
Branch-Aware Loop Mapping on CGRAs

Mahdi Hamzeh, Aviral Shrivastava, and Sarma Vrudhula
School of Computing, Informatics, and Decision Systems Engineering

Arizona State University, Tempe, AZ
{mahdi, aviral.shrivastava, vrudhula}@asu.edu

ABSTRACT
One of the challenges that all accelerators face, is to execute loops
that have if-then-else constructs. There are three ways to accelerate
loops with an if-then-else construct on a Coarse-grained reconfig-
urable architecture (CGRA): full predication, partial predication,
and dual-issue scheme. In comparison with the other schemes,
dual-issue scheme may achieve the best performance, but it re-
quires compiler support – which does not exist. In this paper,
we develop compiler techniques to map loops with conditionals on
CGRA for the dual-issue scheme. Our experiments show: i) 40%
of loops that can be accelerated on CGRA have conditionals, ii)
The proposed dual-issue scheme enables our compiler to acceler-
ate loops 40% faster than full predication scheme proposed in [12],
and iii) Our compiler assisted dual issue scheme can exploit richer
interconnects, if present.

Categories and Subject Descriptors
C.3 [SPECIAL-PURPOSE AND APPLICATION-BASED SYS-
TEMS]: [Real-time and embedded systems]; D.3.4 [Processors]:
[Code generation, Compilers, Optimization]

General Terms
Algorithms, Design, Performance

Keywords
Coarse-Grained Reconfigurable Architectures, Compilation, Mod-
ulo Scheduling

1. INTRODUCTION
Accelerators have become an indispensable technology for im-

proving the performance and power-efficiency of computation be-
yond what can be achieved by general-purpose processors. Ac-
celeration is a scheme in which some specific kind of computa-
tion can be done faster and in lower power with the use of spe-
cial hardware (and maybe software). Although special purpose or

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC’14, June 01 - 05 2014, San Francisco, CA, USA
Copyright 2014 ACM ACM 978-1-4503-2730-5/14/06 $15.00.

Figure 1: A 4 × 4 CGRA. PEs are connected in a 2-D mesh. A PE is
essentially an ALU plus a local register file. It can receive inputs from
neighboring PEs output and data bus. An instruction from instruction bus
is issued to each PE every cycle, and then PE operates on the data.

function specific hardware accelerators (e.g. hardware implemen-
tation of FFT) are the best in terms of power-efficiency and perfor-
mance, they are not programmable, and therefore have limited use.
FPGAs (Field Programmable Gate Arrays) allow the flexibility to
change the implementation, but their power-consumption is quite
high. GP-GPUs (General-purpose graphics processing units) have
become very popular recently, since they are relatively easy to pro-
gram, and can greatly improve performance and power-efficiency
of “parallel loops.” They can accelerate only parallel loops be-
cause their primary method of acceleration is by executing all the
iterations of the loop simultaneously. Executing the iterations of
non-parallel loops simultaneously can lead to wrong results or sig-
nificant performance loss.

Coarse-Grain Reconfigurable Architecture or CGRA is a promis-
ing acceleration technology that is not marred by this limitation. A
CGRA is simply a network of PEs, with each PE equipped with
an ALU and a small register file (see Figure 1). The PEs are con-
nected to neighboring PEs, and the output of a PE is accessible to its
neighbors in the next cycle. In every cycle, instructions are issued
to each PE, and a row of PEs can access data memory through a
common data bus. In contrast to FPGAs, which are programmable
at the bit level, CGRAs are programmable at a higher granularity –
at the level of arithmetic operations. A CGRA accelerates loops
using both “pipelining” (as shown in Figure 2) and “executing loop
iterations simultaneously” – therefore it can accelerate both parallel
and non-parallel loops.

One of the major challenges associated with all methods of ac-
celeration is the acceleration of loops that have if-then-else (ITE)
constructs. The fundamental problem is that since the result of
the branch is not known before runtime, accelerators use predica-
tion to execute the conditional constructs. Hardware accelerators

Figure 2: The mapping of a loop kernel on a CGRA. (a) shows an abstract
diagram of 2 × 2 CGRA. (b) shows the linearized form the CGRA. (c) is
the data flow graph (DFG) of the loop that we wish to map on the CGRA.
(d) shows the mapping of this loop on the CGRA. Note that the mapping
is done by pipelining the operations. Also note that the schedule length of
the mapping is 4, but the II (Initiation Interval) is 2, since the operations
of the next iteration can be started 2 cycles after the start of the current
iteration.Therefore the metric of performance is II (lower is better), rather
than schedule length.

and FPGAs will execute both the paths of an ITE in parallel, and
then choose the results of the taken path. This results in wasted
resources and power. GP-GPUs also schedule the instructions in
both paths of the ITE, but at the runtime, do not issue the instruc-
tions for the not-taken path. This saves power, but the cycles and
resources are still wasted. In the graphics processing community,
this is referred to as the problem of “branch divergence.”

This paper deals with the problem of efficiently executing ITEs
on a CGRA. Fundamentally, there are three ways to accelerate
loops with an ITE construct on a CGRA. First is full predication
- in which operations producing the same output are mapped to
the same PE, but at different times. Second is partial predication -
in which there is one extra select operation which can be used to
merge the values produced in different branches. Third is a dual-
issue architecture in which two instructions (one from each side of
the ITE) are issued to the PE, and the operation to be executed is
chosen at runtime by the PE.

Even though the dual-issue CGRA architecture has the poten-
tial to achieve the best performance, full predication and partial
predication schemes are more common, since executing loops on
dual-issue architecture requires compiler support – and none ex-
ists. Specifically, a compiler is needed to merge operations from
either branches to be executed on a PE. How operation pairing is
performed not only affects the correctness, but also has a signifi-
cant impact on the resulting performance. In this paper, we formu-
late and solve the problem of merging operations from the branches
to maximize performance. Our results on accelerating loops from
various applications from SPEC2006 and digital signal processing
benchmark suite demonstrate four significant outcomes. First, it
is important to support the acceleration of loops with conditionals.
We find that among our benchmarks, more than 40% of the loops
that could be accelerated on a CGRA have some form of condi-
tional inside the loop body. Second, our compiler assisted dual-
issue scheme can accelerate loops 20% faster than partial predica-
tion, and 29% faster than full predication, and 40% faster than the
state-of-the-art [12] method. Third, if we add diagonal intercon-
nects in the CGRA, then the acceleration potential of our compiler-
assisted dual-issue scheme improves by about 7%. Fourth, after
carrying out synthesis and layout of the dual-issue CGRA, we find
that the dual-issue architecture only adds 4.7% area and power

Figure 3: (a) shows a loop body with an ITE. Using partial predication,
the loop is transformed to (b). The output e, that is calculated in both the
paths is combined using the select operation. If there were outputs that were
updated in only one path, we would still need a select operation to choose
between the old value and the new one; the new one should be selected only
if the path in which the new one is computed is taken. (c) Shows the DFG
of the transformed code, and (d) shows the mapping of the DFG on a 2× 2
CGRA. Note that the II achieved is 3 cycles.

overhead to the CGRA and about 5.5% frequency penalty over the
CGRA with a predication network. This is more than overcome by
the significant performs gains we get by better mapping.

2. BACKGROUND AND RELATED WORK
Supporting acceleration of loops with conditionals is important,

since many performance-critical loops have ITE constructs in them;
ignoring them can greatly reduce the effectiveness of the accelera-
tion architecture. The basic way to support conditionals in accel-
erators is through predication. Supporting predication on CGRAs
requires a predicate network. As shown in Figure 1, the predicate
network consists of predicate inputs from the neighbors, a predi-
cate output, and a small predicate register file. The result of the
conditional executed on a PE is propagated to the PEs on which
operations of the if-part and the operations of the else-part are exe-
cuted through the predicate network. Most CGRAs implement the
hardware of the predicate network [4, 6, 13]. There are three basic
ways to support acceleration of conditionals on CGRAs.

2.1 Partial Predication
In partial predication, the operations of both the if-part and the

else-part are mapped on different PEs. If the same variable is be-
ing updated in both the if-part and the else-part, the final result is
computed by selecting the output from the path that must have been
executed based on the evaluation of the branch condition. This is
achieved through a special operation, called select or a conditional
move, which takes in the result of the branch condition (through
predicate network), and the two outputs to select the correct one.
If a variable is updated in only one path, a select operation is still
required to choose between the old value (before the ITE, or even
the value from previous iteration(s)) and the new value. The new
value is valid only if the path of the branch in which the new value
is computed should have been executed. Architectural support and
the idea of partial predication was presented in [11].

Figure 3(b) shows the partial predication transformation of the
loop body in figure 3(a). In this scheme, new variables for opera-
tions in ITE paths are introduced. Therefore, operations at line 5
and 6 in Figure 3(b) can be executed independently. At the end,
predicate (h) chooses the final value of (e). The select instruction
is necessary to support partial predication transformation. Figure
3(c) is the DFG generated from partial predication transformation
and 3(d) shows the mapping of this loop to a 2×2 CGRA. II in this
mapping is 3 and is the minimum possible for this transformation.

To map an ITE that has “n” operations on each path, the num-
ber of operation nodes for partial predication is, in the worst case,
3n. This is because all the operations from both paths must be
mapped (2n), as well as the select operations (n). A select opera-
tion is needed for each output that will be needed in the rest of the

Figure 4: (a) shows the transformed code using full predication scheme.
There is no select operation, but operations at line 5 and 6 that compute the
variable “e” have to be mapped to the same PE. If there was some variable
that was updated in only one path, then the operation computing that vari-
able must be mapped to the PE that previously computed the variable. Note
that in addition to the DFG, there are placement constraints that must be
met for a legitimate mapping for full predication. (b) shows the DFG of the
transformed loop. and (c) shows the mapping of the loop on a 2×2 CGRA.

program. The select operation may not be required for intermediate
outputs. In the worst case, all the 2n outputs will be used in the rest
of the program, and therefore n select operations will be required.
This increases the II and results in a loss of performance.

2.2 Full Predication
Full predication does not require a select operation. Instead, the

operations that update the same variable are mapped to the same
PE, albeit at different times. Since only one of the operations will
be executed at runtime (and the other will be squashed), the correct
value of the output is present in the PE after the maximum time.
If an output is computed in only one path of the ITE, then the out-
put must be computed on the PE that previously updated the same
variable. This is done so that after ITE, for each variable there is
a unique PE, that has its value and therefore no select operation is
needed. The idea of full predication was presented in [12].

Consider the body of a loop shown in figure 3(a). The result of
full predication transformation is presented in figure 4(a). Opera-
tions at line 5 and 7 in the original snippet of the code are guarded
by (h) in figure 4(a) at line 5 and 6. Operation at line 4, uses vari-
able (e) that is updated in the previous iteration. To make sure
that variable (e) gets updated properly, operations at line 5 and 6
must be mapped to the same PE where variable (e) is kept. Figure
4(c) presents the best mapping of this loop after full predication
transformation. The best II achieved for full predication is 4. If
we have to map only an ITE that has n operations on either path,
then the number of operation nodes for full predication DFG in the
worst case is 2n, but there are placement constraints for each of 2n
nodes. The tight constraints on the operation placement are very
restrictive, and severely degrade the performance.

2.3 Dual-Issue
This scheme alleviates the problem of accelerating conditionals

by issuing two instructions to a PE simultaneously, one from the
if-path, and one from the else-path. Depending on the result of
the conditional operation, only one of them is executed at runtime.
This method also does not require select operation. The idea of
dual-issue scheme was presented recently in [11].

Figure 5(a) shows the DFG after partial predication transforma-
tion. The nodes on either side of the DFG are merged to make a
packed node. Packed node represents dual-issue operations. Oper-
ation (e) represented by a hexagonal shape node is a packed node.
The adjacency of nodes are preserved after this transformation.
Figure 5(b) shows the DFG after the packing transformation. Fig-
ure 5(c) shows the mapping after this transformation to a 2 × 2
CGRA. II of this mapping is 2 and is the minimum possible. If we
have to map only an ITE that has n operations on either path, then

Figure 5: (a) shows the DFG with partial predication transformation. The
operations from the two sides of the branch are merged to form packed
nodes (packed nodes represent a pair of nodes executed in a dual-issue PE).
(b) shows the DFG after the packing transformation. (c) shows the mapping
of the transformed DFG on a 2× 2 CGRA. II of 2 is achieved.

the number of operation nodes for dual-issue DFG in the worst case
is n. Plus there are no placement constraints. Therefore, we believe
dual-issue may be the best solution to accelerate conditional loops.

3. CONTEXT AND CONTRIBUTION OF THIS
PAPER

Although the dual-issue scheme promises the best performance,
partial and full predication seem to be more common in CGRAs.
The reason is that the traditional schemes of full and partial predica-
tion do not require much change in the compiler. However, the new
scheme of dual-issue requires extensive compiler support. This is
because supporting partial predication requires generation of select
operations, which is a well studied compiler topic. In fact it is a
part of Single Static Assignment (SSA) transform that is present in
most compilers, and the select or conditional move operations are
constructed in the phi elimination pass. Once the DFG with select
operations is generated, existing CGRA scheduling and mapping
techniques (e.g., [1, 2, 5, 7, 8, 9, 10, 14, 15, 18, 20, 21]) designed
to map non-conditional loops on CGRA, can also be used. Support-
ing full predication is also relatively straightforward, since the DFG
remains the same. The only new aspect is placement constraints on
the operations, which only means that as soon as an output of an op-
erations is mapped, the mapping of the second operation updating
that output is also fixed.

On the other hand, for a dual-issue architecture, compiler sup-
port is needed to pack operations from both paths of a branch into
a packed node. How we do operation pairing not only affects the
correctness, but also has a significant impact on the resulting per-
formance. In this paper, we formulate the conditions for legitimate
packing, and also formulate the problem of performance optimiza-
tion by packing, and then solve the problem to achieve efficient
mapping for a dual-issue architecture.

Supporting execution of conditional loops in CGRAs has not re-
ceived much attention in the research community. The only com-
piler technique we have seen is a form of full predication, pre-
sented in [12]. In this scheme, operations within body of an if-
then-statement are mapped to the same PE. We believe that this is
too restrictive, and it will cause significant performance loss be-
cause other PEs will not be utilized. It is important to note that the
performance is proportional to PE utilization.

4. PROPOSED APPROACH
In this section, we present our mapping framework, BRMap.

BRMap starts with a given control flow graph (CFG) of a loop.
BRMap enables user to choose between full predication, partial
predication, and dual issue transformations to be conducted. Based
on selected transformation, BRMap constructs a DFG from the in-
put CFG. At the end, BRMap calls REGIMap [10] to complete the
mapping.

Figure 6: (a) shows the input DFG. The first candidate to form a packed
node is select instruction e and its inputs. (b) select node and its inputs are
replaced with a new packed node. Nodes i and j are the best pair to form
next packed node. Nodes k and m cannot be reduced because m is used
as an input to instruction c that is not within the loop body. (c) shows the
minimized DFG. The number of nodes in the final DFG is reduced by three.

Step 1: DFG Construction. BRMap constructs a DFG from the
CFG of a loop first. There are standard schemes to construct hyper-
blocks from multiple basic blocks of a CFG using full-predication
and partial-predication transformations [19]. DFG constructed from
full-predication transformation can be directly fed to the underly-
ing CGRA mapping algorithm. However, it is necessary to ensure
that all instructions updating same variable are to be mapped on the
same physical PE.

DFG constructed after partial-predication transformation requires
minimal change in the mapping algorithm. REGIMap only allo-
cates registers for nodes on PEs. We enhance REGIMap to allocate
registers at PEs and predication network using the same technique.

Algorithm 1: Minimize(Input D)

1 begin
2 while |M | increasing do
3 while |C| increasing do
4 for All instructions o in D do
5 So ← successors of o;
6 if So = So ∩M or o is a select then
7 C ← C ∪ {o};

8 ASAP_Schedule D;
9 ALAP_Schedule D;

10 for All instructions o in C do
11 if o is a select instruction then
12 Ioi ← if-path input of o ;
13 Ioe ← else-path input of o ;
14 if o is only successor of Ioi and Ioe then
15 Pack o, Ioi , and Ioe into P o ;
16 M ←M ∪ {P o} ;

17 else
18 S ← (if-path× else-path) inputs of o;
19 Sort S by cost of each pair;
20 if the best cost is positive then
21 Replace selected pair with P o ;
22 M ←M ∪ {P o};

Dual-issue scheme starts from a partial predicated DFG. DFG
is scheduled first and MII = Max(ResMII,RecMII) is ex-
tracted using EPIMap algorithm [9]. Before conducting any DFG
minimization, we determine whether minimizing DFG by forming

packed instructions would benefit the performance of a mapping
or not. BRMap conducts DFG minimization only if there is a per-
formance benefit to do so. In some DFGs, reducing the number
of nodes may not benefit the performance at all. The reason is
that, mapping II in some loops is limited by RecMII rather than
ResMII . Although packing pairs of instructions decreases the to-
tal number of nodes in a DFG, it does not affect RecMII at all.
It is because reducing the number of nodes through packing does
not alter the latency of any path. Therefore, such loops would not
benefit from reducing the number of operations because their per-
formance is limited by latency of critical cycles [22]. The second
reason is that even if the number of nodes in a DFG is reduced, the
number of reduced nodes can be insufficient to decrease II . Given
a DFG I = (VI , EI) and an M×N CGRA, ResMII = d |VI |

M×N
e.

If removing few nodes from DFG does not alter ResMII (because
of the non-linear relation between |VI | and MII), packing is un-
likely to benefit performance. In this case, BRMap conducts a pre-
liminary mapping first. If the underlying CGRA mapping algo-
rithm finds a mapping with an II > MII , only then BRMap starts
packing instructions to reduce the number of operations in DFG.
When CGRA mapping algorithms fail to find a mapping for a given
II , extra nodes (in form of routing and/or recomputing nodes) are
added to the DFG [9]. Those extra nodes relax data dependencies
between instructions whose data dependencies could not be satis-
fied in a mapping. However, increasing the number of nodes in a
DFG gradually increases ResMII and consequently MII (note
that it is non-linear relation). For such cases, reduction in the num-
ber of nodes through packing instructions provides further flexibil-
ity to the mapping algorithm to add routing and recomputing nodes
when a mapping failure occurs.

Step 2: Packing Pair of Nodes. The minimization algorithm is
presented in Algorithm 1. To conduct DFG minimization, BRMap
first schedules the operations. Scheduling determines a partial or-
der for nodes to execute. This order is essential to form dual-issue
instructions. If nodes are packed without respecting the partial or-
der of operations in a DFG, it is possible to transform the input
DFG to the one for which no feasible schedule exists. Thus, it is
crucial to respect partial orders of instruction and pack them care-
fully. Consider the following paths in a DFG. P1 = (i1, i2, s) and
P2 = (i3, i4, s) and P3 = (i5, s). i5 is the predicate Boolean
input and s is a select instruction. If pairs C1 = (i1, i4) and
C2 = (i2, i3) are chosen, there is no feasible schedule for the
transformed DFG. It is because i1 must be scheduled after i2 which
implies C1 < C2. However, i3 must be scheduled before i4 which
implies C2 < C1. Thus, no feasible order for C1 and C2 exists.

To respect partial order of operations, BRMap starts from a se-
lect instruction. Each select instruction has three inputs: an input
from if-path of an ITE construct, another input from else-path, and
a Boolean input to choose among former two. A select instruction
along with two inputs from if-path and else-path are the first can-
didates to form a packed node. The necessary condition to form
a packed node is that the schedule window (tALAP − tASAP , i.e.
time between ASAP schedule till ALAP schedule) of the pair over-
laps. Please note that if only one of those operations are to be
executed at run-time, there is no need to have a select operation.

In Figure 6(a), select instruction e and its inputs are packed to
form a new node. The transformed DFG is shown in Figure 6(b)
where three nodes are merged.

Next, BRMap finds the set of input nodes to the packed nodes.
Similar to select instruction, there are inputs from if-path and else-
path of an ITE constructs to those packed nodes. However, the
number of inputs of packed nodes may vary. This is different from
select instruction where the number of inputs is always three. At

0%

20%

40%

60%

80%

Precentage of Conditional Loops

Figure 7: It is important to support loops with conditional constructs. Many important loops have at least one conditional clause in their body.

this step, we need to ensure that for any pair of instructions we
choose, there is an instruction from if-path and one from else-path.
For instance, in Figure 6(b), j and k cannot form a pack because
they both are within the if-path. If there are many possible pairs,
BRMap attempts to pack a pair that it is easier to place at the map-
ping step. Let Ia be the set of inputs of node a. Consider two
candidate nodes to form a packed node (a, b). BRMap finds the in-
tersection of Ia and Ib. It also finds the overlap in schedule window
of a and b. BRMap finds a pair with the maximum intersection and
overlap in schedule windows. BRMap packs any pair of nodes that
is possible to pack in a greedy manner (O(n2)). In Figure 6(b),
nodes i and j in this DFG are packed next. They share input b
and they are scheduled at the same cycle. The minimized DFG is
shown in Figure 6(c). Nodes m and k cannot be packed because
node c is not within an ITE construct and there is an arc from m
to c. A packed node from a pair of nodes with common inputs is
easier to map. For a packed node, the number of dependencies that
must be satisfied to find a valid mapping is usually higher than a
regular node. When a pair of nodes forming a packed node share
an input, the number of dependent nodes that should be placed in
neighbering PEs decreases. Therefore, it is easier to place such
packs compare with the one without any common input. BRMap
iteratively finds pairs of nodes to form packed nodes until no further
pair can be found (O(n3)).

Step 3: Mapping Transformed DFG onto CGRA. The number
of data dependencies after forming packed nodes makes mapping
of DFG significantly more challenging than a regular DFG. Thus,
it is important to use a constructive CGRA mapping technique.
REGIMap is a constructive CGRA mapping algorithm which ef-
ficiently utilized resources on CGRA. After DFG minimization,
BRMap calls REGIMap [10] to find a valid mapping of DFG on
CGRA. We modified REGIMap to allocate registers both in PEs
register files and predication network.

5. EXPERIMENTAL RESULTS
We have integrated our compiler technique as a separate pass in

the llvm compiler framework [17]. We have modeled CGRA as an
accelerator in Gem5 system simulation framework [3]. Loops that
are important for performance are selected from SPEC2006 [16]
and digital signal processing applications. We conduct our exper-
iments to explore the performance of the various architectural and
compiler techniques for handling conditionals in CGRA. We map
the loops on a 4 × 4 CGRA with sufficient instruction memory to
hold all instructions within a loop body as well as sufficient data
memory space to hold all the variables. Latency of all operations
are assumed only one cycle. Load and store operations requires two
CGRA operations, one for address bus transaction and the other for
data bus transaction. The bus is shared among all PEs within a row;
in other words, only one memory transaction can proceed at any cy-
cle in a row. We conduct our experiments on mesh-interconnected
CGRA and then we enrich interconnection further with diagonal

connections between PEs.

5.1 Need for supporting Conditionals in Loops
Our first evaluation demonstrates the importance of supporting

conditions within loops. If conditional constructs are not supported,
many performance-significant loops cannot be accelerated on CGRAs.
As shown in Figure 7, about 40% of loops that can be executed on
CGRA have at least one ITE construct within the body of the loop.
Here, the condition we are referring to is different from the main
loop condition which controls the number of times a loop would be
executed. We are referring to an ITE construct in the loop. This
plot is constructed at -O3 optimization in llvm.

5.2 Dual-issue architecture with our compiler
technique outperforms all other forms to
handle conditionals

Next we compare different techniques to accelerate loops with
conditionals, namely: full predication approach presented in [12],
full predication, partial predication, and our approach for dual-
issue. Figure 8 plots the achieved II of the loops by different
schemes. The bars on the right corner show the average II achieved
over all the loops by the techniques. Figure shows that the dual-
issue approach leads to the best acceleration (least II) among all
the techniques. The full predication approach presented in [12]
performs the worst, since it is highly restrictive – all the instruc-
tions inside the conditionals have to be mapped to the same PE –
this results in long schedule length, and long II . Our approach
for full predication performs better, primarily because it is less re-
strictive. The restriction is that the operations in different branches
that are generating the same output must be mapped to the same
PE. Partial predication performs better than both of these, since it
does not add restrictions in mapping, only adds more nodes to the
graph. However, dual-issue scheme performs best, since it neither
adds restrictions, nor extra nodes in the graph. Overall dual-issue
architecture can improve II by almost 42% as compared to the full
predication scheme proposed in [12].

5.3 Performance advantage of dual-issue ap-
proach scales with interconnect network

As interconnection is enriched with diagonal connections, the
full predication scheme presented in [12] does not improve consid-
erably (only about 0.7% on average). This is because this technique
constrains ITE constructs to be executed sequentially, and does not
benefit from either more PEs nor richer interconnect between PEs.
Full predication gains the most performance benefit from diago-
nal connections, (about 7% on average). This is because many in-
structions in this scheme requires three dependencies to be satisfied
in mapping. Because of the high data dependency between oper-
ations, it is more likely that all dependencies cannot be satisfied
in mapping in a mesh-interconnected CGRA. Therefore, mapping
fails and more routing nodes are needed to be inserted in the DFG.

0

2

4

6

8

10

12

14

In
it

ia
ti

o
n

 In
e

rv
al

Dual Issue

Partial Predication

Full Predication

FP-Choi

Figure 8: This figure plots the achieved II for different loops with conditionals from various benchmarks. The graph shows that Dual-issue architecture with
our proposed compiler technique results in the lowest II . Performance is inversely proportional to II .

0

2

4

6

8

10

12

14

In
it

ia
ti

o
n

 In
e

rv
al

Dual Issue

Partial Predication

Full Predication

FP-Choi

Figure 9: The Performance of compiled loops using different acceleration techniques in mesh and diagonal interconnected CGRA. Dual-issue scheme leads
to the best acceleration among all. Partial predication and full predication show relatively close performance benefit. Better interconnection benefits all
application but the benefit is narrow for loops limited by RecMII .

This eventually leads to more frequent increment in II . Partial
predication achieves modest benefits from better interconnection
(on average about 4.5%). Dual-issue architecture gains 6.7% per-
formance benefit from better interconnection because dual-issue in-
structions have the highest data dependency among all instructions.
Therefore, when more communication channels are available, data
dependencies are more likely to be met in mapping. However, even
in a richly connected CGRA, dual-issue architectures achieves the
lowest II , and (therefore) the best performance.

6. SUMMARY
Coarse-Grain Reconfigurable Architecture or CGRA is a promis-

ing acceleration technology to accelerate loops. However, it is chal-
lenging to accelerate loops that have if-then-else constructs. In this
paper, we study different acceleration schemes for loops with if-
then-else constructs and develop compiler techniques to efficiently
accelerate such loops on CGRAs.

7. REFERENCES
[1] AHN, M., YOON, J., PAEK, Y., KIM, Y., KIEMB, M., AND CHOI, K. A

spatial mapping algorithm for heterogeneous coarse-grained reconfigurable
architectures. In Proc. DATE (2006), pp. 363–368.

[2] BANSAL, N., GUPTA, S., DUTT, N., NICOLAU, A., AND GUPTA, R. Network
topology exploration of mesh-based coarse-grain reconfigurable architectures.
In Proc. DATE (2004), pp. 474–479.

[3] BINKERT, N., BECKMANN, B., ET AL. The gem5 simulator. SIGARCH
Comput. Archit. News 39, 2 (Aug. 2011), 1–7.

[4] CHANG, K., AND CHOI, K. Mapping control intensive kernels onto
coarse-grained reconfigurable array architecture. In Proc. ISOCC (2008),
pp. I–362–I–365.

[5] CHEN, L., AND MITRA, T. Graph minor approach for application mapping on
cgras. In Proc. FPT (2012), pp. 285–292.

[6] DE SUTTER, B., RAGHAVAN, P., AND LAMBRECHTS, A. Handbook of Signal
Processing Systems, 2 ed. Springer, 2013, ch. Coarse-Grained Reconfigurable
Array Architectures, pp. 553–592.

[7] DIMITROULAKOS, G., GALANIS, M., AND GOUTIS, C. Exploring the design
space of an optimized compiler approach for mesh-like coarse-grained
reconfigurable architectures. In Proc. IPDPS (2006), pp. 113–122.

[8] FRIEDMAN, S., CARROLL, A., VAN ESSEN, B., YLVISAKER, B., EBELING,
C., AND HAUCK, S. Spr: an architecture-adaptive cgra mapping tool. In Proc.
FPGA (2009), pp. 191–200.

[9] HAMZEH, M., SHRIVASTAVA, A., AND VRUDHULA, S. Epimap: using
epimorphism to map applications on cgras. In Proc. DAC (2012),
pp. 1284–1291.

[10] HAMZEH, M., SHRIVASTAVA, A., AND VRUDHULA, S. Regimap:
register-aware application mapping on coarse-grained reconfigurable
architectures (cgras). In Proc. DAC (2013), pp. 18:1–18:10.

[11] HAN, K., AHN, J., AND CHOI, K. Power-efficient predication techniques for
acceleration of control flow execution on cgra. ACM Trans. Archit. Code Optim.
10, 2 (May 2013), 8:1–8:25.

[12] HAN, K., CHOI, K., AND LEE, J. Compiling control-intensive loops for cgras
with state-based full predication. In PRoc. DATE (2013), pp. 1579–1582.

[13] HAN, K., PAEK, J. K., AND CHOI, K. Acceleration of control flow on cgra
using advanced predicated execution. In Proc. FPT (2010), pp. 429–432.

[14] HANNIG, F., DUTTA, H., AND TEICH, J. Regular mapping for coarse-grained
reconfigurable architectures. In Proc. ICASSP (2004), pp. 57–60.

[15] HATANAKA, A., AND BAGHERZADEH, N. A modulo scheduling algorithm for
a coarse-grain reconfigurable array template. In Proc. IPDPS (2007), pp. 1–8.

[16] HENNING, J. L. Spec cpu2006 benchmark descriptions. SIGARCH Comput.
Archit. News 34, 4 (Sept. 2006), 1–17.

[17] LATTNER, C., AND ADVE, V. LLVM: A compilation framework for lifelong
program analysis and transformation. pp. 75–88.

[18] LEE, G., LEE, S., AND CHOI, K. Automatic mapping of application to
coarse-grained reconfigurable architecture based on high-level synthesis
techniques. In Proc. ISOCC (2008), pp. 395–398.

[19] MAHLKE, S. Exploiting instruction level parallelism in the presence of
conditional branches. PhD thesis, UIUC, 1997.

[20] MEI, B., VERNALDE, S., VERKEST, D., DE MAN, H., AND LAUWEREINS,
R. Exploiting loop-level parallelism on coarse-grained reconfigurable
architectures using modulo scheduling. In Proc. DATE (2003), pp. 296 – 301.

[21] PARK, H., FAN, K., MAHLKE, S. A., OH, T., KIM, H., AND KIM, H.-S.
Edge-centric modulo scheduling for coarse-grained reconfigurable
architectures. In Proc. PACT (2008), pp. 166–176.

[22] RAU, B. R. Iterative modulo scheduling: an algorithm for software pipelining
loops. In Proc. MICRO (1994), pp. 63–74.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20120516081844
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 320
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20120516081844
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 320
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryList_V1
 qi2base

