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ABSTRACT  
   

Software Managed Manycore (SMM) architectures - in which each core has only a scratch 

pad memory (instead of caches), - are a promising solution for scaling memory hierarchy to 

hundreds of cores. However, in these architectures, the code and data of the tasks mapped to the 

cores must be explicitly managed in the software by the compiler. State-of- the-art compiler 

techniques for SMM architectures require inter-procedural information and analysis. A call graph of 

the program does not have enough information, and Global CFG, i.e., combining all the control flow 

graphs of the program has too much information, and becomes too big. As a result, most new 

techniques have informally defined and used GCCFG (Global Call Control Flow Graph) - a whole 

program representation which captures the control-flow as well as function call information in a 

succinct way - to perform inter-procedural analysis. However, how to construct it has not been 

shown yet. We find that for several simple call and control flow graphs, constructing GCCFG is 

relatively straightforward, but there are several cases in common applications where unique graph 

transformation is needed in order to formally and correctly construct the GCCFG. This paper fills 

this gap, and develops graph transformations to allow the construction of GCCFG in (almost) all 

cases. Our experiments show that by using succinct representation (GCCFG) rather than elaborate 

representation (GlobalCFG), the compilation time of state-of-the-art code management technique 

[4] can be improved by an average of 5X, and that of stack management [20] can be improved by 

an average of 4X. 
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CHAPTER 1 

INTRODUCTION 

Scaling the memory architecture is a major challenge as we transition from a few cores to 

many core processors. Experts believe that coherent cache architectures will not scale to hundreds 

and thousands of cores [11, 12, 16, 25], not only because the hardware overheads of providing 

coherency in- creases rapidly with core count, but also because caches consume a lot of power. 

One promising option for a more power- efficient and scalable memory hierarchy is to use raw, “un- 

cached” memory (commonly known as Scratch Pad Memory or SPM) in the cores. Since SPM 

does not have the hard- ware for address lookup and translation, they occupy 30% less area, and 

consume 30% less power than a direct mapped cache of the same effective capacity [10]. In 

addition, the coherence has to be provided in the software, so hardware is more power-efficient 

and scalable. A multicore/manycore architecture in which each core has an SPM instead of hard- 

ware caches is called a Software Managed Multicore (SMM) architecture [4, 20]. The Cell processor 

[14] (used in PlayStation 3) is a good example of an SMM architecture. Thanks to the SMM 

architecture, the peak power-efficiency of the Cell processor is 5 GFlops per Watt [14]. Contrast 

this to the Intel i7 4-core Bloomfield 965 XE with power- efficiency of 0.5 GFlops per Watt [1, 2], 

both fabricated in the 65nm technology node. 

The main challenge in the SMM architecture is that several tasks like data management 

(movement of data between SPMs of the cores and the main memory) and inter-core 

communication (movement of data between the SPMs of cores), which were originally done by the 

hardware (more specifically, the cache hierarchy) now have to be explicitly done in the software, 

and that may cause overheads. Recent research results have been quite encouraging. Techniques 

have been proposed to manage all kinds of data: code [4, 19], stack [8, 20], and heap [3, 5–7] 

efficiently on the SPMs of the core. In fact, [4] and [20] show that the overhead of code and stack 

management on SPMs is lower than on a cache based architecture. Thus SMMs are coming up as 

a strong con- tender for processor architecture in the manycore era. All the state-of-the-art data 

management techniques that have been developed for SMM architectures are inter-procedural 

code transformations and require extensive inter-procedural analysis. One of the fundamental 
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challenges in this research has been in finding out the right representation of the whole program, 

such that it captures the required information, and yet is not too big and cumbersome. For example, 

the call graph of a program captures which functions calls which other function, but it does not 

contain information about the loops and if-then-else’s present in the program. Also it does not 

contain information about the order in which the functions are called. All this information is vital for 

the code transformations required for SMM architectures. Control Flow Graph or CFG contains 

detailed information of all the control flow, but it is only for a single function. Researchers have tried 

to stitch together the CFGs of various functions by essentially pasting the CFG of the called function 

at the site of its call – named Global CFG [22–24]. Global CFG is a detailed representation of the 

whole pro- gram, but it grows too big, and discovering the information SMM transformations need 

from this graph is very time consuming and cumbersome at the least. What is needed is a succinct 

representation of the whole program that contains functional call information, as well as important 

control flow structures of the program, e.g., loops and if-then-else’s. 

Figure 1: A code snippet and a corresponding GCCFG representation of the program. 

Assume that functions F4, F5 and F6 are straight line code. 

Recent, previous research on developing code transformations for SMM architecture have 

used Global Call Control Flow Graph or GCCFG [4, 7, 9, 19, 20]. GCCFG is a whole program 

representation, and is a hybrid between a call graph and control flow graph. GCCFG is hierarchical 

representation of the program, abstracts away straight line code, and captures the function call and 
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control flow information of the program. GCCFG is ordered hierarchical representation of the 

program, and consists of three kinds of nodes, function nodes (shown as circles in Figure 1), loop 

nodes (shown as squares in Figure 1), and condition nodes (shown as diamonds in Figure 1). The 

GCCFG of a simple pro- gram is shown in Figure 1. In the program function F 1 calls functions F2 

and F3 in order. That is why F2 is the left child and F 3 is the right child of F 1. Function F 2 contains 

an if-then-else, in which F4 is called in the if-part, and F5 is called in the else part. Function F3 

contains a loop in which F 6 is called. Functions F 4, F 5, and F 6 contain only straight line code. 

Note that the GCCFG abstracts away the straight line code, and only keeps the function call and 

control flow information in a succinct hierarchical form. 

 

Figure 2: There are two parts to the problem of optimal code mapping i) Divide the code 

space on SPM into regions, and ii) Map functions into regions. Functions mapped to the 

same region replace each other when called. Therefore, for a given code space, we have to 

find a division of that space into regions and mapping of functions into regions so that there 

is minimum data transfer between SPM and the main global memory. 
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While previous researches have informally defined and used GCCFG, they have not shown 

how to construct it for any given program. We find that, while constructing GCCFG for simple 

programs is relatively straightforward, there are several very commonly found program structures 

where constructing GCCFG is complicated. For example, loops that have multiple exits (commonly 

caused by continue, break, goto statements, and loops that return values), and intertwined loops 

(caused by goto statements), and switch statements, and if-then-else’s with exit statements, etc. In 

this paper we formally define GCCFG and show the construction of GCCFG in all these cases. We 

also show that as opposed to Global CFG, GCCFG is a more succinct representation, and results 

in more efficient implementations of the inter-procedural analysis required for code and stack data 

management on SMM architectures. Experiments conducted on MiBench benchmarks [15] 

demonstrate that, the compilation time of a state-of-the art code management technique can be 

improved by an average of 5X, and that of stack management can be improved by 4X through 

GCCFG as compared to Global CFG.
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CHAPTER 2 

WHY GCCFG FOR CODE MAPPING ON SMM ARCHITECTURES 

2.1 The Optimal Code Mapping Problem in SMM Architectures 

In an SMM architecture, a task is mapped to a core, and the core has access to only its 

local Scratch Pad Memory or SPM. All code and data that the task uses must come from SPM. In 

case, the code of the application is larger than the SPM size, then the whole code can reside in the 

large global memory, but can be brought in piecemeal approach. To facilitate this, SMM 

architecture allows users to divide the code part of the SPM into regions, and functions in the 

program can be mapped to the regions in the SPM. This mapping of functions to regions is specified 

in the linker file, and is used at runtime. At runtime, of all the functions mapped to a region, only 

one can be present in the region at runtime. When a function is called, it is brought into its region 

in the SPM, and the existing function is simply overwritten. While any region formation, and 

mapping of functions to regions is legitimate, but if we have only one region, and map all the 

functions to that region, then there will be a function code replacement at every function call – 

severely hurting the performance. Similarly, if we have a separate region for each function, then 

the performance will be excellent, since there will be no replacements, but it will require a lot of 

space which may not be available in the SPM. Thus, the problem of optimal code management is 

to find the division of the code space in the SPM into regions, and find the mapping of functions to 

those regions so as to minimize the data transfers between the SPM and the main global memory. 

2.2 What Information Do We Need for Optimal Code Mapping? 

The fundamental information required to be able to solve this optimal code mapping 

problem is to estimate the amount of data transfers that will happen when two functions are mapped 

to the same region. For example, in the program shown in Figure 1, if F3 and F6 are mapped to 

the same region, then there will be a lot of replacements, since the function F3 calls F6 in a loop. 

Each time after the execution returns from F 6, the execution comes back to the function F3, 

therefore it must be brought back into the SPM. On the other hand, it might be better to place the 

functions F4 and F5 in the same region, since only one of them will be called. Thus, in order to find 

out which functions can be mapped in the same region, we need information like which function 
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calls another function, and whether a function call happens in a loop (and if so, how many levels of 

loops), an if-then-else, or just in a straight-line code – collectively called control flow information. 

GCCFG captures all this information in a succinct manner. In fact, the sequence in which the 

functions, are called in the program, can be de- rived relatively accurately from the GCCFG. For 

the given GCCFG, the approximate sequence of function executions is 

F1−F2−(F4|F5)−F2−F1−(F3,F6)∗ −F1, where (F 4|F 5) implies the execution of one of them. Note 

that after executing F 4 or F 5, the execution returns to F 2 and then to F 1, since they are the 

calling functions. 

 

Figure 3: For the same weighted call graph, there can be multiple GCCFGs, and they can 

have different sequence of function executions. Function execution sequence of first 

GCCFG is F1−(F2−F1−F3−F1)10, while for the second GCCFG, the function execution 

sequence is F1−(F2−F1)10−(F3−F1)10. 

2.3 Why Is Call Graph Not Enough? 

The function execution sequence cannot be derived from a call graph. The first problem is 

that in the call graph, the order in which functions are called is absent, while GC- CFG preserves 

the order. The left child of a node is called before the right child. Second, call graph loses all control 

flow information, so we do not know if a function is being called in a loop, or in an if-then-else, or 

just in straight-line code. While it is clear that each of these structures has a very significant impact 

on the sequence of the function executions, and therefore the number of times the function has to 

be brought into the SPM. In fact, even annotating the call graph with how many times a function is 
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called is not enough. That is because, it still does not capture the context in which the functions are 

called. For example, Figure 3 shows two GCCFGs that can be drawn for the same call graph. The 

GCCFGs have very different function call sequence, which ultimately results in a different mapping 

being optimal for each case. 
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CHAPTER 3 

RELATED WORK 

Data management optimizations require both the function call information and the control 

flow information. Since control flow information is so important, data management cannot be 

performed using just the information in the Call Graph. The Call Graph only has information about 

which functions call other functions, but it doesn’t show an ordering to those calls, or control flow 

information. Data management techniques can use Global CFG instead [22–24]. Global CFG is a 

graph where all CFGs are in-lined to make a single large graph. Indeed Global CFG contains all 

the information needed, however, the information is arranged in a manner, such that it is compute 

intensive to dig out the information we need. 

Other program level graphs have been defined and used in other contexts. System 

Dependence Graph (SDG) was designed by Horowitz et al [17]. In the SDG, nodes can be split at 

the sub basic block level to represent individual statements as well as procedure entry and exit 

points. The SDG also requires different types of edges between the nodes. There are edges that 

represent control dependence, as well as, flow and def-order dependence. In order to main- tain 

context between procedure calls, a grammar is used to model the call structure of each procedure. 

While the SDG could be used as input for data management schemes, it is not succinct. The fact 

that it breaks basic blocks into smaller parts and introduces edges between them makes it quite 

large. This is opposite of what we want – we are at- tempting to abstract away the straight line code 

so that we can get a succinct representation of the whole program. Udayakumaran et al. [23] 

proposed Data-Program Relation- ship Graph (DPRG). They start with a call graph, and then 

append loop and condition nodes for control flow information. However, DPRG does not maintain 

ordering information, it must use a depth first search to get a general ordering. Also DPRG requires 

extra nodes for then and else, instead of just one node for IF-THEN-ELSE statements, making it 

less than a succinct representation of the program. Whitham et al. [24] proposes a graph called a 

Control Flow Tree (CFT). They derive this data structure from a control flow graph that has been 

converted into a tree, and then has been compressed into the final CFT. The graph proposed in 

their work maintains ordering by making sure that a parent node is always called before a child 
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node. However, they must maintain a list of back edges to keep information about when the leaf of 

the tree needs to return to an earlier parent. The CFT is not a succinct representation of a program 

since it needs multiple data structures to represent control flow. 

To facilitate data management optimizations on SMM architectures, Lee et al. [18] used 

regular expression, called a path expression, to represent the way control flows through a program 

where Kleene(*) closure represents a loop, union(|) closure represents a condition, and 

concatenation(·) closure represents the next segment to be executed. This information reveals the 

alternating behavior between functions in a program, so that an efficient mapping of function code, 

to memory can be made. The information present in the regular expression is also present in 

GCCFG, however, it is much easier to annotate GCCFG with more information, like the number of 

times a loop executes or branch probability, than to annotate a regular expression with more 

information. 

The state of the art data management schemes [4, 9, 18, 20] for SMM architectures have 

used GCCFG or GCCFG- like data structures, but the construction of GCCFG has not been shown 

yet. This paper will formally define, and describe the algorithm to construct GCCFG. 

Our approach to construct GCCFG is quite similar to the construction of Hierarchical Task Graph 

(HTG) [22], however, HTG is only for one function. HTG is a hierarchical representation of the 

program control flow, and is derived by separating the control flow graph into hierarchies at the 

loop level. We extend the HTG concepts to create an inter-procedural graph, which we call GCCFG. 

However, GCCFG construction can become quite challenging when the program has ill-formed 

control flow, e.g., poorly formed loops, switch statements, and hard to find convergence point of 

conditions – and this paper proposes solutions to correctly construct GCCFG in these cases.
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CHAPTER 4 

GLOBAL CALL CONTROL FLOW GRAPH 

Global Call Control Flow Graph or GCCFG is a whole program view of structures within an 

application. Specifically, GCCFG identifies three different types of structures that are commonly 

found in a program: function calls, loop blocks, and if-then-else condition blocks. 

Definition 1. (GCCFG) Let G := (V,E) be a DAG, where V = {Vf ∪ Vc ∪ Vl} is a set of vertices 

representing program structures and{e=(v1, v2)∈E:v1 ∈V∧v2 ∈V} is a set of directed edges. Then 

G is a GCCFG of a program where the vertices identify three program structures, function calls, 

loops, and if-then-else conditions respectively, and the edges represent the change of control flow 

in a program structure; where the program code in v2 is called from inside the program code 

corresponding to v1. 

The three types of program structures represented by the vertex set in GCCFG are 

distinguished in the following ways: A vertex v ∈ Vf represents a function call in a program, has only 

one set of outgoing edges, and is represented by a circle shape in the final GCCFG graph. The 

vertex v ∈ Vl represents a loop in a program, also has only one set of outgoing edges, and is 

represented by a square in GCCFG. Finally, a vertex v ∈ Vc represents an if-then-else condition in 

the program, where it has two sets of outgoing edges. One set of outgoing edges represent the 

path that control takes when the condition is true, and the other represent when the condition is 

false. A condition vertex is represented in GCCFG as a diamond shape. A set of outgoing edges 

from any vertex is an ordered set where vertices connected to edges on the left are executed before 

vertices to the right of them. 

The GCCFG of the example program in Figure 1, has Vf = {F1, F2, F3, F4, F5, F6}, Vl = 

{L2}, and Vc = {condition}. The GCCFG represents a program that starts with function F1. Inside 

F1, two functions are called F2 and F3 in the order. Inside F 2, there is an if-then-else, in which F4 

is called in the true path, and F5 is called in the false path. Inside F3, the function F6 is called in a 

loop. Functions F4, F5, and F6 have only straight line code. 
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4.1 How to Construct GCCFG 

GCCFG is constructed from the set of Control Flow Graphs (CFG) of a program. As each 

CFG represents a procedure in a program, we can view a procedure as a hierarchy of loops. Each 

hierarchy can be viewed as its own graph, and examined for necessary and unnecessary 

information. We can remove the unnecessary information from each hierarchy and glue the 

condensed graph to the other hierarchies in a procedure. Finally, we can glue all procedure graphs 

together at call sites to create a succinct whole program graph. 

4.1.1 Step 1: Extracting Loop Information 

A Program p ⊇ CFG H, where H = (B, E), represents a single function in a program. B is 

the set of basic blocks in the function, and E is the set of edges between basic blocks [13]. 

Given a set of CFGs we must extract the loop information from them. We find this 

information by looking for strongly connected components [13]. For now we assume each loop has 

a unique entry block and a unique exit block. If a loop doesn’t have this property we will convert it 

so that they have a unique entry and exit block. 

 

Figure 4: A set of loops in a CFG. Each loop contains all of the basic blocks of itself and all 

loops nested inside of it. 

Definition 2. (LOOP) Each Loop L ⊂ H, where Li = (BLi, ELi) and H = (B, E) represents control flow 

graph of a program. BLi ⊂ B are the blocks in a loop and the loops nested within it. ELi ⊂ E are the 

edges between the blocks in a loop. 
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Definition 2 explains that a loop is a set of blocks and a set of edges that are both a subset 

of the blocks and edges in a CFG. Figure 4 shows how the loop sets are extracted. In the example 

Loop 2 contains the information about Loop 3, while Loop 3 only has information about itself. In this 

work Loop 1 is a special case, which has all of the blocks and edges from the entire CFG. Namely, 

L1 = (BL1, EL1) = H.  

4.1.2 Step 2: Constructing Hierarchical Flow Graph 

The next step after extracting the loop information is to separate the loops into hierarchical 

levels. All nested loops are a subset of the loop they are nested inside, so we identify which loop 

is one level of nesting below another loop. Therefore, ∀L (LV (L) → level) where the function LV 

finds the level of the loop. 

In this work L1 will always have the highest level hierarchy. So following the example in 

Figure 4: LV (L1) → 1, LV(L2)→2,andLV(L3)→3. By separating all of the loops in a CFG and 

identifying the hierarchy where they appear, we can use the loop information to build a new graph 

called Hierarchical Flow Graph (HFG). A HFG contains basic blocks and edges, where the blocks 

and edges hold the same meaning as a loop. A HFG also contains two new types of blocks: Loop 

Place Holder (LPH), and Function Place Holder (FPH). Both of these blocks represent an entry into 

a loop and a function respectively. Further the LPH and the FPH are used at the entry to a function 

or loop and at the call site for the corresponding loop or function. Each FPH and LPH is annotated 

with a label identifying which loop, or function it is a place holder for. 

Definition 3. (Hierarchical Flow Graph) An HFG L′ = (BL′ ,EL′ ) is a DAG, where BL′ represents all 

of the basic blocks in a loop plus one LPH for each highest level nested loop, and one FPH for 

each function call in the loop. EL′ is the set of edges between BL′. An HFG has either an LPH or 

an FPH to denote if it is above the highest level loop, or one of the loops in a function. 

Algorithm 1: Build HFG 
 

Input: A loop L = (BL, EL)  

Output: An HFG L′=(BL′,EL′) 

1.  BL′←BL 

2. EL′←EL 
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3. forall the K ⊂ L : LV(K) = LV(L)+1 do 

4.  B L′ ← B L′ − B K 

5.   E L′ ← E L′ − E K 

6.   forall the e ∈ EL : e = (b1,b2) do 

7.   if (b1 ∈ {BL −BK})∧(b2 ∈ BK) then 

8.    BL′ ←BL′ +{LPH} 

9.    EL′ ←EL′ −{e}+{e′ :e′ =(b1,LPH)} 

10.   if (b1 ∈ BK)∧(b2 ∈ {BL −BK}) then 

11.     EL′ ←EL′ −{e}+{e′ :e′ =(LPH,b2)} 

 

 

Figure 5: (a) HFGs extracted from the CFG in Figure 4 after applying algorithm 1. (b) A forest 

of DAGs after all the HFGs have been transformed. 

Algorithm 1 explains how to separate nested loops into different graphs. The algorithm 

starts by copying all blocks and edges to the sets BL′ and EL′ respectively in lines 1 and 2. It then 

cycles through all nested loops that are at the first level of nesting below the loop L. It finds a nested 

loop K, as K is a proper subset of L and its nesting level is one more than L, so in lines 4 and 5 it 

removes the blocks and edges that are in K and also in L′. In line 6 the algorithm examines each 

edge in the original loop L; if the head or tail is in K, then the edge is removed from L′ and a new 

edge is added to L′. The new edge connects to a new node that is a LPH, where the one entry edge 

to the loop K now connects to LPH and the exit from K, also connects to LPH. The complexity of 

Algorithm 1 is dependent on the number of loops that are nested within one level of another loop. 
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Therefore the time complexity of this algorithm would be O (n ∗ b), where n is the number of loops 

in the outer loop, and b is the number of blocks in the largest loop. 

Figure 5 (a) shows how the example CFG in Figure 4 will become several graphs after 

applying algorithm 1. In the original CFG there are 3 nested loops at different levels, and each 

corresponding HFG gets a LPH to represent the blocks and edges that were there. 

What is needed to move beyond this stage is a forest of DAGs, so that the HFG information 

can be used to build a more condensed graph. The first step is to remove any back edges, and to 

add a new root block. If the HFG is a loop, its root block becomes a LPH, and if it is the highest 

level HFG, its root block becomes a FPH. Figure 5 (b) shows the forest of DAGs after this final 

transformation.  

4.1.3 Step 3: Building Call Control Flow Graph 

We must traverse the HFGs in a Depth First Search (DFS) and build a graph that 

condenses the information present in the HFG, into a graph called the Call Control Flow Graph 

(CCFG). A CCFG is a proper subset of GCCFG, it is constructed when a block of interest is found 

on a HFG, and we then apply a set of rules to construct the proper vertexes and edges in the 

CCFG. A block of interest is a block with two outgoing edges, a LPH, a FPH, or a block with a 

function call in its code. 

Definition 4. (Call Control Flow Graph) A CCFG G′ =(V′,E′),where given a GCCFGG⇒G′ ⊂G. V′ is 

a set of vertices representing program structures of a loop, function call, or if-then-else. E′ is the 

set of edges connecting the program structures. 
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Figure 6: Basic Blocks are mapped to vertices in the CCFG. A FPH is mapped to a circle 

vertex, a LPH is mapped to a square vertex, and a if-then-else condition is mapped to a 

diamond vertex. 

Algorithm 2: Build CCFG 
 

Input: A HFG L′ = (BL′, EL′)  

Output: A CCFG G′ = (V′, E′) 

1.  forall the b ∈ BL′ do 

2.  if OutDegree(b) := 2 then 

3.   V ′ ← V ′ + {v ∈ Vc} 

4.   m : b maps_to v 

5.   if b := LP H then 

6.    V ′ ← V ′ + {v ∈ Vl} 

7.   m : b maps_to v 

8.  if (b := FPH ) ∨ (CodeContainsFunction(b)) then 

9.   V ′ ← V ′ + {v ∈ Vf } 

10.   m : b maps_to v 

11.  DepthFirstSearchHFG(Root(L′ ),G′ ) 

 

Algorithm 2 and Algorithm 3 explain how to build a CCFG given the information present in 

an HFG. First, Algorithm 2 gives three of the rules, for building a CCFG, by showing the cases for 
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building vertices. The first rule, is found at line 2, where there is a condition in the program, therefore 

a condition vertex is added to the set of vertices, in the CCFG G’. The second rule, is found at line 

5 where a loop is found, then a loop vertex is added to the vertex set in G’. Finally, if the block 

contains a call to another function or is a FPH at line 8 then a function vertex is added to the vertex 

set in G’. At lines 4, 7, and 10 a mapping between the block in L’ and the vertex in G’ is created, as 

shown in Figure 6 (this will be necessary later). The complexity of Algorithm 2 is based on the 

number of blocks in an HFG. Each block must be examined, and in the worst case, each line of 

code in the block must be examined to determine if there is a function call. Therefore the complexity 

is O (b ∗ l), where b is the number of blocks in an HFG and l is the number of lines in the largest 

block. 

 

Figure 7: Edges in a CCFG are constructed by finding the path from a condition block to a 

convergence block for that condition in the HFG. Along that path there are other FPH, LPH, 

and condition blocks. 
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Figure 8: In a HFG L’ the block of interest may appear after a condition’s convergence block. 

In the CCFG G’ the vertex it is mapped to must become the child of the condition vertices 

parent. 

Algorithm 3: Depth First Search HFG 
 

Input: A Basic Block of an HFG b1 ∈BL′, A CCFG G′  

Output: A CCFG G′ 

1.  if (OutDegree(b1) := 2) ∧ (m : b1 ∈ V ′) then 

2.  forall the p ∈ P|p := {b1,...,bn} do 

3.   ConvergeBlock = HighestCommonDescendant(P) 

4.   forall the b ∈ p|(b > b1) ∧ (m : b ∈ V ′) do 

5.     if b ≤ ConvergeBlock then 

6.      E′ ←E′ +{e=(m:b1,m:b)} 

7.     if TrueCondition(b1) then 

8.      AddTrueSet(m : b1,e) 

9.     else 

10.      AddFalseSet(m : b1,e) 

11.    else 

12.     v = Parent(m : b1) 

13.     if v ̸∈ Vc then 

14.      E′ ← E′ + {e = (v, m : b)} 

15. forall the b2 ∈ Children(b1) do 

16.   DepthFirstSearch(b2 ,G′ ) 
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Algorithm 3, called from algorithm 2 is a recursive function, which describes the remaining 

rules for building CCFG. First at line 1 we locate a condition that also is mapped to a vertex in V′. 

Then, we examine all true and all false paths through the graph that appear after the condition 

diverges and before it converges. The fourth rule for creating a CCFG appears at line 6 and line 7, 

where if another block mapped to the CCFG is found then a true edge is added to the CCFG. The 

fifth rule appears at line 6 and line 9, which like the previous rule adds an edge, this time is a false 

edge in the CCFG. This case is illustrated in Figure 7, where false edges are created. The final 

rule, for building GCCFG, appears at line 13 where the block of interest appears after the condition 

converges. In this case an edge is created be-tween the node and the parent of the condition. This 

case is illustrated by Figure 8 where the block of interest is after the convergence so the edge is 

created with the parent of the condition. The complexity for Algorithm 3 is O (b ∗ p), where b is the 

number of blocks in an HFG and p is the largest number of paths starting at a condition block in 

the HFG. The Highest Common Descendant has a complexity of O (h), where h is the height of the 

graph. In our algorithm we store the traversal information from the highest common descendant 

algorithm to build all of the paths in the graph, therefore the complexity is affected by the largest 

path and not the height of the graph. 

4.1.4 Final step: Integrating Call Control Flow Graph 

After we have built a CCFG for every HFG in the pro- gram, we can glue the CCFG’s 

together. Figure 10 illustrates how this is done. If there are loop vertices in two CCFGs with the 

same label then they become one vertex, gluing the two graphs together. This same gluing 

technique is applied if both are function vertices. Once all CCFGs have been glued together there 

will be one large graph, which is a GCCFG. 

4.2 Challenging Cases in GCCFG Construction 

Till now, we have explained the definition and construction of GCCFG in a typical setting. 

However, several times the input program graphs are ill-formed, and that makes the task of building 

GCCFG challenges. Challenges cases include a program that is constructed with poorly formed 

loops, a program which contains switch statements, finding the convergence point of some 
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conditions, how to represent recursive procedures, and how to represent function pointers. These 

problems must be addressed to be able to successfully build GCCFG. 

 

Figure 9: Challenges and Solutions: (a) Two intertwined loops on the top graph, while the 

bottom graph shows both loops become one well defined loop. (b) A loop with many exits 

on the left graph, while the right graph shows a well-defined loop with only one exit point. 

(c) A switch block on the left is transformed to the graph on the right, where each block has 

at most two children. (d) A condition does not have a convergence point in the graph on the 

left, so a new one is created as an exit block from the HFG in the graph on the right. 

4.2.1 Poorly Formed Loops 

The first challenge to address is that of poorly formed loops. These include, loops that have 

multiple exits (commonly caused by continue, break, and goto statements), and intertwined loops 

(caused by goto statements). Both of these types of loop problems must be removed before trans- 

forming the basic blocks into a final HFG. Figure 9 (a), top graph, shows an example of an 

intertwined loop. This loop can return to its head block from either loop body, making which loop 

body executes non-deterministic. Figure 9 (b), left graph, shows a loop with many exits. It cannot 

be determined which basic block will execute immediately following the conclusion of the loop. The 

process for dealing with this challenge is the same for either case, we must create a unique entry 

and exit point for a loop. Figure 9 (a), bottom graph, shows how a unique exit block is added to the 

graph and all back edges are attached to it, effectively making two loops into one. Figure 9 (b), right 

graph, shows how adding a unique exit block and having all exit edges point to it, makes the loop 

exit deterministic, while maintaining the control structure of condition blocks. The transformation 

illustrated in Figure 9 (a) loses the information about all but one of the loops intertwined with others. 
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However, none of the control flow information resulting from if-then- else statements is removed. 

Since one of the useful traits of GCCFG is determining which loops are nested within other loops, 

saving intertwined loops does not provide useful information. Therefore the transformation 

illustrated in Figure 9 (a) saves the relative information that the blocks that were part of the 

intertwined loops are still part of a loop, and conserves all other control flow information. The 

transformation in Figure 9 (b) does not lose any control flow or loop related information. 

 

Figure 10: Two CCFG’s G′1 and G′2 are glued together at a common LPH to make a GCCFG 

G. 

4.2.2 Switch Statements 

The second challenge to address is programs with switch statements. While switches are 

not poor programming practice the challenge is that you cannot break a single block’s children 

down into true and false children. We apply a transformation in our technique to distinguish true 

and false children by adding an intermediate block to the graph. The top part in Figure 9 (c) shows 

what a sub graph of a CFG would look like where B1 has all of the switch conditions, and B2 

through B4 has each case for the switch. The graph on the bottom side of Figure 9 (c) shows how 

the graph looks after transformation. All children of the switch except the left- most one are removed 

and an intermediate block takes their place. The removed children become descendants of the 
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intermediate block, and if there are more than two children left, this process is repeated until each 

block has at most 2 children. No information will be lost in the process of adding intermediate blocks 

as this is simply a place holder without any code in it. It also doesn’t add or take away any control 

flow information as the number of edges leading to each condition of the switch hasn’t changed. 

4.2.3 Finding a Convergence Point 

Another challenge to address is finding the convergence point of a condition with exit 

statements. These are mostly caused by error conditions that exit the program immediately. In the 

representing CFG the block with the exit has no descendants, so it is not clear what the 

corresponding convergence block would be. If there are nested conditions within this condition on 

the true or false paths it further confuses the issue as the convergence point of the nested condition 

may appear to occur after the convergence of parent condition. The solution to this challenge is 

similar to the loop problem in that each CFG must have a unique exit block. Figure 9 (d) shows a 

graph with an exit at B2, most likely caused by an error check in the program, while the graph on 

the right shows how the block now has an edge pointing to a unique exit. This can cause a control 

flow problem in this program now as it appears that an error may in fact allow execution to continue, 

but we can annotate the edge and block so that if a block of interest occurs after the error it will 

have less weight in the final GCCFG. Adding a new edge from a program exit to a new place holder 

exit doesn’t change the program as the exit block is simply a place holder and doesn’t have any 

useful information inside of it. There is no added control flow information as only one outgoing edge 

is added to the program exit block. This transformation just makes HFG graph traversal much easier 

when finding blocks of interest. 

4.3 Recursion and Function Pointers 

Up to this point call sites have represented an edge from one vertex to a function vertex. 

However, when a program contains recursion we need to be able to represent that control has 

been given back to the entry point of the recursive procedure. To continue with the trend in GCCFG 

of having a unique function vertex for control to move to, would not adequately represent the control 

flow contained within the recursive procedure, or would require that we duplicate all of this 

information in the graph. Therefore, we introduce a back edge in GCCFG. Any back edge in the 



  22 

graph represents a recursive procedure call, where the edge starts at the call site and ends at the 

recursive procedures function vertex. It is important to note, that there is no structure in Global CFG 

to handle recursive programs. The Global CFG requires that when a function call occurs a functions 

CFG is inserted in its place, and this is not possible in Global CFG. 

Determining the set of functions that a pointer can point to requires program analysis, 

where the most conservative results, which run quickly, will give a much larger set than a more 

accurate analysis, which will take a longer time. The trade-off lies in choosing between accuracy 

and speed for pointer analysis. GCCFG needs to be generated quickly as a benefit to doing more 

data management analysis at compile time, and needs to be succinct for those analyses. Our 

technique uses the pointer analysis presented in [21], where a less accurate model gives enough 

information to determine which pointers will be equivalent at compile time and placing the 

corresponding functions and their pointers into an equivalence class. This relationship between 

pointers and the functions they may point to is used to generate an edge between the call site 

where the pointer exists and the functions in the equivalence class. In GCCFG these special edges 

will be represented by dotted lines.
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CHAPTER 5 

EXPERIMENTS 

 

Figure 11: The compilation time when applying Code Mapping to benchmarks using 

GCCFG vs. Global CFG as input. 

5.1 Experimental Setup 

We perform experiments to demonstrate the need, and usefulness, of GCCFG over Global 

CFG. The experiments are for code management, and stack data management optimizations in 

SMM architectures. To do that, we implement our technique to construct GCCFG in LLVM compiler. 

Since a pass can only be applied on a single source code file, we use the llvm-link utility to transfer 

several bitcode files into one bitcode file. We implement a Function Pass in LLVM, which operates 

on each function of a program. The function pass extracts control flow and loop information from 

each function and stores it in a data structure. After all the passes have finished the extracted 

information is combined into a GCCFG. GCCFG nodes and edges are an- notated with information 

necessary for code and stack data management. For comparison purpose, we also implemented 

the generation of Global CFG. The code and stack management implementations get information 

about the program from GCCFG (or Global CFG) through some functions, like 

estimateInterferenceCost that can be computed using both GCCFG and Global CFG. We then run 
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LLVM passes for code [4] and stack data management [20]. We run our compiler on benchmarks 

from the Mibench suite [15] to com- pare the compilation time. 

5.2 GCCFG Makes Code Management 5x Faster than Global CFG 

Figure 11 plots the time (in milliseconds) to perform code mapping on our benchmarks 

using GCCFG and Global CFG. The results show that across all the benchmarks we get a 

consistent speedup of around 5X. To dig deeper in where the benefits are coming from, we 

measure the average amount of time it takes to do a single step of code management [4] for each 

benchmark. Initially all the functions are mapped to their own sections. Then in each step the 

functions in two regions are merged to make one region. The two regions that will cause the least 

increase in the data transfers between the global main memory and the local SPMs must be 

selected for merging. This must be done until the code space constraint is met. In each step, the 

code mapping algorithm needs the estimate of data transfers between the global main memory and 

the local SPMs for a given mapping, called interference, and that is calculated using GCCFG (by 

algorithm 4) and using Global CFG (by algorithm 5). We see that on average a single pass of code 

management Global CFG takes 8X longer vs. GCCFG. This is caused by the fact that on each step 

of Code Management the necessary information must be extracted from the graph before moving 

on to the next step. Since Global CFG is so much larger it takes much longer than GCCFG to 

extract this information. 

Algorithm 4: Interference GCCFG 
 

Input: A GCCFG G = (V, E), M 

Output: TotalInterference 

1.  foreach i∈Vf do 

2.  foreach j∈Vf : i ̸=j ∧ M[i]=M[j] do 

3.   if i := LCA(i, j) then 

4.    TotalInterference+ = Cost(i) + Cost(FunctionsOnPath(i,j)1) 

5.    else if j := LCA(i, j) then 

6.     TotalInterference+ = Cost(j) + Cost(F unctionsOnP ath(j, i)1) 

7.   else 

8.    TotalInterference+ = Cost(LCA(i,j)) 
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Figure 12: The compilation time when applying Stack Management to benchmarks using 

GCCFG vs. Global CFG as input. 

5.3 GCCFG Makes Stack Management 4x Faster than Global CFG 

Figure 12 plots the runtimes of the stack management with GCCFG and Global CFG. In 

the case of stack map- ping the algorithm runs on a reduced graph with only vertices representing 

functions, therefore Global CFG must be reduced at every iteration where the data structure must 

be traversed. Therefore, we see an average speed up of 4X using GCCFG over Global CFG. To 

dig deeper into this, we again compute the time for each step of stack management. For the sake 

of space we omit the details of the algorithms for performing Stack Management using GCCFG 

and Global CFG, and only present the results. However, in a single pass of stack management, 

stack frames are combined together into sets on a single path of execution. Then the set is modified 

slightly to determine if a different set of stack frames will provide a more efficient execution time for 

the application. On average a single pass takes 8X longer with Global CFG than it does with 

GCCFG. The reason is again because Global CFG is much bigger than GCCFG, and Stack 

Management needs to extract the necessary information from Global CFG before it can move on 

to the next step. 
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Figure 13: The size (number of nodes) of GCCFG is about 9X less than Global CFG, for our 

benchmarks. 

5.4 GCCFG Is Succinct Representation of the Program 

Figure 13 plots the number of nodes in GCCFG and Global CFG for the benchmarks. We 

can see that on average Global CFG is 9X larger than GCCFG, which is due to the fact that Global 

CFG has nodes that represent stops along paths that lead to code that is not a function. Global 

CFG also has nodes that represent sequential intermediate parts of a pro- gram, while GCCFG 

only has nodes that represent control flow information leading to function calls. However Global 

CFG is very quick to build – almost 200X faster. That is because to construct Global CFG we only 

need to connect an edge from a function call site to a functions first basic block. However, even 

GCCFGs for all the benchmarks are built in less than a second (while code management for ex- 

ample, can take tens to hundreds of seconds), so the build time is not so important.
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CHAPTER 6 

COMPLEXITY ANALYSIS OF USING GCCFG AND GLOBAL CFG 

In this section we look at the algorithms to generate the information required for code and 

stack data management, and compare the complexity of those algorithms. That will give us insight 

into how succinct a representation GCCFG is. 

6.1 Interference Calculation Using GCCFG 

Algorithm 4 shows how code mapping determines the total interference of a program based 

on a mapping of functions to regions [9]. Interference is the amount of data transfers that will take 

place between the local SPM and the global main memory for a given mapping. The input M is a 

mapping of functions to regions. At lines 1 and 2 the algorithm iterates over all pairs of functions in 

the program that are mapped to the same region in memory. At lines 3 and 4 if function i is the 

Lowest Common Ancestor (LCA) of the two functions then the total interference will have the 

number of times the function is called during execution plus the number of times the first function 

on the path from i to j is called. Lines 5 and 6 do the same thing as 3 and 4 except j is the LCA of 

the two functions. Finally, at line 8 if neither i nor j are the LCA of the other, the number of times 

the actual LCA of the two functions is executed is added to the total interference. The total running 

time of GCCFG would be O ((n∗l)/2 ∗ n2) ⇒ O (n3), where n is the number of function vertices, and 

l is the number of loop nodes in the GCCFG. Note that we will need to traverse the height of the 

graph twice to find the LCA of two given nodes. 

6.2 Interference Calculation Using Global CFG 

Algorithm 5 shows how to determine the interference cost if we used the Global CFG. To 

calculate the total interference between any two functions in a program there are two main loops 

at lines 1 and 3. First we must cycle through every basic block in the whole program until we find 

one i that is a entry to or exit from a function, as this is where a swap can occur in memory. Now 

we need to find another block j that is an entry into a function, mapped to the same region as i, and 

i and j are in separate functions. At line 5 we then need to do a depth first search to find the state 

of the memory (active functions in memory) and compare that to the function containing i. This 

means we have a conflict that will increase the cost of the interference. Line 7 determines if both 
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blocks are inside a loop, because this will increase the total cost by the number of times a loop 

iterates during the execution of the program. Otherwise we only add the cost of the number of times 

blocks i and j are executed to the total interference cost. The total running time for Algorithm 5 is O 

(b2 ∗ b + 2L), where b is the number of basic blocks in a program, and L is the maximum number 

of basic blocks in a loop. b can be approximated as n ∗ B, where n is the number of functions in 

the whole program and B is the maximum number of basic blocks in a function. Further, in a Global 

CFG, if a function is called multiple times then it is necessary to make a copy of the basic blocks 

for each call and inline those blocks into the graph. We can represent this inline factor as c which 

is a multiplication factor for how many times a function is in- lined. Therefore the total running time 

for Algorithm 5 is actually O ([n ∗ B ∗ c]3) compared to O(n3) for Algorithm 4. 

Algorithm 5: Interference Global CFG 
 

Input: A GlobalCFG P = (B,E) : H = (B′,E′) ⊆ P,M 

Output: TotalInterference 

1.  foreach i∈B do 

2.  if Entry(i) ∨Exit(i) then 

3.   foreach j ∈ B do 

4.    if Entry(j)∧(M[H1] = M[H2] : i ∈ B1′ ∧ j ∈ B2′ ∧ Hi ̸= Hj) then 

5.      MEM = {DFS(P,i)} 

6.      if {H1 : i ∈ B1′ } ∈/ MEM then 

7.      if LoopHead(i) := LoopHead(j) then 

8.       TotalInterference+ =Cost(i) + Cost(j) 

∗LoopCost 

9.      else 

10.       TotalInterference+ =Cost(i)+ Cost(j)  
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CHAPTER 7 

SUMMARY 

Since coherent caches architectures will not scale for long, researchers are on the lookout 

for a new memory architecture that can scale for hundreds and thousands of cores. Software 

Managed Manycore (SMM) architectures – in which each core has only a scratch pad memory is 

a promising solution, since hardware are simpler, scalable and more power-efficient. However, in 

SMM architectures the code and data of the tasks must be explicitly managed in the software by 

the compiler. State-of-the-art compiler techniques for SMM architectures require inter-procedural 

information and analysis, and they have used GCCFG (Global Call Control Flow Graph) for that. 

GCCFG is a whole program representation that captures the control-flow as well as function call 

information in a succinct way. However, how to construct GCCFG has not been shown yet. We find 

that there are several commonly occurring cases where constructing GCCFG is not so 

straightforward. This paper develops graph transformations that allow us to correctly construct 

GCCFG in (almost) all cases. Our experiments show that by using succinct representation 

(GCCFG) rather than elaborate representation (Global CFG), the compilation time of state-of-the-

art code management technique [4] can be improved by an average of 5X, and that of stack 

management [20] can be improved by an average of 4X.
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