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ABSTRACT
Software Managed Manycore (SMM) architectures – in which
each core has only a scratch pad memory (instead of caches),
– are a promising solution for scaling memory hierarchy to
hundreds of cores. However, in these architectures, the code
and data of the tasks mapped to the cores must be ex-
plicitly managed in the software by the compiler. State-of-
the-art compiler techniques for SMM architectures require
inter-procedural information and analysis. A call graph of
the program does not have enough information, and Global
CFG, i.e., combining all the control flow graphs of the pro-
gram has too much information, and becomes too big. As
a result, most new techniques have informally defined and
used GCCFG (Global Call Control Flow Graph) – a whole
program representation which captures the control-flow as
well as function call information in a succinct way – to per-
form inter-procedural analysis. However, how to construct
it has not been shown yet. We find that for several simple
call and control flow graphs, constructing GCCFG is rela-
tively straightforward, but there are several cases in common
applications where unique graph transformation is needed
in order to formally and correctly construct the GCCFG.
This paper fills this gap, and develops graph transforma-
tions to allow the construction of GCCFG in (almost) all
cases. Our experiments show that by using succinct rep-
resentation (GCCFG) rather than elaborate representation
(GlobalCFG), the compilation time of state-of-the-art code
management technique [4] can be improved by an average
of 5X, and that of stack management [20] can be improved
by an average of 4X.

1. INTRODUCTION
Scaling the memory architecture is a major challenge as

we transition from a few cores to many core processors. Ex-
perts believe that coherent cache architectures will not scale
to hundreds and thousands of cores [11, 12, 16, 25], not only
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because the hardware overheads of providing coherency in-
creases rapidly with core count, but also because caches con-
sume a lot of power. One promising option for a more power-
efficient and scalable memory hierarchy is to use raw, “un-
cached” memory (commonly known as Scratch Pad Memory
or SPM) in the cores. Since SPM does not have the hard-
ware for address lookup and translation, they occupy 30%
less area, and consume 30% less power than a direct mapped
cache of the same effective capacity [10]. In addition, the co-
herence has to be provided in the software, so hardware is
more power-efficient and scalable. A multicore/manycore
architecture in which each core has an SPM instead of hard-
ware caches is called a Software Managed Multicore (SMM)
architecture [4,20]. The Cell processor [14] (used in PlaySta-
tion 3) is a good example of an SMM architecture. Thanks
to the SMM architecture, the peak power-efficiency of the
Cell processor is 5 GFlops per Watt [14]. Contrast this to
the Intel i7 4-core Bloomfield 965 XE with power- efficiency
of 0.5 GFlops per Watt [1, 2], both fabricated in the 65nm
technology node.

The main challenge in the SMM architecture is that sev-
eral tasks like data management (movement of data between
SPMs of the cores and the main memory) and inter-core
communication (movement of data between the SPMs of
cores), which were originally done by the hardware (more
specifically, the cache hierarchy) now have to be explicitly
done in the software, and that may cause overheads. Recent
research results have been quite encouraging. Techniques
have been proposed to manage all kinds of data: code [4,19],
stack [8,20], and heap [3,5–7] efficiently on the SPMs of the
core. In fact, [4] and [20] show that the overhead of code and
stack management on SPMs is lower than on a cache based
architecture. Thus SMMs are coming up as a strong con-
tender for processor architecture in the manycore era. All
the state-of-the-art data management techniques that have
been developed for SMM architectures are inter-procedural
code transformations and require extensive inter-procedural
analysis. One of the fundamental challenges in this research
has been in finding out the right representation of the whole
program, such that it captures the required information, and
yet is not too big and cumbersome. For example, the call
graph of a program captures which functions calls which
other function, but it does not contain information about
the loops and if-then-elses present in the program. Also
it does not contain information about the order in which
the functions are called. All this information is vital for



Figure 1: A code snippet and a corresponding GCCFG rep-
resentation of the program. Assume that functions F4, F5
and F6 are straight line code.

the code transformations required for SMM architectures.
Control Flow Graph or CFG contains detailed information
of all the control flow, but it is only for a single function.
Researchers have tried to stitch together the CFGs of var-
ious functions by essentially pasting the CFG of the called
function at the site of its call – named Global CFG [22–24].
Global CFG is a detailed representation of the whole pro-
gram, but it grows too big, and discovering the information
SMM transformations need from this graph is very time con-
suming and cumbersome at the least. What is needed is a
succinct representation of the whole program that contains
functional call information, as well as important control flow
structures of the program, e.g., loops and if-then-elses.

Recent, previous research on developing code transforma-
tions for SMM architecture have used Global Call Control
Flow Graph or GCCFG [4, 7, 9, 19, 20]. GCCFG is a whole
program representation, and is a hybrid between a call graph
and control flow graph. GCCFG is hierarchical representa-
tion of the program, abstracts away straight line code, and
captures the function call and control flow information of
the program. GCCFG is ordered hierarchical representa-
tion of the program, and consists of three kinds of nodes,
function nodes (shown as circles in Figure 1), loop nodes
(shown as squares in Figure 1), and condition nodes (shown
as diamonds in Figure 1). The GCCFG of a simple pro-
gram is shown in Figure 1. In the program function F1 calls
functions F2 and F3 in order. That is why F2 is the left
child and F3 is the right child of F1. Function F2 contains
an if-then-else, in which F4 is called in the if-part, and F5
is called in the else part. Function F3 contains a loop in
which F6 is called. Functions F4, F5, and F6 contain only
straight line code. Note that the GCCFG abstracts away
the straight line code, and only keeps the function call and
control flow information in a succinct hierarchical form.

While previous researches have informally defined and
used GCCFG, they have not shown how to construct it
for any given program. We find that, while constructing
GCCFG for simple programs is relatively straightforward,
there are several very commonly found program structures
where constructing GCCFG is complicated. For example,
loops that have multiple exits (commonly caused by con-
tinue , break, goto statements, and loops that return val-
ues), and intertwined loops (caused by goto statements), and
switch statements, and if-then-elses with exit statements,
etc. In this paper we formally define GCCFG and show
the construction of GCCFG in all these cases. We also
show that as opposed to Global CFG, GCCFG is a more

Figure 2: There are two parts to the problem of optimal
code mapping i) Divide the code space on SPM into regions,
and ii) Map functions into regions. Functions mapped to the
same region replace each other when called. Therefore, for
a given code space, we have to find a division of that space
into regions and mapping of functions into regions so that
there is minimum data transfer between SPM and the main
global memory.

succinct representation, and results in more efficient imple-
mentations of the inter-procedural analysis required for code
and stack data management on SMM architectures. Experi-
ments conducted on MiBench benchmarks [15] demonstrate
that, the compilation time of a state-of-the art code manage-
ment technique can be improved by an average of 5X, and
that of stack management can be improved by 4X through
GCCFG as compared to Global CFG.

2. WHY GCCFG FOR CODE MAPPING ON
SMM ARCHITECTURES?

2.1 The optimal code mapping problem in SMM
architectures

In an SMM architecture, a task is mapped to a core, and
the core has access to only it’s local Scratch Pad Memory or
SPM. All code and data that the task uses must come from
SPM. In case, the code of the application is larger than
the SPM size, then the whole code can reside in the large
global memory, but can be brought in piecemeal approach.
To facilitate this, SMM architecture allows users to divide
the code part of the SPM into regions, and functions in the
program can be mapped to the regions in the SPM. This
mapping of functions to regions is specified in the linker file,
and is used at runtime. At runtime, of all the functions
mapped to a region, only one can be present in the region
at runtime. When a function is called, it is brought into
its region in the SPM, and the existing function is simply
overwritten. While any region formation, and mapping of
functions to regions is legitimate, but if we have only one
region, and map all the functions to that region, then there
will be a function code replacement at every function call
– severely hurting the performance. Similarly, if we have
a separate region for each function, then the performance
will be excellent, since there will be no replacements, but it
will require a lot of space which may not be available in the
SPM. Thus, the problem of optimal code management is to
find the division of the code space in the SPM into regions,



Figure 3: For the same weighted call graph, there can be
multiple GCCFGs, and they can have different sequence of
function executions. Function execution sequence of first
GCCFG is F1− (F2− F1− F3− F1)10, while for the sec-
ond GCCFG, the function execution sequence is F1− (F2−
F1)10 − (F3− F1)10.

and find the mapping of functions to those regions so as to
minimize the data transfers between the SPM and the main
global memory.

2.2 What information do we need for optimal
code mapping?

The fundamental information required to be able to solve
this optimal code mapping problem is to estimate the amount
of data transfers that will happen when two functions are
mapped to the same region. For example, in the program
shown in Figure 1, if F3 and F6 are mapped to the same
region, then there will be a lot of replacements, since the
function F3 calls F6 in a loop. Each time after the execu-
tion returns from F6, the execution comes back to the func-
tion F3, therefore it must be brought back into the SPM.
On the other hand, it might be better to place the functions
F4 and F5 in the same region, since only one of them will
be called. Thus, in order to find out which functions can be
mapped in the same region, we need information like which
function calls another function, and whether a function call
happens in a loop (and if so, how many levels of loops),
an if-then-else, or just in a straight-line code – collectively
called control flow information. GCCFG captures all this
information in a succinct manner. In fact, the sequence in
which the functions, are called in the program, can be de-
rived relatively accurately from the GCCFG. For the given
GCCFG, the approximate sequence of function executions
is F1 − F2 − (F4|F5) − F2 − F1 − (F3, F6)∗ − F1, where
(F4|F5) implies the execution of one of them. Note that
after executing F4 or F5, the execution returns to F2 and
then to F1, since they are the calling functions.

2.3 Why is call graph not enough?
The function execution sequence cannot be derived from

a call graph. The first problem is that in the call graph,
the order in which functions are called is absent, while GC-
CFG preserves the order. The left child of a node is called
before the right child. Second, call graph looses all control
flow information, so we do not know if a function is being
called in a loop, or in an if-then-else, or just in straight-line
code. While it is clear that each of these structures has a
very significant impact on the sequence of the function ex-
ecutions, and therefore the number of times the function
has to be brought into the SPM. In fact, even annotating
the call graph with how many times a function is called is

not enough. That is because, it still does not capture the
context in which the functions are called. For example, Fig-
ure 3 shows two GCCFGs that can be drawn for the same
call graph. The GCCFGs have very different function call
sequence, which ultimately results in a different mapping
being optimal for each case.

3. RELATED WORK
Data management optimizations require both the func-

tion call information and the control flow information. Since
control flow information is so important, data management
cannot be performed using just the information in the Call
Graph. The Call Graph only has information about which
functions call other functions, but it doesn’t show an order-
ing to those calls, or control flow information. Data man-
agement techniques can use Global CFG instead [22–24].
Global CFG is a graph where all CFGs are inlined to make
a single large graph. Indeed Global CFG contains all the
information needed, however, the information is arranged in
a manner, such that it is compute intensive to dig out the
information we need.

Other program level level graphs have been defined and
used in other contexts. System Dependence Graph (SDG)
was designed by Horowitz et al [17]. In the SDG, nodes can
be split at the sub basic block level to represent individ-
ual statements as well as procedure entry and exit points.
The SDG also requires different types of edges between the
nodes. There are edges that represent control dependence,
as well as, flow and def-order dependence. In order to main-
tain context between procedure calls, a grammar is used to
model the call structure of each procedure. While the SDG
could be used as input for data management schemes, it
is not succinct. The fact that it breaks basic blocks into
smaller parts and introduces edges between them makes it
quite large. This is opposite of what we want – we are at-
tempting to abstract away the straight line code so that
we can get a succinct representation of the whole program.
Udayakumaran et al. [23] proposed Data-Program Relation-
ship Graph (DPRG). They start with a call graph, and then
append loop and condition nodes for control flow informa-
tion. However, DPRG does not maintain ordering informa-
tion, it must use a depth first search to get a general order-
ing. Also DPRG requires extra nodes for then and else,
instead of just one node for IF-THEN-ELSE statements,
making it less than a succinct representation of the program.
Whitham et al. [24] proposes a graph called a Control Flow
Tree (CFT). They derive this data structure from a control
flow graph that has been converted into a tree, and then has
been compressed into the final CFT. The graph proposed in
their work maintains ordering by making sure that a par-
ent node is always called before a child node. However, they
must maintain a list of back edges to keep information about
when the leaf of the tree needs to return to an earlier parent.
The CFT is not a succinct representation of a program since
it needs multiple data structures to represent control flow.

To facilitate data management optimizations on SMM ar-
chitectures, Lee et al. [18] used regular expression, called a
path expression, to represent the way control flows through
a program where kleen(*) closure represents a loop, union(|)
closure represents a condition, and concatenation(·) closure
represents the next segment to be executed. This informa-
tion reveals the alternating behavior between functions in a
program, so that an efficient mapping of function code, to



memory can be made. The information present in the regu-
lar expression is also present in GCCFG, however, it is much
easier to annotate GCCFG with more information, like the
number of times a loop executes or branch probability, than
to annotate a regular expression with more information.

The state of the art data management schemes [4, 9, 18,
20] for SMM architectures have used GCCFG or GCCFG-
like data structures, but the construction of GCCFG has
not been shown yet. This paper will formally define, and
describe the algorithm to construct GCCFG.

Our approach to construct GCCFG is quite similar to the
construction of Hierarchical Task Graph (HTG) [22], how-
ever, HTG is only for one function. HTG is a hierarchical
representation of the program control flow, and is derived
by separating the control flow graph into hierarchies at the
loop level. We extend the HTG concepts to create an inter-
procedural graph, which we call GCCFG. However, GCCFG
construction can become quite challenging when the pro-
gram has ill-formed control flow, e.g., poorly formed loops,
switch statements, and hard to find convergence point of
conditions – and this paper proposes solutions to correctly
construct GCCFG in these cases.

4. GLOBAL CALL CONTROL FLOW GRAPH
Global Call Control Flow Graph or GCCFG is a whole

program view of structures within an application. Specifi-
cally, GCCFG identifies three different types of structures
that are commonly found in a program: function calls, loop
blocks, and if-then-else condition blocks.

Definition 1. (GCCFG) Let G := (V,E) be a DAG,
where V = {Vf ∪ Vc ∪ Vl} is a set of vertices representing
program structures and {e = (v1, v2) ∈ E : v1 ∈ V ∧ v2 ∈ V }
is a set of directed edges. Then G is a GCCFG of a program
where the vertices identify three program structures, function
calls, loops, and if-then-else conditions respectively, and the
edges represent the change of control flow in a program struc-
ture; where the program code in v2 is called from inside the
program code corresponding to v1.

The three types of program structures represented by the
vertex set in GCCFG are distinguished in the following ways:
A vertex v ∈ Vf represents a function call in a program,
has only one set of outgoing edges, and is represented by a
circle shape in the final GCCFG graph. The vertex v ∈ Vl

represents a loop in a program, also has only one set of
outgoing edges, and is represented by a square in GCCFG.
Finally, a vertex v ∈ Vc represents an if-then-else condition
in the program, where it has two sets of outgoing edges. One
set of outgoing edges represent the path that control takes
when the condition is true, and the other represent when
the condition is false. A condition vertex is represented in
GCCFG as a diamond shape. A set of outgoing edges from
any vertex is an ordered set where vertices connected to
edges on the left are executed before vertices to the right of
them.

The GCCFG of the example program in Figure 1, has
Vf = {F1, F2, F3, F4, F5, F6}, Vl = {L2}, and Vc = {condition}.
The GCCFG represents a program that starts with function
F1. Inside F1, two functions are called F2 and F3 in the
order. Inside F2, there is an if-then-else, in which F4 is
called in the true path, and F5 is called in the false path.
Inside F3, the function F6 is called in a loop. Functions F4,
F5, and F6 have only straight line code.

Figure 4: A set of loops in a CFG. Each loop contains all
of the basic blocks of itself and all loops nested inside of it.

4.1 How to Construct GCCFG
GCCFG is constructed from the set of Control Flow Graphs

(CFG) of a program. As each CFG represents a procedure
in a program, we can view a procedure as a hierarchy of
loops. Each hierarchy can be viewed as its own graph, and
examined for necessary and unnecessary information. We
can remove the unnecessary information from each hierar-
chy and glue the condensed graph to the other hierarchies
in a procedure. Finally, we can glue all procedure graphs
together at call sites to create a succinct whole program
graph.

4.1.1 Step 1: Extracting Loop Information
A Program p ⊇ CFG H, where H = (B,E), represents

a single function in a program. B is the set of basic blocks
in the function, and E is the set of edges between basic
blocks [13].

Given a set of CFGs we must extract the loop information
from them. We find this information by looking for strongly
connected components [13]. For now we assume each loop
has a unique entry block and a unique exit block. If a loop
doesn’t have this property we will convert it so that they
have a unique entry and exit block.

Definition 2. (LOOP) Each Loop L ⊂ H, where Li =
(BLi , ELi) and H = (B,E) represents control flow graph of
a program. BLi ⊂ B are the blocks in a loop and the loops
nested within it. ELi ⊂ E are the edges between the blocks
in a loop.

Definition 2 explains that a loop is a set of blocks and a
set of edges that are both a subset of the blocks and edges
in a CFG. Figure 4 shows how the loop sets are extracted.
In the example Loop 2 contains the information about Loop
3, while Loop 3 only has information about itself. In this
work Loop 1 is a special case, which has all of the blocks and
edges from the entire CFG. Namely, L1 = (BL1 , EL1) = H.

4.1.2 Step 2: Constructing Hierarchical Flow Graph
The next step after extracting the loop information is to

separate the loops into hierarchical levels. All nested loops
are a subset of the loop they are nested inside, so we iden-
tify which loop is one level of nesting below another loop.
Therefore, ∀L(LV (L)→ level) where the function LV finds
the level of the loop.

In this work L1 will always have the highest level hierar-
chy. So following the example in Figure 4: LV (L1) → 1,
LV (L2)→ 2, and LV (L3)→ 3.



Algorithm 1: Build HFG

Input: A loop L = (BL, EL)
Output: An HFG L′ = (B′L, E

′
L)

1 B′L ← BL

2 E′L ← EL

3 forall the K ⊂ L : LV (K) = LV (L) + 1 do
4 B′L ← B′L −BK

5 E′L ← E′L − EK

6 forall the e ∈ EL : e = (b1, b2) do
7 if (b1 ∈ {BL −BK}) ∧ (b2 ∈ BK) then
8 B′L ← B′L + {LPH}
9 E′L ← E′L − {e}+ {e′ : e′ = (b1, LPH)}

10 if (b1 ∈ BK) ∧ (b2 ∈ {BL −BK}) then
11 E′L ← E′L − {e}+ {e′ : e′ = (LPH, b2)}

By separating all of the loops in a CFG and identifying
the hierarchy where they appear, we can use the loop infor-
mation to build a new graph called Hierarchical Flow Graph
(HFG). A HFG contains basic blocks and edges, where the
blocks and edges hold the same meaning as a loop. A HFG
also contains two new types of blocks: Loop Place Holder
(LPH), and Function Place Holder (FPH). Both of these
blocks represent an entry into a loop and a function respec-
tively. Further the LPH and the FPH are used at the entry
to a function or loop and at the call site for the correspond-
ing loop or function. Each FPH and LPH is annotated with
a label identifying which loop, or function it is a place holder
for.

Definition 3. (Hierarchical Flow Graph) An HFG
L′ = (B′L, E

′
L) is a DAG, where B′L represents all of the

basic blocks in a loop plus one LPH for each highest level
nested loop, and one FPH for each function call in the loop.
E′L is the set of edges between B′L. An HFG has either an
LPH or an FPH to denote if it is above the highest level
loop, or one of the loops in a function.

Algorithm 1 explains how to separate nested loops into
different graphs. The algorithm starts by copying all blocks
and edges to the sets B′L and E′L respectively in lines 1 and
2. It then cycles through all nested loops that are at the
first level of nesting below the loop L. It finds a nested loop
K, as K is a proper subset of L and its nesting level is one
more than L, so in lines 4 and 5 it removes the blocks and
edges that are in K and also in L′. In line 6 the algorithm
examines each edge in the original loop L; if the head or
tail is in K, then the edge is removed from L′ and a new
edge is added to L′. The new edge connects to a new node
that is a LPH, where the one entry edge to the loop K now
connects to LPH and the exit from K, also connects to LPH.
The complexity of Algorithm 1 is dependent on the number
of loops that are nested within one level of another loop.
Therefore the time complexity of this algorithm would be
O(n ∗ b), where n is the number of loops in the outer loop,
and b is the number of blocks in the largest loop.

Figure 5 (a) shows how the example CFG in Figure 4 will
become several graphs after applying algorithm 1. In the
original CFG there are 3 nested loops at different levels,
and each corresponding HFG gets a LPH to represent the
blocks and edges that were there.

What is needed to move beyond this stage is a forest of
DAGs, so that the HFG information can be used to build a

Algorithm 2: Build CCFG

Input: A HFG L′ = (B′L, E
′
L)

Output: A CCFG G′ = (V ′, E′)
1 forall the b ∈ B′L do
2 if OutDegree(b) := 2 then
3 V ′ ← V ′ + {v ∈ Vc}
4 m : b 7→ v

5 if b := LPH then
6 V ′ ← V ′ + {v ∈ Vl}
7 m : b 7→ v

8 if (b := FPH) ∨ (CodeContainsFunction(b)) then
9 V ′ ← V ′ + {v ∈ Vf}

10 m : b 7→ v

11 DepthFirstSearchHFG(Root(L′),G′)

more condensed graph. The first step is to remove any back
edges, and to add a new root block. If the HFG is a loop,
its root block becomes a LPH, and if it is the highest level
HFG, its root block becomes a FPH. Figure 5 (b) shows the
forest of DAGs after this final transformation.

4.1.3 Step 3: Building Call Control Flow Graph
We must traverse the HFGs in a Depth First Search (DFS)

and build a graph, that condenses the information present in
the HFG, into a graph called the Call Control Flow Graph
(CCFG). A CCFG is a proper subset of GCCFG, it is con-
structed when a block of interest is found on a HFG, we
then apply a set of rules to construct the proper vertexes
and edges in the CCFG. A block of interest is a block with
two outgoing edges, a LPH, a FPH, or a block with a func-
tion call in its code.

Definition 4. (Call Control Flow Graph) A CCFG
G′ = (V ′, E′), where given a GCCFG G ⇒ G′ ⊂ G. V ′ is
a set of vertices representing program structures of a loop,
function call, or if-then-else. E′ is the set of edges connect-
ing the program structures.

Algorithm 2 and Algorithm 3 explain how to build a CCFG
given the information present in an HFG. First, Algorithm
2 gives three of the rules, for building a CCFG, by showing
the cases for building verticies. The first rule, is found at
line 2, where there is a condition in the program, therefore a
condition vertex is added to the set of vertices, in the CCFG
G’. The second rule, is found at line 5 where a loop is found,
then a loop vertex is added to the vertex set in G’. Finally,
if the block contains a call to another function or is a FPH

Figure 5: (a) HFGs extracted from the CFG in Figure 4
after applying algorithm 1. (b) A forest of DAGs after all
the HFGs have been transformed.



Algorithm 3: Depth First Search HFG

Input: A Basic Block of an HFG b1 ∈ B′L, A CCFG G′

Output: A CCFG G′

1 if (OutDegree(b1) := 2) ∧ (m : b1 ∈ V ′) then
2 forall the p ∈ P |p := {b1, . . . , bn} do
3 ConvergeBlock = HighestCommonDescendant(P )
4 forall the b ∈ p|(b > b1) ∧ (m : b ∈ V ′) do
5 if b ≤ ConvergeBlock then
6 E′ ← E′ + {e = (m : b1,m : b)}
7 if TrueCondition(b1) then
8 AddTrueSet(m : b1,e)

9 else
10 AddFalseSet(m : b1,e)

11 else
12 v = Parent(m : b1)
13 if v 6∈ Vc then
14 E′ ← E′ + {e = (v,m : b)}

15 forall the b2 ∈ Children(b1) do
16 DepthFirstSearch(b2,G′)

at line 8 then a function vertex is added to the vertex set in
G’. At lines 4, 7, and 10 a mapping between the block in L’
and the vertex in G’ is created, as shown in Figure 6 (this
will be necessary later). The complexity of Algorithm 2 is
based on the number of blocks in an HFG. Each block must
be examined, and in the worst case, each line of code in the
block must be examined to determine if there is a function
call. Therefore the complexity is O(b ∗ l), where b is the
number of blocks in an HFG and l is the number of lines in
the largest block.

Algorithm 3, called from algorithm 2 is a recursive func-
tion, which describes the remaining rules for building CCFG.
First at line 1 we locate a condition, that also is mapped to
a vertex in V ′. Then, we examine all true and all false
paths through the graph, that appear after the condition di-
verges and before it converges. The fourth rule for creating
a CCFG appears at line 6 and line 7, where if another block
mapped to the CCFG is found then a true edge is added to
the CCFG. The fifth rule appears at line 6 and line 9, which
like the previous rule adds an edge, this time is a false edge
in the CCFG. This case is illustrated in Figure 7, where
false edges are created. The final rule, for building GCCFG,
appears at line 13 where the block of interest appears after
the condition converges. In this case an edge is created be-

Figure 6: Basic Blocks are mapped to vertices in the
CCFG. A FPH is mapped to a circle vertex, a LPH is
mapped to a square vertex, and a if-then-else condition is
mapped to a diamond vertex.

Figure 7: Edges in a CCFG are constructed by finding the
path from a condition block to a convergence block for that
condition in the HFG. Along that path there are other FPH,
LPH, and condition blocks.

tween the node and the parent of the condition. This case
is illustrated by Figure 8 where the block of interest is after
the convergence so the edge is created with the parent of
the condition. The complexity for Algorithm 3 is O(b ∗ p),
where b is the number of blocks in an HFG and p is the
largest number of paths starting at a condition block in the
HFG. The Highest Common Descendant has a complexity
of O(h), where h is the height of the graph. In our algorithm
we store the traversal information from the highest common
descendant algorithm to build all of the paths in the graph,
therefore the complexity is affected by the largest path and
not the height of the graph.

4.1.4 Final step: Integrating Call Control Flow Graph
After we have built a CCFG for every HFG in the pro-

gram, we can glue the CCFG’s together. Figure 10 illus-
trates how this is done. If there are loop vertices in two
CCFGs with the same label then they become one vertex,
gluing the two graphs together. This same gluing technique
is applied if both are function vertices. Once all CCFGs have
been glued together there will be one large graph, which is
a GCCFG.

4.2 Challenges cases in GCCFG construction
Till now, we have explained the definition and construc-

tion of GCCFG in a typical setting. However, several times
the input program graphs are ill-formed, and that makes
the task of building GCCFG challenges. Challenges cases
include a program that is constructed with poorly formed
loops, a program which contains switch statements, finding
the convergence point of some conditions, how to represent

Figure 8: In a HFG L’ the block of interest may appear
after a condition’s convergence block. In the CCFG G’ the
vertex it is mapped to must become the child of the condition
vertices parent.



Figure 9: Challenges and Solutions: (a) Two intertwined loops on the top graph, while the bottom graph shows both loops
become one well defined loop. (b) A loop with many exits on the left graph, while the right graph shows a well defined loop
with only one exit point. (c) A switch block on the left is transformed to the graph on the right, where each block has at most
two children. (d) A condition does not have a convergence point in the graph on the left, so a new one is created as an exit
block from the HFG in the graph on the right.

recursive procedures, and how to represent function point-
ers. These problems must be addressed to be able to suc-
cessfully build GCCFG.

4.2.1 Poorly formed loops
The first challenge to address is that of poorly formed

loops. These include, loops that have multiple exits (com-
monly caused by continue , break, and goto statements),
and intertwined loops (caused by goto statements). Both of
these types of loop problems must be removed before trans-
forming the basic blocks into a final HFG. Figure 9 (a), top
graph, shows an example of an intertwined loop. This loop
can return to its head block from either loop body, mak-
ing which loop body executes non-deterministic. Figure 9
(b), left graph, shows a loop with many exits. It cannot
be determined which basic block will execute immediately
following the conclusion of the loop. The process for dealing
with this challenge is the same for either case, we must cre-
ate a unique entry and exit point for a loop. Figure 9 (a),
bottom graph, shows how a unique exit block is added to the
graph and all back edges are attached to it, effectively mak-
ing two loops into one. Figure 9 (b), right graph, shows how
adding a unique exit block and having all exit edges point
to it, makes the loop exit deterministic, while maintaining
the control structure of condition blocks. The transforma-
tion illustrated in Figure 9 (a) loses the information about
all but one of the loops intertwined with others. However,
none of the control flow information resulting from if-then-
else statements is removed. Since one of the useful traits of
GCCFG is determining which loops are nested within other
loops, saving intertwined loops does not provide useful infor-
mation. Therefore the transformation illustrated in Figure 9
(a) saves the relative information that the blocks that were
part of the intertwined loops are still part of a loop, and
conserves all other control flow information. The transfor-
mation in Figure 9 (b) does not lose any control flow or loop
related information.

4.2.2 Switch statements
The second challenge to address is programs with switch

statements. While switches are not poor programming prac-
tice the challenge is that you cannot break a single block’s
children down into true and false children. We apply a trans-
formation in our technique to distinguish true and false chil-
dren by adding an intermediate block to the graph. The top
part in Figure 9 (c) shows what a sub graph of a CFG would

look like where B1 has all of the switch conditions, and B2

through B4 has each case for the switch. The graph on the
bottom side of Figure 9 (c) shows how the graph looks after
transformation. All children of the switch except the left-
most one are removed and an intermediate block takes their
place. The removed children become descendants of the in-
termediate block, and if there are more than two children
left, this process is repeated until each block has at most
2 children. No information will be lost in the process of
adding intermediate blocks as this is simply a place holder
without any code in it. It also doesn’t add or take away any
control flow information as the number of edges leading to
each condition of the switch hasn’t changed.

4.2.3 Finding a convergence point
Another challenge to address is finding the convergence

point of a condition with exit statements. These are mostly
caused by error conditions that exit the program immedi-
ately. In the representing CFG the block with the exit has
no descendants, so it is not clear what the corresponding
convergence block would be. If there are nested conditions
within this condition on the true or false paths it further
confuses the issue as the convergence point of the nested
condition may appear to occur after the convergence of par-
ent condition. The solution to this challenge is similar to
the loop problem in that each CFG must have a unique exit
block. Figure 9 (d) shows a graph with an exit at B2, most
likely caused by an error check in the program, while the
graph on the right shows how the block now has an edge
pointing to a unique exit. This can cause a control flow
problem in this program now as it appears that an error may
in fact allow execution to continue, but we can annotate the
edge and block so that if a block of interest occurs after the

Figure 10: Two CCFG’s G′1 and G′2 are glued together at
a common LPH to make a GCCFG G.



error it will have less weight in the final GCCFG. Adding
a new edge from a program exit to a new place holder exit
doesn’t change the program as the exit block is simply a
place holder and doesn’t have any useful information inside
of it. There is no added control flow information as only
one outgoing edge is added to the program exit block. This
transformation just makes HFG graph traversal much easier
when finding blocks of interest.

4.3 Recursion and Function Pointers
Up to this point call sites have represented an edge from

one vertex to a function vertex. However, when a program
contains recursion we need to be able to represent that con-
trol has been given back to the entry point of the recursive
procedure. To continue with the trend in GCCFG of having
a unique function vertex for control to move to, would not
adequately represent the control flow contained within the
recursive procedure, or would require that we duplicate all
of this information in the graph. Therefore, we introduce
a back edge in GCCFG. Any back edge in the graph rep-
resents a recursive procedure call, where the edge starts at
the call site and ends at the recursive procedures function
vertex. It is important to note, that there is no structure in
Global CFG to handle recursive programs. The Global CFG
requires that when a function call occurs a functions CFG is
inserted in its place, and this is not possible in Global CFG.

Determining the set of functions that a pointer can point
to requires program analysis, where the most conservative
results, which run quickly, will give a much larger set than a
more accurate analysis, which will take a longer time. The
trade-off lies in choosing between accuracy and speed for
pointer analysis. GCCFG needs to be generated quickly
as a benefit to doing more data management analysis at
compile time, and needs to be succinct for those analyses.
Our technique uses the pointer analysis presented in [21],
where a less accurate model gives enough information to
determine which pointers will be equivalent at compile time
and placing the corresponding functions and their pointers
into an equivalence class. This relationship between pointers
and the functions they may point to is used to generate an
edge between the call site where the pointer exists and the
functions in the equivalence class. In GCCFG these special
edges will be represented by dotted lines.

5. EXPERIMENTS

5.1 Experimental Setup
We perform experiments to demonstrate the need, and

usefulness, of GCCFG over Global CFG. The experiments
are for code management, and stack data management op-
timizations in SMM architectures. To do that, we imple-
ment our technique to construct GCCFG in LLVM compiler.
Since a pass can only be applied on a single source code
file, we use the llvm-link utility to transfer several bitcode
files into one bitcode file. We implement a FunctionPass
in LLVM, which operates on each function of a program.
The function pass extracts control flow and loop informa-
tion from each function and stores it in a data structure.
After all the passes have finished the extracted information
is combined into a GCCFG. GCCFG nodes and edges are an-
notated with information necessary for code and stack data
management. For comparison purpose, we also implemented
the generation of Global CFG. The code and stack manage-

Figure 11: The compilation time when applying Code Map-
ping to benchmarks using GCCFG vs. Global CFG as input.

ment implementations get information about the program
from GCCFG (or Global CFG) through some functions,
like estimateInterferenceCost that can be computed using
both GCCFG and GlobalCFG. We then run LLVM passes
for code [4] and stack data management [20]. We run our
compiler on benchmarks from the Mibench suite [15] to com-
pare the compilation time.

5.2 GCCFG makes code management 5X faster
as compared to Global CFG

Figure 11 plots the time (in milliseconds) to perform code
mapping on our benchmarks using GCCFG and Global CFG.
The results show that across all the benchmarks we get a
consistent speedup of around 5X. To dig deeper in where the
benefits are coming from, we measure the average amount of
time it takes to do a single step of code management [4] for
each benchmark. Initially all the functions are mapped to
their own sections. Then in each step the functions in two
regions are merged to make one region. The two regions that
will cause the least increase in the data transfers between the
global main memory and the local SPMs must be selected for
merging. This must be done until the code space constraint
is met. In each step, the code mapping algorithm needs the
estimate of data transfers between the global main memory
and the local SPMs for a given mapping, called interference,
and that is calculated using using GCCFG (by algorithm 4)
and using Global CFG (by algorithm 5). We see that on av-
erage a single pass of code management Global CFG takes
8X longer vs. GCCFG. This is caused by the fact that on
each step of Code Management the necessary information
must be extracted from the graph before moving on to the
next step. Since Global CFG is so much larger it takes much
longer than GCCFG to extract this information.

5.3 GCCFG makes stack management 4X faster
as compared to Global CFG

Figure 12 plots the runtimes of the stack management
with GCCFG and Global CFG. In the case of stack map-
ping the algorithm runs on a reduced graph with only ver-
tices representing functions, therefore Global CFG must be
reduced at every iteration where the data structure must
be traversed. Therefore, we see an average speedup of 4X
using GCCFG over Global CFG. To dig deeper into this,
we again compute the time for each step of stack manage-
ment. For the sake of space we omit the details of the al-
gorithms for performing Stack Management using GCCFG
and Global CFG, and only present the results. However, in
a single pass of stack management, stack frames are com-
bined together into sets on a single path of execution. Then



Figure 12: The compilation time when applying Stack
Management to benchmarks using GCCFG vs. Global CFG
as input.

the set is modified slightly to determine if a different set of
stack frames will provide a more efficient execution time for
the application. On average a single pass takes 8X longer
with Global CFG than it does with GCCFG. The reason
is again because Global CFG is much bigger than GCCFG,
and Stack Management needs to extract the necessary infor-
mation from Global CFG before it can move on to the next
step.

5.4 GCCFG is succinct representation of the
program

Figure 13 plots the number of nodes in GCCFG and Global
CFG for the benchmarks. We can see that on average Global
CFG is 9X larger than GCCFG, which is due to the fact that
Global CFG has nodes that represent stops along paths that
lead to code that is not a function. Global CFG also has
nodes that represent sequential intermediate parts of a pro-
gram, while GCCFG only has nodes that represent control
flow information leading to function calls. However Global
CFG is very quick to build – almost 200X faster. That is
because to construct Global CFG we only need to connect
an edge from a function call site to a functions first basic
block. However, even GCCFGs for all the benchmarks are
built in less than a second (while code management for ex-
ample, can take tens to hundreds of seconds), so the build
time is not so important.

6. COMPLEXITY ANALYSIS OF USING GC-
CFG AND GLOBAL CFG

In this section we look at the algorithms to generate the
information required for code and stack data management,
and compare the complexity of those algorithms. That will
give us insight into how succint a representation GCCFG is.

Figure 13: The size (number of nodes) of GCCFG is about
9X less than Global CFG, for our benchmarks.

Algorithm 4: Interference GCCFG

Input: A GCCFG G = (V,E), M
Output: TotalInterference

1 foreach i ∈ Vf do
2 foreach j ∈ Vf : i 6= j ∧M [i] = M [j] do
3 if i := LCA(i, j) then
4 TotalInterference+ = Cost(i) +

Cost(FunctionsOnPath(i, j)1)

5 else if j := LCA(i, j) then
6 TotalInterference+ = Cost(j) +

Cost(FunctionsOnPath(j, i)1)

7 else
8 TotalInterference+ = Cost(LCA(i, j))

6.1 Interference calculation using GCCFG
Algorithm 4 shows how code mapping determines the total

interference of a program based on a mapping of functions to
regions [9]. Interference is the amount of data transfers that
will take place between the local SPM and the global main
memory for a given mapping. The input M is a mapping of
functions to regions. At lines 1 and 2 the algorithm iterates
over all pairs of functions in the program that are mapped
to the same region in memory. At lines 3 and 4 if function i
is the Lowest Common Ancestor (LCA) of the two functions
then the total interference will have the number of times the
function is called during execution plus the number of times
the first function on the path from i to j is called. Lines 5
and 6 do the same thing as 3 and 4 except j is the LCA of
the two functions. Finally, at line 8 if neither i or j are the
LCA of the other, the number of times the actual LCA of the
two functions is executed is added to the total interference.
The total running time of GCCFG would be O(n∗l

2
∗ n2)

⇒ O(n3), where n is the number of function vertices, and l
is the number of loop nodes in the GCCFG. Note that we
will need to traverse the height of the graph twice to find
the LCA of two given nodes.

6.2 Interference calculation using Global CFG
Algorithm 5 shows how to determine the interference cost

if we used the Global CFG. To calculate the total interfer-
ence between any two functions in a program there are two
main loops at lines 1 and 3. First we must cycle through
every basic block in the whole program until we find one i
that is a entry to or exit from a function, as this is where
a swap can occur in memory. Now we need to find another
block j that is an entry into a function, mapped to the same
region as i, and i and j are in separate functions. At line
5 we then need to do a depth first search to find the state
of the memory (active functions in memory) and compare
that to the function containing i. This means we have a
conflict that will increase the cost of the interference. Line
7 determines if both blocks are inside a loop, because this
will increase the total cost by the number of times a loop
iterates during the execution of the program. Otherwise we
only add the cost of the number of times blocks i and j are
executed to the total interference cost. The total running
time for Algorithm 5 is O(b2 ∗ b + 2L), where b is the num-
ber of basic blocks in a program, and L is the maximum
number of basic blocks in a loop. b can be approximated
as n ∗ B, where n is the number of functions in the whole
program and B is the maximum number of basic blocks in
a function. Further, in a Global CFG, if a function is called



Algorithm 5: Interference Global CFG

Input: A GlobalCFG P = (B,E) : H = (B′, E′) ⊆ P ,M
Output: TotalInterference

1 foreach i ∈ B do
2 if Entry(i) ∨Exit(i) then
3 foreach j ∈ B do
4 if Entry(j)

∧(M [H1] = M [H2] : i ∈ B′
1 ∧ j ∈ B′

2 ∧Hi 6= Hj)
then

5 MEM = {DFS(P, i)}
6 if {H1 : i ∈ B′

1} /∈MEM then
7 if LoopHead(i) := LoopHead(j) then
8 TotalInterference+ =Cost(i) +

Cost(j) ∗LoopCost

9 else
10 TotalInterference+ =Cost(i)+

Cost(j)

multiple times then it is necessary to make a copy of the
basic blocks for each call and inline those blocks into the
graph. We can represent this inline factor as c which is a
multiplication factor for how many times a function is in-
lined. Therefore the total running time for Algorithm 5 is
actually O([n ∗B ∗ c]3) compared to O(n3) for Algorithm 4.

7. SUMMARY
Since coherent caches architectures will not scale for long,

researchers are on the lookout for a new memory architecture
that can scale for hundreds and thousands of cores. Soft-
ware Managed Manycore (SMM) architectures – in which
each core has only a scratch pad memory is a promising so-
lution, since hardware are simpler, scalable and more power-
efficient. However, in SMM architectures the code and data
of the tasks must be explicitly managed in the software by
the compiler. State-of-the-art compiler techniques for SMM
architectures require inter-procedural information and anal-
ysis, and they have used GCCFG (Global Call Control Flow
Graph) for that. GCCFG is a whole program representa-
tion that captures the control-flow as well as function call
information in a succinct way. However, how to construct
GCCFG has not been shown yet. We find that there are
several commonly occurring cases where constructing GC-
CFG is not so straightforward. This paper develops graph
transformations that allow us to correctly construct GCCFG
in (almost) all cases. Our experiments show that by us-
ing succinct representation (GCCFG) rather than elaborate
representation (GlobalCFG), the compilation time of state-
of-the-art code management technique [4] can be improved
by an average of 5X, and that of stack management [20] can
be improved by an average of 4X.
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