
Int J Parallel Prog
DOI 10.1007/s10766-009-0123-8

Code Transformations for TLB Power Reduction

Reiley Jeyapaul · Aviral Shrivastava

Received: 30 June 2009 / Accepted: 13 December 2009
© Springer Science+Business Media, LLC 2010

Abstract The Translation Look-aside Buffer (TLB) is a very important part in the
hardware support for virtual memory management implementation of high perfor-
mance embedded systems. The TLB though small is frequently accessed, and there-
fore not only consumes significant energy, but also is one of the important thermal
hot-spots in the processor. Recently, several circuit and microarchitectural implemen-
tations of TLBs have been proposed to reduce TLB power. One simple, yet effective
TLB design for power reduction is the Use-Last TLB architecture proposed in IEEE
J Solid State Circuits, 1190–1199, (2004). The Use-Last TLB architecture reduces the
power consumption when the last page is accessed again. In this work, we develop
code transformation techniques to reduce the page switchings in data cache accesses
and propose an efficient page-aware code placement technique to enhance the energy
reduction capabilities achieved by the Use-Last TLB architecture for instruction cache
accesses. Our comprehensive page switch reduction algorithm results in an average
of 39% reduction in the data-TLB page switching, and our code placement heuristic
results in an average of 76% reduction in the instrucion-TLB page switchings with
negligible impact on the performance on benchmarks from MiBench, Multimedia,
DSPStone and BDTI suites. The reduced page switch count through our techniques
achieves an equivalent power savings, above and beyond the reduction achieved by
the Use-Last TLB architecture implementation.

Keywords Tlb power · Code transformation · Compiler technique · I-TLB power ·
D-TLB power · Instruction scheduling · Code placement

R. Jeyapaul (B) · A. Shrivastava
Compiler and Microarchitecture Laboratory, Arizona State University, Tempe, AZ 85281, USA
e-mail: reiley.jeyapaul@asu.edu; reiley@asu.edu

A. Shrivastava
e-mail: aviral.shrivastava@asu.edu

123

Int J Parallel Prog

1 Introduction

Power, energy and thermal issues in current and near future digital systems form
the crux of the biggest challenge that the semiconductor industry faces today. In
high-end computing, power consumption limits the amount of achievable perfor-
mance because of exorbitant increase in the cost of heat removal mechanisms. In
battery operated portable systems, the battery is the single largest factor in device
cost, weight, recharging time, frequency and ultimately the usability of the system.
Translation Look-aside Buffer or TLB is an important component of high-end multi-
tasking embedded processors, like the Intel XScale. The TLB performs virtual to
physical address translation and determines page access permissions. Most modern
processors, including the Intel XScale implement virtually-addressed caches, in which
the cache lookup is directly performed on the virtual address provided by the proces-
sor, and therefore the TLB lookup comes in the critical path. Elkman et al. [1] note
that the TLBs can consume 20–25% of the total L1 cache energy. Kadayif et al. [2]
observed high power densities of the data-TLB, as compared to the data-L1 cache.
Thus reducing the power consumption of TLBs is an important research problem.
Kadayif et al. [2] in their work show that the iTLB architecture has a power density
of 7.820 nW/mm2 compared to 0.975 and 0.670 nW/mm2 for i L1 and d L1, respec-
tively.

Several TLB designs have been proposed to trade-off the TLB lookup delay, area
and power consumption [3,4]. One simple, yet effective technique for TLB power
reduction proposed in [5,6], is the Use-Last TLB architecture. Observing that there
is a high probability that instruction access will refer to the same page as the last
one, they store the previous page translation information into a latch, and thereby
reduce the TLB lookup power. The Use-Last TLB architecture is able to reduce the
instruction TLB power by 75%. However, since data accesses do not exhibit as high
locality as instructions, this microarchitectural technique was not effective for data
TLBs.

For a modified processor with the inclusion of the Use-Last TLB architecture for
both the instruction and data TLB structures, we present here, compiler directed code
transforamtion techniques to reduce the processor power consumption, by improv-
ing the page locality of data and instruction cache accesses. We first propose a novel
instruction scheduling and operand reordering technique heuristic for deciding when
to perform array interleaving, and loop unrolling to minimize the page switchings
between consecutive data-TLB accesses, while minimizing performance loss. Our
comprehensive algorithm can reduce the data-TLB page switches by 39%, with mini-
mal performance impact experimented over benchmarks from MiBench, Multimedia,
DSPStone and BDTI suites. We then propose a novel page-aware code placement
heuristic to enhance the page locality of instruction cache accesses and thereby reduce
the power consumption of the instruction-TLB by an average of 76% with less than
1% variation in perforamnce over benchmark applications from the MiBench suite.
It should be noted here that this power reduction obtained through the code trans-
formations is above and beyond what the Use-Last hardware technique alone could
achieve.

123

Int J Parallel Prog

2 Related Work

TLB power reduction is important not only to reduce the total energy consumed by the
processor, but also to alleviate the high power density (hotspot) of TLB in the proces-
sor. Several researchers have proposed efficient circuit-level, microarchitectural and
software techniques to reduce the power consumption of the TLB and the Memory
Management Unit.

2.1 Hardware Approaches

Several researchers have proposed efficient circuit and microarchitectural techniques
to reduce the power consumption of the TLB and the Memory Management Unit. A
fully associative TLB architecture with (Content Addressable Memory) CAM imple-
mentation has been proved to be efficient in terms of performance and power con-
sumption. Manne et al. [7] proposes a banked associative design for TLBs (BA-TLB)
which consumes less power than a fully associative TLB through the use of a banked
design such that only half the CAM entries are looked up during each access to the
TLB. In Lee et al. [8] the TLB is constructed as multiple banks with a small filter-
bank buffer located above its associated bank. Through the use of selective filtering
and banking mechanism, the number of entries accessed is reduced and it therefore
proves to be highly efficient in embedded processors.

Hyuck et al. [9] in their work propose a two-level TLB architecture that integrates
a 2-way banked filter TLB with a 2-way banked main TLB design. This architec-
ture aims at reducing the power consumption of the TLB in embedded processors
by distributing the accesses to TLB entries across the banks in a balanced manner.
Chang [10] in his paper, presents a real-time filter scheme to remove redundant TLB
accesses by distinguishing them as soon as the virtual address is generated. This in
combination with two adaptive banked TLB designs proved to effectively improve the
energy delay product of data TLBs. Kadayif et al. [11] introduce translation registers
(TR) to store the most frequently used TLB translations. During subsequent virtual
address entries, these TRs are looked up and if present the information stored is used.
This saves the switching activity of the register files in mapping the virtual address to
the physical address. It should also be noted that the granularity at which these hard-
ware architectures alone achieve power reduction is limited by the number of registers
or only succesive access. The power savings achieved by such hardware techniques
are also limited by the area and power overheads involved in the implementation.

2.2 Software Approaches

A compiler-directed array interleaving technique [12] was proposed to save energy
in multi-bank memory architectures with power control features. In this, the arrays
used in separate banks are interleaved such that only one of the banks is active and the
other can be powered down, thus saving energy. The energy reduction achieved by this
technique does not account for the leakage power of the SRAM cells during standby
mode. Parikh et al. in [13] schedule instructions within a block based on the minimum

123

Int J Parallel Prog

obtainable value for a weighted cost function:circuit-state cost. One recent work is
[14], where energy reduction is achieved through effective utilization of resources by
switching between two processor modes based on the cache misses. These software
approaches though achieve power reduction in the TLB are limited by the applica-
bility to a broad spectrum of applications and also by their compatibility to different
architecture.

2.3 Hybrid Approaches

Kayadif et al. in [2] present a set of software only, hardware only and integrated
hardware-software techniques to achieve reduced instruction TLB energy consump-
tion. In this journal, the authors demonstrate through analysis and experiments the
efficiency and advantages of a hybrid hardware-software technique to reduce TLB
power. A hybrid approach has the critical advantage of modifying the software in such
a way that the architectural modification is efficiently used through architecture aware
software optimizations. In this work, we propose such a hadware-software hybrid
apporach for TLB power reduction using the Use-Last TLB architecture in the caches.

One hybrid approach closest in semblance to ours, is by Kandemir et al. [15]. Their
compiler technique is to increase the effectiveness of a previously proposed architec-
tural technique that uses Translation Registers or TRs. The addition of TRs requires
changing the ISA, which may not be desirable in many cases. In contrast, our approach
is to improve the effectiveness of Use-Last TLB architecture, which exists in the Intel
XScale processor. They have to profile the code to find out which page will be accessed
frequently in the near future, and then generate code to load the translations to that
page into TRs. In comparison, our approach is a static technique. We do not need/use
profile information. Not only that profile-based compilation is limited in application
and scope, it has huge overhead in terms of compilation time. Our technique does not
have any such overheads. Finally, in their technique, the code is modeled as nodes
which represent loop nests that access data from a particular page region. Code trans-
formations to enhance the use of TRs are directed at scheduling these loop nests (nodes
that access data from a particular page region) together. In contrast, our approach is to
schedule and transform instructions so that the accesses to the same page are grouped
together. Our technique operates at a finer granularity than theirs, and could therefore
co-exist, and enhance the effectiveness of each other.

3 Architecture Description

3.1 Energy Consumption in the Conventional TLB

In a VI-VT (Virtually Indexed Virtually Tagged) or VI-PT (Virtually Indexed Physi-
cally Tagged) cache architecture, all data/instruction accesses by the processor are to
virtual addresses. On a cache access, the virtual address is compared with any exist-
ing tag entries in the CAM based table of the TLB. If the entry exists, it indicates a
cache-hit and therefore, the mapped physical address (of the data entry) and the cor-
responding access permissions are transferred to the output of the TLB, which inturn

123

Int J Parallel Prog

Fig. 1 Representative block diagram of the Use-Last TLB architecture [5]

is used to address the specific location in the cache. If the data is not present in the
cache, the tag comparison at the TLB returns a cache-miss and therefore the data is
retrieved from the memory, and the corresponding physical address and the processor
accessing the data is updated as an entry in the TLB table. It should be noted here that
for every data/instruction access the TLB lookup is activated and the CAM structure is
switched to access the table entries on every access. This switching energy consumed
on every TLB access is directly proportional to the size of the TLB.

3.2 The Use-Last TLB Architecture

Proposed in [5], the Use-Last TLB architecture (Fig. 1) utilizes a modified TLB-
CAM structure. The virtual address input is matched with the TLB tag through the
CAM cells (which is optimized for power consumption). The TLB tag is then used to
retrieve the mapped physical address from the lookup table (register files). The lookup
on the register files is a power consuming process because of the bit-line and word-line
drivers and other associated circuitry involved in its operation. The key factor in this
architecture design is the latch used to store the tag address of the previously accessed
address. This newly introduced latch clearly differentiates the two stages of the TLB
operation on every data access. In the first stage, the CAM cells are activated on every
access to check for the presence of an existing TLB entry. These CAM cells have been
optimized for reduced power consumption [5] because of the requirement that the tag
comparison has to be performed on every access. At the second stage of the TLB oper-
ation, the compared tag for a cache-hit access, is used to lookup for the corresponding
physical cache address and access permissions from the table (a register file array).
On a data access, the output of the latch(previously accessed tag) is compared with the
current tag entry and if found to be equal, the register file array is not looked up, as the
physical address and access permissions from the previous lookup remain unaltered at
the output of the TLB structure. If the tag entries are not equal, the latch stores this tag
entry and the register file array is switched to lookup for the corresponding physical
address and access permissions.

Since, for every successive data accesses to the same page, where the tag entries
are the same, the register files (word and bit lines) are not activated, the switching
energy of the RF cells and associated circuitry is eliminated. The effectiveness of this
technique was demonstrated on a 90-nm virtually addressed microprocessor cache
memory subsystem functioning at 2.5 GHz with 32 KB of instruciton and data cache
structures. The instruction TLB demostrated 75% power savings while the data TLB
showed 42%. As can be observed, this technique was inefficient for data caches, as

123

Int J Parallel Prog

data accesses in general do not exhibit high data locality as compared to instruction
TLB. Our primary work aims to enhance the effectiveness of this architectural tech-
nique on data caches through code transformations and achieve power savings through
reduction in the number of page-switches during successive data accesses. A similar
compiler-directed approach is used to reduce the page-switches during instruciton
accesses in the instruction-TLB and significant energy reduction is demonstrated in
this journal.

4 Experimental Setup

We explore and develop compiler techniques for the Intel XScale processor [16] on
which the Use-Last architecture was implemented (Sect. 3). Intel XScale is an out-of-
order, 7-stage superpipelined high-end embedded processor, which runs at up to 1 GHz.
The Intel XScale uses TLBs to implement virtual memory support. The Intel XScale
is intended to be used in wireless and handheld applications and therefore we execute
benchmarks from MiBench [17], MultiMedia [18], DSPstone [19], Spec2000 [20],
and the BDTI [21] benchmark suites. The sim-outorder cycle-accurate simulator of
the SimpleScalar toolset [22] was modified to model the Intel XScale memory config-
uration and to determine the total number of page switches in the data and instruciton
TLB of a program.

5 Organization of Contents

The remainder of this paper is organized into two broad parts. In the first part, we
develop and demonstrate our page aware code transforamtion techniques for data-
TLB page switch redcution. Section 6.1 describes our instruction scheduling and
operand reordering technique. Section 6.2 describes our array interleaving implemen-
tation. Section 6.3 describes the conditions for our implementation of loop unrolling.
Section 6.4 then describes our comprehensive algorithm for data-TLB page switch
reduction. In the second part, we describe in detail our page aware code placement
heuristic in Sect. 7 and demonstrate its efficiency in page switch reduction for the
instruction cache TLB through experiments. We then conclude and summarise our
work in Sect. 8.

6 Part I: Data-TLB Power Reduction

6.1 Page-Switch Aware Instruction Scheduling

Instruction scheduling can aggregate instructions that access the same pages consec-
utively, thereby reducing page switches in the data TLB. In addition, for commutative
operations, it is also possible to reorder the operands, and effect the memory access
pattern. We develop a combined instruction scheduling and operand reordering tech-
nique to reduce TLB page switching.

123

Int J Parallel Prog

6.1.1 Technique Overview

We motivate the applicability and effectiveness of fine-grain instruction and operand
reordering on TLB page switches using a kernel from the compress benchmark, shown
in Fig. 1a. The kernel accesses elements from a two-dimensional array. If the array
size is much larger than the page size(which is typically small in embedded systems),
elements from the higher dimensions may reside in different pages. In this example,
there are high chances that a[i], and a[j] may be in different pages, if i �= j . Assuming
this, the two code sequences generated by the compiler, illustrated in Fig. 1b and c,
may result in the same performance, they may differ significantly in the number of
TLB switches they cause. When executed, the code in Fig. 1b will result in accesses
in the sequence: a[i][j], a[i − 1][j − 1], a[i][j − 1], a[i − 1][j], and a[i][j], which
will result in 4 page switches per iteration, while the code in Fig. 1c will result in
only 1 page switch per iteration. Note that depending on the cache size and page size,
the page switches can vary, but if there is no performance impact, it will be better to
generate the code as in Fig. 1c. In the rest of this section, we first formulate the problem
of minimizing the page switches by instruction scheduling and operand reordering.
Finding the problem to be NP-complete, we propose a heuristic for the same.

6.1.2 Problem Formulation

Input: Data Flow Graph (DFG) is a directed acyclic graph (DAG) D = (V, E) of a
code sequence. The nodes v ∈ V represent instructions i ∈ I . An instruction i is repre-
sented by a ordered (k+2)-tuple i =< op, d, s1, s2, . . . , sk >, where op is the opcode,
d is the destination, and there are k source operands, s1, . . . , sk, d, s1, s2, . . . , sk ∈ O ,
where O is the set of program variables, or operands. There is a directed edge e =
(v1, v2) ∈ E,� v1, v2 ∈ V , from v1 to v2 if the destination of the instruction repre-
sented by node v2, is the same as any of the source operands of the instruction repre-
sented by node v1. i.e., (v1.i.d = v2.i.s1)∨(v1.i.d = v2.i.s2)∨ ...∨(v1.i.d = v2.i.sk).
The data flow graph will also have nodes at the beginning of the graph, representing
loading of operands, and nodes at the end of the graph, representing storing of oper-
ands, or intermediate values that will be carried over to the next loop. The DFG of the
compress kernel is illustrated in Fig. 2.

Output: Instruction Sequence represented by the function T ime : I → N such
that all data dependencies are maintained. i.e., if there is an edge from instruction ia

to ib, then T ime(ia) < T ime(ib).
Objective: Minimize Page Switches in the instruction sequence. To estimate page

switching at the compiler level, we define a function Page : O → P , which maps
operands o ∈ O to pages p ∈ P , where P is the set of all the pages accessed by the
application. A source operand may be a scalar, or an array, and can be defined in a
local scope or a global scope. We define Page(s) thus:

• Page(s) = undefined if the operand s is a local scalar variable. This is because
most probably all the local scalar variables will be allocated to registers and there-
fore will not involve in memory access.

123

Int J Parallel Prog

Fig. 2 Impact of code generation on TLB page switching

• Page(s) = p0 if s is a global scalar variable. We assume that all the global scalars
are allocated to a single page.

• For the global or local arrays, we assume that each array, irrespective of it’s size
is mapped to exactly one unique page.

Page Switch Model In addition, we also need a page switch model, i.e., given a
sequence of instructions, how many page switches will occur. We assume that when an
instruction i executes, its operands are accessed in the order {i.s1, i.s2, . . . , i.sk, i.d}.
Assuming that the page accessed just before the execution of an instruction i is p,
then, we define the page switching function, PSI (p, i1, . . . , in) to be the number of
page switches when a sequence of instructions i1, . . . , in is executed.

PSI (p, i1, . . . , in) = PSO(p, i1.s1, i1.s2, . . . , i1.sk, i1.d,

= i2.s1, i2.s2, . . . , i2.sk, i2.d,

= ...,

= in .s1, in .s2, . . . , in .sk, in .d)

The total page switch count between operands can be recursively computed,

PSO(p, o1, . . . , om) = PSO(p, o1) + PSO(LPO(p, o1), o2, . . . , om)

where PSO(p, o) = 1, when both p and Page(o) are defined, and p �= Page(o).

LPO(p, o) is the last page accessed when operand o1 is accessed after accessing page
p. The last page function L P(p, o) = Page(o), if Page(o) is defined, otherwise, it is
p.

6.1.3 Solution for Page Switch Minimization

To minimize page switches by instruction scheduling and operand reordering, we
define a Page Switching Graph P SG_ f ull = (I, S), which is a directed graph, whose
vertices are instructions i ∈ I , and there is an edge from instruction i to instruction j

123

Int J Parallel Prog

if instruction j can be scheduled immediately after instruction i . We attach a weight
attribute to each edge w(i, j), which is the minimum increase in the page switches
when instruction j is scheduled immediately after instruction i . Thus,

w(i, j) =
⎧
⎨

⎩

min

{
PSO(p, j.s1, j.s2, j.d)

PSO(p, j.s2, j.s1, j.d)
if j.op is comm

PSO(p, j.s1, j.s2, j.d) otherwise

where p is the last page that has been accessed after instruction i is executed. We add
a dummy source node, and a sink node so that there is an edge from the source node
to all the instructions that do not have any predecessors in DDG, and there are edges
all nodes that do not have successors in DDG to the sink node. Dummy nodes access
only undefined pages.

The problem of finding the instruction sequence and operand ordering that min-
imizes the number of page switches is exactly equal to the problem of finding the
shortest hamiltonian path from source node to sink node. This implies that if we can
solve the problem of page switch minimization in polynomial time, we can also solve
the hamiltonian problem, which is a well known NP-Complete problem in polynomial
time. This is quite unlikely, therefore the problem of scheduling for page switch min-
imization is NP complete. Therefore we focus our efforts on developing scheduling
heuristics for page switch minimization.

6.1.4 Heuristic for Page Switch Minimization

For heuristics, we first construct a Page-Not-Switching Graph PNSG = (I, D, S),
where the nodes (I) are instructions, and there are two kinds of edges, first is the
set of data dependence edges D, and the second S is the set of inter-instruction page
not-switching edges. Thus there is a an edge s = (i, j) ∈ S between two instructions:
i, j ∈ I , if there is NO inter-instruction page switch when instruction j is scheduled
immediately after instruction i . In other words, (i, j) ∈ S,∀i, j ∈ I, iff Q ps ≥ 1,
where

Q ps =
⎧
⎨

⎩

min

{
PSO(p, undefined, i.d, j.s1)

PSO(p, undefined, i.d, j.s2)
if j.op is comm

PSO(undefined, i.d, j.s1) otherwise

An example of a PNSG is shown in Fig. 3. The nodes 1 through 7 are instructions,
and the solid edges represent data dependencies. The dashed edges represent the inter-
instruction page not-switching edges. We now perform our scheduling on this graph
representation.

We first developed a greedy algorithm. In the greedy algorithm, in every iteration,
the last scheduled instruction, l is maintained, and list of instructions that are now
ready to be scheduled, R is created. If there is a page-not-switching edge between l
and any instruction r ∈ R, then r gets priority, as it minimizes the page switches. Thus
suppose instructions 1, 2 and 3 are scheduled, with l = 3. Then R can be computed
as R = {4, 5}. Out of these, the greedy heuristic will pick up instruction 4.

123

Int J Parallel Prog

Fig. 3 Problem in greedy solution

Fig. 4 DFG and page mapping of compress kernel

Figure 4 illustrates one problem with this simple approach. In the first iteration, the
greedy solution can pick up either instruction 1, or instruction 3. Picking up instruction
3 is a bad choice, because it is not possible to schedule instruction 4 as the second
instruction. Instruction 3 should only be scheduled only if instruction 4 can be sched-
uled next. We fix this problem by adding that—when picking an instruction which is
the source of a page-not-switching edge, we pick up a pair of instructions to schedule;
plus, we give priority to pick up instructions that are not connected through page-not-
switching edges. This gives us more opportunities to pick up instruction pairs with
page-not-switching edges.

6.1.5 Experiments and Results

We have implemented this page-aware instruction rescheduling algorithm as a com-
piler post-pass [23]. We compile our benchmarks with GCC -O3 optimization, to
ensure that the benchmarks are compiled and scheduled for the maximum performance.
We disassemble the generated object file, discover the basic blocks, and re-create the
control flow graph (CFG), and the data flow graph. We perform this modified list
scheduling heuristic on basic blocks. This fine grain instruction scheduling approach
is applicable to any program. The effectiveness of this approach could be increased by
performing our scheduling on hyperblocks, and/or superblocks. We observed that our

123

Int J Parallel Prog

Fig. 5 Impact of instruction scheduling on page switch count

scheduling gains from performing local reordering of load instructions. There is not
much increased opportunity to move load instructions across basic blocks, because of
tight data dependencies.

We modified the sim-outorder [22] simulator to count the page switches for an
application execution. Figure 5 plots the page switch count, after implementing our
page-aware instruction scheduling and operand re-ordering transformations normal-
ized to the baseline page switch count. On an average, our technique achieves 23%
reduction in the page switch count as indicated by the right-most bar in Fig. 5. As a
matter of fact, we observed an average performance improvement of 4%. This reduc-
tion in page switches directly translate into 23% power savings in the Use-Last TLB.
Note that this is over and above what Use-Last TLB architecture achieves on its own.

6.2 Page-Switch Aware Array Interleaving

6.2.1 Technique Overview

Figure 6 shows how array interleaving can reduce the TLB page switching over data
accesses in the program. The code in Fig. 6a shows a loop which accesses elements
from two different arrays A and B, which are mapped to different pages. Figure 6b,
shows that when this loop executes, there is a page switch between consecutive memory
accesses in the program. Figure 6c shows the transformed code after interleaving. Array
interleaving places the elements of the two arrays as alternate elements of the array AB.
Figure 6d shows that there is no page-switching between consecutive access to AB.

6.2.2 Which Arrays to Interleave?

The problem of reducing TLB page switching is localized to consecutive memory
accesses, therefore interleaving of arrays need only be directed to decrease the page
switching in the innermost loop. Consider a nested loop of 3 levels, whose iterators

123

Int J Parallel Prog

Fig. 6 Array interleaving through example: a example loop, b array allocation and access pattern, c loop
block with interleaved arrays, d array allocation and access pattern of interleaved array

are i, j , and k, in which are there are references to arrays A and B. Suppose in the
innermost loop, the reference functions are affine functions of the iterators, i.e., the
access function can be represented as a linear combination of the iterators, f A =
a0 + a1i + a2 j + a3k, and similarly fB = b0 + b1i + b2 j + b3k.

We consider two arrays A and B as interleaving candidates only if i) the access
functions of the arrays are the same. Thus, a0 = b0, a1 = b1, a2 = b2, a3 = b3
ensuring minimized page switches after interleaving. ii) the arrays of the same size.
For example, we will interleave an array of integers with another same size array of
integers. It is important to note that while it is possible to interleave arrays with slightly
different access patterns also, it results in an overhead in terms of extra addressing
instructions. However, the innermost loop may contain several references to the same
array. Two arrays will be interleaving candidates if the conditions are satisfied for any
pair of references to the arrays. We perform this analysis on all the important loops of
the application, and find pair of arrays, which are interleaving candidates, we take the
union of interleaving candidates. Thus if arrays A and B are found to be interleaving
candidates from one loop, while B and C are interleaving candidates from some other,
then all the three arrays will be interleaved.

6.2.3 Array Interleaving

The process of interleaving r arrays of the same data type A1, A2, . . . , Ar is a three
step transformation. The first is to replace the individual array declarations with a sin-
gle array A of r times the size of each array, and second is to fix the access functions
of all the array references. The access function fm = Am[ami + bm j + cmk + dm] of
the mth array is replaced by fm = A[r × (ami + bm j + cmk + dm) + (m − 1)] in
three-level nested loop. At the end of the day, it is important to schedule the instruc-
tions that access the interleaved array in the same pattern consecutively. This is done
by moving the result of the first instruction in a new temporary variable, and replacing
all its uses by the temporary variable. Interleaving of r arrays of different data types
is done by declaring a new structure, say s, which contains an element from each of
the arrays. We then declare an array A of the same size as all the previous arrays
consisting of elements of data type s. Then we replace the access function of the mth
array fm = Am[ami + bm j + cmk + dm] by fm = A[ami + bm j + cmk + dm].m.

123

Int J Parallel Prog

6.2.4 Experiments and Results

We translate the source code into the FORAY format [24], which essentially consists
of just the loop structure and the array access functions as affine functions of the loop
iterators. We analyze the code in this format, and, perform our page-aware array inter-
leaving transformations in this format, and then convert it back to the source code.
The application is compiled again, and our instruction scheduling for page switch
minimization is applied to enhance the impact of array interleaving.

Figure 7 plots the page switch count after performing array interleaving and instruc-
tion scheduling on all the benchmarks. The plot thus shows that our page-aware array
interleaving is a very effective transformation, and reduces the data-TLB page-swith
count by an average of 35% (indicated by the right-most bar) with an overall average
of 11% increase in performance. This performance improvement is inherent to array
interleaving, as it inherently increases the spatial locality of data, leading to improved
cache behavior. In swim, two global arrays and 5 local arrays were accessed together
in the loop bodies. Interleaving was possible on all the arrays, thereby forming two
interleaved arrays (one global, and other local). This transformation enhanced the
opportunities for instruction scheduling and therefore 70% page switch reduction was
observed. Since the TLB power is directly proportional to the number of accesses, we
can expect a concomitant 35% reduction in TLB power due to the combined impact
of array interleaving and page switch-aware scheduling.

6.3 Impact of Loop Unrolling

Loop unrolling is a loop transformation in which the loop body is replicated a finite
number of times, thereby reducing the loop overhead instructions. It is important to
observe that loop unrolling by itself does not reduce TLB page switching, but, it may

Fig. 7 Impact of array interleaving and instruction scheduling on page switch count

123

Int J Parallel Prog

increase the effectiveness of instruction scheduling, by providing more opportunities
to schedule instructions and thereby reduce inter-instruction page switching.

Unrolling a loop may reduce page switches if there is atleast one instruction, such
that if we schedule two copies of the instruction belonging to different iterations when
scheduled consecutively, will not result in inter-instruction page switching. In other
words, loop unrolling can be performed if ∃i ∈ I such that,

⎧
⎨

⎩

min

{
PSO(undefined, i.d, i.s1)

PSO(undefined, i.d, i.s2)
if i.op is comm = 0

PSO(undefined, i.d, i.s1) otherwise

6.3.1 Experiments and Results

We have implemented our page-switch aware loop unrolling transformation also as
source code transformation. Figure 8 plots the effect of loop unrolling on the page
switch count of various benchmark applications. The normalized page-switch count
for the case when page-switch aware instruction scheduling and array interleaving are
performed is plotted as the dark bar (to the left for each benchmark), and the lighter
graphs indicate the page-switch count for unrolling factors of 2, 4 and 8 times, respec-
tively. The right-most set of bars in Fig. 8 indicate the average values for the cases
plotted. On an average, for an unrolling factor of 8, we obtain a reduction of 37% in
the page switch count for the applications on which page-aware loop unrolling was
possible with 9% performance improvement.

6.4 Comprehensive Page Switch Reduction

Finally we study the impact of all the three transformations together. The order-
ing of the transformations is an interesting issue. Instruction scheduling and array

Fig. 8 Impact of loop unrolling on page switch count

123

Int J Parallel Prog

Fig. 9 Page switch count and runtime reduction by our page-switch reduction algorithm

interleaving are the fundamental transformations that reduce data TLB page switches.
Loop unrolling will be most effective when all the opportunities for page switch reduc-
tion achievable after re-scheduling, are exploited. Our page switch-aware instruction
scheduling is done at a more fine-grained level, and therefore has to be performed
only after array interleaving and unrolling to maximize the effect. We first perform
Page-Switch Aware Array Interleaving to group the memory allocation of varied arrays
together into one overlapped page, and then Loop Unrolling on the instructions such
that all the instructions capable of being implemented without page-switch are exe-
cuted together. Our fine-grain instruction scheduling is then performed as a post-pass.

6.4.1 Experiments and Results

The dark bars on the left in Fig. 9 plot the percentage reduction in the data TLB page
switch count for each application. The reduction is calculated as compared to the data
TLB page switch count when the application is compiled using GCC-O3 alone. The
rightmost dark bar shows that there is an average 39% data TLB page switch count
reduction over all the benchmarks. The light bars on the right in Fig. 9 plot the reduc-
tion in runtime for all the applications. The rightmost light bar shows that there is an
average 6.4% reduction in runtime. In conclusion, the effect of page switch reduction
techniques is additive, and the effect is realized after each step of the Page Switch
Reduction algorithm.

7 Part II: Instruction-TLB Power Reduction

7.1 Instruction TLB Page-Switches

The instructions of a program are predominantly a sequence of words placed consecu-
tively in the instruction memory. This inherently means that majority of the instruction

123

Int J Parallel Prog

cache accesses are to accesses within the same page when the next subsequent instruc-
tion accessed at all times. However, (i) when the loop block of a program extends across
a page boundary or (ii) when the called function and the call-site, are each in different
pages of the instruction memory, the instruction control will cross page boundaries
and thus cause page switches. When successive accesses to the instruction cache are to
two different pages, the last stored permission and tag data stored by the Use-Last [5]
latch cannot be used and thus cause switching of the TLB register file structures and
therefore leading to power consumption. In this work, we develop a code placement
heuristic that places the various function blocks of the program such that the above
conditions which case page switches are avoided. This page-aware code placement
heuristic proposed aims to achieve maximum reduction in the number of instruciton
TLB page switches and thereby reduced power consumption by the i-TLB.

7.2 Problem Formulation

The Code Placement Problem is defined as the reallocation of the different function
blocks in a program such that the TLB page-switches (as described above), in the
instruction memory are minimized. A given program can be represnted in the form
of a DCFG as described in Fig. 11 where each function of a program is defined by
a 5-tuple of the form F P =< I d, Pos, Size, Calls, L P[] >. Here, L P[] is the list
of loops within the function and represented by the 5-tuple loop tuple of the form
L P =< I d, Pos, Size, Cnt, FnCall[] >, where FnCall[] lists the call-sites for
each of the function calls from this function and defined by the tuple FnCall =<

F P.I d, Pos >. This hierarchial representation of a program defines the various com-
ponents involved in the formation of the problem and also facilitate in deriving a
heuristic solution. At the top-level, the program is defined by a list (F P[]) of tuples
describing the list of functions in the program. The optimized reallocation solution to
the problem is given by the page-offset values (F P.Pos) defined in the form of affine
constraints and integer tuple relations. The smallest offset values for each function
that satisfy these relations are taken as the solutions to the optimal code placement
problem.

7.3 Page-Aware Code Placement Heuristic

The overall functioning of the heuristic for page-aware code placement, is described
in the form of a flowchart in Fig. 10. The program to be analyzed and optimized is
first profiled by executing the application and deriving the data required. The data
gathered is then processed and stored in the form of tuples datastructure (F P, L P and
FnCall arrays) as described above. The values for loop iteration count (L P.Cnt),
and inter function calls (F P.Calls) are sorted and listed in the of decreasing mag-
nitude. At each time, the top of this sorted list is taken and the greedy heuristic is
processed. Based on whether the maximum value item is a function pointer (F P) or a
loop pointer (L P), the corresponding decisions are made and the overloaded function
Fn_Boundary() is called with the respective function parameters accordingly. The
idea behind sorting both the loop count values and the function call values as a single

123

Int J Parallel Prog

Fig. 10 Flowchart describing the Greedy Heuristic for page-aware code placement

list and taking the top-most value, is to ensure that the component(loop or function-
call) that dominates the page-switches of the program is given due prominence in the
optimization heuristic.

Two basic distinctions are made with respect to the component identified (loop
pointer or function pointer). Let us first consider the top-most component is a loop
pointer therefore indicating that the loop count is the highest among all values sorted.
In this case, the L P tuple values are used to analyze the possible position of the
loop within a page and when found to fit within a page, the loop positions are set in
the form of affine relations with respect to the page boundaries. These limits on the
loop position is then translated into equivalent limits on the loop’s parent function
considering the size of the function. The boundaries derived for the position of the
function, within a page, thus gaurantees that the loop with the highest loop count is
always placed within a single page and therefore gaurantee that L P.Cnt number of
page switches are removed. For the case when the loop pointer identified contains a
non-zero number of function calls within its loop block, identified by the L P.FnCall
values, another step is performed in addition to the above process of deriving limits.
The list of functions called from call-sites within the loop block are noted and the size
of each of the function is compared against the limits on the function position (derived
earlier). The largest function which satisfies this relationship is updated with its cor-
responding tuple values with the limits on its position in the page. This additional

123

Int J Parallel Prog

step for function calls ensures that, any page-switches that may arrise due to control
switching within the loop block is avoided. Since this loop block has been identified
as that of maximum value, we can assume here that a maximum of L P.Cnt number
of page switches are thwarted.

Let us now consider the top-most component is a function pointer indicating that
a particular function is called maximum number of times. In such a scenario, we can
assume that for every call to the function, notwithstanding the components within the
function, its sequential set of instructions are executed for sure. If these set of sequen-
tial instructions were such that they crossed a page boundary, we would experience
a page switch for every call to this function. In order to avoid this, considering the
size of the function, the function can be gauranteed to be placed within the same page
through the use of function position limits over a single page. This process this ensures
the removal of F P.Calls possible page switches in the program. If for any top-most
element of the list, none of the above conditions, for possible optimizations, satisfy,
the element is deemed reallocatable and the next element is chosen. Since at all times,
we only take the top-most element from the sorted list, and deduce a position limit
for the functions based on that value we call this a greedy heuristic. It should also
be noted here that none of the already defined limits are redefined during the pro-
cess and therefore optimal page-switch reduction is achieved for the instruction-TLB
accesses.

7.4 Illustrative Example

We use the dijkstra application (from the MiBench [17] benchmark suite) as an exam-
ple to demostrate the application of our page-aware code placement heuristic described
above. Figure 11 describes the data control flow graph (DCFG) of the original dijk-
stra benchmark program. Each oval in the figure represents a function and the dotted
line marks the process-line for that function. The loops in each of the functions are
labelled by rectangular boxes and the nested loops are marked by overlapping rect-
angular boxes, denoting the level of each loop. A function call is indicated by the
use of a solid arrow to another function, and the weight on that arrow indicates the
number of function calls executed, throughout the operation of the program. The page
boundaries or the pages to which each function (or a part of the function) resided in
the memory is indicated with the help of corrugated lines and labelled with the page
number.

From the DCFG in Fig. 11, it is evident that function calls to dequeue and enqueue
are the major contributors to the page-switch count of the application. In addition, it
can be noted that the function dequeue is called from outer loop Loop 2 of the dijkstra,
and the enqueue function is called from the inner loop Loop 3 of the dijkstra. Therefore,
in order to optimize the dijkstra application for reduced page switches, the function
were rearranged as in Fig. 12. Here, we observe that the code size of the application
has increased by 16 Bytes which was used as padding to position the function calls and
the loops optimally. The functions were rearranged in the instruction memory such
that the basic block within loops Loop 2 and Loop 3 of dijkstra were in one page. In
addition, since each of these loops involved function calls to dequeue and enqueue,

123

Int J Parallel Prog

Fig. 11 Original DCFG of dijkstra program with page demarcations

these functions were placed immediately below the dijkstra function so that they exist
in the same function. Since the collective size of dequeue(184 Bytes), enqueue(312
Bytes) and dijkstra(1, 408 Bytes) far exceeded the size of one page (1, 024 Bytes),
the dijkstra function was placed such that the loops Loop 2 and Loop 3, the functions
dequeue and enqueue all are placed in the same page. Owing to this code placement
order, it can be observed in Fig. 12 that the functions qcount and print_path originally
in the same page as that of dijkstra are now located in different pages. The justifica-
tion for this tradeoff is the fact that the total number of calls to enqueue and dequeue
together is twice that of qcount and print_path combined. Through experiments we
have determined that this optimal code placement for the dijkstra program achieves
52% reduced page-switches in line with the justification for the tradeoff involved in
the code placement.

7.5 Experiments

We have implemented this page-aware code-placement heuristic as a profile based
compiler post-pass [23] optimization technique. We compile the benchmark first with
GCC -O2 optimization, to ensure that the benchmarks are compiled and scheduled
for the maximum performance. We modified the sim-outorder [22] simulator to count
the iTLB-page switches for an application execution. The individual function calls,
and loop counts of the benchmark are extracted through instrumented profiling of the
application using the modified sim-outorder simulator. We dissasemble the generated
object file, discover the basic blocks, function sizes, loop positions, loop sizes and for-
mulate the input data for the optimization heuristic. The DCFG is formed for the entire

123

Int J Parallel Prog

Fig. 12 Optimized DCFG of dijkstra program with page demarcations

application, and the heuristic is applied as in Fig. 10. In order to introduce nop stubs
into the code for appropriate positioning of the functions and the loops, no_operation
functions are formed of 8 bytes each and duplicated accordingly.

The optimized code is then built into the binary, and executed using the modified
sim-outorder simulator to extract the iTLB-page switch count for the application. In
all the benchmarks experimented, only code-placement was performed and no data-
TLB page-switch reduction techniques were applied. Figure 13 plots the page-switch
count, after implementing our page-aware code placement heuristic normalzied to the
baseline(un optimized code) page-switch count for each benchmark. The benchmarks
patricia, sha and adpcm show significant reduction in the instruction-TLB page-switch
count when compared to the other benchmarks, owing to the characterisitics of these
applications. patricia and adpcm are applications which contain large functions, with
high number of function calls to smaller functions, and therefore caused high number
of page-switches. The heuristic was able to recognize this character of the program,
and place the highly used functions such that they were present in the same page as
that of the calling instruction from the callee function. Such a page-aware placement
of the functions led to the significant page-switch reduction. The sha benchmark on
the other hand was a large benchmark with many large functions with small number
of inter-function calls, but the presence of loops within the functions had a high loop
count and were located across page boundaries. Such loops(with maximum-iteration
count) were recognized by the heuristic and were placed such that none of these loops
were across page boundaries therefore reducing the page-switch count significantly. In
all the benchmarks, we observe less than 1% variation in performance and an average
of 76% reduction in the page switch count of the applications. This translates into

123

Int J Parallel Prog

Fig. 13 Impact of code placement on page switch count

an power saving of 76% over and above the reduction achieved through the Use-Last
TLB architecture implementation alone.

8 Summary

The TLB performs virtual to physical address translation and determines page access
permissions. Most mordern processors accomodate virtual addressing and therefore
the TLB is part of the critical path in every access to the cache, and since the L1 cache
is divided into instruction cache and data cache, and therefore there exist two TLB
structures, one for the instruciton (iTLB) and another for the data (dTLB). These TLB
structures thus form one of the major hot-spots of the processor, and therefore energy
consumption of these structures is a major concern in high general purpose as well as
high-performance processors. The Use-Last TLB architecture proposed in [5] reduces
the TLB power consumption, if the same page is accessed successively. This approach
was ineffective for data TLB, because data accesses do not exhibit high locality as
compared to instructions.

In this paper, we have introduced a novel, page-aware instruction scheduling algo-
rithm, and proposed heuristics to decide when to perform array interleaving, and loop
unrolling to reduce the TLB page switching. Our experiments on benchmarks from
MiBench, Multimedia, DSPStone and BDTI suites show a 39% reduction in the TLB
page switches with a negligible increase in performance, over what is possible by the
GCC compiler. We have enhanced the application of the Use-Last TLB architecture
for instruction cache through our page-aware code placement technique. Through our
page-aware code placement heuristic, we achieve 76% reduction in the page-switch
count of applications with less than 1% variation in performance over a set of control
intensive applications. It is to be noted here that the energy reduction achieved through
our code tranformations is over and above the energy reduction through the imple-
mentation of the Use-Last TLB architecture. Our future work in this direction involves

123

Int J Parallel Prog

further exploration of compiler directed code transformations for energy reduction in
the instruction-TLB architecture.

References

1. Ekman, M., Stenstrm, P., Dahlgren, F.: Tlb and snoop energy-reduction using virtual caches in low-
power chip-multiprocessors. In: ISLPED ’02, pp. 243–246. ACM, New York (2004)

2. Kadayif, I., Sivasubramaniam, A., Kandemir, M., Kandiraju, G., Chen, G.: Optimizing instruction tlb
energy using software and hardware techniques. ACM Trans. Des. Autom. Electron. Syst. 10(2), 229–
257 (2005)

3. Zhou, X., Petrov, P.: Low-power cache organization through selective tag translation for embedded
processors with virtual memory support. In: GLSVLSI ’06, pp. 398–403. ACM, New York (2004)

4. Petrov, P., Tracy, D., Orailoglu, A.: Energy-effcient physically tagged caches for embedded processors
with virtual memory. In: DAC ’05, pp. 17–22. ACM, New York (2005)

5. Haigh, J.R., Wilkerson, M., Miller, J., Beatty, T., Strazdus, S., Clark, L.: A low-power 2.5 ghz 90 nm
level 1 cache and memory management unit. IEEE J. Solid-State Circuits. 40(5), 1190–1199 (2005)

6. Clark, L.T., Choi, B., Wilkerson, M.: Reducing translation lookaside buffer active power. In: ISLPED
’03, pp. 10–13. ACM, New York (2003)

7. Manne, S., Klauser, A., Grunwald, D., Somenzi, F.: Low power tlb design for high performance micro-
processors [Online]. Available: http://citeseer.ist.psu.edu/manne97low.html (1997)

8. Lee, J.-H., Park, G.-H., Park, S.-B., Kim, S.-D.: A selective filter-bank tlb system. In: ISLPED ’03,
pp. 312–317. ACM, New York (2003)

9. Choi, J.-H., Lee, J.-H., Jeong, S.-W., Kim, S.-D., Weems, C.: A low power tlb structure for embedded
systems. IEEE Comput. Archit. Lett. 1(1), 3 (2006)

10. Chang, Y.-J.: An ultra low-power tlb design. In: DATE ’06: Proceedings of the Conference on Design,
Automation and Test in Europe, pp. 1122–1127. European Design and Automation Association, 3001
Leuven, Belgium, Belgium (2006)

11. Kadayif, I., Nath, P., Kandemir, M., Sivasubramaniam, A.: Compiler-directed physical address gener-
ation for reducing dtlb power. In: ISPASS ’04, pp. 161–168. IEEE Computer Society, Los Alamitos,
CA (2004)

12. Delaluz, V., Kandemir, M., Vijaykrishnan, N., Irwin, M., Sivasubramaniam, A., Kolcu, I.: Compiler-
directed array interleaving for reducing energy in multi-bank memories. In: ASP-DAC ’02, pp. 288–
293. IEEE Computer Society, Los Alamitos, CA (2002)

13. Parikh, A., Kim, S., Kandemir, M., Vijaykrishnan, N., Irwin, M.: Instruction scheduling for low power.
In: VLSI-SP ’04, pp. 129–149. Springer, Netherlands (2004)

14. Chiyonobu, A., Sato, T.: Energy-efficient instruction scheduling utilizing cache miss information. In:
MEDEA ’05: Proceedings of the 2005 Workshop on MEmory performance. IEEE Computer Society,
Los Alamitos, CA (2005)

15. Kandemir, M., Kadayif, I., Chen, G.: Compiler-directed code restructuring for reducing data tlb energy.
In: CODES+ISSS ’04, pp. 98–103. IEEE Computer Society, Washington (2004)

16. Intel Corporation. Intel XScale�Technology Overview [Online]. Available: http://intel.com/design/
intelxscale

17. Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T., Brown, R.B.: Mibench: a free,
commercially representative embedded benchmark suite. In: WWC ’01: Proceedings of the Workload
Characterization, 2001. WWC-4. 2001 IEEE International Workshop on, pp. 3–14. IEEE Computer
Society, Washington, DC (2001)

18. Balakrishnan, H., Garg, R.: Multimedia benchmarks: a performance comparison of multimedia pro-
grams on different architectures [Online]. Available: http://citeseer.ist.psu.edu/233784.html

19. Zivojnovic, V., Velarde, J., Schlager, C., Meyr, H.: Dspstone: a dsp-oriented benchmarking methodol-
ogy. In: Proceedings of Signal Processing Applications and Technology, Dallas (1994)

20. Henning, J.L.: Spec cpu2000: measuring cpu performance in the new millennium. Computer 33(7), 28–
35 (2000)

21. BDTI Suite: Berkeley Design Technology Inc, The bdti benchmark suites [Online]. Available: http://
bdti.com/products/benchmark_overview.html

22. Austin, T.: Simple Scalar LLC

123

http://citeseer.ist.psu.edu/manne97low.html
http://intel.com/design/intelxscale
http://intel.com/design/intelxscale
http://citeseer.ist.psu.edu/233784.html
http://bdti.com/products/benchmark_overview.html
http://bdti.com/products/benchmark_overview.html

Int J Parallel Prog

23. Shrivastava, A., Earlie, E., Dutt, N., Nicolau, A.: Operation tables for scheduling in the presence of
incomplete bypassing. In: CODES+ISSS, pp. 194–199 (2004)

24. Issenin, I., Dutt, N.: Foray-gen: automatic generation of affine functions for memory optimizations. In:
DATE ’05: Proceedings of the conference on Design, Automation and Test in Europe, pp. 808–813.
IEEE Computer Society, Washington, DC (2005)

123

	Code Transformations for TLB Power Reduction
	Abstract
	1 Introduction
	2 Related Work
	2.1 Hardware Approaches
	2.2 Software Approaches
	2.3 Hybrid Approaches

	3 Architecture Description
	3.1 Energy Consumption in the Conventional TLB
	3.2 The Use-Last TLB Architecture

	4 Experimental Setup
	5 Organization of Contents
	6 Part I: Data-TLB Power Reduction
	6.1 Page-Switch Aware Instruction Scheduling
	6.2 Page-Switch Aware Array Interleaving
	6.3 Impact of Loop Unrolling
	6.4 Comprehensive Page Switch Reduction

	7 Part II: Instruction-TLB Power Reduction
	7.1 Instruction TLB Page-Switches
	7.2 Problem Formulation
	7.3 Page-Aware Code Placement Heuristic
	7.4 Illustrative Example
	7.5 Experiments

	8 Summary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

