
Code Transformations for TLB Power Reduction∗

Reiley Jeyapaul, Sandeep Marathe and Aviral Shrivastava

Compiler and Microarchitecture Laboratory, Arizona State University, Tempe, AZ 85281 USA
Email : {reiley, sandeep.marathe, aviral.shrivastava}@asu.edu

Abstract

The Translation Look-aside Buffer (TLB) is a very important
part in the hardware support for virtual memory management
implementation of high performance embedded systems. The
TLB though small is very frequently accessed, and therefore not
only consumes significant energy, but also is one of the impor-
tant thermal hot-spots in the processor. Recently, several circuit
and microarchitectural implementations of TLBs have been pro-
posed to reduce TLB power. One simple, yet effective TLB de-
sign for power reduction is the Use-Last TLB architecture pro-
posed in [9]. The Use-Last TLB architecture reduces the power
consumption when the last page is accessed again. While very
effective for instruction TLB, this technique is not as effective
for the data TLB. In this paper, we propose compiler techniques
(specifically, instruction and operand reordering, array inter-
leaving, and loop unrolling) to reduce the page switchings in
data accesses. Our comprehensive page-switch reduction algo-
rithm results in an average of 39% reduction in the data-TLB
page switching, and therefore power with negligible variation in
performance on benchmarks from MiBench, Multimedia, DSP-
Stone and BDTI suites.

1. Introduction
Power, energy and thermal issues in current and near future dig-
ital systems form the crux of the biggest challenge that the semi-
conductor industry faces today. In high-end computing, power
consumption limits the amount of achievable performance be-
cause of exorbitant increase in the cost of heat removal mech-
anisms. In battery operated portable systems, the battery is the
single largest factor in device cost, weight, recharging time, fre-
quency and ultimately the usability of the system. Translation
Look-aside Buffer or TLB is an important component of high-
end multi-tasking embedded processors, like the Intel XScale.
The TLB performs virtual to physical address translation and de-
termines page access permissions. Most modern processors, in-
cluding the Intel XScale implement virtually-addressed caches,
in which the cache lookup is directly performed on the virtual
address provided by the processor, and therefore the TLB lookup
comes in the critical path. Elkman et al. [11] note that the TLBs
can consume 20-25% of the total L1 cache energy. Kadayif et
al. [14] observed high power densities of the data-TLB, as com-
pared to the data-L1 cache. Thus reducing the power consump-
tion of TLBs is an important research problem.

Several TLB designs have been proposed to trade-off the TLB

∗This work was partially funded by grants from Raytheon and Startdust
Foundation.

lookup delay, area and power consumption [12, 15]. One sim-
ple, yet effective technique for TLB power reduction proposed
in [10, 9], is the Use-Last TLB architecture. Observing that
there is a high probability that instruction access will refer to the
same page as the last one, they store the previous page transla-
tion information into a latch, and thereby reduce the TLB lookup
power. The Use-Last TLB architecture is able to reduce the in-
struction TLB power by 75%. However, since data accesses do
not exhibit as high locality as instructions, this microarchitec-
tural technique was not effective for data TLBs.

We develop compiler techniques to reduce the power consump-
tion of the Use-Last TLB architecture by improving the local-
ity of data accesses. We propose a novel instruction scheduling
and operand reordering technique, heuristic for deciding when
to perform array interleaving, and loop unrolling to minimize the
page switchings between consecutive TLB accesses while min-
imizing performance loss. Our combined technique can reduce
the TLB switches by 39%, with minimal performance impact on
benchmarks from MiBench, Multimedia, DSPStone and BDTI
suites. Note that this improvement is above and beyond what the
Use-Last hardware technique alone could achieve.

2. Related Work
Several researchers have proposed efficient circuit-level, mi-
croarchitectural and software techniques to reduce the power
consumption of the TLB and the Memory Management Unit.

2.1. Compiler based Approaches

A compiler-directed array interleaving technique [17] was pro-
posed to save energy in multi-bank memory architectures with
power control features. In this, the arrays used in separate banks
are interleaved such that only one of the banks is active and the
other can be powered down, thus saving energy. The energy
reduction achieved by this technique does not account for the
leakage power of the SRAM cells during standby mode. Parikh
et al in [18] schedule instructions within a block based on the
minimum obtainable value for a weighted cost function:circuit-
state cost. One recent work is [19], where energy reduction is
achieved through effective utilization of resources by switching
between two processor modes based on the cache misses.

2.2. Closest Approach

The work closest to our approach, is by Kandemir et al. [13].
Their compiler technique is to increase the effectiveness of a
previously proposed architectural technique that uses Transla-
tion Registers or TRs. The addition of TRs requires changing
the ISA, which may not be desirable in many cases. In contrast,

our approach is to improve the effectiveness of Use-Last TLB
architecture, which exists in the Intel XScale processor. They
have to profile the code to find out which page will be accessed
frequently in the near future, and then generate code to load the
translations to that page into TRs. In comparison, our approach
is a static technique. We do not need/use profile information.
Not only that profile-based compilation is limited in applica-
tion and scope, it has huge overhead in terms of compilation
time. Our technique does not have any such overheads. Finally,
in their technique, the code is modeled as nodes which repre-
sent loop nests that access data from a particular page region.
Code transformations to enhance the use of TRs are directed at
scheduling these loop nests (nodes that access data from a par-
ticular page region) together. In contrast, our approach is to
schedule and transform instructions so that the accesses to the
same page are grouped together. Our technique operates at a
finer granularity than theirs, and could therefore co-exist, and
enhance the effectiveness of each other.

3. Use-Last TLB Architecture
Our compilation approach enhances the effectiveness of an al-
ready effective and popular TLB architecture, the Use-Last TLB
architecture. Proposed in [9], the Use-Last TLB architecture
utilizes a modified TLB-CAM structure. The virtual address in-
put is matched with the TLB tag through the CAM cells (which
has reduced power consumption). The TLB tag is then used
to retrieve the mapped physical address from the register files.
The lookup on the register files is a power consuming process
because of the bit-line and word-line drivers and other associ-
ated circuitry involved in its operation. The key factor in this
architecture design is the latch used to store the tag address of
the previously accessed address. If the two TLB tag addresses
match, the page address and access information at the output is
the same for both. In this case, the word line (WL) of the reg-
ister files are not activated and the switching energy of the RF
cells and associated circuitry is eliminated. The effectiveness
of this technique was demonstrated on instruction TLB, and it
was shown to reduce the power consumption by 75%. However,
this technique was deemed un-useful for data caches, as data ac-
cesses in general do not exhibit high data locality as compared to
instruction TLB. Our work aims to enhance the effectiveness of
this architectural technique on data caches through code trans-
formations and achieve power savings through reduction in the
number of page-switches during successive data accesses.

4. Experimental Setup
We explore and develop compiler techniques for the Intel XS-
cale processor [8] on which the Use-Last architecture was im-
plemented(Section 3). Intel XScale is an out-of-order, 7-stage
superpipelined high-end embedded processor, which runs at up
to 1 GHz. The Intel XScale uses TLBs to implement virtual
memory support. The Intel XScale is intended to be used in
wireless and handheld applications and therefore we execute
benchmarks from MiBench [3], MultiMedia [6], DSPstone [4],
Spec2000 [5], and the BDTI [7] benchmark suites. The sim-
outorder cycle-accurate simulator of the SimpleScalar toolset
[16] was modified to model the Intel XScale memory config-
uration and to determine the total number of page switches in

the data TLB in a program.

The remainder of the paper is organized as follows: Section 5
describes our instruction scheduling and operand reordering
technique. Section 6 describes our array interleaving implemen-
tation. Section 7 describes the conditions for our implementa-
tion of loop unrolling. Section 8 forms a comprehensive algo-
rithm for TLB page switch reduction.

5. Page Switch-Aware Instruction Scheduling
Instruction scheduling can aggregate instructions that access the
same pages consecutively, thereby reducing page switches in the
data TLB. In addition, for commutative operations, it is also
possible to reorder the operands, and effect the memory ac-
cess pattern. We develop a combined instruction scheduling and
operand reordering technique to reduce TLB page switching.

Figure 1. Impact of code generation on TLB page
switching

5.1. Motivation

We motivate the applicability and effectiveness of fine-grain in-
struction and operand reordering on TLB page switches using
a kernel from the compress benchmark, shown in Figure 1(a).
The kernel accesses elements from a two-dimensional array. If
the array size is much larger than the page size(which is typ-
ically small in embedded systems), elements from the higher
dimensions may reside in different pages. In this example, there
are high chances that a[i], and a[j] may be in different pages,
if i 6= j. Assuming this, the two code sequences generated by
the compiler, illustrated in Figure 1(b) and (c), may result in the
same performance, they may differ significantly in the number
of TLB switches they cause. When executed, the code in Figure
1(b) will result in accesses in the sequence: a[i][j], a[i−1][j−1],
a[i][j − 1], a[i − 1][j], and a[i][j], which will result in 4 page
switches per iteration, while the code in Figure 1(c) will result
in only 1 page switch per iteration. Note that depending on the
cache size and page size, the page switches can vary, but if there
is no performance impact, it will be better to generate the code
as in Figure 1(c). In the rest of this section, we first formu-
late the problem of minimizing the page switches by instruction
scheduling and operand reordering. Finding the problem to be
NP-complete, we propose a heuristic for the same.

5.2. Problem Formulation

Input: Data Flow Graph (DFG) is a directed acyclic graph
(DAG) D = (V,E) of a code sequence. The nodes v ∈ V
represent instructions i ∈ I . An instruction i is represented
by a ordered (k + 2)-tuple i =< op, d, s1, s2, ...sk >, where
op is the opcode, d is the destination, and there are k source

Figure 2. DFG and page mapping of compress
kernel

operands, s1, ...sk, d, s1, s2, ...sk ∈ O, where O is the set of
program variables, or operands. There is a directed edge e =
(v1, v2) ∈ E,3 v1, v2 ∈ V , from v1 to v2 if the destination of
the instruction represented by node v2, is the same as any of the
source operands of the instruction represented by node v1. i.e.,
(v1.i.d = v2.i.s1)∨(v1.i.d = v2.i.s2)∨ ...∨(v1.i.d = v2.i.sk).
The data flow graph will also have nodes at the beginning of the
graph, representing loading of operands, and nodes at the end
of the graph, representing storing of operands, or intermediate
values that will be carried over to the next loop. The DFG of the
compress kernel is illustrated in Figure 2.
Output: Instruction Sequence represented by the function
Time : I → N such that all data dependencies are main-
tained. i.e., if there is an edge from instruction ia to ib, then
Time(ia) < Time(ib).

Objective: Minimize Page Switches in the instruction se-
quence. To estimate page switching at the compiler level, we
define a function Page : O → P , which maps operands o ∈ O
to pages p ∈ P , where P is the set of all the pages accessed by
the application. A source operand may be a scalar, or an array,
and can be defined in a local scope or a global scope. We define
Page(s) thus:

• Page(s) = undefined if the operand s is a local scalar
variable. This is because most probably all the local scalar
variables will be allocated to registers and therefore will
not involve in memory access.

• Page(s) = p0 if s is a global scalar variable. We assume
that all the global scalars are allocated to a single page.

• For the global or local arrays, we assume that each array,
irrespective of it’s size is mapped to exactly one unique
page.

Page Switch Model In addition, we also need a page switch
model, i.e., given a sequence of instructions, how many
page switches will occur. We assume that when an in-
struction i executes, its operands are accessed in the order
{i.s1, i.s2, ..., i.sk, i.d}. Assuming that the page accessed just
before the execution of an instruction i is p, then, we define the
page switching function, PSI(p, i1, ...in) to be the number of
page switches when a sequence of instructions i1, ...in is exe-
cuted.

PSI(p, i1, ...in) = PSO(p, i1.s1, i1.s2, ..., i1.sk, i1.d,

= i2.s1, i2.s2, ..., i2.sk, i2.d,

= ...,

= in.s1, in.s2, ..., in.sk, in.d)

The total page switch count between operands can be recursively
computed,

PSO(p, o1, ..., om) = PSO(p, o1)
+ PSO(LPO(p, o1), o2, ..., om)

where PSO(p, o) = 1, when both p and Page(o) are defined,
and p 6= Page(o). LPO(p, o) is the last page accessed when
operand o1 is accessed after accessing page p. The last page
function LP (p, o) = Page(o), if Page(o) is defined, otherwise,
it is p.

5.3. Solution for Page Switch Minimization

To minimize page switches by instruction scheduling and
operand reordering, we define a Page Switching Graph
PSG full = (I, S), which is a directed graph, whose vertices
are instructions i ∈ I , and there is an edge from instruction i
to instruction j if instruction j can be scheduled immediately
after instruction i. We attach a weight attribute to each edge
w(i, j), which is the minimum increase in the page switches
when instruction j is scheduled immediately after instruction i.
Thus,

w(i, j) =

min

{
PSO(p, j.s1, j.s2, j.d)
PSO(p, j.s2, j.s1, j.d)

if j.op is comm

PSO(p, j.s1, j.s2, j.d) otherwise
where p is the last page that has been accessed after instruction
i is executed. We add a dummy source node, and a sink node so
that there is an edge from the source node to all the instructions
that do not have any predecessors in DDG, and there are edges
all nodes that do not have successors in DDG to the sink node.
Dummy nodes access only undefined pages.

The problem of finding the instruction sequence and operand
ordering that minimizes the number of page switches is exactly
equal to the problem of finding the shortest hamiltonian path
from source node to sink node. This implies that if we can
solve the problem of page switch minimization in polynomial
time, we can also solve the hamiltonian problem, which is a well
known NP-Complete problem in polynomial time. This is quite
unlikely, therefore the problem of scheduling for page switch
minimization is NP complete. Therefore we focus our efforts on
developing scheduling heuristics for page switch minimization.

5.4. Heuristic for Page Switch Minimization

For heuristics, we first construct a Page-Not-Switching Graph
PNSG = (I, D, S), where the nodes (I) are instructions, and
there are two kinds of edges, first is the set of data dependence
edges D, and the second S is the set of inter-instruction page
not-switching edges. Thus there is a an edge s = (i, j) ∈ S be-
tween two instructions: i, j ∈ I , if there is NO inter-instruction
page switch when instruction j is scheduled immediately after
instruction i. In other words, (i, j) ∈ S, ∀i, j ∈ I, iff Qps ≥ 1,
where

Qps =

min

{
PSO(p, undefined, i.d, j.s1)
PSO(p, undefined, i.d, j.s2)

,if j.op is comm

PSO(undefined, i.d, j.s1) otherwise

An example of a PNSG is shown in Figure 3. The nodes 1
through 7 are instructions, and the solid edges represent data
dependencies. The dashed edges represent the inter-instruction
page not-switching edges. We now perform our scheduling on
this graph representation. We first developed a greedy algo-

1 2

6

3

54

7

Data Dependence Edge

Page Not−Switching Edge

Figure 3. Problem in greedy solution

rithm. In the greedy algorithm, in every iteration, the last sched-
uled instruction, l is maintained, and list of instructions that are
now ready to be scheduled, R is created. If there is a page-not-
switching edge between l and any instruction r ∈ R, then r gets
priority, as it minimizes the page switches. Thus suppose in-
structions 1, 2 and 3 are scheduled, with l = 3. Then R can be
computed as R = {4, 5}. Out of these, the greedy heuristic will
pick up instruction 4.

Figure 3 illustrates one problem with this simple approach. In
the first iteration, the greedy solution can pick up either instruc-
tion 1, or instruction 3. Picking up instruction 3 is a bad choice,
because it is not possible to schedule instruction 4 as the sec-
ond instruction. Instruction 3 should only be scheduled only
if instruction 4 can be scheduled next. We fix this problem by
adding that - when picking an instruction which is the source of
a page-not-switching edge, we pick up a pair of instructions to
schedule; plus, we give priority to pick up instructions that are
not connected through page-not-switching edges. This gives us
more opportunities to pick up instruction pairs with page-not-
switching edges.

5.5. Experiments

We have implemented this page-aware instruction rescheduling
algorithm as a compiler post-pass [1]. We compile our bench-
marks with GCC -O3 optimization, to ensure that the bench-
marks are compiled and scheduled for the maximum perfor-
mance. We disassemble the generated object file, discover the
basic blocks, and re-create the control flow graph (CFG), and
the data flow graph. We perform this modified list scheduling
heuristic on basic blocks. This fine grain instruction scheduling
approach is applicable to any program. The effectiveness of this
approach could be increased by performing our scheduling on
hyperblocks, and/or superblocks. We observed that our schedul-
ing gains from performing local reordering of load instructions.
There is not much increased opportunity to move load instruc-
tions across basic blocks, because of tight data dependencies.

We modified the sim-outorder [16] simulator to count the page

switches for an application execution. Figure 4 plots the page
switch count, after implementing our page-aware instruction
scheduling and operand re-ordering transformations normalized
to the baseline page switch count. On an average, our technique
achieves 23% reduction in the page switch count as indicated by
the right-most bar in Figure 4. As a matter of fact, we observed
an average performance improvement of 4%. This reduction in
page switches directly translate into 23% power savings in the
Use-Last TLB. Note that this is over and above what Use-Last
TLB architecture achieves on its own.

Figure 4. Impact of Instruction Scheduling on
Page Switch Count

6. Page-Switch Aware Array Interleaving

Figure 5. Array Interleaving through example:
(a)Example loop (b)Array allocation and access
pattern (c)Loop block with interleaved arrays
(d)Array allocation and access pattern of inter-
leaved array

6.1. Motivation

Figure 5 shows how array interleaving can reduce the TLB page
switching over data accesses in the program. The code in Fig-
ure 5(a) shows a loop which accesses elements from two dif-
ferent arrays A and B, which are mapped to different pages.
Figure 5 (b), shows that when this loop executes, there is a page
switch between consecutive memory accesses in the program.
Figure 5(c) shows the transformed code after interleaving. Ar-
ray interleaving places the elements of the two arrays as alter-
nate elements of the array AB. Figure 5(d) shows that there is
no page-switching between consecutive access to AB.

6.2. Which Arrays to Interleave

The problem of reducing TLB page switching is localized to
consecutive memory accesses, therefore interleaving of arrays

need only be directed to decrease the page switching in the in-
nermost loop. Consider a nested loop of 3 levels, whose itera-
tors are i, j, and k, in which are there are references to arrays A
and B. Suppose in the innermost loop, the reference functions
are affine functions of the iterators, i.e., the access function can
be represented as a linear combination of the iterators, fA =
a0 + a1i+ a2j + a3k, and similarly fB = b0 + b1i+ b2j + b3k.

We consider two arrays A and B as interleaving candidates
only if i)the access functions of the arrays are the same. Thus,
a0 = b0, a1 = b1, a2 = b2, a3 = b3 ensuring minimized page
switches after interleaving. ii)the arrays of the same size. For
example, we will interleave an array of integers with another
same size array of integers. It is important to note that while it
is possible to interleave arrays with slightly different access pat-
terns also, it results in an overhead in terms of extra addressing
instructions. However, the innermost loop may contain several
references to the same array. Two arrays will be interleaving
candidates if the conditions are satisfied for any pair of refer-
ences to the arrays. We perform this analysis on all the important
loops of the application, and find pair of arrays, which are inter-
leaving candidates, we take the union of interleaving candidates.
Thus if arrays A and B are found to be interleaving candidates
from one loop, while B and C are interleaving candidates from
some other, then all the three arrays will be interleaved.

6.3. Interleaving
The process of interleaving r arrays of the same data type
A1, A2, ...Ar is a three step transformation. The first is to re-
place the individual array declarations with a single array A
of r times the size of each array, and second is to fix the ac-
cess functions of all the array references. The access function
fm = Am[ami+ bmj + cmk +dm] of the mth array is replaced
by fm = A[r×(ami+bmj+cmk+dm)+(m−1)] in three-level
nested loop. At the end of the day, it is important to schedule the
instructions that access the interleaved array in the same pattern
consecutively. This is done by moving the result of the first in-
struction in a new temporary variable, and replacing all its uses
by the temporary variable. Interleaving of r arrays of different
data types is done by declaring a new structure, say s, which
contains an element from each of the arrays. We then declare
an array A of the same size as all the previous arrays consisting
of elements of data type s. Then we replace the access func-
tion of the mth array fm = Am[ami + bmj + cmk + dm] by
fm = A[ami + bmj + cmk + dm].m.

6.4. Experiments
We translate the source code into the FORAY format [2], which
essentially consists of just the loop structure and the array ac-
cess functions as affine functions of the loop iterators. We ana-
lyze the code in this format, and, perform our page-aware array
interleaving transformations in this format, and then convert it
back to the source code. The application is compiled again, and
our instruction scheduling for page switch minimization is ap-
plied to enhance the impact of array interleaving. Figure 6 plots
the page switch count after performing array interleaving and in-
struction scheduling on all the benchmarks. The plot thus shows
that our page-aware array interleaving is a very effective trans-
formation, and reduces the data-TLB page-swith count by an

Figure 6. Impact of Array Interleaving and In-
struction Scheduling on Page Switch Count

average of 35% (indicated by the right-most bar) with an over-
all average of 11% increase in performance. This performance
improvement is inherent to array interleaving, as it inherently
increases the spatial locality of data, leading to improved cache
behavior. In swim, two global arrays and 5 local arrays were
accessed together in the loop bodies. Interleaving was possible
on all the arrays, thereby forming two interleaved arrays (one
global, and other local). This transformation enhanced the op-
portunities for instruction scheduling and therefore 70% page
switch reduction was observed. Since the TLB power is directly
proportional to the number of accesses, we can expect a con-
comitant 35% reduction in TLB power due to the combined im-
pact of array interleaving and page switch-aware scheduling.

7. Impact of Loop Unrolling
Loop unrolling is a loop transformation in which the loop body
is replicated a finite number of times, thereby reducing the loop
overhead instructions. It is important to observe that loop un-
rolling by itself does not reduce TLB page switching, but, it
may increase the effectiveness of instruction scheduling, by pro-
viding more opportunities to schedule instructions and thereby
reduce inter-instruction page switching.

Unrolling a loop may reduce page switches if there is atleast
one instruction, such that if we schedule two copies of the in-
struction belonging to different iterations when scheduled con-
secutively, will not result in inter-instruction page switching. In
other words, loop unrolling can be performed if ∃i ∈ I such
that,min

{
PSO(undefined, i.d, i.s1)
PSO(undefined, i.d, i.s2)

if i.op is comm

PSO(undefined, i.d, i.s1) otherwise

= 0

We have implemented our page-switch aware loop unrolling
transformation also as source code transformation. Figure 7
plots the effect of loop unrolling on the page switch count of
various benchmark applications. The normalized page-switch
count for the case when page-switch aware instruction schedul-
ing and array interleaving are performed is plotted as the dark
bar (to the left for each benchmark), and the lighter graphs in-
dicate the page-switch count for unrolling factors of 2, 4 and 8
times respectively. The right-most set of bars in Figure 7 in-
dicate the average values for the cases plotted. On an average,

Figure 7. Impact of Loop Unrolling on Page
Switch Count

for an unrolling factor of 8, we obtain a reduction of 37% in
the page switch count for the applications on which page-aware
loop unrolling was possible with 9% performance improvement.

8. Comprehensive Page Switch Reduction
Finally we study the impact of all the three transformations to-
gether. The ordering of the transformations is an interesting is-
sue. Instruction scheduling and array interleaving are the fun-
damental transformations that reduce data TLB page switches.
Loop unrolling will be most effective when all the opportunities
for page switch reduction achievable after re-scheduling, are ex-
ploited. Our page switch-aware instruction scheduling is done
at a more fine-grained level, and therefore has to be performed
only after array interleaving and unrolling to maximize the ef-
fect. We first perform Page-Switch Aware Array Interleaving
to group the memory allocation of varied arrays together into
one overlapped page, and then Loop Unrolling on the instruc-
tions such that all the instructions capable of being implemented
without page-switch are executed together. Our fine-grain in-
struction scheduling is then performed as a post-pass.

The dark bars on the left in Figure 8 plot the percentage reduc-
tion in the data TLB page switch count for each application. The
reduction is calculated as compared to the data TLB page switch
count when the application is compiled using GCC−O3 alone.
The rightmost dark bar shows that there is an average 39% data
TLB page switch count reduction over all the benchmarks. The
light bars on the right in Figure 8 plot the reduction in runtime
for all the applications. The rightmost light bar shows that there
is an average 6.4% reduction in runtime. In conclusion, the
effect of page switch reduction techniques is additive, and the
effect is realized after each step of the Page Switch Reduction
algorithm.

9 Summary
The Use-Last TLB architecture proposed in [9] reduces the TLB
power consumption, if the same page is accessed successively.
This approach was ineffective for data TLB, because data ac-
cesses do not exhibit high locality as compared to instructions.
In this paper, we have introduced a novel, page-aware instruc-
tion scheduling algorithm, and proposed heuristics to decide
when to perform array interleaving, and loop unrolling to reduce
the TLB page switching. Our experiments on benchmarks from
MiBench, Multimedia, DSPStone and BDTI suites show a 39%

Figure 8. Page Switch Count and Runtime reduc-
tion by our Page-Switch Reduction Algorithm

reduction in the TLB page switches with a negligible increase in
performance, over what is possible by the GCC compiler. Since
the dynamic power of the TLB is directly proportional to the
number of page switches in the Use-Last TLB architecture, we
can expect a concomitant 39% reduction in the TLB power. Our
future work is to investigate the impact of other transformations,
e.g., instruction selection on TLB power reduction.

References

[1] A. Shrivastava et al., ”Operation tables for scheduling in the presence of
incomplete bypassing,” In CODES+ISSS, pages 194199, 2004.

[2] I. Issenin et al., ”FORAY-GEN: Automatic Generation of Affine Functions
for Memory Optimizations,” In DATE 05, pages 808813, 2005.

[3] M. R. Guthaus et al., ”MiBench: A free, commercially representative em-
bedded benchmark suite,” In WWC 01, pages 314, 2001.

[4] V. Zivojnovic et al., ”DSPstone: A DSP-oriented benchmarking method-
ology,” In Proceedings of Signal Processing Applications and Technology,
Dallas, 1994.

[5] J. L. Henning, ”SPEC CPU2000: Measuring CPU Performance in the New
Millennium,” Computer, 33(7):2835, 2000.

[6] H. Balakrishnan et al., ” Multimedia Benchmarks: A Performance
Comparison of Multimedia Programs on Different Architectures” cite-
seer.ist.psu.edu/233784.html

[7] BDTI Suite: Berkeley Design Technology Inc. ”The BDTI Benchmark
suites”, bdti.com/products/benchmark overview.html

[8] Intel Corporation, ”Intel XScalerTechnology Overview”, in-
tel.com/design/intelxscale

[9] J.R.Haigh et al., ”A Low-Power 2.5 GHz 90 nm Level 1 Cache and Mem-
ory Management Unit,” In IEEE Journal of Solid State Circuits, pages
11901199. IEEE Press, 2004.

[10] L. T. Clark et al., ”Reducing translation lookaside buffer active power,” In
ISLPED 03, pages 1013, 2003.

[11] M. Ekman et al., ”TLB and snoop energy reduction using virtual caches in
low-power chip-multiprocessors,” In ISLPED 02, pages 243246,2002.

[12] X. Zhou et al., ”Low-power cache organization through selective tag trans-
lation for embedded processors with virtual memory support,” In GLSVLSI
06, pages 398403, 2004.

[13] M. Kandemir et al., ”Compiler-Directed Code Restructuring for Reducing
Data TLB Energy,” In CODES+ISSS 04, pages 98103, 2004.

[14] I. Kadayif et al., ”Optimizing instruction TLB energy using software
and hardware techniques,” ACM Trans. Des. Autom. Electron. Syst.
10(2):229257, 2005.

[15] P. Petrov et al., ”Energy-effcient physically tagged caches for embedded
processors with virtual memory,” In DAC 05, pages 1722, 2005.

[16] T. Austin. ”SimpleScalar LLC”. simplescalar.com
[17] V. Delaluz et al., ”Compiler-directed array interleaving for reducing en-

ergy in multi-bank memories,” In ASP-DAC 02, page 288, 2002.
[18] A. Parikh et al, ”Instruction scheduling for low power,” The Journal of

VLSI Signal Processing, 37(1):129149, 2004.
[19] A. Chiyonobu et al., ”Energy-efficient instruction scheduling utilizing

cache miss information,” SIGARCH Comput. Archit. News, 34(1):6570,
2006.

