This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Systematic Methodology for the Quantitative
Analysis of Pipeline-Register Reliability

Reiley Jeyapaul, Member, IEEE, Roberto Flores, Student Member, IEEE, Alfonso Avila, Member, IEEE,
and Aviral Shrivastava, Member, IEEE

Abstract— Decades of rapid aggressive technology scaling have
brought the challenge of soft errors to modern computing
systems. Sequential elements (registers) in the processor pipeline
exposed to charge-carrying particles generate bit flips or soft
errors that could translate into system failures. Next to the
processor cache, the pipeline registers (PRs)—registers between
two pipeline stages—account for more than 50% of soft-error
failures in the system. In this paper, for the first time, we apply
architectural correct execution models that quantitatively define
the vulnerability (or exposure to soft errors) of microarchitec-
tural components, and extend it to define the vulnerability of
PRs—PR vulnerability (PRV). We develop gemV-Pipe, a sim-
ulation toolset for the systematic, accurate, and quantitative
estimation and analysis of PRV. Our detailed ISA-aware analysis
in gemV-Pipe reveals interesting facts on the data-access behavior
of PRs: 1) the vulnerability of each PR is not proportional to their
size; 2) the PR bits used for one instruction may not be used (and
are thus not vulnerable) for another, which makes PRV extremely
instruction-dependent; and 3) the functionality of stored data
on the PR bits can be used to classify them as—instruction,
control, and data bits—each of which differ in their instruction-
specific behavior and vulnerability. Applying the insight gained,
we perform design space exploration on selectively hardening the
PR bits, and demonstrate that 75% improved reliability can be
achieved for only <15% power overhead.

Index Terms—Fault tolerance, pipeline hardening, pipeline
registers (PRs), power efficiency, vulnerability.

ONTINUOUS technology scaling provides us with the
C capability to fabricate complex functionality into smaller
processor chips, consuming lower power, and at affordable
costs. As a result, the application areas for computing systems
have exploded, with them being used in areas not imagined
before—medical, automotive, security systems, and in- and
out-of-body sensing devices. Researchers indicate that with
emerging device technologies in sub-22-nm dimensions, the
per-bit soft-error rate (SER) saturates [1], but when a chip
is packed with exponentially increasing number of transistors

(because of available chip area, we will experience an increase
in system-level SER in the not-so-distant future [2]. Soft errors

I. INTRODUCTION

Manuscript received September 6, 2015; revised December 29, 2015 and
March 7, 2016; accepted April 19, 2016.

R. Jeyapaul is with ARM Research, ARM Ltd., Cambridge GB CB1 9NJ,
U.K. (e-mail: reiley.jeyapaul @arm.com).

R. Flores is with Yazaki Services, San Nicolas de los Garza 66470, Mexico
(e-mail: rob_flores86 @yahoo.com).

A. Avila is with the Tecnologico de Monterrey, Monterrey 64849, Mexico
(e-mail: aavila@itesm.mx).

A. Shrivastava is with Arizona State University, Tempe, AZ 85281 USA
(e-mail: aviral.shrivastava@asu.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSIL.2016.2574642

are transient faults that can occur due to one or more of
several reasons, such as electrical noise, external interferences,
crosstalk, and so on. However, the majority of the soft errors in
digital devices happen due to charge-carrying particle strikes
on the processor that corrupt its logic value. Such corruption
of data used within the processor may lead to system failure.
The need for reliable computing, therefore, tends to match
(and sometimes supercede) the need for power efficiency and
performance [3].

Among the processor components, caches are the most
susceptible to soft-error failures, owing to their large area
(more than 50% of chip real estate [4]) and highly dense
SRAM cell layout. Over the years, several researchers have
presented efficient and effective mechanisms (across the design
spectrum) to protect the system from soft errors in the caches.
The most pressing question then is, if the 50% of chip real
estate is protected against soft errors, exactly how reliable is
the system? Which of the other processor blocks deserves
more attention toward improving system reliability? In our
attempt to answer the above questions with certainty, this
paper presents for the first time a systematic and quantitative
methodology to evaluate pipeline register (PR) reliability. Our
experiments show that next to caches, the interface between
two pipeline stages—PRs—is the most vulnerable, contribut-
ing to more than 57% of soft-error failures in the system with
a protected cache.

Mukherjee et al. [5] first defined the term vulnerability to
quantitatively represent the exposure of architecture compo-
nents to soft errors. A PR bit is vulnerable (when exposed
to soft errors) for the time that it holds data that will be
used by the next pipeline stage during its execution. In a
system, the sum of all such vulnerable bits defines the total
vulnerability of the registers in the system, and therefore, by
extension, the sum of all vulnerable bits in the PRs represents
PR vulnerability (PRV). In this paper, we develop a two-phase
repeatable systematic methodology to quantitatively estimate
the PRV of a system. The first phase involves identifying
the accurate set of vulnerable PR bits, and the second phase
involves computing the time that each of the identified bits
is vulnerable during program execution. We integrate our
models with gem5 (a mature and very popular cycle-accurate
architecture simulator [6]), and develop, gemV-Pipe, a cycle-
accurate simulation environment for the quantitative estimation
of system PRV.

Since soft errors in PRs significantly affect the reliability
of a system, it is essential to analyze the same for possi-
ble protection methods. Owing to their high activity factor
(read and wupdated every cycle), the traditional error

1063-8210 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

detection methods (parity, Error Correction Code, Single
Error Correct Double Error Detect, and so on) that involve
multicycle operations cannot be applied for pipeline protec-
tion. Circuit-level pipeline-hardening techniques have been
developed—C-elements [7], [8] and Razor latch [9], [10]—
that protect the PRs from latching-on corrupt data (as a
result of transient soft errors) or corrupting temporarily stored
data. Implementation of such hardening techniques will thus
incur significant power overheads—50% for C-elements and
28.5% for RAZOR-II—making them impractical for embed-
ded applications. Power-efficient methods for the protection of
the PRs from soft errors are thus the most critical requirement
in ensuring system reliability.

Our two-phase systematic methodology to quantitatively
estimate PRV and the consequent analysis of the
ARM (v7A [11]) processor core revealed interesting
insights into the mechanism of soft errors in the processor
pipeline: 1) the PRs with varying sizes (number of bits)
have varying vulnerabilities, which are not always directly
proportional to their size and 2) during program execution,
the number of bits (of a PR) used by one instruction differs
from that used by another, and therefore, the PRV of each
register is instruction-dependent. In this paper, we perform
exploratory experiments to analyze the reliability-versus-
power tradeoff in the protection afforded by different pipeline
protection implementations—C-elements and RAZOR-II. We
then propose selective PR protection as a power-efficient
methodology to improve system reliability. We demonstrate
that by protecting only a subset of the PRs—PC/Fetch,
Fetch/Decode, and Decode/Rename—pipeline vulnerability
can be reduced by 75%, which incurs only 15% power
overhead (over unhardened PRs). And again, through targeted
protection of specific bit types (instruction and control bits)
in the Fetch/Decode PR, we can achieve 31% improved
reliability for less than 3% power overhead.

II. BACKGROUND

A. Pipeline Register Vulnerability

Mukherjee et al. [12] introduced the concept of architec-
turally correct execution (ACE) to compute the structure’s
architectural vulnerability factor (AVF). ACE analysis divides
a bit’s lifetime into ACE and un-ACE intervals. A bit b is
considered to be ACE (or vulnerable) at time ¢, if the
data contained in it will be used by the processor for its
execution (at any later time). In this paper, we extend this
ACE analysis to define the vulnerability of a PR bit at a
more finer granularity when compared with the block-level
granularity of ACE analysis in the AVF-based estimations.
A PR is nothing but a set of flip-flops (sequential ele-
ments) that temporarily hold data between two pipeline stages
[Fig. 1(a)]. In a typical execution model, if the data are written
into a PR during clock cycle c1, it will be read during clock
cycle ¢2 = c1 + 1. Fig. 1(b) describes the mechanism of data
storage in the PR1. The solid bar under the timeline indicates
its vulnerable duration (or the time duration for which the
PR bit is recognized as ACE). For data to be stored on a
PR1, the data have to arrive from Stage 1 at the register
before its hold time, and should remain stable until the end

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

P
Stage Stage
i | ’ - 2

Setup
time (a) Pipeline-Register: PR1
Cycle 1 Cycle 2 |
CLK m m m
Hold | / |
time
§| ¥ p.
n.| 3
Stage 1 completes Vulnerable

and writes into PR1,

Lefore Fald-time: Stage 2 begins reading from

PR1 after setup-time, up until
before hold-time of PR2.

(b) Vulnerability of data in PR1 defined, across two cycles.

Fig. 1. (a) Data in PRI is vulnerable from the time the register is written
(after the execution of Stage 1) to the time the data on the register can be used
for the execution of the instruction on pipeline Stage 2. (b) Vulnerability of the
PR is defined over two clock cycles—Cycles 1 and 2—during the execution
of an instruction in Stages 1 and 2, respectively.

of its setup time. The data stored in the register (PR1) can
be read and used for execution in the succeeding pipeline
stage (Stage 2) immediately after the clock edge, up until the
time that the succeeding PR2 is updated. Here, the data on PR1
is vulnerable for the entire duration that useful data are stored
that can be written into the succeeding PR or used by Stage 2
for execution. In the case of pipeline stalls, this vulnerable
duration is extended for the period of consecutive stalls during
execution. We implement this vulnerability estimation model
in our gemV-Pipe toolset to compute the vulnerability of the
PRs in the processor.

B. Related Work

Wang et al. [13] develop a fault-injection-based method-
ology to perform detailed ACE analysis of the processor
core, and determine a conservative estimate of processor
reliability. Online real-time AVF estimation methods allow
for more elaborate ACE analysis of the processor core [14].
This methodology involves fault injections and algorithms
to analyze the error propagation within the core to estimate
system failure rate. However, the accuracy of this estimate
is limited to the number of fault injection runs that can be
analyzed in a reasonable amount of time.

Biswas et al. [15] in their work perform detailed
ACE analysis on the lifetime of bits in address-based
structures (e.g., data cache, data/instruction Translation
Lookaside/Lookahead Buffer, and store buffer), accurately
model vulnerability of data stored on the structures, and then
compute their AVF through cycle-accurate simulations. It is
evident that the use of analytic models for estimating system
reliability at the microarchitecture-level is more efficient.
However, the significance and/or accuracy of such results are
dependent entirely on the accuracy and validity of the models
developed. The first phase in our modeling methodology, to
determine vulnerable bits in the PR, is obtained as a result of
systematic register transfer level (RTL) analysis and exhaustive
fault-injection-based validation, attesting to the accuracy of
the models implemented. Mukherjee et al. [12] in their work
present the methods to use ACE modeling to estimate the AVF
(application-dependent evaluation) of the various processor

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JEYAPAUL et al.: SYSTEMATIC METHODOLOGY FOR THE QUANTITATIVE ANALYSIS OF PR RELIABILITY 3

structures, such as instruction queue, load-store queue,
and so on. Like in Mukherjee’s work, in our system-level
PRV estimation methodology using gemV-Pipe, we develop
detailed Instruction Set Architecture (ISA)-aware ACE models
for the PR bits, and integrate the same in a cycle-accurate
simulation infrastructure to consider program code behavior.
With the help of predictive modeling and using performance
metrics (from cycle-accurate simulations), Duan et al. [16]
develop a method for fast AVF prediction of a processor.
In this, the costly exercise of implementing AVF estimation
models in an architecture simulator is avoided by utilizing
statistical postsimulation estimates to predict system AVF.
However, this method attempts to abstract-away many of
the intricate data-access patterns on the architecture compo-
nents (e.g., PRs, caches, buffers, and so on), thus lacking
in accuracy and will suffer from a significant error margin.
Sridharan and Kaeli [17] develop a mechanism to quantify
system vulnerability independent of the hardware architec-
ture, and thus provide a means to estimate software vulner-
ability. In this, the authors adapt ACE analysis to develop
a software-level vulnerability metric—program vulnerability
factor (PVF)—which defines the vulnerability of the pro-
gram as an independent entity. On similar lines, researchers
develop thread vulnerability factor to define the vulnerabil-
ity of multithreaded programs [18]. Though such methods
succeed in the fast estimation of system reliability through
abstractions at the program and thread level, they are limited
by their accuracy and abstracted models used. System-level
vulnerability estimation at higher levels of abstraction can
become less accurate owing to the lack of details and accuracy
in the models. However, the analytic models implemented
in gemV-Pipe include the RTL (bit-level) accuracy of
PRV estimation, in conjunction with the software interface.
Azarpeyvand et al. [19] introduce the metric instruction vul-
nerability factor to quantify software vulnerability (extending
the PVF metric) by also considering the microarchitecture
details of the processor. In this, a custom fault-injection
framework is used to analyze the impact of transient faults on
the instruction set. Since fault-injection methods are used for
estimation, this method still is limited by the number and accu-
racy of faults injected. Rehman ef al. [20] present instruction
vulnerability index (IVI), an instruction-level reliability esti-
mation technique that quantifies the effects of hardware faults
at the instruction level. The effect of transient faults on the
instructions at different stages of its execution (i.e., erroneous
instruction-fetch, load-address, store-address) is analyzed, and
the IVI of each instruction is determined. It should be noted
here that IVI estimates only consider the vulnerability of the
data in the register file, instruction queue, Load Store Queue,
and other storage buffers on the pipeline, and do not consider
the vulnerability of the PRs. To the best of our knowledge, we
present for the first time a systematic repeatable methodology
for the accurate quantitative estimation and analysis of PRV.

III. QUANTITATIVE ESTIMATION OF PIPELINE
REGISTER VULNERABILITY
At the interface of two pipeline stages, the output data
from the execution of one stage are temporarily stored into

flip-flops (registers), before being consumed in the subsequent
clock cycle. For instance, in an R-type add instruction, only
the Rs, Rt, and Rd bits are vulnerable. On the other hand, for
an I-type addi instruction, the Rd bits are not vulnerable,
while the Imm bits are vulnerable. With this valuable insight
that the bits in a PR vary in their vulnerability based on the
instruction executed, in this paper, we develop a two-phase
ISA-aware systematic methodology:

1) ISA-aware analysis identifying the set of vulnerable
bits in each PR through: a) RTL-level analysis of the
processor core and b) validation using our efficient fault-
injection-based analysis methodology;

2) computing PRV of an application through our cycle-
accurate simulation environment, gemV-Pipe, where the
results of our ISA-aware analysis on the pipeline is
integrated into our vulnerability estimation model.

A. Phase 1: ISA-Aware Analysis of Vulnerable
Pipeline-Register Bits

By analyzing the RTL of a given processor core, the exact
set of bits that are vulnerable (or, may affect the system
when corrupted by soft errors) can be identified by careful
and detailed ISA-aware analysis of each PR. In this, we also
consider the cases when different control-bit patterns of con-
ditional instructions (of the ARM ISA) are also analyzed for
their effect on PRV—across different input patterns. The steps
followed in our analysis are given in the following.

1) Identify Pipeline Registers: From the processor’s RTL
code (in verilog or VHDL), the set of registers that will
be synthesized into hardware can be identified by applying
behavioral analysis on the RTL [21]. In this, the RTL code
is analyzed for behavioral patterns, and the latches and/or
registers inferred can be identified for each pipeline stage.
As a first step, for the given pipeline structure, we isolate
the PRs—{PR*/*1}—at the interface between two pipeline
stages (s and s + 1). For example, the PR bits in the previous
example are

PRP/X = {Rs, Rt, Rd, Imm}. (1)

2) Annotate Active Pipeline Registers: Among the many
hardware bits (flip-flops) that constitute a PR between two
pipeline stages, only a subset of them is vulnerable when an
instruction is executed. The vulnerable PR bits in PR*/**1 is
dependent on the functionality executed in the trailing pipeline
stage (s 4+ 1). In other words, at the interface of two pipeline
stages (s and s+1), only a subset of the PR bits will be actively
used in the execution of the instruction and are therefore
considered vulnerable. This analysis is performed at the RTL
level through behavioral analysis of the pipeline stage for each
instruction (I € ISA) in the ISA. The result is an annotated
set of active PRs ({aPRi/ SH}), denoting the PR-bits that are
involved in the execution of instruction / in the pipeline
stage—s + 1. For instance, in Fig. 2, the PR bits actively
involved in the execution of the add and addi instructions
are

D/X

aPR2/X = (Rs, Rt, Rd)
aPR2/Y = {Rs, Rt, Imm}.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Tg Vulnerable data-bitsin g
5 the pipeline-register 5
18 SE1N
: Rs 1|Rs| !
[l] N :
1
i Rt ‘ Il Rt| |
]) e 0]] —1.)
T O 1 1 (V]
S ¥p) iRdiD)|Z B S o Rd NS &
SRBC] RN i L R g S T g S
n n
a € = 0 a e |} <
1 | w
E | Efi
o '’
3 3
Q Q
-3 o
o O |
(a) add Instruction (b) addi Instruction

[add Rs,Rt,Rd] [addi Rs,Rt, [Imm]]

Fig. 2. Difference in the number of vulnerable register bits (in the Decode/
Execute PR), for the two variants of the add instruction.

ISA instructions : <list>

Processor RTLcode
(verilog, VHDL, SystemC)

(Behavior-based RTL Analysis]
LAn notate the registers inferred J

Map registers to their respective
pipeline-stageinterfaces:
stage stage
{PR start }7 {P R end }
| Repeatfor each pipeline-stage f § & 1

{VPR stage [bllS]} ---------

inst

=

P

In each pipeline-stage,
for each instruction from <list>,
identify the pipeline-register-bits
involved ininstruction execution:

Fig. 3. Flowchart defining our systematic methodology to identify the
ISA-specific vulnerable PRs—V PRStage—through ISA-aware RTL analysis,

st
for each instruction in the ISA across the processor’s pipeline stages.

This process (as described in Fig. 3) is repeated for every
instruction in the ISA (I € ISA) for each pipeline stage
(s € Stages, where Stages denotes the set of pipeline stages
in the core).

3) Validation Through Fault-Injection Analysis: The result
of our ISA-aware RTL analysis is the set {aPRi/ S+1,
Vs € Stages, VI € ISA}. Not all the aPRi/ Hl[bits] identified
through our ISA-aware RTL analysis are actually vulnerable
during program execution. A bit b € aPRS/ St can be
considered vulnerable if and only if a soft error on the bit b
will disrupt the execution, and/or cause an aberration in the
output of the pipeline stage s, when instruction / is executed.
We perform targeted fault-injection analysis on the annotated
active PR bits—b € aPR;/ SH_to verify their vulnerability.
Our validation process involves the following steps (described
in the flowchart Fig. 4).

1) An instruction I/ € ISA and a PR at the interface
between two pipeline stages—s and s+ 1 € Stages—are
first considered for experimentation.

In an RTL simulation environment (implemented using
Modelsim [22] and Verilog VPI [23]), a fault is injected
into one bit b € aPRS/ St at time-cycle 1.

At time-cycle 1 41, 1f the execution of the stage s is not
disrupted, and if the data stored into PR}*"/ $*2 match
with that of the golden copy, then we consider the bit
b e PR**! not vulnerable when instruction I is
executed.

2)

3)

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Syntheticinput program:
Containsinstructions
from the ISA.

Vulnerable Pipeline
Registers (RTL Analysis):

PRz [bits 1|

inst

SelectngeIine register:
[bits]

Selectinstruction
to execute: inst

/[

Select nge/me register-bit:
VPR;..[b]

e

ms[

_,/

-register: VPRS

RTLSlmulatxon
With 1-bit fault on:V PR m:r[b]

!

[Comparevalue VPRS* 1[b]]

with golden run: et
YES Is Fault N
Propagated ?

Vulnerable Pipeline-Registers:

refined VPR bits| VPR |bits|

inst inst

Repeat for all bits in: VPRS

Repeat for each pipeline

Bitbis
vulnerable

Bit & is NOJr
vulnerabl

Repeat for each instruction inst in the ISA <list>

Fig. 4. Flowchart defining our validation process that refines and also
validates the ISA-specific vulnerable PRs to obtain—refined. VPR'&

nst
through detailed and ISA-specific fault-injection analysis.]

The above steps are repeated for every bit b € {aPRS/ s+1

Vs € Stages,VI € ISA} to finally obtain the validated set
of vulnerable PRs—{VPRS/S+1 C PRS/SJr },Vs € Stages,
VI € ISA.

B. Phase 2: Computing Pipeline Register Vulnerability

To quantitatively estimate the reliability of the proces-
sor pipeline, when a program is executed, we implement
PRV modeling in a cycle-accurate simulation environment—
gem5 [6]. The key component in our vulnerability modeling
and analysis is the fact that the vulnerability of each PR is
strictly bound to the instruction executed. For this purpose,
we implement the access tracker, which functions as a wrapper
around each PR to monitor their accesses. This in turn is
used to compute their respective vulnerability values (defined
as vul. PRI/ESIJEIA in Fig. 5). Another feature of the access
tracker is that the computed values are associated with the
respective instruction in-flight and stored in a temporary list.
When the instructions are committed (at the writeback stage),
their PR vulnerabilities are accumulated to add to the total
system PRV. For example, in Fig. 5, the PRVyy is the sum
of all the vul. PRS/ St Values computed. When an instruction
is squashed because of system behavior (exceptions, inter-
rupts, and speculation), their respective vulnerability values
computed are discarded. For example, in Fig. 5, the vul.PR /

and vul. PRad/ values are discarded.

IV. SYSTEMATIC ANALYSIS OF PIPELINE
REGISTER VULNERABILITY

A. Experimental Method

To compute the effective pipeline vulnerability (say V, in bit
cycles), the experimental methodology involves the following.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JEYAPAUL et al.: SYSTEMATIC METHODOLOGY FOR THE QUANTITATIVE ANALYSIS OF PR RELIABILITY 5

bne rl, r2, bl
add ¥2; x¥3; ¥4
D1: sub rl, r3, r4

Fetch Decode Commit
Write L Bead bpe ssxe
w RW R W R W
YooONC N N

ayw 1 PRvulnerability

vul PRE'® vul PRYF vul PR™ vul PR T accumulated += PRV,

bne bne
lsqua sh:add

time-cycle
t

PR vulnerability
discarded

R 3
1+, time-cycle

bne...

w R W R
add... : by My G-

— —
vul PRE® vul PR2X

add add

Fig. 5. PRV computation for the committed bne instruction and squashed
add instruction from the code snippet is described. Their vulnerability
is computed at every PR for the instruction executed (PR;/ SH), and is
accumulated to account for the system’s PRV for the instruction executed.
In the case when an instruction is squash’d, the computed PRV values are

deleted, and will not be included.

Vulnerable Pipeline Registers obtained through
ISA-aware RTL analysis and FI validation
ORTL Analysis B FI Validation

=
w

o =
— S 9
n () 0
1
]
22%
12%)|

e
=

&
>
m

I

1

|

1

I

1

e

Normalized Vulnerability
(over total size of the pipeline-register)

ORI R G T T G . <)
3\0 z,s"t &S z‘-”b \-‘6 xe- @” ¥ i’& s
S S Sy
R % & &
S TSI S

,
‘0,
"

&

8y,

%

4 %“’f
%%, % |

%,

Fig. 6. Vulnerability of the PRs (normalized over the total size of the PR)
identified through the two analysis methods (ISA-aware RTL analysis and
fault-injection-based validation) is plotted across benchmarks.

1) Analyze the RTL of the AMBER (ARM-v2A) core
obtained from OpenCores [24] to obtain detailed bit-
level list of the PRs (Fig. 6).

2) Model the PRs in the ARM O3-CPU model of the
gem5 [6] cycle-accurate simulator. For this, we utilize
the time buffers (in the gem5 infrastructure) to model the
data transfer between pipeline stages, and also model the
number of hardware bits! involved in such data transfers.

3) Incorporate our vulnerability models into the PRs mod-
eled in gem5, modeling an ARM processor with the
cache of size 64 kB two-way set associative.

B. PR Vulnerability Is Dependent on the
Instructions Executed

From our experiments, we observe that the effective vul-
nerability (V,) of the processor pipeline is only 12% that

ISince the ARM architecture modeled in gem5 is that of the ARM-v7A
architecture, while that of the RTL (freely available) is ARM-v2, we extrapo-
late (with appropriate architectural correction) the bit-level PR details obtained
from our RTL analysis.

Instantaneous Vulnerability (Classified by bit-type)
400
OlInstruction @ Control EData

350

300
250 g r 1 4

200

150 I =il = - I
100
50
0

o OOV T

PO g
I G N

& S & Y o IO

GRS .Q&.a

PR AN

lii]

B ,,("“ ch' gebe Qe& & ..,(’Q’
! & -

¢ T TS
TS d
& @Q ‘&Q

Instantaneous Pipeline Vulnerability
(bit-cycles/cycles)

-

Fig. 7. Instantaneous vulnerability (average number of bits vulnerable at any
instant/cycle of the program execution) of the processor pipeline classified
based on the type of bits (instruction, control, and data bits) in each PR is
plotted across benchmarks.

of V, (without ISA-aware models). Furthermore, we observe
that only 30% of the PR bits are actually vulnerable and
exposed to soft errors at any given instant during program
execution (across MiBench benchmarks). Therefore, as a result
of our ISA-aware vulnerability analysis and modeling, we have
uncovered abundant potential to achieve highly power-efficient
protection of the PR bits.

Fig. 7 shows the vulnerability statistics of the processor
pipeline based on bit type (instruction, control, and data bits).
In the pipeline, a breakdown of PR bits into type shows
that 56% is data, 19% instruction, and 25% control bits.
However, our ISA-aware RTL analysis (average across all
instructions in the ISA), we observe a significant difference
in their relative contributions to pipeline vulnerability—30%
data bits, 48% control bits, and 22% instruction bits. This can
be attributed to the code behavior, data-access pattern, and
instruction composition of the applications involved.

Another interesting finding from this experiment is that
the data bits are less vulnerable than control and instruction
bits. Though the number of data bits (in hardware) is large,
only a subset of the bits will be used for computation for
any particular instruction, which depends on the type of
instruction executed. For instance, a 4-byte data word when
accessed by an arithmetic instruction (like add) will only have
one byte as vulnerable for an instruction that only operates
on one byte (byte-operations in ARM ISA). This instruction-
specific vulnerability behavior of the bit types in the PRs
motivates for the case that certain specific bits (based on
type) in a PR can be protected for power-efficient pipeline
protection.

C. Vulnerability Increase of Multi-Issue Pipelines

The ARM-v7-A processor has a total of 1890 PR bits, and
among them only around 532 bits are vulnerable on average
across all instruction types. Fig. 8 shows the instantaneous
vulnerability (number of vulnerable PRs per cycle) of the
benchmarks, and compares the default pipeline with that for

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

i Pipeline Vulnerability across Configurations
OConfigA BEConfigB BARM-v7-A

Tl

(bit-cycles/cycle)
~ w - 173 (=) ~] -3
=3 [—3 [[—3 (= =3 [— =3
=] = =] = > =] =]

[
(=3
<

M

Instantaneous Pipeline Register Vulnerability

& Q?s £ & & “ \9‘" ”é SFFHFFHF&S 0(0
& S & °< Q" bé' -\) ,\ & & e.
& & &e S &8 »F D &5 &“’ & & (\\ @
» F & &S &
> & N S ‘&Q @Q

o3
>
&

Fig. 8. Average instantaneous vulnerability (in bits) of the processor pipeline,
obtained by the ratio of total vulnerability and program runtime, is plotted
across benchmarks for three varying pipeline configurations. Based on the
pattern and type of instructions that form a program and together with
the nature of their execution on the pipeline, their respective instantaneous
vulnerabilities vary. (Config A: Each pipeline stage has the width = 1,
simulating an in-order pipeline. Config B: Each pipeline stages has half the
width of the default ARM-v7-A configuration.)

two variant pipeline configurations of the ARM processor
core. During program execution, on a multi-issue out-of-
order processor architecture, during pipeline stalls the data
temporarily stored on all the PRs remain vulnerable throughout
the stalled period, which accumulates to form the total pipeline
vulnerability (in bit cycles) of the system. In the case of
Config A where each of the PRs have the widths of 1, the
configuration resembles that of an in-order pipeline. In this, the
pipeline is stalled in the case of data hazards, control hazards,
and memory latencies, and therefore, contribute to total PRV
and also the runtime of the application. On the other hand, in
the case of Config B and ARM-v7-A (which are out-of-order
multi-issue pipeline configurations), the program suffers lesser
stalls with increased pipeline widths and, therefore, lower
instantaneous pipeline vulnerability. The need for protection
techniques for the PRs is therefore evident for modern high-
end computing systems.

D. Vulnerability Is Not Always Directly
Proportional to PR Size

Analysis of PRV using our systematic methodology reveals
that the vulnerable bits in each of the five registers are
not the same, and neither are their respective vulnerabil-
ity values (Fig. 9). For instance, the Rename/[EW PR has
around 15x more vulnerable bits than the IEW/Commit PR,
which accounts for the extremely low vulnerability on the
IEW/Commit PR across benchmarks. The average vulnerable
bits in the Fetch/Decode (278) and Decode/Rename (297) PRs
though are approximately equal, their respective vulnerability
values computed through simulations differ by around 30%.
During program execution, based on the instruction executed,
the data storage and access pattern on the registers differ and
thus reveal that the Fetch/Decode PR 1is actually the most

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

- OPC/Fetch B Fetch/Decode ® Decode/Rename
- .
é § i ORename/TEW B IEW/Commit
2%
S 2 1E+10 —
)
£ T 1E+09
- N
¥ 100000000
B
D
3 10000000
2 1000000
&~
© 100000 O | Sl S 1= | :
£
= 10000 | 8 | (I | (- :
L
= 1000
g 100
= 10

1

g S~ D & L
& & & \;&% $F&ESHS “ \"‘@ & & SFFS &
& T &S S N & Q'” & ST SFSE
S 9 &S '&“QQQé\Q&&&';\
& & ¥ N RN
&

Fig. 9. Total vulnerability of the PRs, at the interface of each of

the pipeline stages, is plotted for the ARM-v7-A processor architecture
(in logarithmic scale). Across benchmarks, the IEW/Commit register has
the least vulnerability, while the other four registers have almost the same
vulnerability contribution.

vulnerable register. The dominant reason for the relatively
higher vulnerability of the Fetch/Decode PR over the other
PRs is because the size of the Fetch/Decode PR is relatively
small, while most of the bits occupying the Fetch/Decode
PRs are useful and consumed by the subsequent stages in the
pipeline and therefore vulnerable to soft error. In addition,
it should be noted here that the number of vulnerable bits
in each PR differs for the type of instruction executed. Since
the number of vulnerable bits in the Fetch/Decode register
for ALU and memory instructions is far greater than that
for control instructions, the MiBench benchmark applications
being predominantly either data intensive or compute-intensive
demonstrate an increased vulnerability on this PR. When an
instruction is processed and data bits in the pipeline populated,
an error in any one bit at a particular PR could alter the
execution of the instruction in the succeeding stages based on
how the data bits are interpreted. Therefore, such ISA-aware
analysis is of paramount importance in system reliability
estimation. Through instruction-specific analysis of the PRs,
we can determine that power-efficient protection could be
achieved by efficiently protecting only specific PRs.

V. POWER-EFFICIENT PROTECTION
OF THE PIPELINE REGISTERS

To protect the vulnerable data as it is stored on the PRs,
researchers have developed techniques at the device-level [25],
circuit level (C-elements [7], [8]) and microarchitecture level
(RAZOR 1I [9], [10]). The most effective and power-efficient
techniques for pipeline hardening among them are C-elements
and RAZOR II. In their implementations at the hardware level,
every single PR bit is considered vulnerable, and therefore is
protected with pipeline hardening. In doing this, all the vul-
nerability in the processor pipeline is protected, but at the cost
of significant pipeline-power overheads around 28.5%~50%.
The power overhead numbers are obtained from the respec-
tive publications, which is used in our experimental setup.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JEYAPAUL et al.: SYSTEMATIC METHODOLOGY FOR THE QUANTITATIVE ANALYSIS OF PR RELIABILITY 7

Such overheads, and also the additional hardware area, and
design cost render their use in modern embedded systems
impractical. Here, we use the results from our quantitative
analysis of the processor pipeline (Fig. 9), and we explore the
power-reliability tradeoff when protecting only a subset of the
PR bits.

Applying the results of our detailed analysis experiments on
the vulnerability behavior of the processor pipeline, we per-
form experiments to protect the processor pipeline with two of
the most popular circuit-level PR protection techniques: 1) SIL
(C-element-based protection) [7] and 2) Razorll [10]. From
the quantitative analysis experiments, we take the two key
learnings.

1) All the PRs do not have uniform vulnerability behavior
(Fig. 9). Each PR has a different size, and the number
of bits that are vulnerable depends on the type of
instruction executed on the pipeline stage interfacing
with the particular PR.

2) In each PR, the type of bits (instruction, data, or control)
varies in their vulnerability. Their vulnerability behavior
varies based on their functionality and significance in
the execution of instructions. The control bits have been
observed to contribute the most to pipeline vulnerability,
followed by the instruction bits. The data bits, which are
larger in size, contribute the least to pipeline vulnerabil-
ity (Fig. 7).

A. Selective Protection of Pipeline Registers

Incorporating our first learning from our quantitative
analysis, we perform a wide range of experiments that
explore the possibility of achieving power-efficient pipeline
protection through the selective protection of PRs. In our
experiments, while we consider configurations with partially
protected PRs, we record the power overheads incurred by the
implementation of C-elements (50% power overhead [7]) and
Razorll (28.5% power overhead [10]) pipeline protection
techniques.

Fig. 10 shows the average (across benchmarks) effective
vulnerability achieved after protection of each of the PRs
individually. We observe two interesting phenomenon.

1) By protecting the Fetch/Decode PR, we can achieve
31% reduction in pipeline vulnerability for a low cost of
only 5% power overhead. This behavior is due to the fact
that of the 346 bits in the Fetch/Decode PR, around 30%
of the bits are vulnerable for all type of instructions
in the ISA. In addition, vulnerability analysis across
benchmarks reveals that owing to the access pattern of
data stored on the Fetch/Decode PR, it is the highest
contributor to total pipeline vulnerability (see Fig. 9).

2) By protecting either the Rename/IEW or Decode/
Rename PRs, we achieve around 25% reduction in
pipeline vulnerability, while they differ greatly around
two times in power overhead. The power overhead can
be attributed to the fact that the Rename/IEW register
has a size of 822 bits, while the Decode/Rename register
is only around half of that with similar difference in
the number of vulnerable bits across ISA instructions.

Trade-off Analysis: Whole PRs are Protected
60%

~

M

£ @ C-Elements ®RazorII

15}

2 50% All PRs protected =

5 MAX protection,

E MAX overhead

=2 40%

- Protecting

[

g — Decode/Rename Protecting

= 2 P Rename/IEW

>

=)

; 20%

) Protecting Fetch/Decode =

% 31% reduced vulnerability,

£ 10% ¢ 9% ~ 5% power overhead

z G

= 0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 110%
Pipeline Vulnerability Reduction (Higher better)

Fig. 10. Tradeoff graph exploring the impact of vulnerability protection

achieved through the protection of the PRs individually. When protecting
the IEW/Commit PR, ~0% vulnerability reduction is achieved for negligible
power overhead, while protecting the Fetch/Decode PR achieves 31% vulner-
ability savings for only ~5% power overhead.

Trade-off Analysis: Groups of PRs are Protected

o 30%

2 @ C-Elements = Razor I

2

R 25%

5 Protecting: Fetch/Decode +

= Decode/Rename + PC/Fetch

S 20% T

N’

-]

S

)

< 15%

)

>

C =

xq.) 10% Decode/Rename |

= +PC/Fetch

<)

A Fetch/Decode +

g B Hetch/Decode, 'Di:ode/;{c:n:me

= +PC/Fetch ‘ -

]

[-%

& 0% g
0% 20% 40% 60% 80%

Pipeline Vulnerability Reduction (Higher Better)

Fig. 11. Reliability-power tradeoff analysis when the combinations of PRs are
protected together. By protecting the three top individual PRs, around 55%
vulnerability reduction is achieved for around 11% power overhead, while
groups of two also perform with comparable power efficiency.

The behavior of data stored on the two PRs indicates that
the Decode/Rename holds the data for longer periods of
time on the PR than the Rename/IEW. This attributes
to their almost similar vulnerability behavior during
application execution (see Fig. 9), which in-turn results
in similar vulnerability savings upon protection.

To further explore power-efficient protection opportunities,
we perform experiments across benchmarks, protecting multi-
ple number of PRs. Fig. 11 shows the average power overheads
and vulnerability reduction achieved through such protection
configurations. We observe here that by combining the three
top contenders for individual PR protection (Fetch/Decode,
Decode/Rename, and PC/Fetch), we can achieve significant
vulnerability reduction (75%) with only 15% cost in power
overhead. On the other hand, by combining these registers
in groups of two, vulnerability reduction of around 50% is

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Trade-off Analysis: Targeted bit-type Protection
40%

@ C-Elements ®RazorIl

Protecting Data bits

35%

30%

25%

Protecting Control bits =
47% reduced vulnerbility
7% ~11% power overhead

g &

0% 20% 40% 60%
Vulnerability Reduction (Higher Better)

20%

15%

10%

Protecting
Instruction bits

Power Overhead (Lower Better)

5%

0%
80%

Fig. 12. Reliability-power tradeoff analysis when only a subset of bits in
all the PRs is protected based on the bit type (instruction, control, or data).
Though large in size, protecting the data bits is inefficient, while protecting
the control bits proves more power-efficient.

Trade-off Analysis: Targeted bit-type Protection
40%

@ C-Elements ®RazorIl
35%

30%

25% Protecting
Instruction+Control bits

in the Decode/Rename PR

20%

Protecting
InstructiontControl bits
in the Fetch/Decode PR

15%

10%

5%

Power Overhead (Lower Better)

%9
| i)
0% 20% 40% 60%
Vulnerability Reduction (Higher Better)

0%

80%

Fig. 13. Reliability-power tradeoff analysis when only a subset of bits
in specific PRs is protected based on the bit type (instruction, control,
or data). Protecting the instruction and control bits of the Fetch/Decode and
Decode/Rename PRs proves power-efficient.

achieved for only around 10% power overhead. This only
proves to show that, based on the system requirements for
power and reliability, selective protection of PRs can achieve
significant vulnerability reduction for small cost in power
overhead.

B. Targeted Type-Specific Protection of Pipeline Registers

Incorporating our second learning from our quantitative
analysis, we perform a wide range of experiments to analyze
the reliability-power tradeoff achieved through targeted type-
specific protection of PR bits. Our experiments (Fig. 12)
show that by protecting only the control bits in all the
PRs, we achieve 47% reduction in vulnerability with a cost
of only around 7% in power overhead. Similarly, by pro-
tecting the next major vulnerability contributor (instruction
bits), we achieve around 35% improved reliability, for only
around 5% power cost. This experiment reveals that in a
PR by selectively protecting the most vulnerable bit type,
power savings can be improved for comparable improvement
in reliability. Fig. 13 shows that through selectively protecting

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

only the instruction and control bits of the Fetch/Decode
and Decode/Rename PRs, significant vulnerability reduction
(around 35%) can be achieved for negligible cost in power
consumption (around 3%).

VI. COST-EFFECTIVE ISA-AWARE RTL ANALYSIS

In the design of soft-error protection for the processor
pipeline, the key questions that require answers are as follows.
1) What is the quantitative contribution of a PR bit to the
total pipeline reliability, and thereby system reliability?

2) Is there a systematic methodology for reliability-versus-

power tradeoff analysis?

In this paper, we demonstrate that through our ISA-aware
RTL analysis and vulnerability modeling on a cycle-
accurate simulator—gemV-Pipeline—benchmarking and
domain specific analysis can be performed to determine
quantitatively the vulnerability contribution by each PR bit.
In attempting reliability-power tradeoff analysis, selected
PRs or specific PR bits can be modeled as protected (in our
gemV-pipeline toolset) and thereby compute the effective
pipeline vulnerability.

VII. CONCLUSION

As device dimensions shrink rapidly, embedded processors
become more vulnerable to failures due to soft errors. Among
the architecture components, PRs are the most vulnerable
next only to the cache blocks. Researchers have developed
many power-efficient methods to protect the caches from soft
errors, but very little work has been done to protect the PRs.
Circuit-level hardening techniques (C-elements and RAZOR
latches) have been developed to protect the PRs, but do so
with significant power overheads. We develop here, for the first
time, a two-phase systematic methodology for the quantitative
analysis of PR reliability (in the presence of soft errors).
We implement the same and develop—gemV-Pipeline
toolset—for simulation-based quantitative estimation of PRV.
As part of our two-phase systematic methodology, we validate
the set of vulnerable PR bits as identified through ISA-aware
RTL analysis. Our gemV-Pipeline toolset can thus be used
for cost-effective analysis of PRV: 1) by protecting only a
subset of the PRs, reliability can be improved by 75% for
less than 15% power overhead and 2) by protecting only the
instruction and control bits on specific PRs, for only around
3% pipeline-power overhead reliability of the pipeline can be
reduced by 31%.

REFERENCES

[1] H. Liu, M. Cotter, S. Datta, and V. Narayanan, “Soft-error performance
evaluation on emerging low power devices,” IEEE Trans. Device Mater.
Rel., vol. 14, no. 2, pp. 732-741, Jun. 2014.

[2] G. Hubert, L. Artola, and D. Regis, “Impact of scaling on the
soft error sensitivity of bulk, FDSOI and FinFET technologies due
to atmospheric radiation,” Integr, VLSI J., vol. 50, pp. 39-47,
Jun. 2015. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0167926015000048

[3] T. Granlund, B. Granbom, and N. Olsson, “Soft error rate increase for
new generations of SRAMs,” IEEE Trans. Nucl. Sci., vol. 50, no. 6,
pp- 2065-2068, Dec. 2003.

[4] N. Muralimanohar, “Wire aware cache architecture,” Ph.D. dissertation,
School Comput., Univ. Utah, Salt Lake City, UT, USA, 2009.

JEYAPAUL et al.: SYSTEMATIC METHODOLOGY FOR THE QUANTITATIVE ANALYSIS OF PR RELIABILITY

[5]

[6]
[7]

[8]

[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]
(23]
[24]

[25]

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

S. S. Mukherjee, C. T. Weaver, J. Emer, S. K. Reinhardt, and T. Austin,
“Measuring architectural vulnerability factors,” IEEE Micro, vol. 23,
no. 6, pp. 7075, Nov. 2003.

N. Binkert et al., “The gem5 simulator,” ACM SIGARCH Comput. Archit.
News, vol. 39, no. 2, pp. 1-7, 2011.

B. Vaidyanathan, Y. Xie, N. Vijaykrishnan, and H. Zheng, “Soft error
analysis and optimizations of C-elements in asynchronous circuits,” in
Proc. 2nd Workshop Syst. Effects Logic Soft Errors, 2006, pp. 1-4.

M. Zhang et al., “Sequential element design with built-in soft error
resilience,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 14,
no. 12, pp. 1368-1378, Dec. 2006.

D. Blaauw et al, “Razor II: In situ error detection and correc-
tion for PVT and SER tolerance,” in IEEE Int. Solid-State Circuits
Conf. (ISSCC), Dig. Tech. Papers, Feb. 2008, pp. 400-622.

S. Das et al.,, “Razor II: In situ error detection and correction for
PVT and SER tolerance,” IEEE J. Solid-State Circuits, vol. 44, no. 1,
pp. 3248, Jan. 2009.

ARM Inc. (2008). Arm Architecture Reference Manual ARMv7-a.
[Online]. Available: https://silver.arm.com/download/download.
tm?pv=1603196

S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and
T. Austin, “A systematic methodology to compute the architec-
tural vulnerability factors for a high-performance microprocessor,”
in Proc. 36th Annu. IEEE/ACM Int. Symp. Microarchit. (MICRO),
Washington, DC, USA, Dec. 2003, pp. 29-40. [Online]. Available:
http://dl.acm.org/citation.cfm?id=956417.956570

N. J. Wang, A. Mahesri, and S. J. Patel, “Examining ACE analysis
reliability estimates using fault-injection,” in Proc. 34th Annu. Int. Symp.
Comput. Archit. (ISCA), New York, NY, USA, 2007, pp. 460-469.
[Online]. Available: http://doi.acm.org/10.1145/1250662.1250719

X. Li, S. V. Adve, P. Bose, and J. A. Rivers, “Online estimation of
architectural vulnerability factor for soft errors,” in Proc. 35th Int. Symp.
Comput. Archit. (ISCA), Jun. 2008, pp. 341-352.

A. Biswas, P. Racunas, R. Cheveresan, J. Emer, S. S. Mukherjee,
and R. Rangan, “Computing architectural vulnerability factors for
address-based structures,” in Proc. 32nd Annu. Int. Symp. Comput.
Archit. (ISCA), Jun. 2005, pp. 532-543.

L. Duan, B. Li, and L. Peng, “Versatile prediction and fast estimation of
architectural vulnerability factor from processor performance metrics,”
in Proc. IEEE 15th Int. Symp. High Perform. Comput. Archit. (HPCA),
Feb. 2009, pp. 129-140.

V. Sridharan and D. R. Kaeli, “Quantifying software vulnerabil-
ity,” in Proc. Workshop Radiat. Effects Fault Tolerance Nanometer
Technol. (WREFT), New York, NY, USA, 2008, pp. 323-328. [Online].
Available: http://doi.acm.org/10.1145/1366224.1366225

I. Oz, H. R. Topcuoglu, M. Kandemir, and O. Tosun, “Thread vulner-
ability in parallel applications,” J. Parallel Distrib. Comput., vol. 72,
no. 10, pp. 1171-1185, Oct. 2012. [Online]. Available: http://dx.doi.
org/10.1016/j.jpdc.2012.05.002

A. Azarpeyvand, M. E. Salehi, S. M. Fakhraie, and S. Safari,
“Fast and accurate architectural vulnerability analysis for embed-
ded processors using instruction vulnerability factor,” Microprocessors
Microsyst., vol. 42, pp. 113-126, May 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0141933116000247

S. Rehman, M. Shafique, F. Kriebel, and J. Henkel, “Reli-
able software for unreliable hardware: Embedded code genera-
tion aiming at reliability,” in Proc. 7th IEEE/ACM/IFIP Int. Conf.
Hardw./Softw. Codesign Syst. Synth. (CODES+ISSS), New York,
NY, USA, Oct. 2011, pp. 237-246. [Online]. Available: http://doi.
acm.org/10.1145/2039370.2039408

Y.-C. Hsu, B. Tabbara, Y.-A. Chen, and F. Tsai, “Advanced tech-
niques for RTL debugging,” in Proc. 40th Annu. Design Autom.
Conf. (DAC), New York, NY, USA, 2003, pp. 362-367. [Online].
Available: http://doi.acm.org/10.1145/775832.775927

Mentor Graphics. (2013). ModelSim—Leading Simulation and Debug-
ging. [Online]. Available: http://www.mentor.com/products/fpga/model

S. Williams. (2013). Icarus Verilog. [Online]. Available: http://iverilog.
icarus.com/

C. Santifort. (2013). Amber ARM-Compatible Core. [Online]. Available:
http://opencores.org/project,amber

A. Chavan, E. MacDonald, J. Neff, and E. Bozeman, “Radiation hard-
ened Flip-Flop design for super and sub threshold voltage operation,”
in Proc. IEEE Aerosp. Conf., Mar. 2011, pp. 1-6.

Reiley Jeyapaul (M’07) received the bachelor’s
degree from the University of Madras, Chennai,
India, and the master’s degree in electrical engineer-
ing and the Ph.D. degree in computer science from
Arizona State University, Tempe, AZ, USA.

He is currently a Senior Research Engineer
with ARM Research, Cambridge, U.K. His current
research interests include the compiler microarchi-
tecture interface for embedded and multicore sys-
tems, with the goal of improving its reliability,
robustness, and power efficiency.

Roberto Flores received the B.S. degree in elec-
tronic technologies engineering and the M.S. degree
in electronic systems from the Tecnolégico de Mon-
terrey, Monterrey, Mexico, in 2010 and 2013, respec-
tively.

He has been with Yazaki Services as an HMI
Engineer since 2014. His current research interests
include computer architecture, embedded systems,
and automotive.

Alfonso Avila (M’06) received the B.S. degree
in electrical engineering from the Tecnoldgico de
Monterrey, Monterrey, Mexico, in 1989, and the
M.S. and Ph.D. degrees in computer engineering
from the University of Arkansas, Fayetteville, AR,
USA, in 1994 and 1997, respectively.

He is currently a Professor with the Electrical
and Computer Engineering Department, Tecnoldgico
de Monterrey. His current research interests include
computer architecture, embedded systems, and
tele-health.

Aviral Shrivastava (M’02) received the bachelor’s
degree in computer science and engineering from
IIT Delhi, New Delhi, India, and the master’s and
Ph.D. degrees in information and computer science
from the University of California at Irvine, Irvine,
CA, USA.

He is currently an Associate Professor with the
School of Computing Informatics and Decision Sys-
tems Engineering, Arizona State University, Tempe,
AZ, USA, where he has established and is the
Head of Compiler and Microarchitecture Laborato-

ries. His current research interests include the intersection of compilers and
architectures of embedded and multicore systems, with the goal of improving
power, performance, temperature, energy, reliability, and robustness.

