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ABSTRACT
As the deployment of neural networks in safety-critical applications
proliferates, it becomes imperative that they exhibit consistent and
dependable performance amidst hardware malfunctions. Several
protection schemes have been proposed to protect neural networks,
but they suffer from huge overheads or insufficient fault coverage.
This paper presents Maintaining Sanity, a comprehensive and effi-
cient protection technique for CNNs. Maintaining Sanity extends
the state-of-the-art algorithm-based fault tolerance for CNN, uti-
lizing hamming codes and checkpointing to correct over 99.6% of
critical faults with about 72% runtime overhead and minimal mem-
ory overhead compared to traditional triple modular redundancy
(TMR) techniques.
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1 INTRODUCTION
The surge of CNNs has led to their adoption in safety-critical appli-
cations such as autonomous driving, climate analysis, and disease
diagnosis [24, 31]. In such applications, reliability, which ensures
correct functionalities despite hardware faults, is the primary chal-
lenge. Soft errors, also known as transient faults, are unintended bit
flips in the hardware induced by external sources such as cosmic
rays, thermal neutrons, or alpha particles [1, 2]. These errors pose
a significant challenge as they can lead to application malfunction
even when the software and hardware components are flawless,
making them a central focus in the design of safety-critical systems.

Neural networks are inherently robust against minor faults due
to the distributed and parallel structure of the networks and intrinsic
redundancy from over-provisioning [18, 28]. However, the black-
box nature of the neural networks does not help to understand
the degree of tolerance or vulnerability of individual components
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to soft errors. Single-bit fault can alter the classification result,
for instance, recognizing a truck as a bird [21], which can cause
catastrophic results in autonomous driving. Another study on the
reliability of neural networks found that unprotected hardware
that deployed neural networks failed to meet the strict reliability
standards of failure-in-time (FIT) rates [12]. This problem is further
aggravated by increased soft error rates due to the drastic shrinking
and voltage scaling of transistors [6, 10].

Several protection schemes have been presented to protect neu-
ral networks against soft errors, but they suffer from at least one
of three significant limitations. Firstly, existing methods for full
fault coverage incur severe hardware costs or runtime overheads.
Modular redundancy solutions applied to neural networks can de-
tect or correct the effects of soft errors. Still, the high overheads
make it hard to meet the strict constraints for safety-critical sys-
tems. Secondly, existing schemes aimed at improving efficiency
may not provide sufficient fault coverage. These methods may pro-
tect parts of neural networks efficiently but may leave the rest of
the network exposed to faults. Lastly, existing techniques may re-
quire additional components, training, or restrictions. For example,
machine learning-based fault mitigation solutions require an ad-
ditional network or training phase, while range-restriction-based
solutions fail if the network is highly quantized.

This paper presents Maintaining Sanity, a comprehensive and
efficient fault correction technique for convolutional neural net-
works inspired by algorithm-based fault tolerance (ABFT). Figure 1
depicts the workflow of Maintaining Sanity. Maintaining Sanity
extends the state-of-the-art ABFT for CNN based on the hamming
code [9] to provide redundancy for model parameters, correcting
faults in weights, biases, and outputs of convolutional and fully con-
nected layers. In addition, Maintaining Sanity duplicates only the
original input to recover from any faults in the layer inputs through
a checkpointing algorithm. The outputs of convolutional and fully
connected layers are used as checkpoints for backward recovery
since the extended checksum algorithm corrects any faults that
may have occurred. Our fault injection experiments on four popular
CNNs show that Maintaining Sanity can correct over 99.6% of faults
that would corrupt the final classification results. Comparisons
with other techniques show that Maintaining Sanity maintains
near-perfect fault coverage with only around 72% the performance
cost on the geometric mean of triple modular redundancy meth-
ods. It also does so with minimal additional parameters, meaning
Maintaining Sanity can be applied even to environments with tight
memory constraints.

In summary, this paper makes the following contributions:
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Figure 1: Maintaining Sanity adds extra sanity outputs to correct any fault in model parameters and exploits input redundancy
to recover from any fault in the inputs of layers.

• Comprehensive reliability:Maintaining Sanity can detect
and correct any faults in the entire CNN, regardless of the
timing and location of the fault.

• Efficacy:Maintaining Sanity incurs about 135% additional
overhead, significantly more efficient than traditional triple
modular redundancy methods with similar fault coverage.

• Ease of applicability: Maintaining Sanity does not have
any prerequisites that should be met for the technique to be
applied. In addition, its low overheads make it suitable even
for resource-constrained environments.

2 RELATEDWORKS
2.1 Neural Network Reliability
As the use of CNNs expands to include safety-critical applications,
improving the reliability of neural networks becomes increasingly
important. Therefore, various techniques for identifying or rectify-
ing erroneous values have been introduced to protect neural net-
works. A straightforward approach to protecting neural networks is
applying dual modular redundancy (DMR) or triple modular redun-
dancy (TMR), a well-known strategy for proving integrity about
single component failure. These methods duplicate or triplicate a
module at either hardware or software level so that the redundant
modules perform the identical procedure. With proper compari-
son between the modules, a fault can be detected (DMR) or even
corrected (TMR). While safety-critical applications in traditional
computing systems widely adopted DMR and TMR strategies, the
spatial and temporal overhead required for the replication makes it
difficult to apply direct modular redundancies to neural networks,
which already require extensive computing resources and are highly
sensitive to the runtime overheads. [22].

Another approach exploits range-restriction-based strategies
to apply lightweight fault correction for deep neural networks
(DNNs). Theses studies assume that critical faults that eventually
alter the final classification results cause notably large value de-
viations. Therefore, range-restriction-based solutions restrict the
range of activation functions with a global [5] or neuron-wise
thresholds [8] to mitigate the amount of deviations a fault can
cause. However, since state-of-the-art quantization for the data
types, such as INT8, already utilizes most of the range [24], range-
restriction-based solutions cannot provide sufficient fault coverage
on networks with aggressive quantization.

Other studies attempt to counter the effects of errors using ad-
ditional neural network training. Cavagnero et al. [4] argue that
exposing the target neural network to faults during the training

phase can enhance the inherent fault tolerance of the neural net-
work. Another strategy [30] trains a small neural network tailored
to identify faults in the feature maps produced by the convolutional
layers of the original target network. While these solutions can pro-
vide efficient protection, they rely on the black-box nature of neural
networks to detect faults, lacking interpretability or coverage. They
also have the disadvantage of requiring additional training data
with sufficient fault injection trials.

2.2 Sanity-Check
The work most closely related to this paper is – Sanity-Check [25],
which proposed a mechanism to detect errors in DNN inference,
based on the principles of ABFT [13]. Sanity-Check uses the concept
of spatial checksums to protect the weights, biases, and outputs
of a fully connected or convolutional layer. For fully connected
layers, Sanity-Check adds two redundant neurons: sanity and check
neurons. The weights and biases of the sanity neuron are set so that
the value of the neuron is equal to the negative sum of all other
output neurons, regardless of the input values, in the absence of
faults. The check neuron calculates the spatial checksum by adding
the value of all output neurons, including the original and sanity
neurons. A non-zero spatial checksum would indicate the presence
of a fault in the layer’s weight, bias, or output.1 Sanity-Check applies
a similar process to convolutional layers, adding an extra sanity
filter and bias to detect any fault in the layer parameters.

The spatial checksum alone is inadequate since it cannot detect
faults in the layer inputs. Therefore, Sanity-Check introduces tem-
poral checksums, adding sanity inputs within the input batches of
convolutional and fully connected layers. Sanity inputs are com-
puted as the negative sum of all other inputs so that the spatial
checksum, the sum of all outputs in the layer, equals the product
of the batch size and the bias vector/matrix of the corresponding
layer. Any deviation from this expected sum allows Sanity-Check
to identify the presence of faults in the layer inputs.

While Sanity-Check effectively protects convolutional and fully
connected layers, it does not extend its coverage to other layers,
such as activation functions and pooling layers. Sanity-Check also
necessitates batch inference to calculate the temporal checksums,
introducing latency and increased memory pressure, making it
suboptimal for time-sensitive applications or memory-limited com-
puting environments [15, 26]. In addition, faults during the sanity
input calculation process can propagate to affect both the original
and sanity input, making the fault invisible to Sanity-Check.

1Due to rounding errors in computation, Sanity-Check compares the checksum against
a threshold rather than 0.
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Figure 2: Model parameter redundancy of Maintaining Sanity for fully connected layers can detect, locate, and correct the fault
on weights, bias, and the outputs of fully connected layers. This figure shows the process for a fault corrupting output 𝑂6.

3 OUR APPROACH: MAINTAINING SANITY
We present Maintaining Sanity, a comprehensive fault correction
technique for convolutional neural networks inspired by ABFT [13].
We enhance the ideas presented by the state-of-the-art ABFT so-
lution, Sanity-Check [25], to correct faults by incorporating the
concept of hamming codes [9]. We also refine the idea to extend the
fault coverage to the entire network, eliminate any single points of
failure, and generalize the technique to apply to any CNNs.

We divide the data to be protected into two categories: model
parameters and layer inputs. Model parameters contain weights and
biases of convolutional and fully connected layers. These values can
be read before processing any input values, allowing the generation
of checksum algorithms. We assume that redundant copies of model
parameters are unavailable due to the high spatial overhead. Layer
inputs contain the intermediate inputs to each layer, including the
original input to the neural network. These values cannot be seen
before inputting the value to the network, and therefore, sanity
inputs cannot be calculated beforehand. The differing features of
the two categories require us to devise distinctive techniques to
provide appropriate redundancy for each category.

3.1 Model Parameter Redundancy
We introduce a fault correction approach for model parameters,
drawing inspiration from algorithm-based fault tolerance methods.
This approach incorporates an error detection mechanism, Sanity-
Check [25]. Sanity-Check employs spatial checksums to identify
faults in the weights, biases, and outputs of convolutional and
fully connected layers within neural networks. The core principle
involves integrating additional operations within a layer to generate
a sanity output. This output is designed such that the aggregate of
the original outputs and the sanity output equals zero, irrespective
of the input values. However, it is essential to note that the Sanity-
Check is limited to fault detection and does not inherently offer
fault correction capabilities. Therefore, significant adaptations are
required to extend its functionality to include fault correction.

We first explain how our technique is applied in fully connected
layers. Assume a fully connected layer with 𝑛 outputs, namely
𝑂1 ∼ 𝑂𝑛 . Protecting this layer with the spatial checksum algo-
rithm from Sanity-Check gives an additional output 𝑂𝑆 , such that∑𝑛
𝑥=1𝑂𝑥 +𝑂𝑆 = 0. If any of the layers’ weights, biases, or outputs

are corrupted, the equation will not hold, and the fault can be de-
tected. We define this crucial extra output 𝑂𝑆 as the total sanity
neuron. Interestingly, the total sanity neuron𝑂𝑆 can also be used to
recover from the fault if we can identify the faulty output. Without
loss of generality, assume that a fault corrupts the value of 𝑂𝑘 . By
modifying the equation above, we can obtain the original value of

𝑂𝑘 by calculating
∑𝑛
𝑥=1,𝑥≠𝑘 𝑂𝑥 + 𝑂𝑆 = −𝑂𝑘 . To locate the faulty

output, Maintaining Sanity adds extra sanity neurons, defined as
partial sanity neurons, in a manner similar to forming hamming
codes. Like hamming codes, the number of partial sanity neurons
required to protect the layer is equal to the number of bits required
to represent the number of output neurons in the layer; therefore,
the number of additional neurons for a fully connected layer with
𝑛 output neurons is ⌈log2 (𝑛 + 1)⌉ (partial sanity neuron) + 1 (total
sanity neuron). The difference is that the sanity neurons calculate
the sum of a subset of outputs instead of parities.

Figure 2 illustrates how Maintaining Sanity adds sanity neurons
to protect a fully connected layer with seven output neurons 𝑂1 to
𝑂7. The sanity neurons consist of ⌈log2 (7 + 1)⌉ = 3 partial sanity
neurons 𝑆0 to 𝑆2 and one total sanity neuron 𝑆 . The total sanity
neuron 𝑆 is formed so that its value is the negative sum of all original
output neurons. This can be done by adjusting each weight from
the input to the total sanity neuron to be the additive inverse of the
sum of the weight from the input to the original output neurons and
letting the bias of the total sanity neuron be equal to the negative
sum of all biases of original output neurons. A similar process is
used to form partial sanity neurons, except that a partial sanity
neuron 𝑆𝑖 is formed only with a subset of output neurons whose
𝑖𝑡ℎ bit of its index is 1. For example, the partial sanity neuron 𝑆0 is
formed with the output neurons that have 1 as the 0𝑡ℎ bit in their
index, namely 𝑂1 (binary 001), 𝑂3 (binary 011), 𝑂5 (binary 101),
and 𝑂7 (binary 111).

In the absence of a fault, the sum of 𝑂1, 𝑂3, 𝑂5, 𝑂7, and 𝑆0
should be 0. We define the partial sanity checksum 𝑃0 as the sum
of the partial sanity neuron 𝑆0 and the partial sum of the outputs
corresponding to 𝑆0 (𝑂1,𝑂3,𝑂5, and𝑂7). More generally, we define
partial sanity checksum 𝑃𝑘 as the sum of the sanity neuron 𝑆𝑘 and
its corresponding output neurons, which have 1 as the 𝑘𝑡ℎ bit of
its index. The total sanity checksum is defined as the sum of the
total sanity neuron and all the original outputs. Using the original
output neurons and the sanity checksums, we can form codes for
each error case, where 0 would represent no fault in the location,
and 1 would represent a deviation from the expected output. The
minimum hamming distance between these codes is 3, meaning
that Maintaining Sanity can locate and correct any fault in the
model parameters.

The forward recovery process of the model parameter redun-
dancy, including fault detection, localization, and correction, is
illustrated on the right side of Figure 2. To reduce the cost required
for fault detection, Maintaining Sanity only checks whether the
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Figure 3: Maintaining Sanity’s model parameter redundancy
can also be applied to protect convolutional layers.

value of the total sanity checksum 𝑇 equals zero 2. In the case of a
detected fault, Maintaining Sanity checks the value of the partial
sanity checksums, 𝑃0 ∼ 𝑃2, to locate the fault. In this case, where
output 𝑂6 is corrupted, partial sanity checksums 𝑃2 and 𝑃1 are
nonzero while 𝑃0 is 0. The error code for this case would be 110,
meaning that Maintaining Sanity succeeded in locating the error in
𝑂6. Finally, Maintaining Sanity can recover the output 𝑂6 and the
corresponding weights and bias using the Sanity weights, bias, and
checksum. If no partial sanity checksum reports a fault, it means
the fault affected only the total sanity checksum. In this case, we
recalculate the total sanity neuron’s weights and bias.

The same idea can be applied to protect weights, biases, and
the outputs of convolutional layers, as shown in Figure 3. Main-
taining Sanity adds sanity filters and biases to the network such
that the total or partial sum of the original feature maps and the
corresponding total or partial sanity feature map is 0. Maintaining
Sanity utilizes the total sanity checksum to detect the presence of
a fault, finds the fault location using the partial sanity checksums,
and corrects the weights, biases, and outputs corresponding to the
fault location. Similar to the protection for the fully connected lay-
ers, Maintaining Sanity adds ⌈log2 (𝑁 + 1)⌉ extra sanity filters and
biases as partial sanity feature maps and adds one additional filter
and bias for the total sanity feature map. Maintaining Sanity can
detect, locate, and correct any fault that corrupts a weight, bias, or
output value in a fully connected or convolutional layer with the
total and partial sanity checksums.

3.2 Layer Input Redundancy
We have developed an innovative approach to safeguard the input
values for each layer of the target network. This was necessitated
by the unique nature of these intermediate input values, distinct
from model parameters and thus not amenable to the protection
method described in Section 3.1. The ABFT-based method would
require checksums across inputs and cannot protect the network
in single-input environments. Augmenting the input dimensions to
add redundancy is also impractical, as it would require changes to
the architecture of the network. We, therefore, adopt dual modular
redundancy (DMR) for the layer inputs and checkpoint and rollback
strategy to recover from input faults. With careful implementation,
we can reduce the overheads required for this replication. For ex-
ample, we can take advantage of the optimization of commonly
used matrix operations in CNNs to lower the computation costs,
allowing us to protect all network layers, including activation and
pooling layers, with tolerable runtime overheads.

2Due to precision errors, we check whether the checksum is smaller than a threshold
instead of checking if it is 0 in our implementation with 32-bit floating point data type.
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plicates the original input and applies checkpointing to de-
tect intermediate layer input faults.

Figure 4 illustrates an example of Maintaining Sanity protection
for a CNN with model parameter redundancy (discussed in Sec-
tion 3.1) and layer input redundancy. First off, Maintaining Sanity
duplicates the first input to the network. Secondly, after processing
a convolutional or fully connected layer and the corresponding
forward recovery for weights, biases, and outputs, Maintaining
Sanity generates a checkpoint. Since weights and biases can be re-
covered with the checksums, Maintaining Sanity needs to store only
the intermediate outputs for the checkpoint. After generating the
checkpoint, Maintaining Sanity compares the redundant outputs to
detect a fault. If a fault is detected, Maintaining Sanity roll-backs
the process to the checkpoint of the previous convolutional or fully
connected layer.

The layer input redundancy of Maintaining Sanity has several
noteworthy implementation details. First off, instead of duplicat-
ing the input at each layer, Maintaining Sanity replicates only the
original input, and utilizes the redundant outputs of a layer as the
redundant inputs to the next layer. This not only saves resources
to generate redundant input for every layer but also eliminates
potential undetectable faults; during the input replication process
for each layer, a fault in the original copy may propagate to both
copies, allowing the fault to remain undetected. Secondly, since
Maintaining Sanity keeps the input redundancy not only for the
convolutional and fully connected layers but also for other layers
such as activation functions and pooling layers, Maintaining Sanity
can cover the faults on all layers. Thirdly, comparing two outputs
of the convolutional or fully connected layer can be optimized with
the total sanity checksum of the model parameter redundancy in
Section 3.1. The forward recovery process in Figure 4 generates
the total sanity checksum per each input, which forms a sum of
all outputs and the total sanity neuron or feature map. Therefore,
instead of comparing the entire output tensors from redundant
outputs, Maintaining Sanity can detect a fault by comparing the
two total sanity checksums.

A final critical detail is to eliminate any single points of failure
that can occur. A naive implementation may fail if faults occur
after the checking between two copies, as illustrated in Figure 5 (a).
In this example, the fault corrupted the input for the checkpoint
before the computation of the next layer. The network then detects
the fault and re-executes the layer, only to detect the same fault
again. To avoid this problem, Maintaining Sanity stores the input
copies before the checking algorithm, as shown in Figure 5 (b). If
the copies fail to pass the fault detection process, the layer will be
re-executed with the stored inputs. Since the stored inputs have
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already passed the checking process in the previous layer, they are
guaranteed to be error-free. This interweaving of store and check
instructions ensures that all inputs to the next layer are faultless.

In summary, Maintaining Sanity performs forward recovery to
correct faults in the model parameters based on ABFT. It performs
backward recovery for faults found in the inputs to any layer in the
network through a carefully crafted replication algorithm. Main-
taining Sanity can also be applied without any preconditions for
the target network: it does not require batch inputs [25], functions
normally in quantized networks [5, 8], and can be applied without
additional training [4, 30].

4 EXPERIMENTAL SETUP
We implemented Maintaining Sanity on AlexNet [17], LeNet5 [20],
ResNet18 [11]3, and VGG16 [29], to quantify its fault coverage and
runtime overheads. These networks are representative of CNNs
and have been used as test benchmarks in various studies on DNN
reliability [5, 16, 23, 25]. Maintaining Sanity is implemented in the
PyTorch [27] environment, using the 32-bit floating point data type
to represent network parameters. We conducted our experiments
on an Intel Xeon 2.2 GHz CPU with the ImageNet dataset [7], using
the pre-trained model parameters provided by PyTorch, achieving
56.522%, 69.758%, and 71.592% top-1 accuracy for AlexNet, ResNet18,
and VGG16, respectively. For LeNet5, we trained the network on
the MNIST [19] dataset, achieving 98.71% accuracy.

Baseline Protection Techniques: We implemented existing
techniques alongside Maintaining Sanity as the benchmarks for our
experiment. We implemented two versions of Sanity-Check. One
version (Spa-SC) is implemented with only the spatial checksums
since our experimental environment does not use batch inference.
The other version (SC) generates the temporal checksum anyway,
regarding the single input as the input batch. We also implemented
two versions of triple modular redundancy. Input-level TMR (I-
TMR) triplicates only the input to the network, while network-
level TMR (N-TMR) triplicates both the model parameters and the
input. Both versions perform majority voting once before the final
output to reduce overheads.Wemeasure the fault coverage, runtime
percentage, and application costs of the benchmarks to compare
them with those of Maintaining Sanity (MS).

Fault Injection Process: We injected a single fault in the base-
line networks during the inference phase of an image from the
test dataset. Faults that change the final classification result of the
network are classified as critical faults, and we included them in
the set of faults to assess the protection techniques. Note that we
only injected faults in images initially classified correctly to prevent
cases where the injected fault "corrects" the classification. Faults
were injected randomly in model parameters and layer inputs until

3The checkpointing of Maintaining Sanity for ResNet also covers input and output of
layers inside of residual blocks and parameters of batch normalization layers [14].

we obtained 1,000 critical model parameter faults and 1,000 criti-
cal layer input faults for each baseline network. To speed up the
collection process, we injected faults only in the exponent bits of
the 32-bit float. This fault model is in line with those used for other
DNN reliability studies [3, 32, 33]. We then injected the critical
faults into each protection technique and measured the percentage
of detected or corrected faults to quantify the fault coverage rates.

5 RESULTS
Figure 6 presents the critical fault coverage and the runtime per-
centage of the protection techniques in each baseline network. The
protection techniques are listed on the X-axis: two versions of
Sanity-Check (Spa-SC without temporal checksums and SC with
them), input-level TMR (I-TMR), network-level TMR (N-TMR), and
Maintaining Sanity (MS), and the Y-axes represent the fault cover-
age and runtime percentage on the left and right, respectively. The
fault coverage, shown as two bars for each technique, is measured
by the ratio of detected or corrected faults to the total number of
critical faults injected in the model parameters and the layer in-
puts. While I-TMR shows perfect coverage for layer input faults, it
struggles to detect model parameter faults. This is because model
parameter faults can propagate to multiple inputs. SC techniques
show the opposite behavior, detecting model parameter faults but
suffering from layer input faults. Even the one with temporal check-
sums fails to detect layer input faults injected in layers other than
convolutional and fully connected layers. On the other hand, Main-
taining Sanity (MS) shows near-perfect fault coverage, correcting
over 99.6% of both model parameter and layer input faults. This
is more impressive, considering that we do not inject any benign
faults. Through detailed analyses, we found that the fault cases that
Maintaining Sanity (MS) fails to correct are due to precision errors.
If the target network can be quantized, then Maintaining Sanity
would no longer suffer from precision errors in the thresholds,
achieving 100% fault recovery.

The runtime percentage of the techniques compared to the base-
line networks in an error-free environment are also shown as the
black lines in Figure 6. Specifically, we measured the runtime of
the inference phase of the test dataset of MNIST for LeNet5 and
1,000 images from the ImageNet validation dataset for the other net-
works. None of the techniques triggered false alarms in this process,
indicating that they have no additional performance overheads in
fault-free scenarios compared to the baseline model. Maintaining
Sanity showed an overall runtime overhead of about 135%, which is
only about 72% of the overhead of network-level TMR, which had
around 187% overheads. All the values are calculated based on the
geometric mean. The other protection techniques displayed similar
or lower overheads on average, but it should be noted that their
efficiency comes at the cost of incomprehensive fault coverage.

Finally, Table 1 shows the spatial overheads for each technique.
The columns represent the five protection techniques, and the rows
represent the different baseline networks. Each cell addresses the
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Fault Coverage and Runtime Overhead of Protection Techniques

Model Parameter Layer Input Runtime Overhead

99.7 99.7 0.0 100.0 99.7
88.0 93.3 100.0 100.0 99.9

99.6 99.6 0.0 100.0 99.6
86.2 99.8 100.0 100.0 99.6

99.8 99.8 0.0 100.0 99.8
95.1 98.1 100.0 100.0 99.7

100.0 100.0 0.0 100.0 99.9
98.4 100.0 100.0 100.0 99.7

0 0 0 0

Figure 6: The fault coverage and runtime percentage of
the protection techniques. Maintaining Sanity retains near-
perfect fault coverage with moderate overheads.

Table 1: The Memory Costs of Protection Techniques
Spa-SC SC I-TMR N-TMR MS (Ours)

AlexNet 0.04% 0.04% 0.0% 200.0% 0.53%
LeNet5 1.27% 1.27% 0.0% 200.0% 9.09%
ResNet 0.27% 0.27% 0.0% 200.0% 2.81%
VGG16 0.05% 0.05% 0.0% 200.0% 0.59%

overhead, which refers to the extra number of parameters each tech-
nique adds as a percentage compared to the baseline networks. Our
findings show a stark contrast in the spatial overhead among these
techniques. The Net-TMR technique significantly increases param-
eters, requiring 200% more than the baseline. This level of overhead
is particularly concerning in safety-critical environments where
efficiency and resource management are paramount. In contrast,
our Maintaining Sanity technique is much more efficient, requiring
less than 10% additional parameters for LeNet5 while maintaining
high fault coverage. This overhead decreases for larger networks,
making Maintaining Sanity even more efficient.

6 CONCLUSION
As neural networks become integral in safety-critical applications
due to technological advancements, various methods to shield
CNNs from transient faults have emerged. This paper introduces
Maintaining Sanity, a strategy designed to efficiently enhance the
fault resilience of CNNs through algorithm-based fault tolerance.
Our extensive fault injection campaigns reveal that Maintaining
Sanity boasts near-perfect critical fault coverage while also speed-
ing up the process by around 22% compared to traditional modular
redundancy methods. Future works include further speeding up
Maintaining Sanity by optimizing with GPU or DNN accelerator,
perfecting the fault coverage through quantization, and broadening
the framework by considering options like batch inference or TMR
to achieve an ideal balance between performance and dependability.

ACKNOWLEDGMENTS
This research was partially supported by National Research Foun-
dation of Korea(NRF) grant funded by the Korea government(MSIT)
(No. RS-2022-00165225), by Institute of Information & Communica-
tions Technology Planning & Evaluation (IITP) Grant funded by
the Korean government (MSIT), Artificial Intelligence Graduate
School Program, Yonsei University, under Grant 2020-0-01361, by
funding from National Science Foundation grants CPS 1645578 and
Semiconductor Research Corporation (SRC) project 3154, and by
”Regional Innovation Strategy (RIS)” through the National Research

Foundation of Korea (NRF) funded by the Ministry of Education
(MOE) in 2024(2022RIS-005).

REFERENCES
[1] R. Baumann. 2005. Soft errors in advanced computer systems. Design and Test

22, 3 (2005), 258–266.
[2] R. Baumann et al. 1995. Boron as a primary source of radiation in high density

DRAMs. In VLSI Technology Symposium. IEEE, 81–82.
[3] A. Bosio et al. 2019. A reliability analysis of a deep neural network. In LATE.

IEEE, 1–6.
[4] N. Cavagnero et al. 2022. Transient-Fault-Aware Design and Training to Enhance

DNNs Reliability with Zero-Overhead. In IOLTS. 1–7.
[5] Z. Chen et al. 2021. A low-cost fault corrector for deep neural networks through

range restriction. In DSN. IEEE, 1–13.
[6] V. Degalahal, Lin Li, V. Narayanan, M. Kandemir, and M.J. Irwin. 2005. Soft errors

issues in low-power caches. VLSI Systems 13, 10 (Oct 2005), 1157–1166.
[7] J. Deng et al. 2009. Imagenet: A large-scale hierarchical image database. In CVPR.

IEEE, 248–255.
[8] B. Ghavami et al. 2022. FitAct: Error resilient deep neural networks via fine-

grained post-trainable activation functions. In DATE. IEEE, 1239–1244.
[9] R. W. Hamming. 1950. Error detecting and error correcting codes. The Bell System

Technical Journal 29, 2 (April 1950), 147–160.
[10] M. Hashimoto, K. Kobayashi, et al. 2019. Characterizing SRAM and FF soft

error rates with measurement and simulation. Integration 69 (2019), 161–179.
https://www.sciencedirect.com/science/article/pii/S0167926018305613

[11] Kaiming He et al. 2015. Deep Residual Learning for Image Recognition.
[12] Yi He, Prasanna Balaprakash, and Yanjing Li. 2020. Fidelity: Efficient resilience

analysis framework for deep learning accelerators. In MICRO. IEEE, 270–281.
[13] K.H. Huang and J. A. Abraham. 1984. Algorithm-based fault tolerance for matrix

operations. TOC 100, 6 (1984), 518–528.
[14] Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating deep

network training by reducing internal covariate shift. In ICML. pmlr.
[15] S. Khadka et al. 2020. Optimizing memory placement using evolutionary graph

reinforcement learning. arXiv (2020).
[16] J. Kim and J. Yang. 2019. DRIS-3: Deep neural network reliability improvement

scheme in 3D die-stacked memory based on fault analysis. In DAC. 1–6.
[17] A. Krizhevsky et al. 2012. Imagenet classification with deep convolutional neural

networks. NeurIPS 25 (2012).
[18] S. Lawrence et al. 1998. What size neural network gives optimal generalization?

Convergence properties of backpropagation. Technical Report.
[19] Yann LeCun. 1998. The MNIST database of handwritten digits. http://yann. lecun.

com/exdb/mnist/ (1998).
[20] Y. Lecun et al. 1998. Gradient-based learning applied to document recognition.

Proc. IEEE 86, 11 (1998), 2278–2324.
[21] G. Li et al. 2017. Understanding error propagation in deep learning neural network

(DNN) accelerators and applications. In SC’17. 1–12.
[22] Z. Liu and X. Yang. 2022. An efficient structure to improve the reliability of deep

neural networks on ARMs. Microelectron. Reliab. 136 (2022), 114729.
[23] A. Mahmoud et al. 2020. HarDNN: Feature map vulnerability evaluation in cnns.

arXiv (2020).
[24] A. Mahmoud et al. 2021. Optimizing Selective Protection for CNN Resilience.. In

ISSRE. 127–138.
[25] E. Ozen and A. Orailoglu. 2019. Sanity-check: Boosting the reliability of safety-

critical deep neural network applications. In ATS. IEEE, 7–75.
[26] J. Park et al. 2018. Deep learning inference in facebook data centers: Characteri-

zation, performance optimizations and hardware implications. arXiv (2018).
[27] A. Paszke et al. 2019. Pytorch: An imperative style, high-performance deep

learning library. NeurIPS 32 (2019).
[28] A. Ruospo and E. Sanchez. 2021. On the reliability assessment of artificial neural

networks running on ai-oriented mpsocs. Applied Sciences 11, 14 (2021), 6455.
[29] Karen S. and Andrew Z. 2015. Very Deep Convolutional Networks for Large-Scale

Image Recognition.
[30] C. Schorn et al. 2018. Efficient On-Line Error Detection and Mitigation for Deep

Neural Network Accelerators. In Eds. Springer International Publishing, 205–219.
[31] S. S. Yadav and S. M. Jadhav. 2019. Deep convolutional neural network based

medical image classification for disease diagnosis. Journal of Big data 6, 1 (2019),
1–18.

[32] Z. Yan et al. 2020. When single event upset meets deep neural networks: Obser-
vations, explorations, and remedies. In ASP-DAC. IEEE, 163–168.

[33] Y. Zhang et al. 2022. Estimating vulnerability of all model parameters in dnn
with a small number of fault injections. In DATE. IEEE, 60–63.

Received 20 November 2023

6

https://www.sciencedirect.com/science/article/pii/S0167926018305613

	Abstract
	1 Introduction
	2 Related Works
	2.1 Neural Network Reliability
	2.2 Sanity-Check

	3 Our Approach: Maintaining Sanity
	3.1 Model Parameter Redundancy
	3.2 Layer Input Redundancy

	4 Experimental Setup
	5 Results
	6 Conclusion
	Acknowledgments
	References

