).

[23] Li, G., S. K. S. Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer and S. W.
Keckler, “Understanding error propagation in deep learning neural network (dnn)
accelerators and applications”, in “Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis”, pp. 1–12
(2017).

25

[24] Li, G., K. Pattabiraman and N. DeBardeleben, “Tensorfi: A configurable fault
injector for tensorflow applications”, in “2018 IEEE International symposium on
software reliability engineering workshops (ISSREW)”, (IEEE, 2018).

[25] Li, S., Y. Zhao, R. Varma, O. Salpekar, P. Noordhuis, T. Li, A. Paszke, J. Smith,
B. Vaughan, P. Damania et al., “Pytorch distributed: Experiences on accelerat-
ing data parallel training”, arXiv preprint arXiv:2006.15704 (2020).

[26] Li, Y., URL https://github.com/facebookresearch/odin (2018).

[27] Liang, S., Y. Li and R. Srikant, “Enhancing the reliability of out-of-distribution
image detection in neural networks”, in “International Conference on Learning
Representations (ICLR)”, (2018).

[28] Liu, W., X. Wang, J. Owens and Y. Li, “Energy-based out-of-distribution de-
tection”, Advances in neural information processing systems 33, 21464–21475
(2020).

[29] Mukherjee, S. S., J. Emer and S. K. Reinhardt, “The soft error problem: An ar-
chitectural perspective”, in “11th International Symposium on High-Performance
Computer Architecture”, pp. 243–247 (IEEE, 2005).

[30] Oh, H., J. Lee, H. Kim and J. Seo, “Out-of-order backprop: An effective schedul-
ing technique for deep learning”, in “Proceedings of the Seventeenth European
Conference on Computer Systems”, pp. 435–452 (2022).

[31] Ozen, E. and A. Orailoglu, “Sanity-check: Boosting the reliability of safety-
critical deep neural network applications”, in “2019 IEEE 28th Asian Test Sym-
posium (ATS)”, pp. 7–75 (IEEE, 2019).

[32] Pang, G., C. Shen, L. Cao and A. V. D. Hengel, “Deep learning for anomaly
detection: A review”, ACM computing surveys (CSUR) 54, 2, 1–38 (2021).

[33] Ran, X., M. Xu, L. Mei, Q. Xu and Q. Liu, “Detecting out-of-distribution sam-
ples via variational auto-encoder with reliable uncertainty estimation”, Neural
Networks 145, 199–208 (2022).

[34] Reis, G. A., J. Chang, N. Vachharajani, R. Rangan and D. I. August, “Swift:
Software implemented fault tolerance”, in “International symposium on Code
generation and optimization”, pp. 243–254 (IEEE, 2005).

[35] Ruff, L., J. R. Kauffmann, R. A. Vandermeulen, G. Montavon, W. Samek,
M. Kloft, T. G. Dietterich and K.-R. Müller, “A unifying review of deep and
shallow anomaly detection”, Proceedings of the IEEE 109, 5, 756–795 (2021).

[36] Schorn, C. and L. Gauerhof, “Facer: A universal framework for detecting anoma-
lous operation of deep neural networks”, in “2020 IEEE 23rd International Con-
ference on Intelligent Transportation Systems (ITSC)”, pp. 1–6 (IEEE, 2020).

26

[37] Schorn, C., A. Guntoro and G. Ascheid, “Efficient on-line error detection and
mitigation for deep neural network accelerators”, in “Computer Safety, Reliabil-
ity, and Security: 37th International Conference, SAFECOMP 2018, Väster̊as,
Sweden, September 19-21, 2018, Proceedings 37”, pp. 205–219 (Springer, 2018).

[38] Shafique, M., A. Marchisio, R. V. W. Putra and M. A. Hanif, “Towards energy-
efficient and secure edge ai: A cross-layer framework iccad special session paper”,
in “2021 IEEE/ACM International Conference On Computer Aided Design (IC-
CAD)”, pp. 1–9 (IEEE, 2021).

[39] Tian, Y., S. Ma, M. Wen, Y. Liu, S.-C. Cheung and X. Zhang, “To what extent
do dnn-based image classification models make unreliable inferences?”, Empirical
Software Engineering 26, 5, 84 (2021).

[40] Vernekar, S., A. Gaurav, V. Abdelzad, T. Denouden, R. Salay and K. Czar-
necki, “Out-of-distribution detection in classifiers via generation”, arXiv preprint
arXiv:1910.04241 (2019).

[41] Vyas, A., N. Jammalamadaka, X. Zhu, D. Das, B. Kaul and T. L. Willke, “Out-
of-distribution detection using an ensemble of self supervised leave-out classi-
fiers”, in “Proceedings of the European conference on computer vision (ECCV)”,
pp. 550–564 (2018).

[42] Wan, Z., A. Anwar, A. Mahmoud, T. Jia, Y.-S. Hsiao, V. J. Reddi and A. Ray-
chowdhury, “Frl-fi: Transient fault analysis for federated reinforcement learning-
based navigation systems”, in “2022 Design, Automation & Test in Europe Con-
ference & Exhibition (DATE)”, pp. 430–435 (IEEE, 2022).

[43] Xu, J., S. Zhu, Z. Li and C. Xu, “Joint distribution across representation space
for out-of-distribution detection”, arXiv preprint arXiv:2103.12344 (2021).

[44] Yang, D., K. Mai Ngoc, I. Shin, K.-H. Lee and M. Hwang, “Ensemble-based
out-of-distribution detection”, Electronics 10, 5, 567 (2021).

[45] Yang, D., I. Shin, M. N. Kien, H. Kim, C. Yu and M. Hwang, “Out-of-distribution
detection based on distance metric learning”, in “The 9th International Confer-
ence on Smart Media and Applications”, (2020).

[46] Yang, J., K. Zhou, Y. Li and Z. Liu, “Generalized out-of-distribution detection:
A survey”, arXiv preprint arXiv:2110.11334 (2021).

[47] Yang, J., K. Zhou, Y. Li and Z. Liu, “Generalized out-of-distribution detection:
A survey”, International Journal of Computer Vision pp. 1–28 (2024).

[48] Zhang, J., Q. Fu, X. Chen, L. Du, Z. Li, G. Wang, S. Han, D. Zhang et al., “Out-
of-distribution detection based on in-distribution data patterns memorization
with modern hopfield energy”, in “The Eleventh International Conference on
Learning Representations”, (2022).

27

[49] Zhang, J., J. Yang, P. Wang, H. Wang, Y. Lin, H. Zhang, Y. Sun, X. Du,
K. Zhou, W. Zhang, Y. Li, Z. Liu, Y. Chen and H. Li, “Openood v1.5: Enhanced
benchmark for out-of-distribution detection”, arXiv preprint arXiv:2306.09301
(2023).

[50] Zisselman, E. and A. Tamar, “Deep residual flow for out of distribution detec-
tion”, in “Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition”, pp. 13994–14003 (2020).

28

APPENDIX A

ADDITIONAL RESULTS

29

Table A.1: Bit-wise fault injection results
ODIN Mahalanobis

Faulty
bit

NaN
or
inf.

Class.
fail.

ID or
OOD
detect.
fail.

NaN
or
inf.

Class.
fail.

ID or
OOD
detect.
fail.

31 886 6/6 14/14 10343 0/0 3/3
30 0 2072/3 2620/9 0 424/0 239/3
29 0 1/0 20/3 0 2/0 105/3
28 0 4/0 27/3 0 1/0 82/1
27 0 2/1 78/25 0 4/0 74/3
26 0 7/7 29/12 0 0/0 13/13
25 0 1/1 28/23 0 1/1 10/9
24 0 1/1 11/11 0 2/2 6/6
23 0 0/0 4/4 0 0/0 3/3
22 0 1/1 2/2 0 0/0 1/1
21 0 0/0 4/4 0 0/0 1/1

20∼0 0 0/0 0/0 0 0/0 0/0
Failure numbers N/M means (without ProGIP / with ProGIP)

Table A.1 shows the bit-wise number of NaNs, infinite numbers, and failures in
ODIN and Mahalanobis, with and without ProGIP . Most of the NaNs and failures
are due to the bit-flip at 30-bit, which is the highest exponent bit. The bit-wise re-
sults in Table A.1 represent that high-order bit-flips contribute most of the failures,
and ProGIP can effectively detect most such faults. On the other side, Mahalanobis
encountered 10,343 outputs with NaN or infinite value(s), whereas ODIN only en-
countered 886 such cases, due to the characteristics of the different scoring functions
they utilize. This is why ProGIP can only detect 2 ID to OOD detection failures
in ResNet with Mahalanobis; most of the detectable high deviations result in NaN
outputs rather than failures in Mahalanobis. Note that we excluded NaNs that can be
easily covered by ProGIP from the failure metrics, ProGIP still can detect around
97.0% failure-inducing soft errors. Note: These results are conducted on independent
and separate experiments and hence they do not match the exact numbers in chapter
5. But, the trends of both sets of results are very similar.

30

APPENDIX B

OOD DETECTION WITH GIP

31

The taxonomy of OOD detection methods is vast and is beyond the scope of this
thesis. Out-of-distribution detection can be done in several ways [46], the two broader
approaches are supervised and semi-supervised [5]. The supervised approaches in-
clude different threshold-based [40], distance-based [6, 43] and density-based [28] ap-
proaches. The semi-supervised approach majorly includes the reconstruction error of
the autoencoder to determine whether it is an ID sample or an OOD sample. Ran et
al. [33] proposed an improved noise contrast prior (INCP) method to obtain reliable
uncertainty estimates of standard VAE. No single method can consistently outper-
form others across benchmarks, and the ranking of their performance is different from
one dataset to another [49]. An application should choose the OOD detection method
based on its requirements.

The OOD detection with gradient-based perturbation requires three passes, a first
forward pass and corresponding backward pass to calculate a gradient and another
forward pass with perturbed input based on the gradient. Figure 2.1 is a high-level
view of OOD detection techniques with GIP. As shown in Figure 2.1, the first forward
pass performs classification with the sampled input. The backward pass is utilized for
calculating the perturbation by backpropagating the gradient on the loss of the first
forward pass. The perturbations of very low magnitude are then added to the same
input. This perturbed input is again passed through the network which is the second
forward pass of GIP. After the second forward pass a confidence scoring function is
deployed to distinguish between ID and OOD inputs.

The choice of confidence scoring decides the effectiveness of the OOD detection
solutions; among OOD detection solutions with GIP [27, 16, 22, 13, 45, 44, 50, 41,
48, 18], in this thesis, I focus on the confidence scoring of two representative OOD
detections with gradient-based input perturbation, ODIN [27], and Mahalanobis [22].
ODIN is the first technique that utilized gradient-based input perturbation (GIP)
to maximize the confidence score gaps between ID and OOD for OOD detection.
Mahalanobis shares the GIP structure with ODIN but replaces the softmax-based
confidence scoring of ODIN with Mahalanobis distance, which shows considerably
different behaviors under the soft errors compared to the softmax. For the sake of
simplicity, I exclude the feature ensemble approach of Mahalanobis to focus on the
different effects and symptoms of the soft errors under different confidence scorings.

B.1 Input Perturbation

The primary goal of input preprocessing in the GIP approach is to add small
perturbations to the input, which increases the confidence score of the inferences
but tends to have a dominant effect on the ID inputs. Such input perturbations
can maximize the confidence gap between ID and OOD inputs. Inspired by the fast
gradient sign method [10]. The input perturbation is based on the Equation B.1.

x̃ = x− ϵ ∗ sign(−∇xscore(x)) (B.1)

In Equation B.1, x and x̃ represent the original and perturbed inputs, respectively.
(−∇xscore(x)) is the gradient of the confidence function with respect to sample input.
ODIN and Mahalanobis each use a different confidence scoring function.

According to the official implementation of both ODIN and Mahalanobis, the
gradients are normalized to binary and then normalized to the same image space.
When the gradients are normalized to binary instead of {0, 1}, they are converted to

32

{-1, 1}. The gradients are further normalized exactly as the image values. Further,
the sign of these gradients is multiplied by the epsilon, and the resultant is added to
the input image. The value of epsilon is so low that the authors claim and prove that
this small perturbation effect on in-distribution is higher than the out-of-distribution
images making them more separable. When the gradients are converted to -1, 1 the
errors of the first forward pass lose their symptom which might lead to critical errors
in the subsequent passes. Hence, I decided on a checkpoint before the gradients were
normalized to binary. I will discuss this more in the subsequent sections.

B.2 ODIN

ODIN uses SoftMax with temperature scaling. Prior studies that utilized tem-
perature scaling to distill the knowledge in a neural network [15] or to calibrate the
confidence [12], ODIN applies the temperature scaling to the inputs of the SoftMax
functions (logits) for better segregation between OOD and ID inputs. These scores
are generated by:

Si(x;T) =
exp(fi(x)/T)∑N
j=1 exp(fj(x)/T)

(B.2)

and are controlled by a hyperparameter T , where fi(x) is the max logit for sample
i without temperature scaling. The authors of ODIN observed that the segregation
benefits from the temperature scaling are saturated after enough T value (T >100),
and therefore they select T = 1000 for their implementation.

B.3 Mahalanobis

Mahalanobis is a distance-based technique and uses the Mahalanobis distance to
calculate how far the perturbed input is from the mean of the class the input was
classified as in the first forward pass. The confidence score based on Mahalanobis
distance is calculated as follows:

M(x) = maxc

{
−
(
(f(x)− µ̂c)

T Σ̂−1 (f(x)− µ̂c)
)}

(B.3)

The above equation is the Mahalanobis distance between the test sample x and the
closest class-conditional Gaussian distribution where c is the index of the closest class,
µ̂c is the sampled mean of the class c and f(x) is pre-trained features of the SoftMax

based neural classifier and Σ̂ is the covariance matrix. The larger the distance further
the sample from the mean of class. The input is classified as an OOD if the distance
is greater than a particular threshold.

B.4 Deciding Threshold

The OOD detector of each of these methods consumes the confidence score from
the second forward pass. The threshold equation can be described as:

g(x) =

{
OOD if score(x̃) ≤ δ
ID if score(x̃) > δ

(B.4)

33

In Equation B.4, δ represents the threshold to classify ID/OOD, g(x) represents
the final confidence score of the respective methods, x and x̃ represent the original and
perturbed inputs, respectively. If the confidence is higher than the threshold δ then
the input is classified as ID else it is classified as OOD. A higher threshold increases
the chances of correctly detecting OOD. Still, it can also increase the chances of
the ID input with lower confidence scores being categorized as OOD. On the other
hand, a lower threshold will decrease both the ratios of correctly detected OODs
and incorrectly detected IDs. For the implementation of ODIN and Mahalanobis, I
consider ID as positive and OOD as negative According to the metric of ODIN [27],
and select the threshold at 95% true positive rate (TPR), i.e., the threshold that
misidentifies 5% of IDs as OOD and correctly identifies 95% of IDs as ID.

ODIN and Mahalanobis both use input perturbation based on their respective
confidence scoring functions, calculate the confidence of the perturbed input with
their respective confidence scoring functions, and classify whether a sampled input is
ID or OOD based on the decided threshold. I propose to detect soft errors in these
techniques effectively and efficiently to make the models more reliable.

34

