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Abstract
High performance embedded processors are equipped with the
Translation Look-aside Buffer (TLB) which forms the key ingredi-
ent to efficient and speedy virtual memory management. The TLB
though small, is frequently accessed, and therefore not only con-
sumes significant energy, but also is one of the important thermal
hot-spots in the processor. Among the many circuit and microarchi-
tectural techniques proposed to reduce TLB power consumption,
the Use-Last TLB is one very efficient technique in which power
is consumed only when different pages are accessed in succession,
i.e., when there is a page-switch [26]. Though the Use-Last tech-
nique is effective in reducing i-TLB power, there is scope to further
improve its effectiveness by changing the relative code placement of
the program. In this work, we formulate the code placement prob-
lem to minimize the page-switches in a program. We prove that this
problem is NP-complete and propose an efficient Bounds Based
Procedure Placement (B2P2) heuristic to efficiently reduce the pro-
gram’s page-switches. Our procedure placement technique deliv-
ers an average of 76% reduction in the instrucion-TLB power with
negligible (< 2%) impact on performance, over and above the re-
duction achieved by the Use-Last TLB architecture alone.

Categories and Subject Descriptors C.1.0 [Computer Systems
Organization]: Processor Architectures

General Terms Design, Measurement, Performance, Algorithms

Keywords Memory management, instruction TLB, Power, Code
placement, Compiler technique, Embedded processors

1. Introduction
High-end embedded processors, like the the Intel XScale [17],
MIPS S32 [24] support multi-tasking and virtual memory. The
Translation Look-aside Buffer (TLB) is an important microarchi-
tectural component of such embedded processors, and provides ef-
ficient virtual to physical address translation. Most embedded pro-
cessors choose to implement a V/P cache configuration, in which
the caches are indexed by virtual addresses, but have physical ad-
dress tags. This is preferred to the P/P cache configuration (in-
dexed by physical addresses and contain physical address tags),
since TLB lookups before every cache access effectively utilize the
cache latency for performance improvement. In comparison, the
TLB lookup can be performed in parallel to the cache lookup in
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V/P caches. Note that in V/P caches, TLB lookup is required even
in the case of a cache hit to determine the page access permissions.
On the other hand, in the V/V cache configuration (virtually ad-
dressed and virtually tagged), a TLB lookup is required only on a
cache miss, and is therefore more power-efficient. The V/V caches
are an interesting option, used in some high-performance general-
purpose processors like DEC Alpha 21164 [5], but they suffer from
synonym and address-mapping problems and are therefore not pop-
ular in embedded systems. The wide acceptance and popularity of
the V/P cache configuration for most embedded applications is thus
justified.

Another important feature of embedded systems is their support
of small page sizes. Smaller pages are preferred in embedded sys-
tems, as the applications are small, and small page sizes result in
better utilization of the limited memory in the embedded system.
For example, the ARMv5 [1] and later architectures support the
tiny page, in which the page sizes can be as small as 1KB, as com-
pared to the default 4KB. Although tiny pages have a performance
benefit, they result in more TLB misses and therefore increase the
power consumption of the TLB. The combination of V/P caches
and small page sizes (for performance reasons), result in the TLB
becoming not only a significant consumer of the processor power
budget, but also an important thermal hotspot on the embedded pro-
cessor. Ekman et al. [12] note that the TLBs can consume 20−25%
of the total L1 cache energy. Kadayif et al. [20] find that address
translation logic consumes as much as 17% of on-chip power in
the Intel StrongARM and 15% in the Hitachi SH-3 processors. In
addition, they also find that instructuion-TLB has a power density
of 7.820 nW/mm2, compared to 0.975 and 0.670 nW/mm2 for
iL1 and dL1 caches, respectively. Reducing the power consump-
tion of TLBs in embedded systems is therefore an important re-
search problem.

Most of the previous research efforts in reducing TLB power
consumption were at the hardware level [6,8,22,23]. One effective
microarchitectural technique for TLB power reduction, is the Use-
Last TLB architecture [9,26], in which the Use-Last latch stores the
TLB tag of the last translated page. During a program execution,
since majority of the cache accesses are to the same page, there
will be lesser TLB lookups resulting in power savings. Essentially,
power is only consumed in the TLB when consecutive accesses
are to different pages. Although the Use-Last TLB architecture
achieves 75% reduction in i-TLB power, there is scope for further
i-TLB power reduction by altering the relative position of the code
so as to minimize the total number of page-switches in the program.
In this paper, we:

1. formulate the problem of reducing the total number of page-
switches in a program, as a code placement problem. (Section 4,
Section 5)

2. prove that the code placement problem for reduced page-
switches is NP-complete. (Section 6)



3. propose an efficient Bounds Based Procedure Placement
(B2P2) heuristic for use in the linker-phase of the program
compilation, to reduce the program’s total page-switch count,
and thus achieve i-TLB power reduction. (Section 7)

Our experiments on the Intel XScale microarchitecture [17],
modeled on the SimpleScalar [3] cycle-accurate simulator, with
a page size of 1KB, executing applications from the MiBench
suite [14], demonstrate that our B2P2 heuristic can reduce the
number of page switches by an average of 76%, with less than 2%
performance variaton. Consequently, we expect 76% active power
reduction over and above that achieved by the already effective
Use-Last hardware technique.

2. Related Work
TLB power reduction is important not only to reduce the total en-
ergy consumed by the processor, but also to alleviate the high power
density issue of the TLB in the processor. Several researchers have
proposed efficient circuit-level, microarchitectural, software and
hybrid (compiler and microarchitecture) techniques to reduce the
power consumption of the TLB and the Memory Management Unit
(MMU).

2.1 Hardware Approaches
At the hardware level, circuit and microarchitectural modifications
aim to reduce the per-access power consumption of the TLB and
the Memory Management Unit as a whole. Over the years, a fully
associative TLB architecture with (Content Addressable Memory)
CAM implementation has been proved to be efficient in terms of
performance and power. Manne et al. [23] propose a Banked As-
sociative design for TLBs (BA-TLB) which consumes less power
than a fully associative TLB. Through the use of a banked cache
design, during each access to the TLB, only half the CAM entries
are looked up and therefore overall power-per-access is reduced. In
another technique, the TLB is constructed as multiple banks with
a small filter-bank buffer located above its associated bank [22].
Through the use of selective filtering and banking mechanisms, the
number of entries activated on each access is reduced and therefore
efficient in embedded processors.

Choi et al. [8] in their work, propose a two-level TLB architec-
ture that integrates a 2-way banked filter TLB with a 2-way banked
main TLB design. This architecture, aims at reducing the power
consumption of the TLB, by distributing the TLB accesses across
the banks in a balanced manner. Chang [6] presents a real-time fil-
ter scheme to remove redundant TLB accesses by distinguishing
them as soon as the virtual address is generated. This in combina-
tion with two adaptive banked TLB designs, has proved to effec-
tively improve the energy delay product of data TLBs. Kadayif et
al. [19] introduce Translation Registers (TR) to store the most fre-
quently accessed TLB address translations as a lookup table match-
ing the virtual and physical address tags. During subsequent cache
accesses, these TRs are looked up first and if present, no translation
is performed (the information stored is used). This saves on switch-
ing activity at the register files, mapping the virtual address to their
physical address. It should also be noted here that the granular-
ity at which this technique achieves power reduction is influenced
by the number of registers or successive access to the architecture
blocks. The power savings achieved by such hardware techniques
are therefore limited by the area, power and performance traded-
offs realized in their implementation.

2.2 Software and Hybrid Approaches
At the compiler-architecture interface, the problem of power re-
duction in the TLB manifests itself as the problem to efficiently re-
duce accesses on the TLB through optimal changes in the software
execution. The key difference between hardware and software ap-
proaches is the fact that the TLB architectures are identical for both
instruction-TLB and data-TLB, whereas the access patterns of the

instruction-cache and data-cache vary significantly. The implemen-
tation and design of a software technique for TLB power reduction,
varies according to the targeted TLB structure. On the other hand,
a hybrid approach has the critical advantage of proposing archi-
tectural modifications and corresponding software techniques that
make efficient use of the underlying architecture, achieving effi-
cient results. The state-of-the art software and hardware approaches
can be broadly classified based on their target TLB structure.

2.2.1 Software Techniques
Parikh et al. [25] propose a set of energy-oriented instruction
scheduling techniques where the instructions within a basic-block
of code is scheduled with regard to its energy consumption. The
energy component is calculated as a weighted cost function:
circuit-state-cost for each schedule of instructions. Energy-
oriented scheduling achieves 30% reduction in energy as compared
to performance-oriented scheduling. Chiyonobu et al. [7] in their
work propose an efficient scheduling technique that allows for the
execution of critical instructions on power-hungry functional units,
and the other instructions on power-optimal units, thereby reduc-
ing the overall power consumption of the system. This scheduling
technique achieves an average 27.3% ED2P reduction with 1.4%
performance degradation. It should be noted here that the impact
of these software techniques on a broad spectrum of applications
are limited by the underlying architecture and also realize a perfor-
mance trade-off. As far as our knowledge goes, no software only
approach has been proposed for instruction-TLB power reduction.

2.2.2 Hybrid Approaches for data-TLB
A compiler-directed array interleaving technique was proposed to
save energy in multi-bank memory architectures with power con-
trol features [10]. In this, the arrays used in separate banks are in-
terleaved, such that only one of the banks is active and the other can
be powered down, thus saving energy. Though effective in power
savings, the energy reduction achieved by this technique does not
account for the leakage power of the SRAM cells during standby
mode for current and future technology embedded processors. Kan-
demir et al. [21] propose to increase the effectiveness of Trans-
lation Registers (TRs) to reduce the data-TLB power consump-
tion through compiler optimizations (using profile information) to
maximize reuse of the data stored in the TRs. This technique in-
curs a performance overhead of 3.5% due to compiler updates and
achieves an average of 32.6% reduction in TLB lookups. In addi-
tion, the proposed technique requires changes to the (Instruction
Set Architecture) ISA, which may not be desirable for many em-
bedded applications. In our recent work [18], we develop a static
compiler technique to achieve data-TLB power reduction, effec-
tively utilizing the Use-Last TLB architecture implementation. In
this, we present a series of page-aware code transformations (in-
struction re-ordering, array interleaving and code fission/fusion),
and an all-inclusive comprehensive algorithm that demonstrates an
average of 39% data-TLB power reduction with negligible impact
on performance. These software and hybrid techniques proposed,
target the data cache and data-TLB accesses only. Owing to the
significant difference in data and instruction cache access patterns,
their effectiveness is restricted to data-TLBs.

2.2.3 Hybrid Approaches for instruction-TLB
One effective hybrid approach with the goal to reduce instruction-
TLB power, is by Kadayif et al. [20], where they propose a set
of software only, hardware only and integrated hardware-software
techniques. In this, the processor is facilitated with a set of Trans-
lation Registers (TRs) that assist in storing recently accessed page
translations. The compiler techniques proposed, aim to reduce the
instruction TLB lookups by changing the i-cache access patterns,
by introducing marker instructions for intelligent use of the TRs.
This technique achieves 85% i-TLB power savings and proves to
be effective only for larger and slower i-TLB structures. Our work



though simlar in intent, differs from this based on the underlying
TLB architecture. In [20], an array of power-hungry registers are
used to maintain a lookup table, while our work involves the im-
plementation of an energy efficient Use-Last TLB architecture [26],
involving only limited hardware additions. Again, the size and de-
sign of these registers (TR) has a significant impact on the effective-
ness of their technique (work in [20]), while the key component of
the Use-Last TLB is a latch (detailed discussion of the architecture
is available in Section 3).

In our earlier work [18], we perform code transformations to
efficiently utilize the Use-Last TLB architecture implementation,
and reduce data-TLB power consumption. In this work, we pro-
pose a similar compiler-microarchitecture hybrid approach over the
Use-Last TLB architecture, to reduce instruction-TLB lookups and
thereby power. This being an optimization technique over the in-
struction cache accesses, the program’s profile information is used
as input to the B2P2 heuristic. The result of this heuristic are the
start addresses of the procedures in the program, optimized for in-
telligent page-locality and when executed on the Use-Last TLB ar-
chitecture, achieve reduced i-TLB power consumption.

3. The Use-Last TLB Architecture

Figure 1. Use-Last TLB Architecture [26]: The Use-Last latch
(shaded box) stores the previously translated page address. If the
succeeding page accessed is the same, RF cells (for physical ad-
dress and permission lookup) are not activated and stored data from
the previous translation is bypassed to the output.

The Use-Last TLB architecture [26], described in Fig. 1 utilizes
a modified TLB-CAM structure to reduce the per-access power
consumption of the TLB. The virtual address input to the TLB
is matched with the TLB tag through CAM structures, and then
used to retrieve the mapped physical address from the lookup
table (register file array). The lookup on the RF array is a power
consuming process because of the bit-line and word-line drivers,
and dynamic comparator circuitry involved in its operation. The
key factor in this architecture design is the Use-Last latch used to
store previously accessed TLB tag data. On a cache access, data in
the Use-Last latch is compared with that from the current page. If
found to be equal, the physical address and access permissions from
the previous lookup are bypassed to the output, avoiding activation
of the RF array cells. Otherwise, the Use-Last stores the current
page address and performs lookup on the RF array to derive the
physical address and permission information.

Switching energy is consumed by the Use-Last TLB structure,
only when successive cache accesses are to different pages. The
effectiveness of this technique was demonstrated on a 90-nm virtu-
ally addressed microprocessor cache memory subsystem function-
ing at 2.5 GHz with separate instruction and data cache structures
of 32 KB each. The instruction-TLB demonstrated 75% power
savings through circuit-level simulations using the PowerMill [15]
simulator using a DSP benchmark [26]. Here, the total consumed
power is distributed as 40% tag, 60% data array and less than 1%
physical tag. The minimal tag power is due to the squashing of TLB
lookups due to consecutive accesses to the same page.

Our Bounds Based Procedure Placement (B2P2) heuristic, ac-
centuates the applicability of this Use-Last TLB architecture and
thus achieves maximum possible i-TLB power reduction on a wide
range of applications. We assume henceforth that the underly-
ing embedded processor used for our description and analysis has

an implementation of the Use-Last TLB architecture for the i-
TLB structure, and our objective is to reduce the number of page-
switches that occur during program execution.

4. Page-Switch Reduction by code Placement
4.1 Page-Switches in the Instruction Memory
In any program, the total number of page-switches incurred can be
classified as follows:

1. Function-call Page-Switches (PSF ): The set of page-switches
in a program, caused due to function-calls executed across a
page-boundary are called function-call page-switches, denoted
by PSF .

2. Loop-execution Page-Switches (PSL): The page-switches in-
curred during the execution of loops that span across page-
boundaries, are called loop-execution page-switches, denoted
by PSL.

3. Sequential-execution Page-Switch (PSS): The page-switches
caused during sequential instruction execution within the basic-
blocks of the program, are called successive-access page-
switches, denoted by PSS .

The total number of page-switches in the program is thus given by:
TPS = PSF + PSL + PSS .

4.2 Objectives for Page-Switch Reduction
To minimize the page-switches caused during program execution,
the required modifications on the code fall under one of the follow-
ing cases based on the type of instructions involved:

1. The call-site and the start address of the callee-function should
reside in the same page, to avoid page-switches during the
function-call.

2. The call-site and the end address of the callee-function should
reside in the same page, to avoid page-switches during the call-
return.

3. For loops of size atmost page-size, the loop should be posi-
tioned to completely reside in a single page and avoid page-
switches on each iteration.

4. For loops of size atleast page-size, the loop has to be positioned
to span across minimum number of page-boundaries as possi-
ble.

5. The functions of size atmost page-size, should be positioned
completely within a page to remove the page-switches incurred
during each function-call.

6. For functions of size greater than a page-size, the function has
to be positioned such that it spans across minimal number of
page-boundaries.

4.3 Granularity of Code Placement for Page-Switch
Reduction

Compiler directed code placement techniques can alter the relative
position of the instructions in the program and thus vary their in-
struction memory access patterns. At the compiler, this problem of
page-switch reduction can be approached at different granularities:
(i) Instruction level, (ii) Basic-block level and (iii) Procedure level.

4.3.1 Instruction Level Granularity
At the instruction level granularity, code placement involves real-
locating instructions or a set of instructions in the memory, while
their original control sequence is maintained with the help of in-
serted control instructions (branch, jump, jump-and-link,etc.). This
fine granularity of approaching the code placement problem gives
greater freedom for reallocation and probably maximum page-
switch reduction in the program. This technique involves the in-



sertion of control instructions and also variable number of nop in-
structions for page-alignment purposes. Addition of these instruc-
tions have the following disadvantages:

• Increase in code-size due to the inserted instructions may be of
concern for embedded applications.
• The added executable instructions (branch, jump, jump-and-

link, etc.), increase the runtime of the application and thereby
affect the performance of the system. In the presence of nop
instructions, out-of-order scheduling of instructions on a multi-
issue processor affects the overall performance of the system.
• The branch and jump instructions added, activate the branch-

target buffer and allied branching hardware thus increasing the
accesses to such power-hungry components of the processor.
The overall power reduction achieved through any optimal code
placement, could thus be overthrown by the increase in runtime
and overall power consumption of the system.

4.3.2 Basic-block Level Granularity
At the basic-block level, existing branch instructions between
blocks can be reassigned to a new address when reallocated, but
new control instructions will have to be inserted to maintain the
control of the fall-through basic-block. Therefore, comparatively
significant number of instructions are required to be added to the
code. Here again, variable number of nop instructions may be
added for page-alignment purposes. Approaching the problem at
a more coarser granularity causes lesser freedom for movement of
the code and thus may lead to lesser page-switch reduction than that
at the instruction level. The disadvantages that plague instruction-
level code placement (described above), also impact basic-block
level code placement, but to a relatively lesser degree.

4.3.3 Procedure Level Granularity
At an even more coarser granularity, the procedure blocks can
be reallocated in the instruction memory. No control instructions
are required for this modification as the procedures already have
branch instructions for the program control and only the target ad-
dresses have to be varied accordingly. Owing to the coarser granu-
larity, freedom to move the code blocks is restricted and therfore the
possible page-switch reduction is relatively lesser. Since the TLB
structure is a small part of the processor, any power reduction tech-
nique for the TLB should consider its impact over the system power
as a whole and therefore additional instruction insertions should be
avoided.

In this work, we formulate the code placement problem for min-
imized page-switches, at the procedure level granularity and define
it as a Procedure Placement Problem (PPP). In this, the functions1

in the program are moved as a whole. No executable instruction
is introduced into the existing program code, and padding (if any)
for page alignment, is done by using nop functions. The challenge
here is to efficiently place the procedures in the instruction mem-
ory, such that the total number of nop functions added are min-
imized and page-switches incurred are minimal. This mechanism
experiences a variation in the overall program runtime, only due
to the instruction cache associativity factors. We observe through
experiments that this performance variation is limited to less than
2%.

5. The Procedure Placement Problem (PPP)
The problem here is to assign start addresses to the functions in a
program such that, the program execution incurs reduced number
of page-switches and thereby reduced i-TLB power.

1 We use the words function and procedure, interchangeably to denote
procedure blocks of a program.

5.1 Input
The program can be represented by a hierarchical structure of tu-
ples rooted at P . The tuple P =<n,FN[]> lists the set of P.n
functions, in the form of a tuple array P.FN[], where each entry is
represented by the 6-tuple FNx =<Id,Pos,Size,Calls,CS[],LP[]>.
In this, FNx.Size represents the function size, FNx.Id the unique
function-id and FNx.Calls the total number of calls to the function.
The set of call-sites and loops within the function are represented
by their respective tuple arrays FNx.CS[] and FNx.LP[]. Each is
a 4-tuple described as follows.

Call-site tuple FNx.CS =<Id,Offset,Callee,Count> within func-
tion FNx:

• CSi.Id← id of the call-site in the function FNx.
• CSi.Offset← represents the position of the call-site from the

start of the function.
• CSi.Callee← contains the callee function-id (e.g., FNy).
• CSi.Count← indicates the number of calls to the callee func-

tion FNy from FNx.

Loop tuple FNx.LP =<Id,Offset,Size,Count> within function
FNx:

• LPj .Id← id of the loop in the function FNx.
• LPj .Offset← represents the position of the loop start address

from the start of the function.
• LPj .Size← represents the size of the loop in bytes.
• LPj .Count← indicates the total number of iterations of the

loop.

5.2 Output and Constraint
The output of our procedure placement problem are the values
FNx.Pos ∀FNx ∈ P , that represent the start addresses of the
functions, under the constraint that no two functions should overlap
each other in the instruction memory.

5.3 Objective
Given a program, the procedure placement problem can be defined
as the problem to relatively position the functions in the instruc-
tion memory (assignment of start addresses FNx.Pos) such that
page-switches caused by loops (PSL) or functions (PSS) crossing
page boundaries during their execution or function calls (PSF ) to
callee-functions on different pages, are minimum. Given a program
and its profile information in the form of the tuple hierarchy (de-
fined above), the objective to minimize the total number of page-
switches is given by Equation (1), where the individual components
are represented by the equations: Equation (2)(PSF (FNx)), Equa-
tion (3) (PSL(FNx)) and Equation (4) (PSS(FNx)).

minimize
∑

∀FNx∈P

PSF (FNx) + PSL(FNx) + PSS(FNx)

(1)

5.3.1 PSF : Page-Switches due to Function-calls
The total number of page-switches in the function FNx, due to
function calls at the call-site FNx.CSi, is equal to the sum of
forward page-switches (FPSF ) and reverse page-switches
(RPSF ). In Fig. 2, the call-site CS1 in function F1 experiences
a page-switch only during the return from F2, since only the
end address of F2 is on a different page. In the case of call-site
CS2 in function F2, since the function F3 entirely resides in a
different page, both the function call and function return experience
forward and reverse page-switches respectively. The total number
of page-switches in a program due to function calls, is given by
Equation (2).



PSF =
∑

∀x:FNx∈P

∑
∀i:CSi∈FNx.CS[ ]

(FPSF (FNx.CSi) + RPSF (FNx.CSi))× CSi.Count (2)

PSL =
∑

∀x:FNx∈P

∑
∀i:LPi∈FNx.LP [ ]

(FPSL(LPi) + RPSF (LPi))× LPi.Count (3)

PSS =
∑

∀x:FNx∈P

FNx.Calls× LonePB(FNx) (4)

Figure 2. Function-call Page-Switches:
(i)PSF (F2) is the sum of the function’s caller-to-callee page-
switches (FPF (F2.C2)) and callee-to-caller function-return page-
switches(RPSF (F2.C2)).
(ii)PSF (F1) is the number of callee-to-caller function return
page-switches(RPSF (F1.C1)).

5.3.2 PSL: Page-Switches due to Loop iterations
The total number of page-switches in the function FNx, due to
loops that span across page boundaries, is the sum of forward page-
switches (FPSL) and reverse page-switches (RPSL). We will de-
scribe the nature of these page-switches through examples. In the
nested loop structure as in Loop1 of Fig. 3(a), the instruction ac-
cesses cross a page-boundary only for the innermost loop (indi-
cated by solid arrow) in the forward direction, while the last and
first instructions of every loop is accessed in the reverse direction.
Thus for this example, the total number of page-switches is given
by FPSL = 100×100×100 (total iteration count of the innermost
loop) and RPSL = (100)+(100×100)+(100×100×100). In the
case of a loop structure as in Loop2 of Fig. 3(b), the page-boundary
is crossed during each iteration of the outer loop (over i) and not by
any of the inner loops. Therefore, the total page-switches is given
by FPSL = 100 and RPSL = 100. The total page-switches due
to loops in the program is thus given by Equation (3).

5.3.3 PSS: Page-Switches due to Sequential Accesses in
functions

A page-switch is incurred when a basic block, not covered by a
loop within the function, spans across a page-boundary. The total
number of page-switches PSS , incurred by such basic blocks, for
each function is equal to the product of the function call-count
FNx.Calls and the number of such lone page-boundaries crossed

Figure 3. Loop-execution Page-Switches for:
(a)PSL(Loop1) is equal to the sum of its forward iteration
FPSL = 1003 and loop-return RPSL = (100) + (1002) +
(1003).
(b)PSL(Loop2) is the sum of FPSL = 100 and RPSL = 100.

within the function. If function LonePB() : FNx → N return the
number of lone page-boundaries within each function FNx ∈ P ,
the total page-switches within function blocks in the program is
given by Equation (4).

6. Intractability of the Procedure Placement
Problem

In deriving the computational complexity of the PPP, we take a
subset of the problem and prove that this problem-subset, obtained
by adding constraints on the input of the PPP, is NP-complete and
therefore our PPP is definitely NP-complete.

6.1 Subset of the Problem: PPPS
In order to prove the intractability of our problem, we derive here a
subset of the problem and use that in our reduction from a known
NP-complete problem. The input to this problem subset is restricted
in the sense that only the page-switches due to function-calls are
considered and so the function is described by a set of call-sites
and their corresponding call-counts. The placement of the functions
into pages is constrained, such that a function can be placed in a
page if and only if the whole function fits into the page (i.e., a
function cannot reside in two pages).

6.2 Decision Version of PPPS
Let us consider a program with n functions (F) and p pages (P)
available for allocation. The size of each function is denoted by
w(f) for each function f ∈ F. A caller-to-callee function-call
is denoted by the calls c ∈ C that connects the two functions.
The function call-count between the two functions is given by the
cost function t(c) for each call c ∈ C. The size of each page is
a constant given by S and an upper bound equal to the maximum



page-switch cost M ∈ Z+ for the program. This is formally de-
fined as follows:

INSTANCE: Set of functions F and edges E, function sizes
w(f) ∈ Z+, ∀f ∈ F, page-switch costs t(c) ∈ Z+, ∀c ∈ C,
page-size constant S ∈ Z+ and upper bound on page-switch cost
M ∈ Z+.

QUESTION: Is there a partition of the functions F into p disjoint
subsets F1,F2, · · · ,Fp, such that

∑
f∈Fi

w(f) ≤ S, 1 ≤ i ≤ p,
and for all calls C′ ⊆ C that have their caller and callee functions
on two different subsets Fi, Fj , then

∑
c∈C′ t(c) ≤M ?

6.3 The Graph Partitioning Problem (GPP) [13]
Given a graph G = (V,E), where w(v) defines the weight of each
vertex v ∈ V, and each edge e ∈ E has a cost c(e) attached to it.
Two positive integers defined are K and J. This can formally be
defined as follows:

INSTANCE: Graph G = (V,E), weights w(v) ∈ Z+, ∀v ∈ V,
and cost c(e) ∈ Z+, ∀e ∈ E, positive integers K, J.

QUESTION: Is there a partition of V into disjoint sets
V1,V2, · · · ,Vm, such that

∑
v∈Vi

w(v) ≤ K, 1 ≤ i ≤ m, and
such that if E′ ⊆ E that have their two endpoints in two different
subsets Vi, Vj , then

∑
e∈E′ c(e) ≤ J ?

6.4 The Reduction: GPP ≤p PPPS
From an instance of the GPP, an instance of PPPS can be generated
in polynomial time as follows:

• Graph G = (V,E) in GPP ⇒ program call-graph (F,C)
formed of functions and function-calls.
• vertices V in GPP⇒ set of functions F in PPPS.
• edges E in GPP⇒ set of function-calls C in PPPS, where the

end-points indicate the caller and callee functions.
• weight of vertex w(v) in GPP⇒ function size w(f) in PPPS.
• cost of edge c(e) in GPP⇒ page-switch cost due to function-

call t(c) in PPPS.
• The m partitions of V in GPP ⇒ the p pages into which the

program’s functions have to be allocated.
• The disjoint subsets V1,V2, · · · ,Vm in GPP⇒ the subset of

functions F1,F2, · · · ,Fp allocated in the p pages.
• Constraint

∑
v∈Vi

w(v) ≤ K ⇒
∑

f∈Fi
w(f) ≤ S that

defines the upper bound on the functions that are allocated to
a page.
• Objective

∑
e∈E′ c(e) ≤ J in GPP⇒

∑
c∈C′ t(c) ≤M, that

defines the minimization function with an upper bound on the
page-switch cost.

6.5 Proof
A given solution to the PPPS problem can be verified in polynomial
time, and therefore we deduce that the PPPS is of NP class. From
the reduction above, we observe that an instance of GPP can be
directly converted into an instance of the PPPS, from the call-graph
of the program. Therefore, we derive that an optimal solution to the
PPPS exists if and only if there exists an optimal partitioning of
the vertices in GPP. Given an instance of the GPP, a YES decision
on the partitioning Π, indicates that there exists a partition of the
functions ∆ for an equivalent instance of the PPPS. Conversely, if
we obtain a YES decision for the partition ∆ on an instance of the
PPPS, we can say that there exists a partitioning Π for an equivalent
instance in GPP.

The decision version of GPP, is a known NP-complete prob-
lem [13]. Having reduced an instance of GPP to PPPS (GPP ≤p

PPPS), we have shown that the PPPS is atleast as hard as GPP and
therefore definitely NP-complete. The PPPS (from our description
above) is a subset of our original code placement problem PPP with
limited constraints in placement and input. From our construction
of the PPPS problem, and nature of the constraints, we deduce that
the problem to obtain an optimal solution to our procedure place-
ment problem for minimized page-switches is NP-complete.

6.6 Related Code Placement Techniques
Over the years, researchers have developed various code placement
techniques targeting power and performance issues in embedded
processors. Xianglong et al. [16] develop a dynamic code manage-
ment technique for processors with managed runtimes, reducing
the total number of i-TLB misses and thereby improving perfor-
mance. Here, a JIT compiler is used to analyze the program call
graph, and reallocate procedures with high call frequency closer
together. Researchers in [4, 27] propose different compiler opti-
mizations and code placement techniques to increase code local-
ity and reduce cache-misses, efficiently improving performance of
the embedded system. The authors in [2, 20] propose to enhance
cache and TLB effectiveness through compiler-directed code trans-
formation techniques. Bernhard et al. [11] propose a dynamic code
placement technique for i-cache power savings, where the instruc-
tion cache is replaced with a scratchpad and mini-cache. Program
profile information is used to map high execution blocks (loops) to
the scratchpad (fixed size), thereby achieving power savings. The
runtime overhead and code size increase due to instruction inser-
tions (as discussed in Section 4) is compensated by the energy and
performance advantage of scratchpad memories.

Though our procedure placement problem resembles in prin-
ciple with some of the above compiler techniques, it differs from
them in the problem formulation and underlying architectural in-
tricacies. We target embedded processors, and propose compiler
techniques to support architectural modifications that can be im-
plemented in a wide variety of applications. In techniques that in-
crease code locality by reallocating procedures with high call fre-
quency closer together, it should be noted that the existence of loops
within the procedures and their respective iteration counts are not
considered. In a program, there may exist a case where majority of
the execution time is spent on a loop within a procedure that has
only one call to it, and when such a loop crosses a page-boundary,
page-switches are incurred. In our B2P2 technique, we profile the
loops (iteration count) and procedures (call count) to efficiently po-
sition the procedures, such that minimal page-switches are incurred
during the execution of such loops/procedures. During procedure
placement, to reduce power and runtime overheads, the entire pro-
cedure is treated as one entity and positioned in relation to the page-
boundaries, provided no executable instruction is inserted into the
code.

7. B2P2:Bounds Based Procedure Placement
Heuristic

We develop here an efficient Bounds Based Procedure Placement
(B2P2) heuristic solution to the PPP for minimizing total number
of page-switches in a program.

7.1 Overview
The profile information gathered from the program, populated into
the tuple hierarchy P is the input to our B2P2 heuristic. The
program-elements:
call-sites (FNx.CSi,∀i : FNx.CSi ∈ FN,∀x : FNx ∈ P )
and loops (FNy.LPj , ∀j : FNy.CSj ∈ FN,∀y : FNy ∈ P )
of the program are listed in the list ELEMENTS LIST, in the de-
creasing order of their weights equal to the page-switches incurred
during their execution. The weight for a call-site is its correspond-
ing function call-count and that for a loop is its iteration count.
Each element from this list is considered greedily (by extracting



from top of the sorted heap), for optimal procedure placement, by
forming bounds that contain the element within page-boundaries
and thereby avoid the occurrence of page-switches during their ex-
ecution. The formed bounds are affine inequalities over the vari-
able FNx.Pos (function start-address) of the function FNx that
contains the element under consideration.

During each iteration over the ELEMENTS LIST, an element
(or function) can be assigned to a page iff, the newly formed
bound does not conflict with any existing bounds for that page.
Once bounds are formed for all the elements in the list, the func-
tion start addresses FNx.Pos for the functions assigned to a page
is obtained by taking the smallest integer value that satisfies all
the inequalities for the corresponding page. By taking only the
smallest possible value for the function start addresses, we guar-
antee that the amount of required padding (using nop functions)
is minimized. Algorithm 1 describes the main function ALLO-
CATE FUNCTIONS() of the heuristic and the following sections de-
scribe the implementation details of the ASSIGN BOUNDS LP()
and ASSIGN BOUNDS CS() functions.

Algorithm 1 ALLOCATE FUNCTIONS(Function List, Page List,
Elements List)
Require: Function List=(FP1, FP2, · · · , FPn),

Page List=(PG1, PG2, · · · , PGn),
Elements List=(CL1, CL2, · · · , CLn).

1: for each element CPx from Top (ELEMENTS LIST) do
2: type← Get Element Type Of (CPi)
3: if type == LOOP then
4: LPi ← addr(CPx)
5: ASSIGN BOUNDS LP (LPi.FnId, LPi)
6: else if type == CALL-SITE then
7: CSi ← ∗CPx

8: ASSIGN BOUNDS CS (CSi.FnId, CSi)
9: end if

10: end for

7.2 Illustration
7.2.1 Input to the Heuristic and DCFG Formation
In order to facilitate the implementation of our B2P2 heuristic, we
define a back-pointer in the call-site and loop tuples that represent
the functions the element belongs to. The value FN.CS.FnId
in the tuple FN.CS represents a pointer to the caller function
(FN.Id) and FN.LP.FnId in the tuple FN.CS represents a
pointer to the function in which the loop is located. Since the in-
put to the heuristic is a call graph (annotated with tuple informa-
tion from profile data) without any page assignments, the vari-
able FN.Pos is treated as a variable throughout the operation
of the heuristic. Fig. 4 describes the DCFG formed for the di-
jkstra benchmark program annotated with the gathered profile in-
formation. Here, the rounded rectangles denote the functions in the
program. Each program-element: call-site (solid arrows) and loops
(solid line rectangles) are annotated with their id values and corre-
sponding weights, as indicated in Fig. 4. The page boundaries are
marked by dotted lines labeled with their respective page numbers.

The list of pages (PAGE LIST) available for allocation is de-
scribed in Fig. 4. The size of this list given by: dProgramSize

PageSize
e, and

each element in the list is a 4-tuple PG =< Id,Bounds, SA,EA >
where, PGr.Id is the page number, PGr.SA its start-address and
PGr.EA its end-address. PGr.Bounds is a vector array initial-
ized to null and used to hold the affine bounds for each page. For
each iteration of the loop in Algorithm 1, the program element with
highest weight is taken, and its corresponding bounds assignment
function (ASSIGN BOUNDS LP() or ASSIGN BOUNDS CS()) is
executed.

Figure 4. Original DCFG of dijkstra program with page demarca-
tions.

7.2.2 Function ASSIGN BOUNDS LP()

When the element considered for placement is a loop, affine
equations are formed with the loop’s start address (FNx.Pos +
FNx.LPi.Offset), size (FNx.LPi.Size), and page boundaries
(PGr.SA, PGr.EA) of the available page. The objective is to
ensure that the entire loop exists within the page assigned and/or
crosses minimum number of page-boundaries as possible.

LPi.SA ← FNx.Pos + FNx.LPi.Offset

LPi.EA ← FNx.LPi.SA + FNx.LPi.Size

bound ← PGr.EA ≥ LPi.EA > LPi.SA ≥ PGr.SA

(5)

For the example in Fig. 4, loop L1 of function enqueue() is
the first element in the ELEMENTS LIST and the bounds to con-
tain this loop within a page is formed while assigning this func-
tion to page PG1 =< 1, B1, 0, 1024 > and input to the bounds
PG1.B1 Equation (6). Here, the loop enqueue().L1 is of size 24
bytes located at an offset of 208 bytes from the function start ad-
dress enqueue().Pos obtained by substituting variables in Equa-
tion (5). When a bound is formed for the next element in the list
dijkstra().L3, we realize the conflict with the existing bound in
PG1.B1 owing to the function size (dijkstra().Size = 1408
bytes), and therefore a new bound PG2.B2 Equation (7) is formed.
In Equation (6) and Equation (7), the ← indicates that the newly
formed bound is appended with the existing set of bounds.

PG1.B1 = 1024 ≥ enqueue().Pos + 208 + 24

PG1.B1 ← PG1.B1 > enqueue().Pos + 208 > 0 (6)

PG2.B2 = 2048 ≥ dijkstra().Pos + 1032 + 16

PG2.B2 ← PG2.B2 > dijkstra().Pos + 1032 > 1024

(7)

7.2.3 Function ASSIGN BOUNDS CS()

When the element considered is a call-site, affine equations are
formed with the call-site position CSi.Addr, the callee-function



start address (Callee.Pos) and size (Callee.Size), within page
boundaries (PGr.SA, PGr.EA) of an available page. The objec-
tive is to ensure that both the callee function and the call-site (at the
caller function) are in the same page.

CS.Addr ← FNx.Pos + FNx.CSi.Offset

Callee.Pos← (FNx.CSi.Callee).Pos

Callee.EA← Callee.Pos + (FNx.CSi.Callee).Size

tb1← PGi.EA ≥ CS.Addr ≥ PGi.SA

tb2← PGi.EA ≥ Callee.EA ≥ Callee.Pos ≥ PGi.SA

bound← tb1 & tb2
(8)

In Fig. 4, the third element on the ELEMENTS LIST is a call-site
dijkstra().CS1 and the bounds formed assign the call-site and
the callee-function of size (qcount().Size = 16bytes) to page
P2. The page P2 is chosen because of an already existing bound
for function dijkstra() in PG2.B2. The bounds formed are given
in Equation (9). Here, the call-site is at an offset of 360 bytes from
dijkstra().Pos, and the bound B2 which includes both tb1 and
tb2 assures page-switch reduction.

tb1 = 2048 ≥ dijkstra().Pos + 688 ≥ 1024

tb2 = 2048 ≥ qcount().Pos + 16 ≥ qcount().Pos > 1024

B2 ← tb1 & tb2 (9)

The next element in the ELEMENTS LIST is the loop
dijkstra().L2 of size (472 bytes), and when analyzed by the func-
tion ASSIGN BOUNDS LP(), generates bounds over the nested
loop structure L2−L3 in the function dijkstra() to be contained
within the page P2, is added to array PG2.B2 Equation (10).
For the next element dijkstra().CS4, since the callee function
enqueue() was earlier assigned to PG1, a conflict arises in the
bounds formed and therefore no bound is formed for this ele-
ment. The next subsequent call-site djikstra().CS2 generates the
corresponding bounds to place function dequeue() within page
PG2 Equation (11).

PG2.B2 = 2048 ≥ dijkstra().Pos + 648 + 472

PG2.B2← PG2.B2 > dijkstra().Pos + 648 > 1024
(10)

tb1 = 2048 ≥ dijkstra().Pos + 702 ≥ 1024

tb2 = 2048 ≥ dequeue().Pos + 184 ≥ qcount().Pos > 1024

B2← tb1 & tb2
(11)

7.2.4 Assigning Function Start Address (FN.Pos)
The set of inequalities within the array PGr.Bounds for each page
is evaluated to derive the smallest integer value that can be as-
signed to the variable FNx.Pos for all functions having bounds
within that page. Fig. 5 gives the page allocations for the dijk-
stra benchmark after applying optimal placement of the functions
by our B2P2 heuristic. The bounds formed in Equation (7), Equa-
tion (9), Equation (10) and Equation (11) are evaluated to achieve
the required placement conditions for the functions. This optimal
placement required 16 bytes of nop instructions to align function
dequeue() to a page-boundary. Our experiments demonstrate that
this procedure placement achieves 52% reduced page-switch count
with < 2% performance variation.

7.3 Heuristic Runtime
For a program with m procedures, n total loops, and c total call-
sites, the size of the list ELEMENTS LIST is N = m + n + c
governs the runtime. The list when implemented as a heap structure
takes O(log N) time for insertion and constant time for extraction.

Figure 5. Optimized DCFG of dijkstra program with page demar-
cations.

The for loop in Algorithm 1 runs for O(N) iterations and within
each iteration the functions to form bounds take constant time.
The overall runtime of the B2P2 heuristic is thus bounded by
O(N) = O(m + n + c).

8. Experimental Setup
We have implemented our B2P2 heuristic as a profile based com-
piler post-pass optimization technique. For our experiments, we use
the SimpleScalar [3] sim-outorder cycle-accurate simulator (imple-
mented with the Use-Last i-TLB architecture), modified to count
the total number of instruction-TLB page-switches for a program,
configured to resemble the architectures of the Intel XScale [17]
embedded processor with tiny-page (page-size = 1KB) configura-
tion.

In our experiments to demonstrate the application of our B2P2
heuristic over a wide variety of uni-processor embedded systems,
we have isolated benchmark programs (from the MiBench [14]
benchmark suite) that represent different code varieties. The pro-
gram in assembly language(.s format), is first compiled using the
GCC (version 2.7.2.3)−O2 option. It is then profiled through ex-
ecution in our processor simulator to populate the tuple hierarchy
as discussed in Section 5. The output of our B2P2 heuristic is the
values for function start addresses (FNx.Pos). Padding using nop
functions (each of size 8 bytes) are introduced to align the functions
to page-boundaries.

9. Experiments
In this section we describe in detail our experimental results over an
implementation of our B2P2 heuristic in the embedded processor
simulator (as described in Section 8).

9.1 Overall Page-Switch Reduction
In Fig. 6, the normalized page-switch count of each benchmark
application, normalized to the page-switch count of the baseline
(un-optimized) program, is plotted. The average page-switch re-
duction achieved over the set of experimented benchmarks, is in-
dicated by the bar on the right of the graph. Applications patri-
cia and adpcm are characterized by procedures of large size and
a number of call-sites with high call-counts. These characteristics
of the program are identified by the B2P2 heuristic through the
use of sorted ELEMENTS LIST structure, and were therefore op-
timally placed to achieve significant page-switch reduction. On the
other hand, the fft benchmark is dominated by the three nested
loop structures in the fft float() function. Owing to the sizes of



Benchmark Page-Switches due to Overall Overall
from Function-Calls Loops Sequential Accesses Page-Switch Performance
MiBench suite Original Optimized Original Optimized Original Optimized Reduction Variation
Dijkstra 229517 2354 0 10000 86734 139791 52% < 1%
Patricia 23580 900 0 0 4336 456 95% −3%
Blowfish dec 94592 15592 311876 50 524453 284244 68% −3%
Blowfish enc 15592 15592 50 50 213671 213671 0% 0%
Sha 88 4885 623744 0 14623 4873 98% < 1%
adpcm caudio 688 688 0 0 685 685 0% 0%
adpcm daudio 688 688 1368866 0 1370 685 100% −8%
fft 8196 8196 8202 0 2074 13 56% < 1%
fft inv 16388 16388 16395 0 4123 13 56% < 1%

Table 1. Table showing page-switches due to function-calls, loops and sequential-executions, in benchmark applications

Figure 6. Impact of Code Placement on Page Switch Count.

these loops and the containing function, the B2P2 heuristic greedily
binds the nested loops to a page, eliminating the dominating page-
switches but causing smaller interfering function-calls and function
sequential-executions to cause page-switches.

Over the set of benchmarks experimented, we observe an aver-
age of 76% reduction in the page-switch count, with less than 2%
variation in performance and maximum variation of −8% (in ad-
pcm). The achieved active power savings through our B2P2 heuris-
tic (directly proportional to the page-switch reduction), is over and
above that achieved through the Use-Last TLB architecture alone.

9.2 Program Page-Switches: break-up
In Table 1, the page-switches due to each instruction type (loops,
function-calls or function blocks) in the program is tabulated for
the set of benchmark applications used in our experiments. This
tabulation portrays the impact of our greedy heuristic on the pro-
gram page-switch count. The last two columns describe the overall
page-switch reduction and performance variation of the optimized
program when compared with the original program. A performance
variation > 0 indicates runtime decrease while < 0 indicates run-
time increase after optimization. For example, in dijkstra the orig-
inal program placement did not cause any page-switches due to
loops, but in optimizing for reduced total page-switch count, an
overall reduction of 52% (with ¡ 1% variation in performance) was
achieved through code placement, which resulted in a loop (itera-
tion count = 10000) to span across a page-boundary causing in-
crease in page-switches due to loops.

Our code placement technique aims to achieve maximum pos-
sible page-switch reduction on a given program and the benchmark
Blowfish demonstrates such a condition. The encode and decode
functionality of this benchmark, use the same code but for an if con-

dition that chooses one loop over the other in the bf cfb64 encrypt()
function. Each of these loops have an iteration count 311825 equal
to 33% of the program’s total page-switch count. The page-switch
count of the original program, incurred minimum number of total
page-switches for the encode functionality, but owing to the use of
different loops in the bf cfb64 encrypt() function, procedure place-
ment optimization was possible on the decode functionality result-
ing in an average of 68% page-switch reduction.

10. Summary
Most modern processors implement virtually addressed physically
tagged caches, where virtual to physical address translation (us-
ing TLB) is required on every cache access. Coupled with the
small page-sizes in embedded systems, the i-TLB contributes sig-
nificantly to the overall power consumption of the processor. The
Use-Last TLB architecture [26] is an efficient architectural modifi-
cation that significantly reduces the i-TLB power for such systems.
The Use-Last i-TLB reduces power consumption by performing
a lookup only when the accessed page is different from the pre-
vious. Although Use-Last is an effective architectural technique,
the power consumption can be further reduced by rearranging the
code segments. To this end we formulate the procedure placement
problem (PPP) to minimize the total number of page-switches in
the program. We prove, through reduction from Graph Partitioning
problem, that this code placement problem is NP-complete, and de-
velop an ILP solution for a subset of the problem. We also propose
an efficient Bounds Based Procedure Placement heuristic to reduce
the program page-switches in the linker-phase of program com-
pilation. Results over benchmarks from the MiBench suite show
an average of 76% i-TLB power reduction over and above that by
the Use-Last architecture alone, at negligible (< 2%) performance
variation.

11. Future Work
The code placement problem for minimized page-switches can also
be approached at the basic-block granularity, taking advantage of
the greater levels of freedom in movement of the code, to achieve
page-switch reduction. Though such a finer granularity has an im-
pact on code size and performance, an efficient technique could still
be formulated to obtain significant page-switch reductions.On an-
alyzing the optimized procedure placements in dijktra and sha, we
observe that the B2P2 heuristic does not achieve maximum page-
switch reduction, owing to the greedy nature of the heuristic. The
PPP inherently lends itself to a network flow problem and there-
fore an efficient heuristic could be arrived at from that perspective.
In [18], using the same Use-Last TLB architecture, we proposed
code transformations to reduce the number of page-switches in the
data TLB and thereby reduce d-TLB power. Evaluating the com-
bined effects of these two techniques is an interesting research di-
rection.
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