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ABSTRACT Deep neural networks (DNNs) are crucial in safety-critical applications but vulnerable to
adversarial attacks, where subtle perturbations cause misclassification. Existing defense mechanisms strug-
gle with small perturbations and face accuracy-robustness trade-offs. This study introduces the "Reverse
Attack" method to address these challenges. Our approach uniquely reconstructs and classifies images
by applying perturbations opposite to the attack direction, using a complementary "Revenant" classifier
to maintain original image accuracy. The proposed method significantly outperforms existing strategies,
maintaining clean image accuracy with only a 2.92% decrease while achieving over 70% robust accuracy
against all benchmarked adversarial attacks. This contrasts with current mechanisms, which typically suffer
an 18% reduction in clean image accuracy and only 36% robustness against adversarial examples. We
evaluate our method on the CIFAR-10 dataset using ResNet50, testing against various attacks including
PGD and components of Auto Attack. Despite our approach incurs additional computational costs during
reconstruction, our method represents a significant advancement in robust defenses against adversarial
attacks while preserving clean input performance. This balanced approach paves the way for more reliable
DNNs in critical applications. Future work will focus on optimization and exploring applicability to larger
datasets and complex architectures.

INDEX TERMS Deep neural networks, adversarial attacks and defenses, security, and reliability

I. INTRODUCTION

Deep neural networks (DNNs) are increasingly being utilized
in various fields and have become particularly crucial in
safety-critical applications such as malware detection [1],
medical imaging [2], and autonomous driving [3]. Consid-
ering these applications directly impact human safety, even
minor inaccuracies in deep learning models could lead to
catastrophic outcomes. Despite their capabilities, deep learn-
ing models are often vulnerable to external attacks, primarily
because these models depend heavily on the data on which
they are trained. Moreover, unlike traditional programming,
understanding how a complex deep learning model makes
its decisions can be challenging. This opacity complicates

the identification of vulnerabilities and the understanding of
errors. Consequently, ensuring the robustness of the inference
model and mitigating errors from external influences to main-
tain integrity are increasingly critical concerns.

As one of the deadliest techniques threatening the robust-
ness of deep learning models, an adversarial attack involves
injecting carefully crafted perturbations into input images be-
fore the inference phase, which decides the model’s output, to
confuse the model. These perturbations are imperceptible to
the human eye but can be designed to cause the target model
to misclassify the image with varying degrees of confidence,
leading to catastrophic results. Several adversarial attacks are
proposed based on having detailed information available and
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access to the target model, including hyperparameters and
gradients. With this information, attackers can manipulate the
input images to induce misclassification using their in-depth
model knowledge. The attacks that use model information
are named white-box attacks. Examples of white-box attacks
include Fast Gradient Sign Method (FGSM) [4], Projected
Gradient Descent (PGD) [5] and various Auto Attack meth-
ods [6]. These attacks leverage the model’s internal infor-
mation to attack effectively deceive the target model. While
highly potent, their reliance on detailed model knowledge can
limit their applicability in real-world scenarios where such
access may be restricted.

For these limitations, researchers have proposed effective
attacks even without access to the model’s internal informa-
tion. These attacks are named black-box attacks. Such attacks
involve the strategic insertion of numerous carefully designed
inputs into the system to obtain a range of responses from the
model. By closely analyzing the variations in model response
to these inputs, attackers can gradually accumulate the infor-
mation required for manipulating the model behavior. While
generally less powerful than white-box attacks, advances in
black-box methods have led to the design of many attacks
that can degrade model performance as much as white-box
in scenarios where access to the model internals is restricted.
Although these attacks require this additional preliminary
step of data gathering, they have achieved performance ef-
fectiveness similar to that of attacks that exploit and access
all detailed information [7]–[9].

The recent surge in adversarial attacks has spurred signif-
icant research on robust defense mechanisms. However, ex-
isting techniques, such as adversarial training [5], encounter
notable limitations. Although adversarial training improves
robustness by incorporating adversarial examples subjected
to adversarial attacks into the training alongside clean data, it
often suffers from a fundamental tradeoff as the model learns
to resist adversarial perturbations, its accuracy with clean
data deteriorates. Mitigating this decrease in accuracy re-
quires training with larger or more complex neural networks.
However, such models are often impractical for deployment
in resource-constrained devices, limiting the applicability of
adversarial training in on-device or embedded AI settings.

Several studies proposed to prevent adversarial attacks
from affecting AI models, especially in neural network model
analysis. Adversarial training methods usually use gradient
analysis and decision boundary analysis. Not only for the ad-
versarial training but there are also mitigating methods using
these analyses. One of the methods is adjusting regularization
techniques in neural networks such as applying Jacobian
regularization [10] and additional regularization methods for
specific models [11]. Furthermore, some studies apply model
ensemble techniques [11], [12]. These ensemble methods
use several models that have diverse hyperparameters. By
applying these methods, improve the robustness of prediction
techniques using different models.

However, these methods require extensive training, includ-
ing on original and perturbed images including the tradeoff

of clean images and adversarial attacked images, denois-
ing adversarial perturbation techniques have been proposed.
These techniques exploit smoothing techniques (e.g., low-
pass filtering) [13] and deep generative models to project
perturbed images back onto a learned image manifold de-
signed to eliminate adversarial noise [14]–[17]. Although
these denoising schemes perform well for intense noise, they
do not offer sufficient protection against small-scale noise
attacks that resemble real-world attacks. In addition, these
defense strategies can introduce significant computational
overhead during inference [14]–[17] because they denoise all
inputs regardless of the presence of attacks.

This paper proposes Reverse Attack, a novel mechanism
that performs opposite noising to mitigate different types of
adversarial attacks. Reverse attack leverages a fast gradient
sign method (FGSM) attack to add noise in the direction op-
posite to that of the adversarial examples to create similarity
in the adversarial example. The proposed method functions
with the following three key attributes:

1) Training a complementary classifier "Revenant":
We co-train a complementary classifier "Revenant"
alongside the clean one. This additional classifier lever-
ages adversarial training with FGSM to add noise
to the input images. Noise was added twice: once
in the direction of the original FGSM and again in
the opposite direction. This process aims to improve
the generalization and robustness of Reverse Attack
adversarial examples.

2) Adaptive classification strategy: We classified ad-
versarial examples using the existing adversarial at-
tack detection method, ML-LOO [18]. If no attack
is detected, the image is classified using the original
classifier, ensuring that the standard accuracy remains
unaffected by the proposed method.

3) Reverse Attack to reconstruct images: If an attack
is suspected, we perform a "Reverse Attack" using
FGSM with the opposite noise direction for each class.
The resulting altered image is then classified using the
Revenant classifier established in the first stage.

We conducted a comprehensive set of experiments on
image classification models to evaluate the proposed method.
We specifically focused on ResNet50 [19] trained using
the CIFAR-10 dataset [20], which consists of images that
resemble everyday objects. We evaluated the robustness of
our method against five well-established attacks, the white-
box attacks: Projected Gradient Descent (PGD) [5] and four
representative attacks auto attacks [6], including APGD-CE,
APGD-T, FAB-T, and the black-box attack: Square.

Our findings demonstrate that the proposed approach con-
sistently restores the model accuracy to over 70% on av-
erage under all adversarial attacks, contrasting starkly with
existing defense mechanisms, which only achieve an average
accuracy of approximately 36% under the same conditions.
Notably, unlike adversarial training, the proposed approach
maintains the accuracy of clean images, resulting in a reduc-
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tion of 2.92% in the misclassification rate with the ML-LOO
detector. By contrast, adversarial training schemes typically
suffer from an 18% decrease in the accuracy of clean images.

II. BACKGROUND AND RELATED WORKS
For brevity, we discuss some representative adversarial attack
methods in Section II-A. Section II-B presents the attacks
and defense mechanisms designed to counter adversarial
attacks. In Section II-C, we describe the leave-one-out (ML-
LOO) [18] detection method, a leave-one-out based approach
for adversarial attack detection.

A. ADVERSARIAL ATTACKS
FGSM [4], a cornerstone adversarial attack, manipulates
input data during the inference stage. The FGSM operates
under the assumption that the attacker possesses in-depth
knowledge of the deep learning model, including its gradient
and loss functions. By leveraging this access, the FGSM
computes the gradients for each pixel of the target input
image and then applies a one-step perturbation, adding a
minute amount of carefully crafted noise in a direction that
maximizes the loss function. This manipulation ultimately
deceives the model by misclassifying images.

Equation ( 1) describes the input perturbation in the FGSM
scheme. In Equation ( 1), x is the clean input image, and x̃
is the victim image after the perturbation δ. In Equation ( 2),
▽xL(θ, x, y) represents the loss function of the target model,
and α is the sign of the loss function. ϵ is the epsilon value, a
constant set by an attacker to adjust the noise ratio. Based on
this idea, adversarial attacks always insert noise to maximize
the loss of the target model.

x̃ = x+ δ (1)

δ = ϵ · α(∇xL(θ, x, y)) (2)

Building on the core concept of the FGSM, the Projected
Gradient Descent (PGD) [5] attack is one of the most potent
iterative methods for generating adversarial examples. The
PGD iteratively modifies the input image by adding small
perturbations, calculated using the loss function and gradient
of the model. Crucially, PGD leverages the gradient of the
modified image in each iteration, thereby making the attack
progressively stronger. However, to ensure that the pertur-
bations remain within a bounded range (often referred to as
the L-infinity norm), PGD performs orthogonal projection for
any value exceeding this limit to return them back to the valid
range. This iterative refinement and clipping process enables
the PGD to achieve misclassification with surprisingly low
noise levels.

With the increasing sophistication of adversarial attack
methods, new attacks, such as Auto Attacks, have been
developed to evaluate adversarial defense mechanisms. The
Auto Projected Gradient Descent on the Cross-Entropy
loss (APGD-CE) [6] represents a variant of the PGD attack
that utilizes cross-entropy loss and automatically adjusts the
step size instead of, employing a fixed step size. This attack

dynamically alters the size of the steps during execution.
Introducing randomness to the initial value, aiming to per-
form as many iterations as possible within a given epsilon
boundary rather than adhering to a set number of iterations.
This approach generates effective adversarial examples by
repeatedly executing attacks.

Several studies have addressed the challenge of adversar-
ial attacks on image classification models. Notably, Auto
Projected Gradient Descent with Target class (APGD-
T) [6] employs a targeted attack strategy that leverages the
difference in the logit ratio as its loss function. This approach
allows attackers to specify a target class, thereby enabling
the creation of adversarial examples that are deliberately
misclassified into specific classes. Another targeted attack,
the Fast Adaptive Boundary Attack with Target class
(FAB-T) [6], [21], utilizes information regarding model gra-
dients and decision boundaries to identify the most influential
pixels for manipulating the classification towards a chosen
target class. Through an iterative process, FAB-T refines the
perturbation to generate adversarial examples close to the
decision boundary.

Deep learning models are increasingly deployed in
security-sensitive applications, raising concerns about their
vulnerability to adversarial attacks. However, the effective-
ness of many traditional attacks depends on possessing intri-
cate knowledge of the target model, such as its gradients and
loss functions. This dependency on model access presents
a critical limitation in real-world scenarios, particularly as
advances in model privacy and access control have become
generalized. The field of adversarial protection has seen
significant progress in developing attacks that can manip-
ulate model predictions without requiring detailed internal
information. These "black-box" attacks pose a significant
threat, as they can potentially target deployed models in real-
world settings. A Square Attack [9], a prominent black-box
adversarial attack, initializes an adversarial example with a
pattern of vertical stripes. During an attack, small square
regions within the image are iteratively selected and the pixel
values within these regions are adjusted to manipulate model
prediction. These modifications are strategically chosen to be
near the decision boundaries, thereby minimizing the number
of changes required. This approach allows a Square Attack to
balance runtime efficiency with attack effectiveness, effec-
tively disrupting the model performance without requiring
detailed knowledge of its internal workings. Although less
potent than white-box attacks (those with full model access),
the Square Attack demonstrates the capability of black-box
methods to bypass access restrictions and degrade model
performance in real-world scenarios.

B. DEFENSE AGAINST ADVERSARIAL ATTACK
Since the emergence of adversarial attacks, myriad defense
and recovery mechanisms have been introduced. Notably,
adversarial training has been recognized as a foundational
technique for counteracting such attacks during the training
phase of models. This method integrates standard images
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A B C
FIGURE 1: Adjusting the decision boundary via adversar-
ial training. (A) The baseline configuration of the target
model, where circles and triangles represent distinct labels
accurately classified within their respective decision bound-
aries. (B) Adversarial examples concerning the target model
demonstrate how stars located close to the initial decision
boundary can be misclassified from circles to triangles or
vice versa; shaded circles indicate the variance of the image
within the same noise. (C) Effect of adversarial training on
the target model, demonstrating that stars from (B) are now
correctly classified owing to the formation of a new decision
boundary, depicted as a bold line.

with a specialized loss function specifically crafted to neu-
tralize the effects of adversarial examples [5], [22]–[24].
This procedure intentionally generates adversarial examples
and evaluates the divergence between these manipulated
instances and their original forms, aiming to formulate a
decision boundary that effectively reduces the discrepancy
between model predictions and authentic images [22], as
depicted in Figure 1.

Figure 1 (A) illustrates the model under normal conditions,
where the circles and triangles denote distinct categories,
neatly separated by the decision boundary to ensure precise
classification. Figure 1 (B) depicts an adversarial example de-
signed explicitly for the model. The shaded circles represent
the variance in the images caused by identical noise levels.
Here, stars (meant to be classified as circles) are positioned
close to the decision boundary. This proximity increases the
risk of misclassification as triangles or vice versa, especially
because the shaded circles cross the original decision bound-
ary. Figure 1 (C) illustrates the effectiveness of adversarial
training in the model, incorporating previously misclassified
stars from Figure 1 (B), now correctly identified as circles or
triangles, including the shaded circles. This process results
in an adjustment of the decision boundary of the model,
highlighted in bold. This recalibration sharpens the boundary,
significantly improving model accuracy in classifying stars as
belonging to the circle or triangle categories.

Traditionally, defense methods have focused on correctly
classified examples for loss calculations. However, a novel
and more advanced approach is emerging, fortifying the de-
cision boundary by incorporating misclassified images (e.g.,
Method Against Robust Training [23]). This innovative tech-
nique enhances the capacity of the model to distinguish be-
tween legitimate and adversarial data, marking a significant
leap in defense strategies. Recent advances have incorporated

diffusion models [24]–[27] to enhance defense capabilities.
These models progressively transform images and add noise
during learning to remove and retain clean data. This gradual
transformation and traditional training techniques promote
diverse and practical learning of the target model.

Leading edge methods use diffusion model architectures to
generate adversarial images more efficiently with improved
algorithms to add noise processes [24]. They also delve
into conditional perturbations tailored for specific classes or
attributes, further enhancing the models’ performance. These
techniques promise to correct labels for adversarial examples
by strategically manipulating the decision boundaries, as
shown in Figure 1. However, a fundamental limitation of
almost all these methods is the use of a single classifier
for clean and adversarial examples. This mixed classifier
can lead to a tradeoff: adversarial examples become more
accurately classified at the expense of the accuracy of the
clean image. Furthermore, these methods may not provide
comprehensive protection against a wide range of attacks
with varying epsilon values (maximum allowed perturba-
tion).

Denoising techniques aim to defend against adversarial
attacks by removing adversarial noise from the input images.
Simple methods like low-pass [13] and Gaussian [28], [29]
filtering can be effective for high-frequency noise levels
but struggle with other perturbations. More advanced meth-
ods [17] add additional noise to cancel out adversarial noise
and then train a network to remove it. These methods then
train a separate network to remove the combined noise, es-
sentially denoising adversarial perturbation. Although these
methods are more effective than simple filtering, they are
computationally expensive.

In response to these challenges, ongoing research is ded-
icated to advancing defense mechanisms against adversarial
attacks to overcome these drawbacks, aiming to devise strate-
gies capable of addressing a broad spectrum of attack types
and epsilon values, including subtle modifications, while
preserving the classification accuracy for genuine images.

C. ML-LOO FOR ADVERSARIAL ATTACK DETECTION

Adversarial attacks are perturbative noise invisible to the
human eye to disrupt the model, so effective detection meth-
ods are crucial. However, progress in this area of research
is hampered by constantly evolving attacks [30]. Indeed,
many detection methods only have experimented with a
few gradient-based attacks including state-of-the-art detec-
tion methods [31]–[33]. In some cases, advances in attacks
have even rendered past methods invalid [34]. The notable
exception is ML-LOO [18], which stands out as the most
effective detection method against various attacks. ML-LOO
detects adversarial attacks by checking the dispersion of
feature attributions used by the neural network to determine
the outcome. Thus, this study utilizes the ML-LOO [18]
approach for detecting adversarial examples before image
reconstruction for label correction.
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FIGURE 2: Differences in feature map attribution between
clean images (A) and adversarial examples (B). X-axis de-
notes the image index, while Y-axis represents the interquar-
tile range (IQR) value of feature attribution for each image,
illustrating the variance in utilized feature numbers during
the classification of a single image.

Capitalizing on this observation, ML-LOO extends the
method to encompass multilayer feature attribution, enabling
the computation of attribution scores for middle layers with-
out requiring additional model queries to identify adversarial
examples.

ML-LOO, which leverages the Leave-One-Out (LOO) ap-
proach [35] in conjunction with feature attribution to identify
adversarial examples, analyzes the impact of removing indi-
vidual pixels from the input image on the model output, both
before and after adversarial perturbation. Although the visual
changes caused by the perturbation may be imperceptible, the
corresponding feature attribution undergoes significant vari-
ations. This difference in feature attribution allows the ML-
LOO to distinguish between clean and adversarial examples.
[18] found that the interquartile range (IQR) of this feature
attribution variation served as a particularly effective metric
for detection. Finally, these feature discrepancies are used to
train regression models, such as XGBoost [36] or Support
Vector Machines (SVM) [37] to detect attacks.

Figure 2 illustrates the feature map differences between
clean images (A) and adversarial examples (B). The X-axis,
representing the image index, indicates the analysis of a set of
images. The Y-axis representing the interquartile range (IQR)
of feature attribution for each image shows the variation
in the utilized features during the classification process for
each image (potentially comparing original vs. adversarial
examples). High IQR values on the Y-axis may indicate im-
ages in which removing individual pixels significantly affects
feature attributions, potentially suggesting the presence of
adversarial manipulation.

III. OUR APPROACH: REVERSE ATTACK
This paper introduces a novel defense mechanism termed
"Reverse Attack" to counteract adversarial threats, as illus-
trated in Figure 3. Our proposed method consists of three
main steps: (i) We detect adversarial examples using the ML-
LOO method, which utilizes information from the neural

network. (ii) If the detector determines that the image is
normal, we input the image into the original classifier. (iii)
If an attack is detected, we reconstruct the image using our
Reverse Attack method and then reclassify it using a new
classifier called Revenant.

The proposed approach involves training two distinct clas-
sifiers: the original classifier, tasked with handling clean
images, and the Revenant classifier, specifically designed to
address reconstructed adversarial examples. If the detector
indicates that the image is clean, it is classified by the
original classifier, thus preserving the accuracy of the non-
adversarial inputs. Conversely, upon detecting an attack, the
Revenant classifier reconstructs the image in the opposite
direction of the attack, allowing the adversarial example to
be correctly classified. Notably, the Revenant classifier is
tailored to reconstructed adversarial examples, whereas the
original classifier is based on any classifier suitable for clean
images.

A. REVERSE ATTACK NEW CLASSIFIER REVENANT
A novel Reverse Attack technique was used to foster ac-
curate label identification under diverse adversarial attacks.
Notably, a Reverse Attack promotes consistent similarity
between adversarial examples generated by various attack
methods for the same original image. The mathematical
formulation of the Reverse Attack, detailed in Equation ( 3),
closely resembles the FGSM attack [4]. Therefore, we in-
troduce key implementation differences that distinguish our
Reverse Attack from FGSM.

−αϵ (▽xL(θ, x, y)) (3)

The first difference is α, which denotes the sign or direction
of the attack. In the FGSM method, the parameter is adjusted
to increase the model loss. By contrast, a Reverse Attack has
the opposite sign, meaning that the attack actually decreases
the loss of the model. Regardless of the type of attack, the
basic concept of adversarial attacks involves perturbations
in the direction that increases loss. Therefore, the proposed
methodology can be used to generate a particular similarity
through a reverse FGSM attack in a direction that reduces
model loss, ensuring it can be classified. The second factor is
the image gradient, represented by x. During inference, the
ground-truth-label for an adversarial example is typically un-
known. Consequently, our Reverse Attack employs gradients
for all possible class labels. This approach generated a set of
additional images, one for each potential class. In contrast,
FGSM leverages only the gradient associated with the target
class, crafting an adversarial example specifically designed
to be misclassified as that target class.

Finally, the variable ϵ, a hyperparameter that describes the
noise ratio or the intensity of an adversarial attack, should be
considered. Through empirical evidence, we found 0.03 to be
an appropriate value for creating similarities between data.
We leverage the Reverse Attack for training the Revenant
classifier and image reconstruction during the inference. To
improve the adaptability to typical adversarial attacks on
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FIGURE 3: Overall workflow of the Reverse Attack method. (i) The attack detector analyzes the features extracted from the
original classifier to determine the presence of adversarial attacks. (ii) If no attack is detected, the image is classified directly
by the original classifier. (iii) Upon attack detection, our method employs the Reverse Attack reconstruction process followed
by reclassification using the Revenant classifier.

Algorithm 1 Algorithm for generating training data for the
Revenant classifier using the Reverse Attack scheme

Require: Training data: D; Size of dataset: N ; Number of
classes : C; Gradient of ground-truth-label: G; Gradient
of label C: GC ; ϵ: Epsilon value 0.03; Loss function:
ϵ (∇xL(θ,GC , y));

1: T ← {}
2: for i = 1 to N do
3: D′ ← Di + ϵ (∇xL(θ,G, y))
4: for j = 1 to C do
5: R← D′ − ϵ (∇xL(θ,GC , y))
6: T ← T ∪ {R}
7: end for
8: end for
9: return T

Algorithm 2 Algorithm for the inference of a single image
with our Reverse Attack

Require: Test data D; Number of classes: C; Gradient of
ground-truth-label: G; Gradient of label C: GC ; ϵ: Ep-
silon value 0.03; The loss function with gradient GC is
ϵ (∇xL(θ,GC , y)); Original classifier O; Revenant clas-
sifier R.

1: if D is adversarial example then
2: S ← {}
3: for i := 1 to C do
4: D′ ← D − ϵ (∇xL (θ,GC , y))
5: S ← S ∪ {R(D′)}
6: end for
7: return vote(S)
8: else
9: return O(D)

10: end if
11: End Prediction
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images during training, we applied a standard FGSM attack
followed by a Reverse Attack. During inference, we per-
form a Reverse Attack on an attacked image and input it
to our Revenant classifier. This combined approach enables
the Revenant classifier to handle a broader range of epsilon
values and enhances its adaptability to diverse adversarial
attacks.

Algorithm 1 describes the process of generating pertur-
bated images to train our Revenant classifier. First, an FGSM
attack is applied to images in the original training data to
generate adversarial examples (Line 3). Then, each of the
generated images undergoes Reverse Attacks, one attack for
each possible target class (Line 5). The resulting images are
collected to be used as the training set (Line 9). By training
solely on this newly generated dataset, the Revenant classifier
achieves successful classification of reverse-attacked adver-
sarial examples, returning them to their original labels.

B. ROBUST CLASSIFICATION

Algorithm 2 outlines the inference phase of the reverse-
attack method. Initially, the detector determines whether an
input image is an adversarial example (Line 1). If classified
as clean, the original classifier assigns a final class label
(Line 9). However, if adversarial attacks are detected, the
proposed method employs a reconstruction step that uses
gradients for all possible class labels (line 4). This Reverse
Attack generates additional images, one for each potential
class—subsequently fed into a dedicated Revenant classifier
(Line 5). The Revenant classifier produces a set of predictions
for each reverse-attacked image. Finally, a voting mechanism
was applied to the predicted labels to determine the final
classification (Line 7). This crucial step enhances the ad-
versarial robustness of the model without compromising the
traditional trade-off between clean image accuracy and per-
turbation robustness. This innovation represents a significant
leap forward in maintaining a high-classification Algorithm
2 for inferring a single image with our Reverse Attack
accuracy while ensuring a robust defense against adversarial
manipulations.

IV. EXPERIMENTAL SETUP
To evaluate the proposed method comprehensively, we con-
ducted a series of experiments encompassing five adversarial
attack methods, 12 models, and four attack scenarios. The
twelve models comprised: one baseline model without pro-
tections, two models trained using the TRADES method with
epsilon values 0.02 and 0.031, and three ResNet50 models
trained with our Reverse Attack. The accuracy of each model
was evaluated under four attack scenarios: no attack (clean
images) and three attacks with varying epsilon strengths
(0.01, 0.02, and 0.03), resulting in 240 experiments (five

1TRADES exhibited low performance with an epsilon value of 0.01; thus,
only the results for the two models trained with epsilon values of 0.02 and
0.03 are presented.

attack methods × 12 models × four attack scenarios). The
details of the experimental setup are as follows:

Dataset: To achieve generalizability of the experimental
setup, we utilized the CIFAR-10 [20] dataset, which includes
images with complex pixel structures and is usually used
to demonstrate real-world applicability. The main reason for
selecting CIFAR-10 for our experiment is that it is one of the
most widely used datasets for adversarial training [38]–[43].

Neural network model: We utilized ResNet-50 [19] since
it is the most widely recognized benchmark architecture for
evaluating protective strategies against adversarial threats. In
addition, ResNet-50 has recently become one of the most
common and versatile models applicable in many areas.
These include medical imaging [2], autonomous vehicle ob-
ject detection [3], agricultural crop disease detection [44],
facial recognition systems [45], and environmental moni-
toring [46]. Finally, ResNet-50 has a relatively lightweight
structure compared to other adversarial training models, al-
lowing for use in various hardware environments, includ-
ing edge devices and resource-constrained settings. The
lightweight nature of ResNet-50 aligns with our goal of de-
veloping a method that is both effective and computationally
efficient.

Details for the model training: We attempted to control
for extraneous variables to ensure a fair comparison across
the different methods. Considering attacks and defense
mechanisms are initially developed in various frameworks,
we standardized our experiments using TensorFlow [47] as
the primary environment and implemented the methods in-
house as necessary. For each technique, the models were
trained with a consistent batch size of 128 and a learning
rate of 0.001 with 20 epochs, which are empirically chosen
based on the performance of the model. The cross-entropy
function [48] was employed as the loss function, since it
can effectively measure the difference between the predicted
probability distribution of the model and the ground-truth
label and can improve model performance by sophisticated
calculation of the loss, especially in classification problems.
Adam [49] algorithm was used as the optimization method
since it helps stabilize training and responds effectively to
different optimization situations with adaptive learning rate
adjustments, providing computational efficiency and ease of
hyperparameter tuning.

Protection techniques: To establish baseline protec-
tion techniques, we implemented notable adversarial train-
ing methods, including TRADES [22], MART [23], and
the DMAT technique [50], with each employed a distinct
ResNet50 network for evaluation. Unlike traditional ap-
proaches, the proposed method leverages an independent
network trained specifically on adversarial examples. We
trained the ResNet50 model to serve as our complementary
classifier, Revenant, to ensure a balanced comparison with
the existing methods.

Our approach leverages a (ML-LOO) detector to identify
the presence of adversarial attacks. However, the overall
performance of the proposed method depends partially on the
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detection accuracy of the ML-LOO. Preliminary evaluations
demonstrated that the ML-LOO achieved a detection rate
exceeding 98% across various attack types and noise lev-
els. Consequently, employing a more sophisticated detection
scheme can marginally improve the accuracy of the proposed
method for perturbed images. In addition, the false-positive
rate in ML-LOO was excluded from the cleanliness accuracy.
The average false-positive rate of the ML-LOO was 2.84%.
Considering the proposed method is based on the ML-LOO
method, it can be combined with other detectors. Thus, we
can develop a detection method that increases the detection
rate in real-world situations and further improves the perfor-
mance.

Adversarial attacks: The baseline network and protective
strategies are rigorously tested against the PGD attack and
the comprehensive Auto Attack suite, which encompasses
four distinct components. Specifically, the PGD attack is
executed over 20 iterations with a granularity of 0.01 for
the step size, meticulously crafted to challenge the resilience
of our defense mechanisms. Furthermore, to ensure a robust
evaluation of adversarial training effectiveness, we utilized
four key components of the auto-attack suite: APGD-CE
(Adaptive Projected Gradient Descent targeted at Cross-
Entropy), APGD-T (Adaptive Projected Gradient Descent
with a Targeted approach), FAB-T (Fast Adaptive Boundary
attack for Targeted aggression), and Square Attack. These
attack scenarios demonstrate the vulnerability of unprotected
networks and the fault coverage of protection schemes in
simulating a wide array of adversarial attack scenarios, thus
providing a comprehensive assessment of the protective mea-
sures in place.

Choosing an epsilon value for attacks: Determining an
optimal epsilon value for adversarial attacks is crucial in this
analysis because it directly influences the intensity of the
perturbations applied to images within the datasets. Conse-
quently, 0.03, the most used value in the comprehensive lit-
erature [51]–[53] on defense mechanisms against adversarial
threats, was selected as the optimal value. Also, the rationale
for this value of 0.03 is that it is the most powerful an attack
can be without being noticed by humans [54]. Furthermore,
we systematically trained each model to counter each type of
attack using a series of epsilon values, 0.01, 0.02, and 0.03, to
comprehensively assess the model resilience across varying
levels of adversarial perturbations.

Hardware environment: The experiments were con-
ducted on a robust hardware setup featuring an Intel(R)
Core(TM) i9-10980XE CPU @3.00GHz, complemented by
four NVIDIA GeForce RTX 3090 GPUs and a single
NVIDIA A100 80GB SXM GPU.

V. EXPERIMENTAL RESULTS
A. EFFICACY AGAINST ADVERSARIAL ATTACKS
Table Table 1 shows all conducted experimental results for
the unprotected and protected models. Each sub-table shows
the results against different adversarial attacks. Each pro-
tected models were trained with training epsilon from 0.01

to 0.03, except for TRADES which shows low performance
with training epsilon 0.01. In each table, the clean accuracy
column represents the classification accuracy of each model
for clean images. On the other hand, robust accuracy means
the accuracy of each model for the images attacked by
the adversarial attack with different epsilon values, i.e., the
magnitude of the attack. The last column shows the average
robust accuracy across three epsilon values

PGD attack: Table 1(a) summarizes the performances of
various methods under a PGD attack. For the unprotected
ResNet50 model, the PGD attack significantly affected the
classification accuracy – from 78.07% (clean accuracy) to
10.22%. While TRADES offers some protection (average
robust accuracy: 35.38%), it results in a 9.25% reduction in
cleanliness accuracy. MART achieved a slightly higher aver-
age robust accuracy (39.03%) but suffered a more substantial
drop in cleanliness accuracy (11.99%). DMAT exhibited the
most significant decline in clean accuracy (18.10%) while
providing an average robust accuracy (35.48%) comparable
to TRADES. The proposed Reverse Attack method addresses
this trade-off by leveraging separate classifiers, resulting
in almost no reduction in clean accuracy (75.48%) while
achieving a superior average robust accuracy of 66.09% and
75.48% for the adversarial examples.

APGD-CE attack: Next, we evaluated the methods
against an APGD-CE attack, a component of an Auto Attack,
shown in Table 1(b). The data presented in this table indi-
cates that attacks are evolving and becoming more sophis-
ticated, rendering the classification of adversarial examples
increasingly challenging. The average robust accuracy for all
epsilons and models for the TRADES, MART, and DMAT
was 34.76%, 40.68%, and 38.32%, respectively. However,
the accuracies for clean images were 68.82%, 66.08%, and
59.02%, respectively, highlighting a challenge in adjusting
the decision boundaries that are both accurate and robust.
Even the highest robust accuracy in the comparison group
was 57.93% when the DMAT was trained with an epsilon
value of 0.03 and attacked with an intensity of 0.01. How-
ever, this accuracy was 13.03% lower than the lowest robust
accuracy value of the proposed method (70.96%). Without
protection, the average accuracy of ResNet50 decreased from
78.07% to 8.19%.

APGD-T attack: The experimental results for the APGD-
T attack shown in Table 1(c) show tendencies similar to those
for the APGD-CE attack. This attack decreased the accuracy
of ResNet50 from 78.07% to 7.94%. TRADES recorded
over 50% accuracy for attacks with an epsilon value of 0.01
but exhibited underwhelming performance for more intense
attacks, averaging a robust accuracy of only 32.80% and a
clean accuracy of 68.82%. With MART, the average robust
accuracy was 38.12%, and the average accuracy for clean
images was 66.08%. DMAT showed the highest accuracy
among the comparison groups: 55.74% against an epsilon
0.01 attack when trained with an epsilon value of 0.01; on
average, it achieved 35.49% robust accuracy and 59.02%
cleanliness accuracy. The proposed method also reliably
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TABLE 1: Comparison of all attack scenarios under different epsilon values and defense strategies. The best performance of
each model is underlined.

(a) PGD Attack

Model Training
epsilon

Clean
accuracy

Robust accuracy against
attack with epsilon value:

Robust
accuracy
average0.01 0.02 0.03

No protection - 78.07 9.94 10.33 10.39 10.22

TRADES [22]
0.02 73.05 14.97 30.45 51.31 32.24
0.03 64.59 26.21 37.95 51.39 38.52
Avg 68.82 20.59 34.20 51.35 35.38

MART [23]

0.01 73.03 16.89 32.67 53.27 34.28
0.02 66.03 27.70 40.19 53.09 40.33
0.03 59.17 35.13 42.98 49.36 42.49
Avg 66.08 26.57 38.61 51.91 39.03

DMAT [55]

0.01 73.86 16.10 34.30 55.74 35.38
0.02 57.25 27.61 37.46 47.37 37.48
0.03 48.79 27.79 33.35 39.61 33.58
Avg 59.97 23.83 35.04 47.57 35.48

Ours

0.01 76.13 64.50 64.61 67.61 65.57
0.02 76.45 65.54 65.89 65.20 65.54
0.03 73.86 67.07 67.38 65.20 66.55
Avg 75.48 65.88 66.09 66.29 66.09

(b) APGD-CE Attack

Model Training
epsilon

Clean
accuracy

Robust accuracy against
attack with epsilon value:

Robust
accuracy
average0.01 0.02 0.03

No protection - 78.07 20.91 3.35 0.30 8.19

TRADES [22]
0.02 73.05 52.71 16.03 16.03 28.26
0.03 64.59 53.18 40.70 29.89 41.26
Avg 68.82 52.95 28.37 22.96 34.76

MART [23]

0.01 59.17 51.37 42.74 18.30 37.47
0.02 66.03 55.17 43.28 31.11 43.19
0.03 73.03 54.68 34.38 35.08 41.38
Avg 66.08 53.74 40.13 28.16 40.68

DMAT [55]

0.01 45.94 41.10 36.14 32.48 36.57
0.02 57.25 49.49 40.97 31.13 40.53
0.03 73.86 57.93 37.15 18.48 37.85
Avg 59.02 49.51 38.09 27.36 38.32

Ours

0.01 75.34 71.76 71.02 70.96 71.25
0.02 75.32 71.17 71.17 71.36 71.23
0.03 76.73 71.68 71.04 71.17 71.30
Avg 75.80 71.53 71.08 71.16 71.26

(c) APGD-T Attack

Model Training
epsilon

Clean
accuracy

Robust accuracy against
attack with epsilon value:

Robust
accuracy
average0.01 0.02 0.03

No protection - 78.07 20.51 3.10 0.22 7.94

TRADES [22]
0.02 73.05 51.31 14.97 14.97 27.08
0.03 64.59 51.39 37.95 26.22 38.52
Avg 68.82 51.35 26.46 20.60 32.80

MART [23]

0.01 73.03 32.67 53.27 16.89 34.28
0.02 66.03 53.09 40.19 27.71 40.33
0.03 59.17 39.67 49.36 30.24 39.76
Avg 66.08 41.81 47.61 24.95 38.12

DMAT [55]

0.01 73.86 55.74 34.33 16.12 35.40
0.02 57.25 47.37 37.46 27.62 37.48
0.03 45.94 39.61 33.35 27.79 33.58
Avg 59.02 47.57 35.05 23.84 35.49

Ours

0.01 75.38 70.85 70.86 71.75 71.15
0.02 76.83 71.09 70.98 71.52 71.20
0.03 75.68 70.82 70.85 71.59 71.09
Avg 75.96 70.92 70.90 71.62 71.15

(d) FAB-T Attack

Model Training
epsilon

Clean
accuracy

Robust accuracy against
attack with epsilon value:

Robust
accuracy
average0.01 0.02 0.03

No protection - 78.07 24.45 4.80 0.59 9.95

TRADES [22]
0.02 73.05 51.31 14.97 14.97 27.08
0.03 64.59 51.39 37.95 26.21 38.52
Avg 68.82 51.35 26.46 20.59 32.80

MART [23]

0.01 73.03 53.27 32.67 16.89 34.28
0.02 66.03 53.09 40.19 27.70 40.33
0.03 59.17 49.36 39.89 30.82 40.02
Avg 66.08 51.91 37.58 25.14 38.21

DMAT [55]

0.01 73.86 55.74 34.33 16.10 35.39
0.02 57.25 47.37 37.46 27.61 37.48
0.03 45.94 39.61 33.35 27.79 33.58
Avg 59.02 47.57 35.05 23.83 35.48

Ours

0.01 75.62 71.39 71.09 71.18 71.22
0.02 75.16 71.39 71.06 71.16 71.20
0.03 76.09 71.28 71.02 71.19 71.16
Avg 75.62 71.35 71.06 71.18 71.20

(e) Sqaure Attack

Model Training
epsilon

Clean
accuracy

Robust accuracy against
attack with epsilon value:

Robust
accuracy
average0.01 0.02 0.03

No protection - 78.07 3.35 14.37 5.27 7.66

TRADES [22]
0.02 73.05 51.31 30.45 14.97 32.24
0.03 64.59 51.39 37.95 26.21 38.52
Avg 68.82 51.35 34.20 20.59 35.38

MART [23]

0.01 73.03 53.27 32.67 16.89 34.28
0.02 66.03 53.09 40.19 27.70 40.33
0.03 59.17 49.36 39.89 30.82 40.02
Avg 66.08 51.91 37.58 25.14 38.21

DMAT [55]

0.01 73.86 55.74 34.33 16.10 35.39
0.02 57.25 47.37 37.46 27.61 37.48
0.03 45.94 39.61 33.35 27.79 33.58
Avg 59.02 47.57 35.05 23.83 35.48

Ours

0.01 76.28 71.63 71.05 71.64 71.44
0.02 76.11 71.63 71.02 71.62 71.42
0.03 75.81 71.52 70.98 71.02 71.17
Avg 76.07 71.00 70.40 71.64 71.01
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achieved an average robust accuracy of 71.15% and 75.96%
for clean images and consistently achieved a classification
accuracy above 70% for all epsilon values used in training
and attacks.

FAB-T attack: The validation of the FAB-T attack is
depicted in Table 1(d), following the same tendency as the
previous attacks. These attacks decrease the average accu-
racy of the ResNet model from 78.07% to 9.95%. On av-
erage, TRADES achieved 68.82% for clean images, MART
achieved 66.08%, and DMAT achieved 59.02%. The robust
accuracies of TRADES, MART, and DMAT were 32.80%,
38.21%, and 35.48%, respectively. Against this attack, the
highest robust accuracy in the comparison group was 55.74%
for the DMATs trained and attacked with 0.01 epsilon. The
average robust accuracy of our technique against FAB-T
attack was 71.20%, 15.46% higher than the highest robust
accuracy of the DMAT.

Square attack: Table 1(e) shows the results for a Square
attack that does not require the internal information of the
model. The ResNet50 model with no protection demon-
strated a considerable reduction in accuracy, from 78.07%
to 7.66%. For the clean images, TRADES, MART, and
DMAT achieved an average accuracy of 68.82%, 66.08%,
and 59.02%, respectively. By contrast, TRADES achieved
an average robust accuracy of 35.38%, MART of 38.21%,
and DMAT of 35.48%. These results indicated that a Square
attack is relatively ineffective against adversarial training
models owing to its lack of reliance on the information
contained within the target model. As with other attacks,
our method classified adversarial examples well, maintaining
over 70% accuracy for all experiments, with an average
robust accuracy of 71.01%. In addition, clean images were
classified with an average accuracy of 76.07%.

Overall: Our experiments, which evaluated various mod-
els under different noise rates and attack methods, yielded
several key results. While existing adversarial training meth-
ods are effective at classifying adversarial examples, this
improvement often comes at the cost of reduced accuracy for
clean images. We observed a trend in which a higher epsilon
value used during training corresponded to a decrease in
clean image classification accuracy. However, the proposed
Reverse Attack method does not suffer from this accuracy
trade-off. Unlike adversarial training, where the highest clean
image accuracy was 73.86% (achieved by DMAT), the pro-
posed method maintained almost the same clean image ac-
curacy as that of the original model (75.79% compared to
78.07% for clean images on the basic model).

In addition, our method consistently achieved the high-
est robust accuracy across all experimental configurations,
confirming the capability of our Revenant classifier. Specif-
ically, our approach achieved an average robust accuracy
of 70.14% across all attacks and epsilon values (ϵ = 0.01,
0.02, and 0.03), significantly outperforming the next best
method (MART) which achieved only 38.85% under the
same conditions. Breaking this down by attack type, our
method demonstrated robust accuracies of 66.09% against

PGD, 71.26% against APGD-CE, 71.15% against APGD-T,
71.20% against FAB-T, and 71.01% against Square attacks,
with these results being consistent across all tested epsilon
values. This represented a substantial improvement over ex-
isting methods, with our approach outperforming the next
best method by an average of 31.29 percentage points in ro-
bust accuracy while maintaining clean image accuracy within
2.28 percentage points of the accuracy on clean images for
the unprotected model. Notably, our method’s performance
remained stable across different epsilon values, unlike other
methods which showed declining performance with increas-
ing epsilon. These results underscore the effectiveness of our
Reverse Attack method in balancing robust defense against
adversarial attacks with the preservation of clean image ac-
curacy, regardless of the perturbation magnitude.

B. ABLATION STUDY FOR REVERSE ATTACK

TABLE 2: Efficacy of the Reverse Attack, compared to
images trained with the FGSM and PGD attacks without the
Reverse Attack. (ϵ = 0.03)

Training method Clean
accuracy

Robust accuracy against
PGD APGD-CE

FGSM (without reverse) 78.07 54.64 52.84
PGD (without reverse) 78.07 52.20 26.22
Ours (with reverse) 78.07 66.09 71.26

To assess the impact of Reverse Attack integration during
training, we compared classifiers trained on all labels for
standard FGSM and PGD attacks (without Reverse Attack)
to a Revenant trained with Reverse Attack augmentation,
using 0.03 for all epsilon values in Table 2 The mod-
els trained without Reverse Attacks displayed suboptimal
overall accuracy, where the classifiers trained with FSGM
attacks achieved 54.64% and 52.84% accuracies for PGD
and APGDCE attacks, respectively, and those trained with
PGD attacks achieved 52.20% and 26.22% accuracies, re-
spectively. However, our Revenant classifier trained with
Reverse Attacks demonstrates superior performance to the
other classifiers, achieving a robust accuracy of 66.09% for
PGD and 71.26% for APGD-CE. This significant improve-
ment (approximately 15%) highlights the effectiveness of
incorporating Reverse Attacks during training to enhance
classification robustness against diverse adversarial attacks.

C. COMPARISON WITH STATE-OF-THE-ART
SOLUTIONS IN VARIOUS ENVIRONMENTS

TABLE 3: Results on CIFAR-10 dataset for different defense
strategies and attack methods with ϵ = 0.03 at epoch 50

Model Epsilon Clean
accuracy

Robust accuracy against
APGD-CE APGD-T FAB-T Square

Unprotected 0.03 80.15 4.26 2.51 2.81 10.91

TRADES 0.03 66.32 33.72 30.30 30.29 30.29
MART 0.03 65.25 36.09 31.62 31.62 31.62
DMAT 0.03 81.47 51.92 47.75 47.74 47.74
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To evaluate the efficacy of our proposed methodology with
a low epoch, we additionally evaluated the clean and robust
accuracy of state-of-the-art technologies with a higher epoch.
Table 3 shows the effect of increasing the number of epochs
to 50 on the clean image accuracy for each method. Interest-
ingly, the state-of-the-art DMAT method exhibited a notable
improvement in clean image accuracy, reaching 81.47%, sur-
passing the classification rate of the original model (80.15%),
likely owing to the limited baseline accuracy of the original
model. Notably, training with additional epochs evidently
increased the clean image classification rate while potentially
causing a readjustment of the decision boundary. Despite
this improvement, the average robust accuracy of the DMAT
against attacks with an epsilon value of 0.03 remains at
48.79%, highlighting a crucial limitation: even with extensive
training, DMAT falls short of achieving an accuracy compa-
rable to that of our method (over 20% lower).

We also evaluated the robustness of our Reverse Attack
against strong adversarial attacks, particularly PGD attacks,
with an epsilon value of 0.1. The findings demonstrate that
a Reverse Attack with an epsilon value of 0.03 is sufficient
to recover from such attacks, achieving a robust accuracy of
63.02%. In other words, even when the attacker utilizes a
larger epsilon value (0.1), our Reverse Attack with a smaller
epsilon value (0.03) can effectively reconstruct the original
image and maintain the classification accuracy.

D. EFFICACY OF SINGLE-LABEL REVERSE ATTACK

TABLE 4: Classification outcomes following single-label
image reconstruction in response to a PGD attack, utilizing
an epsilon of 0.03 for both training and the attack phase

Label 0 1 2 3 4 5 6 7 8 9

Accuracy 72.0 80.2 50.1 38.8 60.3 65.8 85.0 68.6 74.2 75.9

The current image reconstruction process incurs signifi-
cant computational overhead. To address this issue, we ex-
plored the feasibility of using a single label for a Reverse
Attack instead of using all possible labels. Table 4 presents
the classification results from image reconstruction using a
single label under a PGD attack with an epsilon value of
0.03 (consistent with both training and attack). Analyzing
image reconstruction and classification across all labels for a
PGD attack revealed that specific labels consistently achieved
higher accuracy than the majority voting approach. Notably,
image reconstruction using Label 6 achieved a robust accu-
racy of 85.0%. These findings suggested that strategically
selecting a single label for a Reverse Attack could potentially
reduce computational costs considerably while maintaining
high accuracy against various adversarial attacks.

VI. CONCLUSION
Deep neural networks (DNNs) have become ubiquitous in
safety-critical applications, such as malware detection, med-
ical imaging, and autonomous vehicles. However, their vul-

nerability to adversarial attacks in which meticulously crafted
inputs can lead to misclassifications poses a significant threat.
This study presented a novel Reverse Attack defense method
that leverages the modified FGSM to reconstruct adversarial
examples. By proposing the Revenant classifier to reconstruct
adversarial examples to be used with the original classi-
fier, both clean and adversarial images can be accurately
classified. Unlike previous adversarial training approaches,
which sacrifice cleanliness accuracy, the proposed method
performs reconstruction and reclassification only when an
attack is detected. This selective approach outperforms ex-
isting methods, achieving an average classification accuracy
improvement exceeding 20% under the same conditions. In
addition, we explored potential optimizations to reduce the
image reconstruction overhead. Future work will focus on
further reducing this overhead and enhancing classification
efficiency to mitigate the impact of adversarial attacks in real-
world applications.
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