2011 24th Annual Conference on VLSI Design

LA-LRU: A Latency-Aware Replacement Policy for
Variation Tolerant Caches

Aarul Jain
Cambridge Silicon Radio
Phoenix, AZ 85044, USA

aarul.jain@csr.com

Abstract—Parameter variations in deep sub-micron integrated
circuits cause chip characteristics to deviate during semiconduc-
tor fabrication process. These variations are dominant in memory
systems such as caches and the delay spread due to process
variation impacts the performance of a cache based system
significantly. In this paper, we propose two schemes to reduce
the performance impact of variations in caches: i) Latency-Aware
Least Recently Used (LA-LRU) replacement policy which ensures
that cache blocks that are affected by process variation are
accessed less frequently, and ii) Block Rearrangement scheme that
distributes cache blocks with high latencies to all sets uniformly.
We implemented our schemes on the Wattch SimpleScalar toolset
for Xscale, PowerPC and Alpha21264-like processor configura-
tions. Our experiments on SPEC 2000 benchmarks show that our
scheme improves the average memory access time of caches by
11% to 22%, almost eliminating any performance degradation
due to variations. We also synthesized the LA-LRU logic, to find
out that we can obtain this benefit at negligible increase in the
power consumption of the cache.

I. INTRODUCTION

The insatiable need of higher-performance in computing
at all levels, from embedded to server, has been the main
driving force behind technology scaling. After miniaturiz-
ing the transistor dimensions continuously for the past five
decades, we have reached a point, where we are experiencing
significant loss of control in the lithography as well as channel
doping steps during manufacturing. Consequently, we observe
large variations in the characteristics of manufactured devices.
This phenomenon, called process variation has significant
impact in terms of performance, power consumption, yield,
and reliability of electronic designs [1], [2].

While no part of the processor is immune to variations,
and to a large extent, process variations are random in nature,
caches experience especially high amounts of variations. This
is primarily because caches occupy majority of chip area, as
well as transistors count. Both in embedded and high-end
processors, caches comprise upwards of 90% of the transistor
count and 60% of the area of the processor [3], [4].

Process variation in caches has several implications. First of
all, due to process variations, some cache cell, or even an entire
row/column may not work. If a cache cell is faulty, its error can
be corrected by using error correcting codes [8]. However, to
correct ¢ errors, a minimum distance of 2¢ is required between
the codewords which results in increase of area for storing
large code words and impacts the decoding time severely.

1063-9667/11 $26.00 © 2011 IEEE
DOI 10.1109/VLSID.2011.24

Aviral Shrivastava
Arizona State University
Tempe, AZ 85287, USA
aviral.shrivastva@asu.edu

298

Chaitali Chakrabarti
Arizona State University
Tempe, AZ 85287, USA

chaitali@asu.edu

A faulty cache row/column can be replaced by a correctly
working row/column [7]. Dynamically resizing the cache can
fix errors in large parts of the cache [6]. Techniques like,
way prioritization have been proposed to contain the extreme
variations in the leakage power of the cache [9]. However,
techniques that resize cache have performance penalties and
may not be suitable for a wide variety of workloads.

Bennaser et al. [5] showed that due to process variations,
cache access latency of a block may increase to two and
even three clock cycles. The problem is that if different
cache blocks have different latencies, then to operate correctly,
maximum cache access latency of three clock cycles will be
required to get the correct hit/miss information. However, such
conservative approach of operating the whole cache at the
latency of the slowest block may have very severe performance
penalty. To reduce this penalty, [5] proposes a scheme to
evaluate and store the latency of each cache block in a delay
storage memory. A quick determination and lookup can then
be made by reading the latency value of the block along with
the tag and data.

This work builds upon adaptive cache architecture of [5]
to further reduce the performance penalty due to process
variations in the cache. This paper makes two independent,
but additive contributions:

o Propose Latency-Aware LRU block replacement policy
in caches, which tries to keep the frequently used data in
the low latency blocks.

o Propose Block Rearrangement scheme to efficiently align
similar latency blocks in the same way.

We have implemented our proposed techniques in the
Wattch Simplescalar toolset [11], [12] for 32-way (XScale),
8-way (PowerPC) and 2-way (Alpha 21264) set associative
caches. Our experimental results on benchmarks from SPEC
2000 shows that our scheme achieves 11% to 22% perfor-
mance improvement over the adaptive architecture for various
system architectures, viz., XScale, PowerPC and Alpha21264,
and is able to recover almost all the performance degradation
due to process variations. We also synthesized the control logic
for our scheme and find that this gain is at negligible power
overhead.

The rest of the paper is organized as follows. In the next
section, Section II we describe previous approaches to tackle
with the performance problem due to process variations. Sec-

IEEE
computer
® psouety

F D EX MEM WB
A
address data
CAM . Data
Tag f '\ Array
|

(

N

Delay
Storage

Adaptive Test Mode i
Controller || Classifier i

Fig. 1. Adaptive Cache Architecture: In the classification phase, the access
latency of each phase is determined and stored in a 2-bit location per cache
block. Our scheme, LA-LRU uses this latency value to improve performance.

tion III describes our approaches of Latency-Aware LRU, and
Paired Block Rearrangement scheme. Section IV describes our
experimental setup, results, and analysis, and finally Section V
concludes the paper.

II. RELEVANT WORK

A. Adaptive Cache Architecture to Tolerate Delay Variations
in Caches

Since the location of the faults and the pattern of the
variations is hard to determine before manufacturing, most
process variation tolerant cache architectures require some
scheme to detect the faulty or high-latency cache cells. The
adaptive cache architecture [5] operates in two phases. During
classification phase, done immediately after manufacturing, the
BIST circuitry in the cache tests the entire cache and detects
the speed of each cache block. The sense amplifiers sample the
bitlines during the read operation in one, two and three cycles.
The outputs of sense amplifier are compared with the original
value and the actual cache latency for the cache blocks is
determined and stored in a small delay storage memory array.
During the execution phase, both the data array and delay
storage units are accessed in parallel using row address of the
index bits. The controller and the sense amplifiers are triggered
at different time points depending upon the speed of access.
It was found that the total area overhead for implementing
this scheme is less than 1% of the total cache area and power
consumption overhead was found to be less than 2% of the
total cache power for a single word read.

B. Block Rearrangement to Reduce Accesses to High Latency
Cache Blocks

In [10], a block rearrangement scheme was proposed that
assumes that all blocks in a given set have the same latency
which is decided by the worst case latency of all blocks
in that set. The block rearrangement scheme modifies the
address map of cache blocks to minimize the number of sets
having high latency. They propose two schemes PairedBRT
and PerfectBRT to change the set-to-block mapping, so that
the blocks with the same latency are in the same set.

299

Way 0 Way 1 Way 0 Way 1 Way 0 Way 1
Set 7 Set 7 Set 7 Set7 Set 7 Set 4
Set 6 Set 6 Set 6 Set 6 Set 4 Set 3
Set 5 Set 5 Set 5 Set 4 Set 3 Set 2
Set 4 Set 4 Set 4 Set 5 Set 2 Set 7
Set 3 Set 3 Set 3 Set 2 Set 6 Set 1
Set 2 Set 2 Set 2 Set 3 Set 1 Set 6
Set 1 Set 1 Set 0 Set 1 Set 0 Set 5
Set 0 Set 0 Set 1 Set 0 Set 5 Set0

CAS PairedBRT PerfectBRT
Fig. 2. Mutyam et al [10] propose PairedBRT and PerfectBRT, in which

they attempt to aggregate similar latency blocks in the same way. In contrast,
our techniques attempt to distribute high latency ways evenly among sets.

In the first technique, called PairedBRT, two adjacent sets
are considered as a single group and block rearrangement
can be performed within the group. In the second technique,
PerfectBRT all sets within the cache form a group and block
rearrangement can be performed between any two sets. For ex-
ample, consider a 2-way associative cache shown in Figure 2,
where the shaded blocks represent the long access latency
blocks. The left sub-figure in Figure 2 shows the conventional
block addressing scheme (CAS) in each way. In this case,
the access latency of set 0 (comprised of block 0 in way 0
and block 0 of way 1) is long, since we have to wait for the
hit response from the longer delay block before being sure
about a hit or miss in the set. Similarly access latency of set
1 is also long. The middle sub-figure in Figure 2 shows that
PairedBRT locally swaps the addressing of blocks 0 and 1.
This makes the set 0 a fast set, even though set 1 remains slow.
Comparing PairedBRT with conventional addressing scheme
(CASY) it can be observed that CAS has six out of eight sets as
high latency whereas PairedBRT has only four out of eight sets
as high latency. The right sub-figure in Figure 2 shows that
PerfectBRT, in which any two blocks can be rearranged, and
therefore only 3 out of 8 sets are long latency. The performance
of PerfectBRT is better than PairedBRT but the additional logic
in address decoder affects the critical path delay of cache.

Both of these techniques, assume that the access latency of
a set is the maximum of the access latencies of the blocks
in the way. Consequently, they attempt to rearrange the cache
blocks so that similar latency blocks are in the same way. In
contrast, we build upon the adaptive cache architecture and
use the latency information to rearrange high latency blocks
evenly among the sets and improve performance by reducing
the usage of high latency blocks.

III. PROPOSED WORK

In this section we first describe the conventional LRU re-
placement scheme and then describe the Latency-Aware LRU
(LA-LRU) scheme, which attempts to improve performance
by keeping the most frequently used data in low-latency
blocks. Then we describe our block rearrangement scheme that
attempts to distribute the high latency blocks evenly among the
sets. In combination with our LA-LRU, this scheme improves

Way 7: LRU Tag ‘111’ Way 7: LRU Tag ‘111’ Way 7: LRU Tag ‘000’
Way 6: LRU Tag ‘110’ Way 6: LRU Tag 110’ Way 6: LRU Tag 111’
Way 5: LRU Tag ‘101’ Way 5: LRU Tag ‘000 Way 5: LRU Tag ‘001’
Way 4: LRU Tag ‘100’ Hit o Way 4: LRU Tag ‘101’ Miss Way 4: LRU Tag ‘110’
Way 3: LRU Tag ‘011’ Way 5 Way 3: LRU Tag ‘100’ Way 3: LRU Tag ‘101’
Way 2: LRU Tag ‘010’ Way 2: LRU Tag ‘011’ Way 2: LRU Tag ‘100
Way 1: LRU Tag ‘001’ Way 1: LRU Tag ‘010 Way 1: LRU Tag ‘011’
Way 0: LRU Tag ‘000’ Way 0: LRU Tag ‘001’ Way 0: LRU Tag ‘010’
Fig. 3. Conventional LRU replacement scheme allows data to be mapped to

long latency cache blocks.

performance by minimizing the use of high latency blocks.

A. Conventional LRU Replacement scheme

Figure 3 shows the conventional Least Recently Used Re-
placement mechanism for an eight way set associative cache.
Each cache block in a set is assigned three tag bits which are
updated on each cache access depending upon the cache line
accessed. Here *000’ represents the Most Recently Used way
and "111” represents the Least Recently Used way. If there is
a cache access and a hit occurs on way 5, the LRU tag of way
5 is updated to 000’ and all LRU tags from 000’ to *100’
are incremented by one. If then there is a cache access and a
miss occurs then the data in way 7 which has LRU tag *111°
is the least recently used data and must be thrashed out. The
new data fetched from main memory is then placed in way 7,
its LRU tag is modified to 000 and all LRU tags from 000’
to ’110° are incremented by one.

Now consider a cache affected by process variation where
say, three out of eight ways are high latency (shown as shaded
in Figure 3). Temporal locality in workloads states that cache
blocks accessed at a particular point of time will be accessed
in near future. Thus Most Recently Used data in caches have
higher probability of getting accessed in near future than the
Least Recently Used data. In Figure 3 although initially least
recently used data is in high latency ways but after a hit
and a miss the most recently used data is present in high
latency ways. Thus future cache access have more probability
of having higher latency.

B. Latency-Aware LRU (LA-LRU) Replacement scheme

Figure 4 shows the Latency-Aware LRU replacement
scheme. Here upon a hit on low latency ways the LRU tags are
updated similar to the conventional LRU mechanism. Thus,
if there is a hit on way 4, its LRU tag will be updated to
000’ from ’100° and LRU tags of way 0 to way 3 will be
incremented by one. Now if there is a hit on high latency
ways then the data in that way is moved to one of the low
latency ways and the LRU data amongst low latency ways is
moved to high latency ways. For example, in Figure 4, way
3 has the LRU data among low latency ways. Thus upon a
hit on way 6 which is a high latency way, the data stored in
way 3 and 6 are exchanged, the LRU tag of way 3 is updated
to ’000° and LRU tag of way 6 is updated to *101° as *101°
is the tag corresponding to most recently used data among

300

TABLE I
LA-LRU REDUCES THE PERCENTAGE OF ACCESSES THAT HAPPEN ON A
LONG LATENCY CACHE BLOCKS ON SPEC 2000 (AVERAGE OVER ALL
BENCHMARKS).

% of cache accesses
LRU | LA-LRU

Type of access

Hit with one cycle access 77.076 99.034
Hit with two cycle access 19.940 0.200
Hit with three cycle access | 2.224 0.006

Miss 0.760 0.760

high latency ways. All the previous LRU tags from *000’ to
’101° are incremented by one. By exchanging data between
high latency ways and low latency ways it can be ensured
that most recently used data resides in low latency memory
cells thereby ensuring that future access to this datum incur
minimum penalty due to process variation.

Now consider the case where there is a miss in the cache.
In this case, the LRU data which is present in high latency
ways is thrashed out of the cache and LRU data is moved
from low latency way to high latency way. The fetched data
is then placed in the low latency way. For example, in Figure
4, upon a miss data is thrashed from way 7 which is the LRU
datum, data from way 2 is moved to way 7 as way 2 has
the LRU data amongst low latency ways and the fetched data
is placed in way 2. The LRU tag of way 2 is updated to
’000°, LRU tag of way 7 is updated to *101’ to indicate it is
the most recently used data amongst high latency ways and
other LRU tags incremented by one. Table I shows the average
distribution of accesses to cache with LRU and L4-LRU based
on latency required to access the data for SPEC 2000 using
Wattch. It can be observed that number of single cycle access
increases considerably thereby proving the effectiveness of the
proposed replacement policy.

C. Implementation of LA-LRU

Figure 5 shows the block diagram of an implementation of
process tolerant cache using LA-LRU mechanism. The block
diagram is for a 64KB 8 way set associative cache with 32
bytes as block size. Here the delay storage unit provides
information to Control Unit about the number of cycles it
would take to access a particular block, and buffer 1 and buffer
2 are used to exchange data if there is miss, or a hit with
access to a block with two cycle access latency or a hit with
access to block with three cycle access latency. If the block
to be accessed has one cycle access delay then the data is
directly placed on the core bus. If the block requires two cycle
access delay then it will require two extra cycles to update
this two cycle latency block with the data from LRU block
of latency one. However cache controller may stall the core
for the third and fourth cycle only if there is another access
pending to the cache. Similarly, if the block has three cycle
access delay then bufferl and buffer 2 are used to exchange
data between LRU block with latency one and latency two
respectively. Since writing the data to the three cycle latency
block will take another 3 cycles, it takes overall 6 cycles to
complete the cache transaction. However, the cache controller
may stall the core for more than three cycles only if there is

Way 7: LRU Tag 111’ Way 7: LRU Tag ‘111’ Way 7: LRU Tag ‘111’ Way 7: LRU Tag 101’
Way 6: LRU Tag 110’ Way 6: LRU Tag 110 Way 6: LRU Tag “101’ Way 6: LRU Tag ‘110’
Way 5: LRU Tag 101" Way 5: LRU Tag ‘101’ Way 5: LRU Tag ‘110’ Way 5: LRU Tag ‘111’
Way 4: LRU Tag 100’ Hiton, Way 4: LRU Tag ‘000’ Hiton, Way 4: LRU Tag ‘001’ _Miss, Way 4: LRU Tag ‘010’
Way 3: LRU Tag ‘011" Way 4 Way 3: LRU Tag 100" Way 4 Way 3: LRU Tag ‘000 Way 3: LRU Tag ‘001’
Way 2: LRU Tag ‘010’ Way 2: LRU Tag ‘011’ Way 2: LRU Tag 100’ Way 2: LRU Tag ‘000
Way 1: LRU Tag '001" Way 1: LRU Tag '010 Way 1: LRU Tag ‘011’ Way 1: LRU Tag 100
Way 0: LRU Tag ‘000 Way 0: LRU Tag '001’ Way 0: LRU Tag ‘010 Way 0: LRU Tag ‘011"

Fig. 4. On a hit, LA-LRU switches the data and the tag of the high latency block with a low latency block, so as to migrate the frequently accessed data to

the low latency blocks.

another access to the cache within the 6 cycle window. Upon
a miss, cache controller does not require to stall the core for
write back operations since fetching the data from external
memory/L2 cache takes more than 6 cycles.

[256 bit | 256 bit | 256 bit | 256 bit | 256 bit | 256 bit | 256 bit | 256 bit
1 4xi1 4x1 4x1 4x1 4x1 4x1 4x1 4x1
MUX MUX MUX MUX MUX MUX MUX MUX
256, 258 256} 256, 256, 256 256]
| RAM RAM RAM RAM | RAM | RAM |
Bank 0 Bank 1 Bank 2 Bank 3 |Bank 4 | Bank 5 Bank 6 | Bank 7
256F 256 1 256§ 256
zsexs J(256x8 | 255)(8 }
Cache |_sel| 32 bit 8x1 sel| 32 bit 8x1 sel| 32 bit 8x1
029,) Control T MUX MUX MUX
Logic j
F W 256x4
Tag Delay |BUFFER 1] |BUFFER 2|
Compare | |Storage | 256 256} 256 ———
B1:13] Data From 256, T
Address[31:0] L2-Cache/Memory
from Core Data to Core on a Miss
Fig. 5. Micro-architecture block diagram of process tolerant cache using

LA-LRU

D. Block Rearrangement over LA-LRU Replacement scheme

We now describe techniques to modify and implement block
re-arrangement proposed in [10] over LA-LRU to achieve
even better performance. Since the distribution of high latency
blocks is random, some of the sets in a cache will have
more high latency ways as compared to other sets. We modify
the address decoder and perform block rearrangement so that
all sets have uniform distribution of high latency ways. By
distributing the high latency ways among all the sets we ensure
that all sets have at least few low latency ways from which
data can be exchanged with high latency ways by LA-LRU.
Thus, in PerfectBRT with LA-LRU, if there are m sets in k-
way set associative cache which has ¢ high latency blocks,
then N; the number of high latency ways in i*" set is given
b b

yN'_{ [t/m]+1 if i < (t) mod m;
’ [t/m)] if i > (t) mod m.

where ¢ € [0,1,2,...,m — 1].

The drawback of using perfect block rearrangement is the
overhead of additional mux stages (logam) so we propose to
rearrange within a group of two sets so that only one additional
mux stage is required in the address decoder of PairedBRT.

301

The modified algorithm is as follows. If there are m sets in k-
way set associative cache which has ¢; ;1 high latency blocks
in ¢ and ¢ + 1 set, then N; the number of high latency ways
in i*" set is given by,

N; = [tiit1/2] + (tiit1) mod 2;

Nit1 = tiiy1 — N;.

where ¢ € [0,2,4,...,m — 2],

As an example, in Figure 6 we show a 4 way set associative
cache, where number of sets m = 8, associativity k = 4,
and number of high latency blocks ¢ = 9. In Figure 6(a)
with no block rearrangement, N1, N3 = 0; No, N4, Ng, N7 =
1; N5 = 2 and N2 = 3. In Figure 6(b) PerfectBRT rear-
ranges the high latency blocks such that each set has uniform
number of high latency ways, No = 2 and N; = 1V i €
[1,2,...,7]. In Figure 6(c) PairedBRT is shown where to 1 = 1,
taz =3, tas = 3 and tg 7 = 2. After paired rearrangement,
N1 = 0; N07N37N5,N6,N7 =1and NQ, 4 = =2.

Way 0 Way 1 Way 2 Way3 Way 0 Way 1 Way2 Way3 WayO0 Way 1 Way 2 Way 3
Set7||Set7||Set7| Set7| |Set7| Set7| Set7|SetO| |Set7| Set7| Set7 Set7‘
Set 6 ||Set6 || Set 6 || Set 6 Set 2|/ Set6 || Set4 | Set6 Set 6 ||Set6||Set6 || Set 6
Set5||Set5||Setb| Set5| [Set6||Set4| Set6|Set5| |Set5| Set4| Set5| Setd
Set4||Set4||Setd | Setd| |Set5|Set5| Set5|Set4| |Set4| Set5|/Set4| Set4
Set 3||Set3 || Set3 || Set3 Set4 || Set2 || Set3| Set3 Set2||Set 3||Set3 || Set3
Set2||Set2 | Set2| Set2| [Set1|/Set3| Set2|[Set7| |Set3| Set2| Set2 | Set2
Set1||Set1||Set 1| Set1 Set3||Set 1|/ Set1|[Set2| |Set1| Set1|/Set1| Set1
Set0||Set0|[Set0||Set0| [SetO| Set0 ||Set0| Set1 Set0||Set0|[Set0 || Set0
(@ (b) ©
Fig. 6. (a) No block rearrangement, (b) Perfect block rearrangement for

LA-LRU, (c) Paired block rearrangement for LA-LRU

IV. SIMULATION AND RESULTS

A. Simulation setup

We use Wattch Simplescalar architecture simulator [11] to
benchmark performance and modify it to implement and com-
pare LA-LRU and other schemes suggested in [S] and [10]. We
simulated Xscale, PowerPC and Alpha21265-like processor
configurations. The cache parameters for these systems are
specified in Table II.

We use MATLAB to generate random distribution of delays
and then use this distribution as base latency model in Wattch
to deduce access latencies for each cache access. We use SPEC
2000 (ccl, equake, gzip, mcf, vortex and vpr) to benchmark
the performance using Wattch. We fast forward 100 million

TABLE II
WATTCH SIMPLESCALAR CACHE PARAMETERS
Xscale PowerPC Alpha21264
L1 Instruction Cache
Size/Assoc./Block Size | 32K/32/32 | 32K/8/32 64K/2/64
Access Latency 1 cycle 1 cycle 1 cycle
L1 Data Cache
Size/Assoc./Block Size | 32K/32/32 | 32K/8/32 64K/2/64
Access Latency 1-3 cycle 1-3 cycle 1-3 cycle
L2 Unified Cache
Size/Assoc./Block Size None 256K/2/64 512K/4/64
Access Latency None 15 cycle 12 cycle
External Memory First/Successive accesses = 160/24 cycles

instructions and provide simulation results for next 300 million
instructions.
We compare the following cache architectures:

1) NPV Cache with no process variation. All the access
to the cache can be completed in a single cycle. Per-
formance obtained in this scenario is the best possible
performance that can be obtained.

WORST Assume that all cache blocks have access
latency of three cycles.

ADAPT Adaptive cache architecture. The access latency
depends on the access latency of the block containing
the data [5].

A-PairedBRT Cache with paired block rearrangement
technique, in which two adjacent blocks can be switched
to aggregate similar latency blocks in sets [10].
A-PerfectBRT Cache with perfect block rearrangement
technique, in which any two blocks can be switched to
aggregate similar latency blocks in sets [10].

LA-LRU Our proposed block replacement technique in
which we attempt to keep the most frequently used data
in the low-latency blocks.

LA-LRU + D-PairedBRT LA-LRU with paired block
rearrangement, in which two adjacent blocks can be
switched to distribute high latency latency blocks evenly
among sets.

LA-LRU + D-PerfectBRT LA-LRU with perfect block
rearrangement, in which any two blocks can be switched
to distribute high latency latency blocks evenly among
sets.

2)

3)
4)
5)
6)

7)

8)

We also vary the process variation model generated by
MATLAB and show average performance degradation for each
cache architecture for the following latency models [5]:

(a) 15% two cycle and 0% three cycle latency blocks.

(b) 25% two cycle and 1% three cycle latency blocks.

B. Performance for XScale, PowerPC and Alpha21264

We simulated Xscale, PowerPC and Alpha21264 like ar-
chitectures and calculated average memory access using the
following equation:

AverageMemoryAccessTime = 25’21 Hit_rate; x i +
Miss_rate x Memory_access_latency

302

where Hit_rate; is the Hit ratio of blocks with latency
in L1 Data Cache.

Figure 7 shows the average memory access time for Pow-
erPC using variation model (b). For all benchmarks simulated,
we observe that LA-LRU gives almost same performance as
the cache with no process variation. In Table III, we show
the memory access time degradation for various cache ar-
chitectures averaged over SPEC2000 benchmarks for XScale,
PowerPC and Alpha21264.

T T T T T
[EENPY IWORST [ADAPT [JA-PairedBRT [_A-PerfectBRT [0 LA-LRU [l LA-LRU+D-PairedBRT MlLA-LRU+D-PerfectBRT

885 -

et equake @2p mef (SPEC2000}

Fig. 7.
Wattch for PowerPC using variation model (b)

Average memory access time for various cache architectures on

The NPV (No Process Variation) cache architecture has
theoretically the best possible IPC that can be achieved by any
scheme designed for process tolerance and hence it is taken
as the reference for comparing other cache architectures. The
WORST cache architecture has the worst case performance
with a performance degradation of almost 162% for XScale,
159% for PowerPC and about 173% for Alpha21264. For all
three architectures (XScale, PowerPC and Alpha21264), A-
PairedBRT has worse performance than the ADAPT cache
architecture because there is limited gain due to rearrangement
when the data required by an application is mapped to a high
latency set of the cache. However, performance of ADAPT
degrades as the number of high latency blocks increases. LA-
LRU gives better performance that ADAPT because it ensures
that the high latency blocks are accessed less frequently.

LA-LRU cache architecture has higher performance for high
associative caches since it ensures that high latency data
always resides in Least recently used way. This is why LA-LRU
does better for XScale and PowerPC compared to Alpha21264
which has a 2-way set associative cache. For low associativity,
LA-LRU scheme has fewer number of blocks to move data
if there is hit on high latency block, resulting in reduced
performance. However, this reduction in performance can be
compensated by using block rearrangement.

Table IIT also shows that for Xscale and PowerPC, LA-LRU
with D-perfectBRT and D-PairedBRT give minimal perfor-
mance gain over LA-LRU. Thus for such architectures, use of
rearrangement with LA-LRU is not recommended. However,
architectures which have low-associative caches such as Al-
pha21264, rearrangement can give almost same performance

TABLE III
AVERAGE DEGRADATION IN MEMORY ACCESS LATENCY FOR DIFFERENT LATENCY MODELS DESCRIBED IN SECTION [V-A

Cache Architecture % degradation for XScale || % degradation for PowerPC || % degradation for Alpha21264

@] (®) @] (b) @ | (®)

NPV 0.00 0.00 0.00 0.00 0.00 0.00

WORST 161.86 161.86 158.94 158.94 172.57 172.57
ADAPT 11.41 21.62 14.23 20.42 12.53 21.31
A-PairedBRT 61.53 100.21 45.56 64.24 23.47 36.98
A-PerfectBRT 28.84 36.70 19.83 23.00 3.96 8.13
LA-LRU 0.11 0.21 0.11 0.23 3.69 7.53
LA-LRU + D-PairedBRT 0.11 0.21 0.11 0.23 0.81 2.69
LA-LRU + D-PerfectBRT 0.10 0.20 0.10 0.20 0.19 0.36

as the NPV architecture thereby eliminating any performance
degradation due to process variation.

C. Overhead

To evaluate the overhead of LA-LRU, we used the trace from
gzip benchmark as an input to the gate level netlist as it was
observed that gzip benchmark has the highest percentage of
two cycle/three cycle accesses to cache as compared to other
benchmarks. Thus simulating with gzip benchmarks provides
the worst case power overhead. It was observed that the power
overhead of this scheme is just 3.5% of the total LRU logic.
This is primarily because the extra buffers can be clock gated
since they are required only if there is an access to high
latency ways and the percentage of such accesses is less than
1% as shown in Table I. From Wattch simulator the average
power consumption of L1 data cache is 4-7% of the entire
system power. Since power consumption of LRU logic is
small compared to that of data cache, the power overhead
of implementing this scheme is negligible.

D-perfectBRT and D-pairedBRT are used for low asso-
ciative caches therefore, delay of additional mux stages to
implement them will have negligible overhead on the large
delay of the address decoder. Also, with LA-LRU there is
overhead of additional cycles required to swap data between
cache blocks upon a hit on high latency blocks. Since such
accesses are reduced to less than 1% from almost 23% (Table
I), the overhead of implementing LA-LRU with D-PairedBRT
and D-PerfectBRT is insignificant.

D. Other replacement schemes

The basic working principle of LA-LRU scheme is to ensure
the most recently used data remains in low latency ways.
We implemented this technique for FIFO replacement policy
in Wattch for 64Kb 8-way set associative L1 Data Cache.
We observe similar performance gain, as much as 13% for
variation model (a) and 22% for variation model (b). Thus
this technique is effective for other replacement policies as
well.

V. CONCLUSION

In this paper we proposed a new replacement scheme, called
LA-LRU, which improves the performance of cache systems
affected by process variation. We used the technique discussed
in [5] to classify the cache blocks based on their latencies

and then used a replacement policy that ensures that most
recently used datums are in low latency blocks. We observed
that LA-LRU gives almost 160% average performance gain
for SPEC 2000 benchmark as compared to WORST cache
architecture. We then implemented block re-arrangement to
further improve performance. However, block rearrangement
gives marginal performance gain over LA-LRU without block
rearrangement for caches with high associativity but can
improve the performance of a system with low associativity
caches significantly. We implemented the LRU logic in HDL
and showed that overhead of power consumption by using
LA-LRU is negligible. Finally, we extended the scheme to
replacement policies like FIFO and showed the effectiveness
of this technique.

REFERENCES

[1] K. Bowman, et al, Impact of die-to-die and within die parameter
fluctuations on the maximum clock frequency distribution for gigascale
integration, IEEE J. of Solid-State Circuits, Feb. 2002, 37(2), pp. 183—
190.

[2] S. Borkar, et al., Parameter Variations and Impact on Circuits and
Microarchitecture, Proc. Design Automation Conf. (DAC 03), IEEE Press,
2003, pp. 338-342.

[3] S.Rusu, H. Muljono, and B. Cherkauer, Ttanium 2 Processor 6M: Higher
Frequency and Larger L3 Cache,” IEEE Micro, 2004, 24(2) pp. 10-18.

[4] L.T. Clark, E. J. Hoffman, M. Biyani, Y. Liao, S. Strazdus, M. Morrow,
K. E. Velarde, and M. A. Yarch. ”An Embedded 32-B Microprocessor
Core for Low-Power and High-Performance Applications,” IEEE Journal
of Solid State Circuits, 36(11):1599-1608, 2001.

[S] M. Bennaser, et al., ”Data Memory Subsystem Resilient to Process
Variations,” IEEE Transactions on VLSI Systems, Dec. 2008, 16(2), pp.
1631-1638.

[6] A. Agarwal, et al., ”A process-tolerant cache architecture for improved
yield in nanoscale technologies”, IEEE Transactions on VLSI Systems,
Jan. 2005, 13(1), pp. 27-38.

[7]1 S. E. Schuster, Multiple word/bit line redundancy for semiconductor
memories, IEEE J. Solid-State Circuits, Oct. 1978, 13(5), pp. 698-703.

[8] H. L. Kalter, et al., A 50-ns 16-Mb DRAM with a 10 ns data rate and
on-chip ECC, IEEE J. Solid-State Circuits, Oct. 1990, 25(5), pp. 1118-
1128.

[9] K. Meng, et al., “Process variation aware cache leakage management,”
Proceedings of the 2006 International Symposium on Low Power Elec-
tronics and Design, 2006, pp. 262-267.

[10] M. Mutyam, et al., "Working with Process Variation Aware Caches,”
Proceedings of the Conference on Design, Automation and Test in
Europe, 2007, pp. 1152-1157.

[11] D. Burger, T. M. Austin, and S. Bennett, ”Evaluating Future Micropro-
cessors: The SimpleScalar Tool Set,” Tech. Report CS-TR-1996-1308,
University of Wisconsin-Madison, 1996.

[12] D. Brooks, V. Tiwari, and M Martonosi, "Wattch: a framework for
architectural-level power analysis and optimizations,” Proceedings of the
27th annual international symposium on Computer architecture, 2000, pp.
83-94

303

