TIPAngle: Traffic Tracking at City Scale by Pose
Estimation of Pan and Tilt Intersection Cameras

Shreehari Jagadeesha

Edward Andert

Aviral Shrivastava

SCAI Arizona State University SCAI, Arizona State University SCAI, Arizona State University

Abstract—Modern cities have hundreds to thousands of traffic
cameras distributed across them, many of them with the capa-
bility to pan and tilt, but very often these pan and tilt cameras
either do not have angle sensors or do not provide camera
orientation feedback. This makes it difficult to robustly track
traffic using these cameras. Several methods to automatically
detect the camera pose have been proposed in literature, with the
most popular and robust being deep learning-based approaches.
However, they are compute intensive, require large amounts of
training data, and generally cannot be run on embedded devices.
In this paper, we propose TIPAngle — a Siamese neural network,
lightweight training, and a highly optimized inference mechanism
and toolset to estimate camera pose and thereby improve traffic
tracking even when operators change the pose of the traffic
cameras. TIPAngle is 18.45x times faster and 3x more accurate
in determining the angle of a camera frame than a ResNet-18
based approach. We deploy TIPAngle to a Raspberry Pi CPU
and show that processing an image takes an average of .057s,
equating to a frequency of about 17Hz on an embedded device.

Index Terms—Camera Pose Estimation, Traffic Tracking, Pan
Tilt Traffic Camera, Siamese Neural Network

I. INTRODUCTION

Major metropolitan districts around the world use significant
amounts of Pan Tilt Traffic Cameras (PTTCs) to control and
modulate traffic and locate emergencies. PTTC traffic cameras
allow city officials to monitor traffic incidents by aiming a
camera rather than sending someone to the incident. This
remote incident monitoring allows the evaluation of a fast and
proper response from traffic incidents ranging from traffic, to
road debris, and accidents. The many PTTCs distributed across
the city provide a great opportunity for computer vision and
machine learning techniques to automatically track vehicles,
detect traffic incidents and efficiently manage traffic on a city-
wide scale [1], [2], [3]. To do any of these, an important step
is to track the vehicles in the camera field of view (FOV). This
is usually done by transforming the positions of objects from
the camera frame to a global frame. However, this requires
precise knowledge of the camera pose, which is easy for
fixed cameras, but much more difficult for PTTC cameras
that can move throughout the day without notice. Nearly all
PTTCs do not have orientation sensors, and even the few that
have the sensors do not provide this information as image
metadata that can be easily consumed by algorithms. The
addition of an external IMU is not adequate solution as they
are not precise enough for angle measurements at long range.
The problem is further complicated by the fact that covering
intersections adequately requires cameras in different poses,
and traffic camera operators consistently change the camera

angles for a better view or even for temporary observation
of say, construction on the side of the street. As a result, an
accurate mechanism to detect the camera pose in real-time on
an embedded systems is needed.

There have been many methods proposed for determining
the pose of a camera, ranging from SLAM to deep learning
based methods. Although SLAM-based approaches can be
effective [4], they suffer from accumulation of pose drift and
require high frame rates and no skips in the camera feed as is
moves, which cannot be guaranteed. Another popular method
of tracking the pose of PTTC traffic cameras is vanishing
point estimation techniques, which use vehicle movements or
road lines to calibrate the camera using a vanishing point [5],
[6]. These methods are great for calibration of PTTC cameras
without context, but they are not very efficient in tracking
pose when the roads and lane lines are not straight and need
a calibration point in order to know the reference angle to
transpose into a global map [6]. They also do not work well for
our application of tracking vehicles on surface streets where
there are typically many intersecting roads that may not be
straight. Recent approaches use deep learning to estimate the
pose of a camera relative to other objects [7], [8], [9] — and
these are the most closely related work to ours, but as we show,
they require a lot of training data and are compute-hungry and
thus cannot run on an embedded system.

In this paper, we propose TIPAngle — an approach based
on Siamese neural networks (SNN) [10], [11] to automatically
detect the pose of the traffic cameras in real time. TIPAngle is
accurate even with very little training, and is computationally
efficient during inference, which enables it to run in real-time
on embedded platforms.

The primary contributions of this paper are:

o A novel Siamese Neural Network (SNN)-based approach
to determine the pose of off-the-shelf pan tilt traffic
cameras (PTTC) that lack an encoder or IMU. The
approach is accurate even with little training data.

e A grid-based training data structure combined with a
gradient descent-based optimization that minimizes in-
ference steps so that the inference can be run in real time
onboard embedded processors.

To demonstrate the effectiveness of TIPAngle, we collect
pictures with different pan and tilt angles from a vantage
point similar to traffic cameras and divide them into training,
validation, and testing sets. We train TIPAngle and a state-of-
the-art Resnet-18 based approach seen in [12] on the test data
set. Our results show that TIPAngle is 18.45x times faster at

determining the angle of a camera frame than [12]. TIPAngle
is also 3x more accurate than [12] when measuring the RMSE
of the predicted angle vs. the measured angle. We deploy
TIPAngle to a Raspberry Pi and show that processing a single
frame can be done in .057s equating to a frequency of about
17Hz. Finally, we show that TIPAngle coupled with a YoloX-
based traffic tracking pipeline and show the effectiveness of
the tracking transposed onto a global coordinate frame.

II. RELATED WORK

There are a multitude of methods to track the orientation of
PTTC cameras using estimation of vanishing point(s) by using
the lane lines or road marking [13]. These vanishing point
methods can get an accurate results in many cases. however,
in the case of high traffic arterial roadways, most approaches
fail due to lack of visibility of lane lines. To solve this, Dubska
et. al [6] propose a method which uses the vehicles traveling
in the camera FOV as indicators of the lanes and calculates the
vanishing point using the result. This approach doesn’t work
well when roads aren’t straight and especially not in the case
of an intersection on surface streets and it doesn’t converge
on a solution fast enough. Other vanishing point based vehicle
tracking techniques improve vehicle tracking but do not return
pan tilt angles to transpose the data into a global frame [14].

Simultaneous Localization and Mapping (SLAM) can also
be used for camera pose estimation. However, a main chal-
lenge with SLAM is the drift over time especially as vehicles
move in and out of the camera frames. Zang et. al develop
a SLAM method for traffic cameras that eliminates drift,
however it relies on a 3D map of the city [15]. Lu et. al
showcase a method for using SLAM to predict pose of a
camera at sporting events by subtracting out players; however,
as the authors state, the system performance suffers due to
obstructions and the latency numbers are not published, despite
being run on a very powerful machine [16]. Del et. al showcase
a method that can recover for PTTC cameras but it can run
at only 17FPS on a 240p camera data on a very powerful
machine. SLAM approaches are not performant enough to
scale to hundreds of cameras and, furthermore, are not robust
to frame rate skips while the camera is moving [4]. While it is
clear that SLAM is effective when video frames are sequential
and frame-rate is high, in a PTTC environment where frame-
rate can be very choppy due to transport delay, we need a pose
estimator that doesn’t suffer from long recovery times.

Deep learning approaches like ResNet and PoseNet have
also been widely used to solve camera pose estimation [17].
The main drawbacks of using deep neural network (DNN)
architectures is that they require extensive labeled data and
are compute-heavy [18]. High-performance GPUs are typically
necessary to train these models and are also often needed to
run them in real time, which does not scale well to hundreds
of PTTCs [18].

Siamese Neural Networks (SNNs) have been used for
relative camera pose estimation with results better than DNNs
[10]. Li et. al proposed a method to use SNN to estimate
the pose of various object using open source datasets [11].

Yu et. al used an SNN to estimate the pose of various VGA
connectors so that a robot arm can connect them (visual
servoing) [19]. Although none of these applications use the
SNN to detect the pose of the camera itself, they show the
prowess of SNNs for detecting pose more accurately than
competing methods such as PoseNet and RelNet. In this paper
we adopt an SNN architecture to accurately and efficiently
estimate PTTC pose.

III. OUR APPROACH — TIPANGLE
A. Network Architecture

TIPAngle uses a Siamese Neural Network (SNN) to detect
camera pose, specifically the pan and tilt angle. SNNs are
a type of network architecture that consists of two identical
relatively small subnetworks, usually a Convolutional Neural
Net (CNN), Artificial Neural Networks (ANN), or Recurrent
Neural Networks (RNN) configured in the same way. Param-
eter updates are mirrored across both subnetworks and they
seek to maximize the similarity between the output feature
vectors of the two branches. This framework has been used
successfully in weakly supervised metric learning [20] and
object pose estimation [10], [11]. A characteristic of SNNs is
their ability to be trained on very little data, which is very
important for our traffic camera application.

Convolution

Convolution
96 Kernels Convolution Fully

256 Kernels
384 Kernels Connected
11*11* 3 Stl’lde 4 5*5496,stride=1 gage 256, stride = 1

n 256
384
250 gy ampling 5

ampling 13
(Max Pooling)
2*2, Stride =2 1024

Fully
Connected

Contrastive
Loss Function

(Max Pooling)
3*3, Stride =2

Convolution Convolution Convolution Fully

% Keme: 256 Kernels 384 Kernels Connected
11*11*3, stride = 4
e 5*5*96, stride =1 343%256, stride = 1

256

Fully
Connected

13

250 g

27 sampling 1

(Max Pooling)
2*2, Stride =2 1024

mpling
(Max Pooling)
3*3, Stride =2

Fig. 1. TIPAngle uses a Siamese Neural Network architecture with a
contrastive loss function. The goal of training is to learn embeddings that
are close-by for images that have similar pose.

Figure 1 shows our SNN architecture. It has two arms, each
having 3 convolutional layers and 2 max pooling layers and 2
linear layers. Finally, we generate a 256-value vector, which
is the embedding of the input image to the arm. Each image
is flattened into a 1D vector by concatenating pixel values
to derive a vector of pertinent features for the calculation of
Euclidean distance. The length of these vectors corresponds
to the total number of dimensions, which is equivalent to
the number of RGB pixels within the image. We use a CNN
architecture inspired by [21]. Table I lists the filter sizes for
convolution and pooling layers as H x W x D, where H is the
height, W is the width and D is the depth of the corresponding
filter. Stride denotes the distance between the application of
filters for convolution and pooling operation. ReLU are used as
the activation function to the output of all convolutional and

fully connected layers throughout the network. There is no
padding for any layer, and the Local Response Normalization
is used to generalize learned features.

TABLE 1
SIAMESE NEURAL NETWORK LAYER DETAILS.
Layer Kernel | Stride Input Output
Type Channels | Channels
1 | Convolutional 11x11 4 1 96
2 | Max Pooling 3x3 2 - -
3 | Convolutional 5x5 1 96 256
4 | Max Pooling 2x2 2 - -
5 | Convolutional 3x3 1 256 384
6 Linear - - 384 1024
7 Linear - - 1024 256

B. Loss Function

The metric is similarity and not probability. This is we chose
the contrastive loss function in our application of SNN, shown
in equation 1, where D,, is the Euclidean distance between
the embeddings generated from the sister networks. Y is the
similarity label, which is 0 when both images have the same
orientation, and 1 if different.

L= (- ¥)5 (Dw)* + (V)5 {max(0,m — Dw)}* (1)

If the input image samples are similar (Y = 0), then
we minimize the term (D3,) that corresponds to their Eu-
clidean distance, and when the input images are dissimilar
(Y = 1), then we minimize the term max(0,m — Dy)?
that is equivalent to maximizing their euclidean distance until
some limit margin m. If m is set too small, dissimilar pairs
may not be pushed far enough apart, leading to an overlap
between similar and dissimilar pairs in the embedding space,
making the network unable to distinguish images effectively.
In contrast, if m is set too large, the network may try to push
dissimilar pairs farther than necessary, leading to wasted effort
and slower convergence. In practice, m is set between 0.5 and
2.0. In our case we have set m to 2.0 for effective convergence
as a smaller m started resulting in overlapping of distinguished
images as similar ones.

C. Training

The goal of training TIPAngle training is to make the
embeddings of similar image pairs (images that have the
same pan and tilt angles), and the embeddings of dissimilar
image pairs (images that do not have the same pan and tilt
angles) [22]. To do this, we pick two random images from
our training dataset and input them to the two arms of the
SNN, and compute the contrastive loss function (1) based on
the label Y that we provide (0 when both the images have the
same orientation, and 1 if different). This is a differentiable
loss function so that gradient descent and network weight
optimization can take place. Back propagation is used to
update the weights of different layers. Table II shows all the
relevant training parameters.

TABLE 11
TRAINING PARAMETERS

Parameters Values
Activation Function ReLU
Learning Rate 0.0005

Optimizer Adam Optimizer
Loss Function Contrastive Loss
Loss Margin 2.0

Batch Size 64
Epoch Count 100

The learning rate is chosen empirically for cautious and yet
efficient convergence. The Adam optimizer recognized for its
adaptive learning rate mechanism is chosen, since the Adam
optimizer dynamically customizes learning rates for individual
parameters. This dynamicity inherently expedites convergence,
which is particularly important when navigating gradients
that exhibit variance across the network. Furthermore, the
operational parameters, batch size and epoch count) are set
at 64 and 100 respectively.

D. Architecture Exploration

We initially started with a minimalist SNN architecture with
just two convolutional layers and one Max Pooling Layer
for camera pose estimation. The focus was on prioritizing
simplicity and ease of computation while maintaining an
optimal level of performance. Although the model exhibited
computational efficiency, it became evident that its capacity
to capture nuances within the data was restricted. To address
these limitations, the architecture was then expanded to the
configuration presented in Table I, Table II and figurel. This
enhanced version integrated additional max-pooling and con-
volutional layers, increasing its depth and potential to discern
more complex features.

Convolutional Layer 1, which features an 11x11 kernel size
and a stride of 4, the architecture captures large, foundational
features such as road and building structures. The subsequent
integration of Max Pooling as layer 2, with a 3x3 pooling
size and a stride of 2, increases the network’s ability in
extracting such large features. Layer 3 as a Convolutional
Layer, with a 5x5 kernel size and stride of 1, further refines
feature extraction, particularly those of intermediate sizes, like
traffic lights and sidewalks. Layer 5, operating with a 2x2 Max
Pooling and a stride of 2, is added further for dimensionality
reduction. Using an odd-sized filter in Convolutional Layers
ensures that all the preceding layer pixels are symmetrically
positioned around the output pixel. This symmetry is crucial
because without it, we would need to address distortions that
can occur when using an even-sized kernel. The usage of
Rectified Linear Unit (ReLU) activation function introduces
non-linearity while mitigating vanishing gradient issues. By
setting negative values to zero, ReLU facilitates efficient
gradient flow during back propagation.

E. Fast Inference

The inference problem in TIPAngle is that, given an image,
determine its pan and tilt angles. This is typically done in

Pan Angle (Yaw)

o o

93 R (’; ° 63 o <0 ° 63 o D o
0° XV NGJ x/\ x’\Q x\q’ x\b x'<\ x(-19 xq/ xqio xq,’\ x{':>Q
z o
L
& -25° 86|45
5 5 9lal2la
: -]
< 75 18|56
T

DUneprored |:|Explored 1st DEprored 2nd DEprored 3rd

Fig. 2. Gradient descent shown in Algorithm 1 is run on a camera frame that
is 2.5 degrees from the original. In this case, the gradient descent algorithm
explores 12 locations, running inferences in 3 rounds until it terminates fining
the lowest value, .2.

SNNs by first generating the embedding of the image using
the pre-trained SNN, compare it with the embeddings of all
the existing images, and return the pan and tilt angle of the
image by extrapolating from the four embedding closest to the
input image. However, that is quite computationally intensive
to do for large image sets. Instead, we note that most of the
time PTTC cameras remain stationary. We use this insight
to our advantage, by creating a modification to the inference
step that strategically searches our organized image training
set starting with the last known angle and moving outward
in a gradient descent approach, shown in algorithm 1. This
algorithm works on the principle that the fastest inference
speedup is not to run inference at all when it is not necessary.
In the case that the PTTC camera is at the same pose as the
last frame, we will only run inference on nine images instead
of N images. In the case that the PTTC camera has actually
moved, the search space expands outwards until we find the
global minima, the less movement of the PTTC the faster this
is. Figure 2 shows a situation where the subsequent image in
a sequence is 2.5 degrees away from the previous one. In this
scenario, we first explore the closest position to the last angle
and the surrounding 8 angles. If all the 8 explored around the
last angle show at least a 2x weight gain from the last closest
position, the algorithm immediately exits. However, in Figure
2, the location +17.5,-5 degrees showed a lower value, and
thus we go on to explore the next 3 angles in that direction.
Finally after exploring those, we find a global minima that is
2x smaller than all that surround it. Now we interpolate the
nearest weights and come up with the actual angle estimate,
and set the lowedt field as the first to be explored on the next
camera frame. Even if we explore the entire search space,
the worst-case result is the same as exploring all the images,
which is what the brute force method was doing without
this optimization. Algorithm 1 results on average in a 6.24x
performance improvement over the SNN doing inference on
all available frames for a 13x5 grid.

FE. Traffic Tracking Using Camera Pose

We integrate the camera pose angle estimation with an
object recognizer to track the traffic, outlined in algorithm

Algorithm 1: Gradient Descent Algorithm

Input : lastPose, imageGrid
Output: pose
1 smallestDistance <— oo localMinima <— None
unexploredPositions[]
unexploredPositions.append((gridPosition(lastPose),
inferDistance(lastPose)))
2 while True do

3 unexploredPositions.Sort(using [1])
4 testGridPosition, testDistance =
unexploredPositions[].pop()

5 if testDistance < smallestDistance then

6 L localMinima < testGridPosition

7 if testDistance < (2*smallestDistance) then

8 for neighbors of testGridPosition do

9 L unexploredPositions.append(gridPos(neighbor)
, inferDistance(neighbor))

10 if length(unexploredPositions) == 0 then

11] return LocalMinima

2. Using a pinhole camera model, we estimate the distance
to each class of vehicles (car, truck, bus, etc.) based on
the expected average height of the class, focal length of the
camera, and pixels of height in the video frame (line 1). The
yaw and pitch angle to the object is estimated based on the
camera lens and pixel position of the bounding box center (line
1). With a distance and angle, we can move this to < x,y, z >
coordinates w.r.¢. the camera pose (line 1). This detection result
is then transformed based on the known GPS of the camera
as well as the pose returned by TIPAngle (line 2-4). This
results in a tracked object set with coordinate with respect
to the global map frame. We then feed these coordinates
into a multi-object tracker that maintains IDs, positions, and
velocities using an EKF for the objects with respect to the
global frame, seen in line 5 and 6.

Algorithm 2: Vehicle Tracking in Global Map Frame

Input : image, YoloXRecognizer, TIPAngle,
cameraGPSPosition, EKFTracker
Output: tracksInGlobalFrame
1 detections = YoloXRecognizer.recognize(image);
2 cameraToWorldTf.position = cameraGPSPosition;
3 cameraToWorldTf.rotation =
TIPAngle.getPose(image);
4 detectionsInGF =
detections.transformEuler(cameraToWorldT¥);
5 EKFTracker.predict();
6 tracksInGlobalFrame =
EKFTracker.update(detectionsInGF);

IV. EXPERIMENTAL SETUP

We collected our dataset using a Canon 1300D camera on
a tripod that was zeroed out in the roll direction. Tilt angle

Fig. 3. Images Taken at Same Angle LE., 0° Pan and -3° Tilt Angle During
Day, Dusk and Night Scenarios

measurements were obtained using an IMU as an inclinometer
while pan angle measurements were obtained using a tripod
base angle measuring attachment, zeroed out to magnetic
north. These images were collected from a vantage point
on a bridge that mimics the height PTTC cameras are often
positioned. The pan and tilt angles were varied with a step size
of 2.5° for the dataset. The pan angle was taken in the range
of 30° while the tilt was taken with a range of 10°. Images
were collected systematically in 3 sets of lighting conditions,
day, dusk and night scenario with each set consisting of 65
images. Figure 3 shows three images collected at the same
pan and tilt angle during day, dusk and night. An additional
90 separate images are collected at randomly decided angles
within the pan and tilt range for validation and as a ground
truth-ed test set. Finally, for test purposes, multiple five minute
long videos are taken where the camera is moved to a different
pan and tilt angle four times within the video for a total of
five contained angles. Pan/tilt angles and transition times in
the video are recorded for ground truth.

Using this collected dataset, we set train both our SNN
model and a lightweight state of the art model, ResNet. We
then use the 90 images taken at random angles to provide an
unbiased evaluation of a model fit on the training dataset on
the predicted pan and tilt angles versus the measured. The
training loss and the validation loss are about the same, which
demonstrates the robustness and generality of the training.

Finally we use the recorded videos for testing the perfor-
mance as these 12,000 frame long videos mimic the operation
of a pan tilt camera that is moving often and are used to test
our gradient descent algorithm in a realistic scenario.

V. RESULTS
A. TIPAngle Can Be Trained Quickly

We trained the model for until convergence which occured
at 100 epochs, using training rate of 0.0005, and minimum
batch size of 64 using Tensorflow and Keras libraries. On a
Core i5 10210U CPU, as shown in table III, the training of
the SNN took 6 minutes and 48 seconds while ResNet-18 on
the other hand took 37 minutes and 25 seconds to train using
the same data. This shows the simplicity of the SNN approach
compared to ResNet-18. ResNet-34 and 50 took significantly
longer and are therefore not shown.

TABLE III
TRAINING TIME

Method of Layers | Training Time (Core i5)
ResNet-18 18 2246s (37m, 25s)
VGG-16 16 408s (6m, 48s)

B. TIPAngle Can Be Trained With Less Data

In order to demonstrate the ability of the proposed system
to accurately detect the pose of the PTTC, the Root Mean
Squared Error (RMSE) values comparing the predicted and ac-
tual values of output angles of TIPAngle are shown compared
to ResNetl8. It can seen from the figure 4 that the RMSE is
the lowest during the day. As the lighting decreases the RMSE
value increases slightly. However, the proposed solution still
performs well. Compared with ResNet18 it can clearly be seen
that TIPAngle shows better results and is more than 3x as
accurate using the same training data. Even the most accurate
ResNet50 model is slightly more accurate, but runs far too
slowly for our application.

C. TIPAngle Inference is Fast

Comparing execution times, we can see that the SNN
approach is 4.48x faster than ResNet-18 in table IV. However,
once we add in our gradient descent approach to make TIPAn-
gle, the performance improvement over ResNet-18 increases
to a whopping 28.56x improvement. This is because the vast
majority of camera poses being unchanged when dealing with
PTTC cameras, and thus most of the time we only need to
search the immediate surrounding angles to confirm that the
angle has not changed.

B TIPANGLE ResNetl8 ResNet34 ResNet50
6
. 2
] 4
oo
3]
o 1.45
£ 2 0.84l®m 0.96
s 0.320g 0.354f 0-5% I
>
o 0o —Aa a | l l
Pan Tilt Pan Tilt Pan Tilt
(Day) (Day) (Dusk) (Dusk) (Night) (Night)

Axis (Time of Day)

Fig. 4. Comparison of TIPAngle and Resnet18 RMSE vs. ground truth labels
for test dataset consisting of 90 images, 30 captured at each of the three light
level at randomized angles.

D. TIPAngle Runs On Embedded Hardware in Real-Time

Convolutional Neural Network models can be resource in-
tensive, requiring large amounts of memory and computational
power to train and use for inference. This can make it difficult
to deploy these models on resource-constrained devices such
as Raspberry Pi with limited computational power(Quad Core
1.2GHz Broadcom BCM2837 64bit CPU) and RAM (1.0 Gb).
To overcome this limitation, we use separable convolution,
pruning, and our gradient descent to reduce these model’s
resource requirements. This results in a .057s runtime on
the Raspberry Pi which equates to 17Hz. Resnet-17 was
significantly slower and even coupled with the improvement
from algorithm 11 and did not break the 1 second barrier.

TABLE IV
PERFORMANCE COMPARISON
Core i5 | Raspberry Pi 3
ResNet-18 | 3.713s 19.2s
SNN 0.29s 0.36s
Pangle 0.031s 0.057s

200+ -200+

100

meters north-south
Heat Map Intensity
meters north-south
=
S
S
Heat Map Intensity

50 100
meters east-west

50 100
meters east-west

Fig. 5. Without TIPAngle there are
5 distinct patterns of the heat map
due to the fact the camera moves 4
times during the test and it was not
compensated for.

Fig. 6. With TIPAngle we can see
that the heat map lines up with the
expected center of the lanes with a
much higher heat signature, despite
the camera moving four times.

E. TIPAngle achieves excellent traffic tracking

In order to showcase the effectiveness of TIPAngle, we
recorded a five minute videos with changes occurring at
roughly 1 minute intervals where we change the pan and tile
to a new unique angle. We use a YoloV4 vehicle tracker and
transform the detections as a heat map onto a satellite image
of the roadway the camera is roughly faced towards from the
pose of the camera using two methods. Method one is using a
fixed pose gathered from the initial angle the camera is set to,
shown in figure 5. And method two is using TIPAngle, shown
in figure 6. Each 1m by Im square heat position represents the
number of times a vehicle is detected within that position for
the five minute long test. We can see that without TIPAngle
we get five distinct sets of lines from where the camera was
stable at a different pan angle. With TIPAngle we can see
that the track heat map lines up well with the lanes and shows
very little deviation despite the camera moving four times.

VI. CONCLUSION

In this paper, we present a lightweight, easy-to-train
pan-tilt traffic camera pose estimation method based on a
Siamese Neural Network architecture, which we call TIPAn-
gle. TIPAngle can run inferences at a high frame rate for
PTTC cameras distributed throughout a city, even those lack-
ing precise IMUs or angle encoders. Using a sparse dataset
and a ground truth method, we train both TIPAngle and a
state-of-the-art method, ResNet18. Our tests consistently show
that TIPAngle outperforms ResNet18. Specifically, TIPAngle
is 18.45 times faster in determining the angle of a camera
frame, while being three times more accurate than ResNetl8
in measuring the RMSE of the predicted versus the measured
angle. We deployed TIPAngle on a Raspberry Pi 3 and
demonstrated that processing a single frame takes only 0.057

seconds, equivalent to a frequency of approximately 17Hz.
In future work, we plan to analyze TIPAngle’s performance
across multiple traffic cameras simultaneously and explore its
deployment across a large set of PTTC cameras.

REFERENCES

[1] B. K. M et al., “Road accident detection using machine learning,” in
2021 International Conference on System, Computation, Automation and
Networking (ICSCAN), 2021, pp. 1-5.

[2] M.-N. Chapel and T. Bouwmans, “Moving objects detection with a
moving camera: A comprehensive review,” Computer science review,
vol. 38, p. 100310, 2020.

[3] S. M. Sunny et al., “Image based automatic traffic surveillance system
through number-plate identification and accident detection,” in 2021 2nd
International Conference on Robotics, Electrical and Signal Processing
Techniques (ICREST), 2021, pp. 467-472.

[4] A. Del Bimbo, G. Lisanti, I. Masi, and F. Pernici, “Continuous recovery
for real time pan tilt zoom localization and mapping,” in 2011 8th
IEEE International Conference on Advanced Video and Signal Based
Surveillance (AVSS). IEEE, 2011, pp. 160-165.

[5] Y. Zheng and S. Peng, “A practical roadside camera calibration method
based on least squares optimization,” IEEE Transactions on Intelligent
Transportation Systems, vol. 15, no. 2, pp. 831-843, 2013.

[6] M. Dubskd et al., “Fully automatic roadside camera calibration for traffic
surveillance,” IEEE Transactions on Intelligent Transportation Systems,
vol. 16, no. 3, pp. 1162-1171, 2014.

[7]1 Y. Nakajima and H. Saito, “Robust camera pose estimation by viewpoint
classification using deep learning,” Computational Visual Media, vol. 3,
pp. 189-198, 2017.

[8] Y. Shavit and R. Ferens, “Introduction to camera pose estimation with
deep learning,” CoRR, vol. abs/1907.05272, 2019. [Online]. Available:
http://arxiv.org/abs/1907.05272

[91 M. M. Albakri et al., “Traffic surveillance: Vehicle detection and pose
estimation based on deep learning,” Przeglad Elektrotechniczny, vol.
02/2023 Page no. 131, p. 4, 01 2023.

[10] I. Melekhov et al., “Relative camera pose estimation using convolutional
neural networks,” in Advanced Concepts for Intelligent Vision Systems:
18th International Conference, ACIVS 2017, Antwerp, Belgium, Septem-
ber 18-21, 2017, Proceedings 18. Springer, 2017, pp. 675-687.

[11] Q. Li et al., “Relative geometry-aware siamese neural network for 6dof
camera relocalization,” Neurocomputing, vol. 426, pp. 134-146, 2021.

[12] M. Xu et al., “A critical analysis of image-based camera pose estimation
techniques,” arXiv preprint arXiv:2201.05816, 2022.

[13] K.-T. Song and J.-C. Tai, “Dynamic calibration of pan—tilt-zoom cam-
eras for traffic monitoring,” IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), vol. 36, no. 5, pp. 1091-1103, 2006.

[14] J. Sochor et al., “Traffic surveillance camera calibration by 3d model
bounding box alignment for accurate vehicle speed measurement,”
Computer Vision and Image Understanding, vol. 161, pp. 87-98, 2017.

[15] Y. Zhang et al., “Bundle adjustment for monocular visual odometry
based on detected traffic sign features,” in 2019 IEEE International
Conference on Image Processing (ICIP). 1EEE, 2019, pp. 4350-4354.

[16] J. Lu, J. Chen, and J. J. Little, “Pan-tilt-zoom slam for sports videos,”
arXiv preprint arXiv:1907.08816, 2019.

[17] A. Kendall et al., “Posenet: A convolutional network for real-time 6-
dof camera relocalization,” in Proceedings of the IEEE international
conference on computer vision, 2015, pp. 2938-2946.

[18] B. Zohuri and M. Moghaddam, “Deep learning limitations and flaws,”
Modern Approaches on Material Science, vol. 2, 01 2020.

[19] C. Yu, Z. Cai, H. Pham, and Q.-C. Pham, “Siamese convolutional neural
network for sub-millimeter-accurate camera pose estimation and visual
servoing,” in 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 1EEE, 2019, pp. 935-941.

[20] S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity metric
discriminatively, with application to face verification,” in 2005 IEEE
Computer Society Conference on Computer Vision and Pattern Recog-
nition (CVPR’05), vol. 1, 2005, pp. 539-546 vol. 1.

[21] A. Krizhevsky et al., “Imagenet classification with deep convolutional
neural networks,” in Advances in Neural Information Processing Sys-
tems, F. Pereira, C. Burges, L. Bottou, and K. Weinberger, Eds., 2012.

[22] A. J. Kumar et al., “2023 7th international conference on computing
methodologies and communication (iccme),” 2023, pp. 251-256.

