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ABSTRACT

Prior art has primarily focused on advancing incident detection for freeways. In
contrast, incident detection on arterial roads typically occurs only at locations within
the field of view of sensors or through the aggregation of sensor data. In all of
these works, incident detection between sensors where there is no direct access to the
occurrence of incidents is not a primary focus. Additionally, most incident detection-
related implementations are either localized to the location where they are deployed
or, if implemented on a city scale, are transductive, which challenges the real-world
requirement of flexibility due to observed technical issues in the real world.

This thesis presents SIGN - a scalable deep-learning approach for classifying, local-
izing, and estimating the severity of traffic incidents occurring between intersections,
using data captured from sparse sensor placements. By representing the road network
as a dynamic graph through hidden embedding projections, it becomes inherently in-
ductive, allowing a single model trained on one network to be deployed across varied
topologies without requiring retraining. This approach explicitly models the spatial
relationships between intersections, enabling a more comprehensive and rapid anal-
ysis of traffic patterns and addressing edge-case scenarios in real-world deployments,
such as sensor failures and road closures.

Given the existing limitations in data availability, SIGN also presents a synthetic
methodology for generating microscopic data. SIGN achieves a detection rate of
99%, with a false alarm rate of less than 11%, and a mean-time-to-detect incidents
of 116 seconds on average in an urban environment with sensors at approximately
20% of traffic intersections. Additionally, the utilization of graph neural networks
enables our network to be scalable, allowing for studies related to scalable incident
detection, localization, and severity estimation. This paves the way for practical

incident management systems in dynamic urban environments.
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Chapter 1

INTRODUCTION

Traffic incidents are one of the most expensive sources of non-recurring traffic con-
gestion, and they translate ordinary stretches of road into a high-risk environment.
According to the 2023 study by the National Highway Traffic Safety Administration
(NHTSA) Blincoe et al. (2022), traffic incidents account for a staggering $1.4 tril-
lion in expenses when accounting for lost productivity, medical costs, legal expenses,
property damage, and other such socio-economic impacts. Studies of freeway service-
patrol programs show that reducing the incident occurrence to clearance time by
three to five minutes lowers the chances of a secondary incident by approximately
20% Salum et al. (2021). While the reverse scenario is that for every minute a traffic
incident remains uncleared, it increases the probability of a secondary traffic incident
by 2.8% per minute. Early detection is therefore imperative, and each one-minute
reduction in emergency response time provides an improved survival chance by up to
6% Chen et al. (2023b). Furthermore, clearing traffic incidents more quickly reduces
the probability of secondary traffic incidents by 21%.

Today, incident occurrence detection relies heavily on emergency calls, patrol
sightings, or the use of perception sensors mounted at regular intervals on freeways
or at intersections. According to the FHWA study Pecheux et al. (2023) conducted
across ten states, it was found that only 30% of the reported traffic incidents were
verified, indicating loopholes in the current system for detecting incidents. This also
implies high false-alarm rates, slower confirmation of real incidents, and skewed per-
formance metrics.

Hence, multiple research works have tried to tackle the problem of early traffic



incidents detection, such as Coursey et al. (2024), Sun et al. (2022), Yang et al.
(2023), Han et al. (2020), Chen et al. (2023a), Zhu et al. (2018), to name a few. The
research has been conducted primarily on two different types of data representations:
macroscopic and microscopic. Macroscopic data is typically an aggregation of met-
rics collected through various sensor modalities, including loop detectors, Microwave
Radar Sensors, and Passive Infrared Sensors. Microscopic data are fine-grained fea-
tures that can be extracted from sensors such as cameras, GPS Ren et al. (2024),
and Bluetooth, allowing for fine-grained modeling of driver behaviors, traffic interac-
tions, and other related phenomena. Along with the type of sensor modality, incident
detection is also dependent on the kind of road, specifically freeways, arterial roads,
and internal urban streets.

Most incident detection work has focused on freeways using microscopic sensor-
based modalities. While there have been works focused on arterial roads for incident
detection, they primarily detect incidents within the field of view of the deployed
sensors and utilize a macroscopic sensor modality, which limits the performance accu-
racy. In contrast, incidents that occur between intersections are usually not detected
or identified by sensor modalities. The macroscopic datasets make it hard to locate
incidents between intersections due to the aggregated representation of data features.

Given the vast improvements in computer vision technologies for traffic monitor-
ing at intersections, the deployment of cameras and their utility for traffic use cases
for urban roads and freeways have increased drastically. They also present the pri-
mary advantage of allowing for microscopic data to be derived from the captured
video streams, such as individual vehicle speed, vehicle locations, vehicle occupancy
on separate lanes, direction of vehicle movement, along with unique vehicle identi-
fiers. Though cameras have great feature representation, deploying them to increase

the road’s field of view coverage to 100% would be expensive. Hence, in this the-



sis, we aim to enhance the utility of data captured by microscopic sensors, such as
cameras, at traffic intersections to detect traffic incidents that have occurred between
intersections. We do so through the following contributions:

e A traffic simulation approach that generates realistic traffic flow, and allows
capturing data features similar to the ones that could be derived through cam-
eras. Our process utilizes readily available traffic count metrics provided by
verified sources, such as the Department of Transportation. It generates traf-
fic flow models that can be used to capture microscopic data through traffic

simulators, such as SUMO.

e A novel approach that allows detection, localization, and severity estimation
of traffic incidents between intersections without requiring the incident to be
within the field of the sensors. The localization determines the exact road edge

on which the incident occurs.

e An inductive graph neural network-based approach that incorporates the spatial
features through a trainable projection, allowing for inductivity of the trained
model. This allows for inference on road network topologies that contain a
higher or lower number of intersections than the number on which the model is
trained. This ensures the smooth execution of the model during scenarios such

as sensor failures and road blockages.

We generate a dataset for a region of Tempe, Arizona, encompassing 12 urban
arterial roads, classified as primary, secondary, and tertiary arterial road networks,
which cover an area of approximately 4 square miles. We simulate the data for 31
days. We observed a detection rate of 99%, a mean-time-to-detect of 116 seconds,
and a false alarm rate of 11.94%. The top-3 localization accuracy is 85.57%, and the

severity estimation accuracy is 87.77%. The model demonstrates a tested capability



to infer with a sensor sparsity ratio ranging from 82% to 93%.



Chapter 2

RELATED WORKS

Macroscopic Data Bottleneck

Most data-driven incident-detection studies utilize macroscopic datasets, such as
PEMS-Bay Cuturi (2011), I-880 Skabardonis et al. (1996), and METR-LA Li et al.
(2018). These datasets are generated using inductive-loop detectors embedded in
high-speed roadways and provide only aggregated metrics, such as mean speed, oc-
cupancy, and volume, at intervals of every five to ten minutes. Such coarse temporal
granularity smooths out the rapid fluctuations that often precede an incident. Such
aggregation also strips away vehicle-level cues (e.g., headway variance, abrupt de-
celeration, or lane-change bursts) that are highly discriminative in urban settings.
Moreover, because the sensors are almost exclusively installed on freeways, the re-
sulting data fail to represent arterial road networks where many urban crashes occur.
Consequently, models trained on these benchmarks tend to exhibit inflated false-alarm
rates and poor transferability to city streets.

To overcome these limitations, we capture data through a microscopic simulation
that provides representations at both the individual vehicle level and the individual
lane level, while allowing for generic macroscopic data representations for comparison
through possible aggregations in the simulated data. This approach to data simulation
enables us to inject the spatial and temporal details necessary for robust detection of
node and edge-level features in graph networks, while avoiding the prohibitive cost of
large-scale urban sensor deployment. This allows us to generate more realistic road

topology features during model training.



Limitations Of Existing Incident Detection And Localization Methods

Table 2.1: Summary of Incident Detection Literature and Its Presented Metrics.
SIGN Has Shown the Best Detection and False Alarm Rates for Incident Detection
in Arterial Roads.

Work Region Dataset DR FAR MTTD

Liang et al. (2022) | Highway | Macroscopic | 88.09 % | 2.80 % | 26.80 sec

Chen et al. (2023a) | Highway | Macroscopic | 99.33 % | 6.50 % NA

Han et al. (2020) Urban | Microscopic | 86.40 % | 8.69 % 61 sec

Zhu et al. (2018) Urban | Macroscopic | 86.6 % | 5.12 % NA

Yang et al. (2023) Both Macroscopic | 80 % 4.68 % | 450 sec

Atilgan et al. (2023) | Highway | Macroscopic 74 % 7.6 % 300 sec

Ours Both | Microscopic | 99 % | 11.94 % | 116 sec

Several studies have addressed incident detection on arterial roads. The Table 2.1
presents a high-level comparison between the previous works and our study. However,
upon closer analysis, we observe their limitations in terms of scalability and spatial
awareness.

Many early approaches have often relied on macroscopic data. Methods such
as Yu et al. (2015); Han et al. (2020) employed threshold-based pattern matching,
while Zhu et al. (2018) utilized a convolution-based model architecture to train on
the macroscopic data. While these studies have advanced the field, they often face
challenges such as high false alarm rates in dynamic conditions, long detection inter-
vals due to 5-minute data aggregation cycles, or a focus on freeways that does not
translate well to complex arterial networks.

Although inductive loops are deployed at intersections to capture macroscopic

data, they present the same limitations for urban incident detection. However, the



deployment of camera modules at intersections facilitated traffic analysis Yu et al.
(2021); Shah et al. (2018). However, this is limited to the field of view of the cameras.
According to the report Pecheux et al. (2023), more than 50% of traffic incidents occur
in metropolitan regions. Given that between two intersections, the cameras at the
intersections capture only about 10% to 20% of the area, incidents that occur outside
this region are not captured. Along with these, the existing research implementations
Shah et al. (2018); Yu et al. (2021); Zhu et al. (2018) focus on a fixed network

dimension, which increases the challenge of deployment as they are transductive.



Chapter 3

METHODOLOGY

Synthetic Data Simulations

Given the requirement to simulate microscopic data, we begin by utilizing a 24-
hour real-world vehicle count on the roads between the selected intersections, as
provided by the Tempe Department of Transportation, and then generate an aggre-
gation of these sparse vehicle counts. We then apply Fast Fourier Transforms Cooley
and Tukey (1965) to this aggregated value to obtain a frequency-based relation to
the traffic density on the roads. To simplify the simulation process, we consider the
top two frequency components from the decomposed FFT signal and formulate a
non-linear equation that can approximately model the average traffic behavior over

time, as represented in Equation 3.1.
f(t;0) = Ay sin(wit + ¢1) + Agsin(wat + ¢o2) + As + (3.1)

To estimate the parameters for the Equation 3.1, we employ the Levenberg-
Marquardt algorithm Levenberg (1944); Marquardt (1963). The goal is to find the
particular parameter vector § = [A1, w1, ¢1, As, wa, Pa, A3, that minimizes the squared
difference between the formulated traffic model equation 3.1 represented by f(¢; ) and

the aggregated traffic vehicle counts y(t):

min } _ [y(t:) = f(t; 0)° (3.2)

The Levenberg-Marquardt algorithm 3.4 updates the parameters by solving the lin-



earized equation:

(JTT+X)6=J"r (3.3)

where § is the parameter update, A is the damping factor, r is the residual vector
which is the difference between the ground truth and the predicted values, and J is
the Jacobian matrix of the partial derivatives of the residuals with respect to each

parameter, which can be represented as:

or;(0)
= Ny R(m) 4
Jij 0, J e (3.4)

where m is the total number of parameters and n is the total number of data points.

This allows the Levenberg-Marquardt algorithm to optimize for the best approx-
imations for the parameters that partially model the true traffic values. Figure 3.1
indicates the comparison between the final curve (orange line) obtained through the

optimized equation 3.1 and the original ground truth data.
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Figure 3.1: Comparison between the final curve (orange line) obtained through the
optimized equation 3.1 and the original ground truth data, which is the aggregated
vehicle count.

With the simulation running using the optimized 3.1 equation, traffic incidents
are injected into the simulation process according to a probability score on a pre-

defined scale. Whenever the relevant probability value is generated, a random vehicle



is selected in the running simulation, and either a stalled vehicle or a multi-vehicle
crash incident is injected. To simulate realistic traffic behavior, a slowdown radius
is enforced depending on the type of incident. Throughout the simulation execution,
data is continuously collected from select intersections, as indicated in Figure 3.2,

which presents inherent sensor sparsity in the collected data.
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Figure 3.2: Shows a Tempe, AZ region selected as the test road network map for
generating the simulations. All the points represent possible locations where sensors
can be deployed, and the red dots indicate the intersections from where the sensor
data was collected during simulation runs.

As there is sparsity in terms of collected incident data, we pre-process the data
using a multitude of methods involving a rolling window mechanism to reduce im-
pact of unscheduled vehicle stops, using vehicle re-identification to compute travel
time of vehicles between all possible combinations of two contiguous intersections,
depending on the considered intersections, resulting in additional features based on
junction mean speed, vehicle count and vehicle occupancy enriching the data for

model training, completing the entire data simulation process.
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Model Baseline Using TabNet

To start with the model training, we consider the TabnetArik and Pfister (2019)
model architecture as our baseline model, given its performance on temporal time-
series data, which partially aligns with our data. The main reason for selecting
TabNet as the baseline is due to the long-range sequences in the data (up to 2592000
seconds, equivalent to 30 days), as well as the history of performance of transformer
models. During the training, the data is processed by the transformer encoder of
TabNet, which uses an attentive transformer block, a learnable mask, and a feature
transformer block. The learnable mask is a trainable embedding that performs soft
selection of crucial features from the data, the feature transformer processes the
output from the learnable mask, and the attentive transformer learns to compute
attention scores for each feature. The overall output feature aggregation is used to
predict the results. Figure 3.3 shows the architecture of the TabNet encoder, which

is derived from its original paper Arik and Pfister (2019).

Overall output

Feature
Transformer

Feature Feature
Transformer Transformer
A
Attentive Mask Attentive Mask
Transformer Transformer
[ ] ___________________ |l e e F=——-1 1
Features )

Aggregation Aggregation

Global Feature
Attributes

Figure 3.3: Represents the TabNet model encoder. The learnable mask is a train-
able embedding that performs soft selection of crucial features from the data, the
feature transformer processes the output from the learnable mask, and the attentive
transformer learns to compute attention scores for each feature.
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For our use case of the three tasks - incident detection, localization, and severity
estimation, we employ an ensemble of three different TabNet models. Figure 3.4
shows the implementation of the training of the baseline. We begin with the processed
data, as described in the Synthetic Data Simulations section, and use it to train three
individual models for each task. However, during inference, the incident localization
and incident severity models are triggered only when the incident detection model

predicts the presence of an incident in the selected road topology network.

Feature
Extraction
Processed
Data

[ Incident Detection ]

Model
vy ¥ [ R
Incident Incident
Localization Model Severity Model
l | l
Incident Incident Severity
Localization Detection Prediction

Figure 3.4: The block diagram for the baseline model training and inference. The
raw data is pre-processed using the rolling window mechanism, as described in the
section above, Synthetic Data Simulations.

With the baseline established, we observed a few limitations: (i) the trained model
is not scalable, and (ii) the model works in a temporal aspect without considering any
spatial representational aspect of the road network topology. To address these limita-
tions, we develop a graph-based deep learning approach using graph neural networks,
which enables the final model to be inductive, consider the spatial representation of

the road network topology, and also facilitate multi-headed task prediction.
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Graph Construction And Data Preparation

The road network’s topology naturally lends itself to a graph network-based rep-
resentation. Utilizing this as the foundation of our approach, we construct a graph

network as follows.
Definition Of The Graph Network

The selected road topology network is modeled as a directed graph G = (V,E),
where V represents all the intersections as nodes with |[V| = N, N representing the
total number of nodes and E represents all directed roads between intersections as
directed edges with |E| = M, M representing the total number of edges. An edge
ew € F exists from node u € U to node v € V if vehicles can move from intersection
u to v. Given the directed nature of the graph, the reverse direction representation

is not automatically considered unless there is a corresponding edge e, present.
Feature Engineering Of The Dataset For Model Training

As the problem of incident detection is spatio-temporal, for each time step t,
the spatio-temporal attributes are assigned as node features, edge features, and the

respective set of task-specific labels as follows:

e Edge Features: A feature vector a!, € R is composed from the tabulated
dataset, and associated with the edge e,,. The feature vector comprises the
rolling mean speed, traffic occupancy, and the vehicle counts. To ensure the
data allows for inductive modeling, the feature vectors are padded to maintain a
uniform dimension K = maz(ay,, €,). Ensuring uniform feature dimensionality

allows the model to handle edges inductively.

e Inductive Node Features: To enable inductive behavior for the trained

13



model, it is crucial to generate node features on the fly, as a scalable traffic
network graph would involve a varying number of nodes. To simplify this pro-
cess, we consider the generation of a feature vector for a node v € V, denoted as
2 e RE , is computed by aggregating the features of all outgoing edges. If we
were to consider N, (v) comprises the set of all outgoing edges starting from
node v, the node feature vector can be represented as the mean of all the edge
feature vectors together:

1
) — E (t)
T = a 3.5
v J\/:)ut(v) VU ( )

Cvu ENout (U)

Figure 3.5 represents the generated graph network based on the sensor place-

ment considerations as indicated in Figure 3.2.

Figure 3.5: Representation of the generated graph with all the necessary features.
The data is generated to capture the node and edge features with a matching dimen-
sion of K. The connection between Junctions 4 and 6 is omitted as we are considering
only major arterial roads.
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e Multi-Task Labels: For each time step t, the following three labels are gen-
erated to assist in collaborative training of the three tasks - incident detection,

localization, and severity estimation.

— Detection label: ?/c(z?t € {0, 1}, which indicates the absence or occurrence

of an incident in the entire road network.

— Localization label: yl(éi € {0,1...,Cioe — 1} U{—1}, where C},. represents
the total number of roads in the road network. Additionally, to allow for

ignoring localization when there is no incident, we add the label of —1.

— Severity label: y, € {0,1..., Csep — 1} U{—1}, where C,, represents the
total number of severity classes. Additionally, to allow for ignoring severity

estimation when there is no incident, we add the label of —1.
Incident Detection, Localization, And Severity Estimation Model Design

Having constructed the graph-based representation of the traffic network, we de-
signed the SIGN model as a multi-task graph neural network (GNN) for training on
spatio-temporal graph data. Figure 3.6 presents the high-level overview of the model
architecture that is designed, and below, we will deep dive into the mathematical flow

of the model architecture.
Node Feature Projection

To ensure the network is inductive, it is crucial to learn the feature representation
of the nodes z, € V. So, we begin by projecting the raw features into a learnable
embedding.

Given a single graph data object, G®  which represents the state of the traffic

on the selected road network topology at time ¢. This single graph data object

15



( Input Graph G = (V,E) )
(X,A, Eidx)

\ 4
s )

Feature Projection Map
(MLP)

Message Passing Layers
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Figure 3.6: High-level representation of the model architecture designed for model
training. The goal of the model is to simultaneously detect if an incident is occurring,
if so, localize the road segment where the incident is located, and estimate the severity
of the incident.

contains mainly node feature matrix X € R¥*¥X and edge feature matrix A4 € RM*X,
The input node feature matrix z, € R¥ at each node v is transformed into a hidden
embedding representation as a learnable embedding. This is carried out with a simple

MLP block, resulting in a hidden embedding h(®:
h1()0) = ReLU (Wipnitxy + binit) € [Rhidden-dim (3.6)

As the same projection can be applied to new graphs with the same number of

features, this process makes the model inductive. Also, it enables it to learn a richer

16



representation of the traffic state at each intersection.
Message Passing

As per our implemented road graph network definition (3), the graph edges have
essential information required to understand the traffic patterns, making it crucial
to make the message passing mechanism the primary feature. Hence, we employ L
message-passing layers (or graph convolutional layers) to transform node information
based on the node and edge attributes. The node embedding features are updated

I+1)

from layer A() to layer A as follows:

e Message Creation: The message creation occurs through a dedicated MLP block
that processes the edge features a,, from node u to node v, resulting in a unique

transformation matrix M) for each edge:

MY = reshape (MLPe(é)ge (auv)> (3.7)

e Message Aggregation: Once the message matrices are computed for all edges,
each node v aggregates the messages coming from its neighbors as follows. For
all the immediate incoming neighbors of node uin/N (v), we take u’s current
embedding AP and transform it by the message matrix: MY - BP. This yields
the contribution of neighbor u to v’s new state. We then aggregate all such

contributions by taking the mean over u € N (v).

e Node State Updation: After the node’s aggregates their embeddings, the up-

dated nodes are propagated to the next layer through:

hitt = ReLU (Wf(l))othff) + mean (M) - hi”)) (3.8)
Ue,

(v)

17



Graph Pooling And Output Heads

Relation between individual node embeddings is carried out by converting the
final message passing layer embedding H € RVxhidden-dim into an aggregated single

graph-level embedding, g.
g = Set2Set(H) € Rhidden-dim=2 (3.9)

The Set2Set pooling operation Liu et al. (2022) aggregates information from all
nodes into a fixed-length vector through a learnable attention mechanism, allowing
the model to adaptively focus on the most relevant nodes when generating the graph-
level embedding.

The final graph embedding g, which is a learned representation of the entire traffic
graph at time ¢, is fed into three independent parallel prediction heads to determine
the incident detection, localization, and severity estimation outputs, utilizing MLP

blocks as shown below.

e Detection prediction: The detection prediction head z4; = MLPu(g) € R

predicts whether an incident is occurring using

e Localization prediction: The localization prediction head z,. = MLP,.(g) €
RCec is trained to determine the particular road segment where the incident

could be occurring.

e Severity prediction: The severity prediction head zs,, = MLPse,(g) € R%e

predicts the severity of the incident that has occurred.
Training Objective and Hybrid Loss Function

Given the objective of multi-task classification, we defined a loss function for

the three prediction tasks: incident detection, localization, and severity estimation.

18



Additionally, we introduce an auxiliary cost function, a traffic flow conservation reg-
ularization term, during training. This regularization term operates on the principle
of traffic flow conservation, inspired by Greenshield’s Fundamental Diagram Kesting
and Treiber (2013) from traffic flow theory. The Greenshield’s fundamental diagram

states that the mean speed of vehicles reduces with an increase in the density of cars.

Message Passing Layers
(L X NNConv)

Node Speed
Predictions

Speed to Density
Conversion
Density to Flow
Conversion
Edge Flow
Computation

Aggregated Incoming Aggregated Outgoing
Flows Flows

Figure 3.7: Computation of Traffic Flow Conservation Loss during the training
process, which takes the graph’s node-level predictions and computes the loss to fine-
tune the network training to consider traffic flow conservation, allowing enhanced
training.

Figure 3.7 illustrates the computation flow for considering the traffic flow conser-

vation loss. We formulate the Fundamental Flow Diagram, derived from Greenshild’s

algorithm, as q(p) = s(p) - p. The speed at a given occupancy is defined as:

() = Smas (1 _r ) (3.10)

pmax

where s is the speed, p is occupancy, and q is the traffic flow. We can derive the vehicle

OCCUpancy as p = Pmaz (1 - > From the computed occupancy, we determine the
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edge-level traffic flow. Then, for each node, we calculate the difference between the
total incoming and outgoing flow, as well as the flow between intersections, based on

the configured intersection sensor pairs using the equation 3.11.

L= Y 0w Y a (3.11)

1€V |§E€EN;L () kENout (3)
We use this traffic flow conservation loss function as a regularization parameter,
as illustrated in Equation 3.12, with a weight, allowing for control over the impact of

this loss computation during model training.

£t0ta1 = £supervised + /\ﬂow['ﬂow (312)

where Esupervised = 'Cdet + )\loc»cloc + >\sev£sev-
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Chapter 4

EXPERIMENTS

Dataset Simulation And Preprocessing

For the dataset simulation, we generate an OpenStreetMap simulation configura-
tion for the road network of interest and simulate the dataset for thirty consecutive
days. We preprocess the dataset with three rolling window variations: 300, 600, and
900 seconds. The observed baseline F1-scores for the model developed using TabNet
are 93.12%, 96%, and 96%, respectively. Given the observed scores, we choose a

window size of 600 seconds for all our experiments.
Model Training And Evaluation Considerations

We trained the TabNet and the custom GNN architecture, SIGN, on an NVIDIA

A6000 GPU, and the hyperparameters set for the experiments are listed in Tables 4.1

and 4.2.
Table 4.1: Model Training Hyperparameters For TabNet.
Hyper-parameters Value
Prediction Layer Dimension 64
Attention Embedding Dimension 64
Optimizer Momentum 0.3
Optimizer Adam
Learning Rate 0.02
Epochs 80
Loss Function Cross Entropy
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Table 4.2: Model Training Hyperparameters For SIGN.

Hyper-parameters Value
Number of message passing layers 5
Hidden embedding dimension 32
Initial number of junctions 8
Optimizer Adam
Scheduler StepLR
Learning Rate 0.001
Epochs 100
Loss Function Hybrid Loss
Detection Loss Weight 1.0
Localization Loss Weight 0.5
Severity Loss Weight 0.25
Traffic Flow Regularization Weight 0.1

The Table 4.3 presents the different metrics used to verify the quality of the model
training, focusing on three standard metrics - Detection Rate (DR), Mean Time to
Detect (MTTD), and False Alarm Rate (FAR) - to evaluate the model performance

on incident-related tasks.

Table 4.3: Traffic Incident Detection Metrics and Their Definitions Based on Confu-
sion Matrix, Where TP = True Positives, TN = True Negatives, FP = False Positives,
FN = False Negatives.

Metrics Definition
DR (Detection Rate) TPTJF%
FAR (False Alarm Rate) FPZ%
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Chapter 5

RESULTS

SIGN Detects Traffic Incidents Better In Arterial Roads

We train the best-performing model, as per the related work Zhu et al. (2018), to
compare how their approach performs against our approach of data simulation and
model inference. Our evaluation results are presented in Table 5.1.

Table 5.1: Performance Comparison Between The Previous State-Of-The-Art Model
And Our Baseline Using TabNet.

Algorithm DR|MTTD| FAR

Zhu et al. (2018) |51%|471 secs|35.42%

TabNet (Baseline) |98%/197 secs| 6.26%

We observe that our baseline approach, implemented using TabNet, is more ac-
curate than the previous state-of-the-art approach proposed by Zhu et al. (2018) for
incident detection on arterial roads. We observe that our detection rate is almost
1.9x better, the mean-time-to-detect is almost 2.4x better, and the false alarm rate

is reduced by nearly 85%.

SIGN Can Infer On Varying Road Network Topologies Without Requiring

Retraining

Table 5.2 illustrates the performance comparison between the trained inductive
GNN, which is trained only once for a road topology of 8 junctions, and the trans-
ductive TabNet baseline model that is trained from scratch for all the road network

topologies ranging from 3 junctions to 8 junctions.
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Table 5.2: Comparison Of Incident Detection, Top-3 Localization, And Severity
Estimation Between Transductive And Inductive Approaches Obtained Using TabNet
and GNN-based Models Respectively.

Nodes | Model | Re-training? | DR | Top-3 | Severity | FAR | MTTD
GNN Yes (Once) | 100% | 85.57% | 87.77% | 11.94% | 116 secs

8 Node
TabNet Yes 98% | 78.15% | T79.69% | 6.26% | 197 secs
GNN No 99% | 68.45% | 85.23% 15.15% | 143 secs

7 Node
TabNet Yes 97% | 77.07% | T7.19% 7.12% | 199 secs
GNN No 96% | 58.31% | 84.07% 14.12% | 168 secs

6 Node
TabNet Yes 97% | 75.27% | 76.34% | 8.24% | 200 secs
GNN No 95% | 45.26% | 82.24% | 17.85% | 173 secs

5 Node
TabNet Yes 95% | 73.65% | 74.51% | 8.95% | 236 secs
GNN No 96% | 48.34% | 83.53% 18.08% | 175 secs

4 Node
TabNet Yes 92% | 67.65% | 72.18% | 11.28% | 286 secs
GNN No 99% | 32.43% | 73.67% | 36.59% | 178 secs

3 Node
TabNet Yes 90% | 62.12% | 72.15% | 11.57% | 314 secs

The performance of the inductive GNN model is observed to be superior with
inevitable trade-offs. In terms of incident detection accuracy, the inductive model
achieved a near-perfect detection rate for all nodes, ranging from 95% to 99%. Addi-
tionally, considering the spatial representation of the graph network, the mean-time-
to-detect improved by approximately 50%, promoting faster first responder response
times. However, a dip in localization accuracy is observed due to the behavioral
difference of the model architecture. TabNet combines all road segments that were
separate in an 8-intersection road network. When the number of intersections to con-
sider is reduced, the inductive model maintains the total number of nodes constant,
irrespective of the reduction in the number of intersections.

These results also prove the sparse sensor handling capability of our approach.
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This provides an added benefit when considering real-world deployment scenarios.

Our inductive model will not fail in scenarios such as sensor failures or road closures.
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Chapter 6

CONCLUSION

This thesis set out to address three main limitations in existing work related to
incident detection management. First, the research community lacked access to either
a real-world or simulated microscopic dataset for detecting incidents at intersections.
We addressed this by building a SUMO-based simulation framework. The resulting
simulation framework now provides an open-source, reproducible source of a micro-
scopic data simulator, explicitly tailored to the intersection incident analysis.

Second, no approach previously allowed us to detect, localize, and estimate the
severity of traffic incidents between intersections. Our results now demonstrate the
capability of our approach to do this. We have shown that our approach enables our
trained model to operate in multiple network modes within a single model. This also
highlights the inductive nature of our graph neural network model. This was achieved
by representing the road network as a dynamic graph and generating inductive node
features, which enabled SIGN to decouple the model from the network’s structure
successfully.

This thesis represents a significant step toward developing truly scalable and ef-
ficient incident management systems for complex urban environments. We plan to
focus our future work on scaling up the dataset to city-scale from sub-city scales by
exploring more advanced model architectures and physics-informed machine learn-
ing approaches. Future work should focus on validating this framework on larger,
real-world datasets and exploring more advanced GNN architectures and physics con-

straints.
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