
REGIMap: Register-Aware Application Mapping on
Coarse-Grained Reconfigurable Architectures (CGRAs)

Mahdi Hamzeh, Aviral Shrivastava, and Sarma Vrudhula
School of Computing, Informatics, and Decision Systems Engineering

Arizona State University, Tempe, AZ
{mahdi, aviral.shrivastava, vrudhula}@asu.edu

ABSTRACT
Coarse-Grained Reconfigurable Architectures (CGRAs) are an ex-
tremely attractive platform when both performance and power ef-
ficiency are paramount. Although the power-efficiency of CGRAs
can be very high, their performance critically hinges upon the ca-
pabilities of the compiler. This is because a CGRA compiler has
to perform explicit pipelining, scheduling, placement, and rout-
ing of operations. Existing CGRA compilers struggle with two
main problems: 1) effectively utilizing the local register files in
the PEs, and 2) high compilation times. This paper significantly
improves the state-of-the-art in CGRA compilers by first creating
a precise and general formulation of the problem of loop mapping
on CGRAs, considering the local registers, and from the insights
gained from the problem formulation, distilling an efficient and
constructive heuristic solution. We show that the mapping prob-
lem, once characterized, can be reduced to the problem of finding
maximal weighted clique in the product graph of the time-extended
CGRA and the data dependence graph of the kernel. The heuristic
we’ve developed results in average of 1.89 X better performance
than the state-of-the-art methods when applied to several kernels
from multimedia and SPEC2006 benchmarks. A unique feature of
our heuristic is that it learns from failed attempts and constructively
changes the schedule to achieve better mappings at lower compila-
tion times.

1. INTRODUCTION
The holy grail of computer hardware and software design across

all market segments, including battery powered hand-held devices,
tablets and laptops, desktop PCs, and high performance servers, is
to simultaneously improve performance and power-efficiency (per-
formance-per-watt). Multicores solve this problem to some extent,
but accelerators are needed to improve power-efficiency to levels
much higher than what multicores can provide. Although special
purpose or function specific hardware accelerators (e.g. for FFT)
can be very power efficient, they are expensive, not programmable,
and therefore limited in usage. Graphics Processing Units (GPUs)
are becoming very popular; although programmable, they are lim-
ited to accelerating only “parallel loops.” Field Programmable Gate

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC’13, May 29 - June 07, 2013, Austin, TX, USA.
Copyright 2013 ACM ACM 978-1-4503-2071-9/13/05 ...$15.00.

!"
!"

!"
!"

#
$
%$

&'
(
)

*
+,

#
$
%$

&'
(
)

*
+,

!"
!"

!"
!"

-./%+01%2*.&'()*+,
-./%+01%2*.&'()*+,

!"
!"

!"
!"

!"
!"

!"
!"

!"
!"

!"
!"

!"
!"

!"
!"

!"
!"

!"
!"

!"
!"

!"
!"

34
34 5(62/%(+&

327(

5(62/%(+&
327(

8*&9(26:;*+/

3+*)&9(26:;*+/&<&'()*+,

Figure 1: A 4× 4 CGRA. PEs are connected in a 2-D mesh. Each PE is an
ALU plus a local register file.

Arrays are general-purpose, but due to their fine grain reconfig-
urability, have poor power-efficiency. In this field of accelerators,
Coarse-Grain Reconfigurable Architectures or CGRAs are a very
attractive platform [24]. A CGRA is simply a two dimensional
mesh of PEs, with each PE equipped with an ALU and a small reg-
ister file (Figure 1). The PEs are connected to neighboring PEs,
and the output of a PE is accessible to its neighbors in the next
cycle. In addition, a common data bus from the data memory pro-
vides data to all the PEs in a row. It is referred to as coarse grained
reconfigurable because each PE can be programmed to execute dif-
ferent instructions at the cycle level granularity.

CGRAs are much more power-efficient, with power efficiencies
close to hardware accelerators. They are also programmble and
easier to program than FPGAs due to their coarse-level of reconfig-
urability. Finally, they are more general purpose accelerators than
GPUs, as CGRAs can accelerate even non-parallel loops1.

Attracted by the promise of CGRAs, more than a dozen CGRAs
including XPP [2], PADDI [4], PipeRench [9], KressArray [13],
Morphosys [18], MATRIX [20], and REMARC [21] were proposed
over the past decade. In particular, the ADRES CGRA has been
shown to achieve power efficiency of 60 GOps/W in 32 nm CMOS
technology [3]. However, achieving the promised power-efficiency
critically hinges on the compiler technology, and a CGRA com-
piler is much more complex than a regular compiler, since it has to
perform code analysis to extract parallelism, schedule operations
in time, bind the operations to PEs, route the data dependencies
between the PEs, and perform explicit software pipelining. One
major limitation of existing CGRA compilers is their inability to

1Non-parallel loops cannot be efficiently accelerated by GPUs;
they can only be accelerated to a theoretical extent, depending on
the inter-iteration loop dependencies. However, CGRAs permit ac-
celeration of such loops.

Figure 2: (a) a 2 × 1 CGRA, (b) an input DFG, (c) a valid mapping of the
given DFG (b) on (a) with iteration latency =II= 4, (d) another mapping
for the given DFG with iteration latency= 4 and II = 2. Lower II is
achieved because two iterations of the loops are executed simultaneously
which becomes possible because internal registers of PE2 are used to route
data from PE2 at cycle 1 to PE2 at cycle 4.

use register files to improve performance. Most existing compilers
simply do not use register files, and transfer the operands among
the PEs through a computational path with a PE. We know of only
two schemes [6, 22] that generate mapping that use the registers in
the CGRA. However, they suffer from the twin problems of i) poor
acceleration of loops, and ii) high compilation times.

Towards improving the compiler technology for CGRAs, this pa-
per makes several contributions:

1. A precise formulation for the CGRA mapping problem
while using register files: We formally define the problem of reg-
ister aware application mapping on CGRAs. In contrast to the pre-
vious ad-hoc problem definitions, our problem formulation is quite
general and allows for various flexibilities in constructing map-
pings, including recomputation, and sharing of routing paths with
dependencies.

2. A novel formulation for integrated operation placement
and register allocation: We show that the problem of simultane-
ous placement and register allocation can be formulated as one of
finding a constrained maximal clique on the product of two graphs:
the data flow graph (DFG) of the computation and the graph repre-
senting a time-extended CGRA.

3. An effective heuristic for mapping loops to CGRAs: From
the insights gained from the problem definition, we derive an effec-
tive heuristic to partition the mapping problem into sub-problems:
(1) scheduling and (2) integrated placement, and register allocation.
Our method, iteratively and constructively, solves these problems
until a mapping can be found.

Experimental results on multimedia applications loops and some
SPEC2006 benchmark kernels demonstrate the effectiveness of our
heuristic. Our approach improves the performance of computation-
ally bounded loops on average by 1.89 X, while reducing the com-
pilation time by 56X than the existing state-of-the art technique [6].

2. BACKGROUND AND RELATED WORK
More than a dozen CGRA architectures have been designed till

now [12]. These CGRAs were primarily targetted for embedded
systems to perform signal processing in a power-efficient manner,
and therefore programmed manually. However, as we envision the
use CGRAs as more general purpose accelerators, compiler tech-
nology to automatically map parts of applications onto CGRAs is
needed. Recognizing this, much of the research on CGRAs in this
century has focused on advancing compilation for CGRAs [1, 7, 8,
11, 14, 17, 22, 25].

Since applications spend most of the time on loops [23], existing
compilation techniques (as well as this paper) focus on the problem
of mapping the innermost loops on a CGRA. Figure 2(a) shows a
CGRA with 2 PEs, and Figure 2(b) shows the data flow graph of a
simple loop. Figure 2(c) shows one valid mapping of the data flow
graph on the CGRA. In this graph, the CGRA is extended in time to

4 cycles. In cycle 1, operation a is performed on PE2. Operations
b is executed on PE1 in cycle 2, receiving the value of operation a
from the output register of PE2 (see Figure 1. Note each PE has
an output register). Similarly operation c and d are executed on
PE1 PE2 at times 3 and 4, respectively. To enable this computation,
the result of operation a must remain in the output register for 3
cycles. This is also called routing of the dependency from a to
d. The schedule length of this mapping is 4 cycles, and the II
(Initiation Interval) of this mapping is also 4 cycles. II means the
difference in time between the initiation of successive iterations of
the loop. Since performance is inversely proportional to II , the
goal of mapping is to minimize II (rather than schedule length).

Note that the mapping in figure 2(c) does not use registers in
the PE. It routes the dependencies through PEs (actually the output
register in the PE). As shown in the figure, each PE has 2 registers.
Figure 2(d) shows the mapping using the registers in the PEs. In the
mapping, after a is executed on PE2 at cycle 1, its result is stored in
one of its registers until d is executed by PE2 at time 3. The result
of a is also made available via its output register to PE1, which
executes b at cycle 2. Although the schedule length of this mapping
is 4, the II is reduced to 2. This is because the next iteration of the
loop can start at cycle 3. This is shown in the figure by operations
a1, b1 being mapped in cycles 3 and 4. All operations are present
in cycles 3 and 4, and this kernel can execute repeatedly, giving an
II of 2.

This simple example shows how using register files can result in
higher performance of loops on CGRAs, but most of the existing
compiler techniques for CGRAs do not exploit register files well.
We know of only two techniques that do use register files to ob-
tain better mappings. However, both the existing techniques are
“exploratory” mapping techniques. EMS [22] allocates registers
during the scheduling and placement of operations on CGRA. The
method places the input DFG, arc by arc, onto the CGRA. An arc
can be placed, if the nodes on the arc can be placed, and the de-
pendencies can be routed. If at any point this cannot be done, II
is increased, and this mapping is tried all over again. The method
described in [6], called DRESC, expands the time-extended CGRA
graph to explicitly include registers as nodes (one node per register
file). The method uses simulated annealing to find a mapping. Op-
erations are randomly moved to decrease the number of overused
resources. Once all resources are used only once, the mapping is
completed. If no mapping can be found, II is increased and map-
ping is tried again. No control strategy, e.g. the temperature sched-
ule is derived for the algorithm.

The drawbacks of the existing techniques, namely poor mapping
and high compilation times are due to their exploratory nature. The
basic strategy employed is to find two mappings successively: first,
a mapping of the operations in the DFG to the PEs of the time-
extended CGRA, followed by a mapping of arcs in the DFG to
paths between the corresponding PEs in the time-extended CGRA.
Even though the mappings allow paths to start and end in PEs, with
the intermediate nodes being allowed to be PEs or registers, the
approaches is restrictive as they do not permit recomputation, in
which one operation of the DFG can be mapped to multiple PEs in
the CGRA [11].

In this paper, we will present a general formulation of the prob-
lem of mapping a kernel on the CGRA while using its registers to
minimize II . The formulation enables us to partition this problem
into a scheduling problem and an integrated placement and regis-
ter allocation problem. We reduce the placement to one of find-
ing a constrained maximal clique in the product graph of the time-
extended CGRA and the input DFG. Then we develop an efficient
and constructive heuristic to map loop kernels onto the CGRA. An

Figure 3: Problem Formulation: (a) a 2 × 1 CGRA, (b) an input DFG,
(c) Mapping of the DFG to a CGRA. II of this mapping is 3 but to better
visualize the overlap of loop execution, operations from iteration 1 and 3
are also shown.

important aspect of our heuristic is its ability to learn from failures,
which in turn results in better performance, at lower compilation
times.

3. PROBLEM DEFINITION
Let I = (VI , EI) be the input DFG representing a loop. Given

a DFG and a CGRA, we first determine the lower bound on II by
extracting resource minimum II (ResMII) and recurrence mini-
mum II (RecMII) [23], denoted as MII. Given an MII , we make
a time extended resource graph denoted by RII = (VR, ER) which
is constructed by replicating the nodes in the CGRA (PE and regis-
ters), II times, representing cycles 0 through II−1. For every pair
(u, v) of adjacent nodes in the CGRA, there is an arc from (repli-
cation of) u at time t to (replication of) v at time t + 1. Note that
every node in the CGRA is adjacent to itself. This time-extended
resource graph is the same as the MRRG graph used in [6].

Figure 3 (a) shows a 2 × 1 CGRA, and (b) shows input DFG.
First the minimum II of this is calculated as 3. The CGRA graph is
then unrolled 3 times, and a time-extended CGRA resource graph
is constructed. We do not show that graph in the figure, since it
has too many arcs, and does not help in visualization. Figure 3
(c) shows the mapping of the input DFG on this time-extended re-
source graph. The time-extended CGRA must be extended only 3
times (and therefore 3 rows), but we add an extra row at the top and
bottom for clarity. The following terminology is needed to simplify
the statement of the problem.

Definition: A node v in a time extended resource graph RII is
said to be associated with an operation i in the DFG if v is a PE ex-
ecuting operation i at t or v is a register in a PE that stores the result
of operation i and is available at time t. For instance, in Figure 3(c)
PEi+1

2 (PE2 at times i + 1) is associated with operation f1 (op-
eration f of first iteration), PEi+2

2 is associated with operation b2,
and PEi+3

2 is associated with operation f1. The first register of
PEi+1

2 is not associated with any operation, but the first register
of PEi+2

2 is associated with operation b2, and the first register of
PEi+3

2 is associated with b2.
Now, given a DFG I = (VI , EI) and a CGRA, the problem is

to construct a time extended resource graph RII = (VR, ER) of
minimum extension for which:

1. there exists a surjective mapping M : V ∗R → VI , where
V ∗R ⊆ VR, and

2. for every arc in (i, j) ∈ EI , the following property holds:
for each node rn ∈ RII associated with j, there is a path
P = (r1, . . . , r`, . . . rn) such that r1 is a PE associated
with i, r2 through r`−1 are associated with i, the rest are
associated with j, and r` is a PE.

Figure 4: Problem Formulation: Our problem definition allows both routing
and recomputation by allowing multiple PEs to map to the same operation.
(a) If the PEs associated with same operations connected through a path,
then it is routing, and if there is no path between them, then it is recom-
puting. operation a in this mapping is recomputed because it is associated
with PE1 and PE2 at time i+1 and there is no path between them. (b) Our
problem definition allows for path sharing.

The succinct statement of the problem makes it difficult to un-
derstand. First note that the mapping is counter-intuitive: it is from
the time-extended resource graph to the DFG and not vice-versa,
which is typically easier to understand. Second, the mapping is
from subsets of the time-extended resource graph to an operation
in the DFG. In the simplest case, the subset can be a single PE.
Consider mapping presented in Figure 3. For example, PEi+1

1 is
mapped to a2. In a more general case, several resources may be
mapped to an operation. For example, PEi+2

2 , the first register
of PEi+2

2 and PEi+3
2 are mapped to operation b2. The mapping

for operation f1 is also from a subset of resources (PEi+1
2 , and

PEi+3
2 , and the second register of PEi+1

2 and PEi+2
2). Third

thing to note is that the mapping is surjective. This simply implies
that every operation in the DFG is included in the mapping.

The second condition in the definition essentially says that if
there is a dependency between two operations, then there must be a
path between the subsets to which the two operations are mapped.
Thus, if we pick any resource rn which is associated with the des-
tination operation, then a path must exist from r1 to rn through
some r`, such that r1 is a PE associated with the source operation
(i.e., source operation is executed here), and r` is a PE associated
with the destination operation (i.e., destination operation is exe-
cuted here). The path between r1 to r` can be formed of arbitrary
combination of PEs and registers all associated with source oper-
ation (routing). Also, the path after r` up to rn can also be com-
posed of arbitrary combination of PEs and registers all associated
with destination (routing).

An example of the simple case is the arc between a2 and c2 in
Figure 3(c). For this arc, only PE1

1 is mapped to a2, and PE2
1

is mapped to c2. The path PE1
1 , PE2

1 meets the criterion, where
r1 = PE1

1 , and r` = PE2
1 . A more complicated case is the arc be-

tween a2 and b2. PE1
1 is mapped to a2, but the subset consisting of

PEi+2
2 , and the first register of PEi+2

2 and PEi+3
2 , is mapped to

b2. The definition requires that from any resource which is mapped
to b2, there must exist a path that satisfies the second criterion. Let’s
take rn to be the first register of PEi+3

2 . The the path (PEi+1
1 ,

PEi+2
2 , first register of PEi+2

2 , and first register of PEi+3
2) satis-

fies the criterion, with r1 = PEi+1
1 , and r` = PEi+2

2 .
This problem definition is quite general, and allows for routing,

recomputation [11], and path sharing between multiple dependen-
cies of the same operation [5]. Routing is allowed by second con-
dition of the definition, according to which, for each dependency,
a path of resources must exist, connecting the source and desti-
nation of the dependency. Most problem definitions do not allow
recomputation, since they require an operation to be mapped to one
PE. As shown in Figure 4 (a), our problem definition allows for
recomputation by allowing multiple PEs to be mapped to one op-
eration. Hamzeh et al. [11] show that recomputation can result in
better mappings that result in up to 2X better performance. Finally,
our problem definition also allows for sharing the paths by multiple

dependencies of an operation. As Figure 4 (b) shows, if an opera-
tion has two dependents, then the resources that the dependencies
use can be shared between the paths. Chen et al. [5] demonstrate
that path sharing can improve resource utilization by more than
50%. Although path sharing can also be done in the methods of
DRESC[6] and EMS[22], it is not explicit aspect of the solution
method.

4. OVERVIEW OF OUR APPROACH
The general CGRA mapping problem is NP-complete [11]. Even

so, another major challenge is that size of time-extended resource
graph of the CGRA can grow very large, even for small problem
sizes. For a m × m CGRA, with r registers in each PE, if we
intend to map a DFG with an II = i, the time-extended resource
graph will have N = m ×m × r × i nodes2. The problem then
is to find a n + 1-partition3 of this graph, where n is the number
of operations in the DFG. The number of possible solutions to this
problem is a Sterling number [10] ({N

n
}), which is of the order of

O(nN) even when the input DFG is fixed (no extra operations to
be added to DFG). Due to the explosive growth of the number of
partitions of time-extended resource graph, greedy approaches that
attempt to find a mapping by incrementally exploring the search
space are computationally very slow and result in poor solutions,
i.e. high values of II. The method developed here is a constructive
solution that avoids the explosive growth of the search space.

We partition the mapping problem into two sub-problems: 1)
scheduling, and 2) integrated placement and register allocation
(referred to as placement). The routing is implicitly accomplished
as part of scheduling and placement. This separation of the prob-
lem into scheduling and placement results in a significant reduction
of the search space. Since the operations of the scheduled DFG are
bound to be placed at matching time slot in the time-extended re-
source graph, the number of ways to partition is {m

n′ }i, where n′ is
the maximum number of operations scheduled at any time (width of
the graph). A more important advantage of breaking this problem
into scheduling and placement is that instead of explicitly enumer-
ating the registers as nodes, we put the number of registers required
as arcs weights. This further reduces the search space by a factor of
r, and makes the problem more scalable. Although the partitioning
into two subproblems is in general, not optimal, we can further im-
prove the results by performing placement and scheduling in a loop.
If a placement is not possible, then we learn from the failure, iden-
tify which operations could not be placed, and then constructively
change the schedule of DFG and place them at higher priority in
the next round.

5. REGIMAP
Let D = (VD, ED) be the scheduled graph. When operations

are scheduled and II is extracted, the RII = (VR, ER) can be
constructed. RII is time-extended PE graph (without registers).

Step 1: Construct a compatibility graph between D and RII :
The compatibility graph P = (VP , EP) is a subgraph of the prod-
uct of the DFG and the RII . It is a directed graph. Its vertices,
which are a resource-operation pair, represent the possible map-
pings of operations to PEs. Its edges (ignoring the directions) indi-
cate compatibility between the two corresponding mappings. Sched-
uling reduces the size of compatibility graph because some resource-
operation pairs become incompatible, i.e. the resource is not avail-
able at the time the operation is scheduled. For instance, the num-
ber of vertices in the product graph is 16, whereas the number of
2m×m PEs each with r registers is replicated i times.
3the (n+ 1)th partition maps to no operation

Figure 5: (a) scheduled DFG, D (b) time extended PE graph, R2 (c) Com-
patibility graph P between D and R2.

vertices in the compatibility graph shown in Figure 5 is only 8. An
edge between two mapping means that both can co-exist in a solu-
tion. Details of the construction of the compatibility graph is given
in Appendix A.

Step 2: Assign weights to arcs of compatibility graph: The
weight of an arc (directed edge) denotes the number of registers
required from the time the source node (a mapping) is executed to
the time the destination node is executed. Note this is asymmetric.
For instance in Figure 5, the arc [(PE1

2 , a), (PE1
2 , d)] has weight

2, which means that from the time a is executed on PE2 to the
time that d is executed on PE2, two registers are required in PE2

because the II = 2(see Figure 2). The arc [(PE1
2 , d), (PE1

2 , a)]
has a weight of 1, because when d is executed, one register can be
released (see Figure 2). The process of arc weight assignment in
the compatibility graph is described in detail in Appendix B.

Step 3: Find maximal clique in the compatibility graph: The
weight of a node is the sum of the weights of its outgoing arcs.
We reduce the problem of finding a placement of D onto RII to
the problem of finding the largest clique whose total node weight
is less than the number of available registers. By construction, the
maximal clique in the graph can be no larger than |VD|. There-
fore, if we find a maximal clique of size |VD|, in which the sum of
the node weights is less than the number of registers in each PE,
we have a mapping. The algorithm to find maximal clique in the
compatibility graph is described in Appendix section D.

A mapping can fail because either a node in the clique does not
satisfy the register constraint, or the maximal clique is smaller than
|VD|. In the first case, we search for another clique. If no such
clique exists, or we find that an operation is not present in the
clique, we reschedule that node and proceed to find a new mapping.
After we run out of rescheduling options, we reduce the width of
the input DFG (max. no. of operations at any cycle), and try again.
If the MII increases as a result of thinning the graph, we increase
II. Details of our algorithm are described in Appendix E.

6. EXPERIMENTAL RESULTS
We have modified backend GCC and integrated REGIMap right

before register allocation. Loops are selected among digital signal
processing applications and spec2006 benchmark suite. We com-
pare REGIMap with register-aware DRESC [6]. It has been shown
in [22] that DRESC [19] without register allocation [6] maps loops
at lower II than [22], and [23].

We conduct experiments on CGRAs with different number of
PEs and registers. We assume all registers are rotating registers. In
our experiments, CGRA has enough memory to hold the instruc-
tions as well as variable in the loops. Since CGRA executes loops,

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
e

rf
o

rm
a

n
ce

 R
a

ti
o

 (
M

II
/I

I)

REGI

DRECS

Size of Register File = 4

Res Bounded Rec Bounded

Figure 6: The performance of mapping loops to a 4 × 4 CGRA with 4 registers using REGIMap vs. DRESC. REGIMap compiles Res-bounded loops at on
average 1.89 times lower II than DRESC.

1

10

100

1000

10000

100000

2 4 8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
o

m
p

il
a

ti
o

n
 T

im
e

 (
S

)

Size of Register File in PEs

P
e

rf
o

rm
a

n
ce

 (
M

II
/I

I)

REGI Perf

DRESC Perf

REGI Time

DRESC Time

Figure 7: Compilation time using REGIMap vs. DRESC for mapping loops
on 4× 4 CGRA when the size of register file varies from 2 to 8.

and instructions within the kernel repeat every II cycles, a highly
optimized multi-way cache can provide such memory requirement.
PEs are connected in a 2D mesh-like network similar to Figure 1.
We also assume that all PEs have access to the data memory but
data bus is shared among PEs in a row; thus, only one PE of a row
has access to the data memory at each cycle. For load and store op-
erations, two instructions should be executed, the first instruction
generates the address and the second one generates/loads data. For
memory operations data to be loaded/stored is read/generated at the
same row where the address bus has been asserted. The CGRA is
homogeneous and PEs are capable of performing logical and fixed-
point operations. All operations have latency of 1 cycle.

6.1 1.89 Times Better Performance for Resou-
rce bounded Loops

In modulo scheduling, MII is theoretically the lower bound of II
for scheduled loops. Our performance metric to evaluate mappings
is MII divided by the achieved II at each loop. We have divided the
loops into two groups, in the first group, MII is primarily limited by
ResMII, referred to as res-bounded. In this type of loops, placement
is more challenging because the number of resources at this type of
loops is relatively close to the number of operations at loop. In
the second group, MII is limited by recurrence cycles (RecMII)
in the DFG, referred to as rec-bounded. Therefore, resources are
under-utilized and there are more options for each operation to be
placed at. In Figure 6, the performance comparison of different
applications compiled for a 4 × 4 CGRA with 4 registers using
REGIMap and DRESC is presented.

Our evaluation reveals that on average the performance of com-
piled loops using REGIMap is 1.89 times higher that using DRESC
technique for res-bounded loops. Placement in these applications
is more complicated and time consuming than rec-bounded loops.
However, the average performance of compiled loops using both
mapping techniques is relatively close for rec-bounded loop. More
details about the performance of compiled loops at different CGRA
and register file sizes is given in Appendix G.

6.2 56 Times Lower Compilation Time for Re-
source bounded Loops

The compilation time of loops on REGIMap is much lower than
compilation time of them on DRESC. DRESC is a simulated an-
nealing (SA) based technique which spends a lot of time to move

operations at time and resource dimensions. For res-bounded loops,
REGIMap compiles them on average 37 times faster than DRESC
when the size of register file of PEs is 2. The ratio of compilation
time of REGIMap to DRESC increases to 56 times faster when the
size of register file of PEs increases to 4 and 8. For rec-bounded
loops, the compilation time using REGIMap is about 6 times faster
than DRESC when the size of register file of PEs is 2. REGIMap
becomes 8 times faster than DRESC when the size of register file
increases to 4 or 8. For rec-bounded loops, placement is relatively
easy because there are many free (not utilized) resources available
in the resource graph. Those resources can be utilized for routing
data between operations making placement easier. Thus, DRESC
faces with less number of failed attempts which significantly de-
creases its running time. Both techniques compile loops faster
when the size of register file increases. It is primarily because both
methods face with less failure at register allocation. More details
about compilation time is presented in Appendix G.

6.3 Learning from Failure Improves Perfor-
mance and Reduces Compilation Time

More detailed evaluation reveals the effectiveness of operation
rescheduling after placement in REGIMap. When a mapping at-
tempt at a given II fails, most existing mapping techniques increase
II. It is basically because if they schedule the DFG again and initi-
ates a new placement attempt, they will end up with another failure.
The reason is that almost all scheduling techniques use a justifiable
static policy for ordering the nodes. Operations are to be selected
by that order for scheduling. Because this ordering is static, for a
DFG, the scheduling of the graph does not change unless the struc-
ture of the graph changes or the nodes are ordered differently.

The first heuristic is to change the order of the nodes. REGIMap
changes this order and consequently schedule the nodes so that the
next schedule is different from the previous one. Therefore, it ex-
ploits both time and resource dimensions in a guided manner.

The second heuristic REGIMap applies is virtually reducing the
number of available resources at CGRA. Therefore, after many
placement failure, when this heuristic is applied, the schedule of
DFG further changes. Therefore, REGIMap constructively changes
the schedule or the DFG to find a mapping.

Our experiments show that the rescheduling heuristic is more
effective on res-bounded loops. To demonstrate rescheduling ef-
fectiveness, we have disabled rescheduling from REGIMap. About
90% of loops are compiled at higher IIs than when compiled with
rescheduling enabled. For rec-bounded loops, this heuristic be-
comes less effective and about 30% of loops are compiled with
higher IIs when it is disabled. Our further investigation reveals
that most of those 30% of loops has close ResMII and RecMII.

6.4 Scalability
Figure 7 shows the average performance of compiling resource-

bounded loops for a 4 × 4 CGRA using REGIMap and DRESC
versus different sizes of register file of PEs. The left Y axis is the

1

10

100

1000

10000

100000

2X2 4X4 8X8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
o

m
p

il
a

ti
o

n
 T

im
e

 (
S

)

CGRA Size

P
e

rf
o

rm
a

n
ce

 (
M

II
/I

I)

REGI Perf

DRESC Perf

REGI Time

DRESC Time

Figure 8: Compilation time using REGIMap vs. DRESC for mapping loops
on 4× 4 CGRA when the size of register file varies from 2 to 8.

compilation time (logarithmic) and the left one is the performance.
The compilation time of loops using REGIMap and DRESC rel-
atively decreases by increasing the size of register files. The per-
formance of those mapping also increases when more registers are
available. It is primarily because when the number of register in-
creases, both technique can utilize more registers to compile loops.
However, the performance of compiling loops using REGIMap is
significantly higher (1.5X to 1.9X) compared to DRESC.

In Figure 8, the performance of compiling resource-bounded loops
using two mapping techniques for different CGRA sizes when the
size of register file of PEs is two is presented. The left Y axis is the
compilation time (logarithmic) and the left one is the performance.
The performance of loops using both techniques decreases when
the size of CGRA increases. However, the performance of those
mapping using DRESC dramatically decreases while the compi-
lation time increases. The compilation time of those loops using
REGIMap increases as well because the search space is propor-
tional to the CGRA size too.

6.5 Power-Efficiency Estimation
In this section, we discuss power efficiency improvement when

compute intensive loops are offloaded to the CGRA. The synthe-
sis information presented in [3] shows that ADRES CGRA at 312
MHz consumes only 81 mW. REGIMap compiles res-bounded loops
and achieves average of 10.75 instruction per cycle (IPC). Further
details about IPC of compiled loops is presented in Appendix G.
Therefore, it can be estimated that CGRA would approximately
execute 3.3 GOps per second. This implies only 24 pW per in-
struction for CGRA and compared to 12 nW for an Intel Core2
processor [16]. Therefore, by offloading highly parallel regions in
the code, instructions can be executed at approximately 500 X less
energy. Considering maximum of 2 instruction per cycle for Intel
Core2 processor and clock frequency of 2.6 GHz, 5.2 G instructions
can be executed per second. Assuming each instruction is equiva-
lent to one operation, we conclude that the power efficiency can
approximately improve by 250 X when those loops are offloaded.

7. SUMMARY
Coarse-Grained Reconfigurable Architectures (CGRAs) are ex-

tremely attractive platform when both performance and power effi-
ciency are paramount. However, the achievable performance and
power efficiency of CGRAs critically hinges upon compiler ca-
pabilities. One of the main challenges in CGRA compilers is to
efficiently utilize registers which is specially difficult due to their
distributed nature. This paper make three contributions: i) we for-
mulate the problem of mapping loops on CGRAs while efficiently
using registers, ii) we present a unified and precise formulation of
the problem of simultaneous placement and register allocation, and
iii) an efficient and effective heuristic solution, REGIMap is dis-
tilled from our problem formulation. REGIMap leads to an average
of 1.89 X better performance on several kernels from multimedia
and SPEC2006 benchmarks suits when compared to the existing
state-of-the-art compilation technique at lower compilation time.

8. ACKNOWLEDGMENTS
This work was partially supported by funding from National Sci-

ence Foundation grants CSR-EHS 0509540, CCF-0916652, CCF
1055094 (CAREER), NSF I/UCRC for Embedded Systems (IIP-
0856090), Center for Embedded Systems grant DWS-0086; Sci-
ence Foundation Arizona (SFAz) grant SRG 0211-07, Raytheon,
and by the Stardust Foundation.

9. REFERENCES
[1] BANSAL, N., GUPTA, S., DUTT, N., NICOLAU, A., AND GUPTA, R. Network

topology exploration of mesh-based coarse-grain reconfigurable architectures.
In Proc. DATE (2004), pp. 474–479.

[2] BECKER, J., AND VORBACH, M. Architecture, memory and interface
technology integration of an industrial/ academic configurable system-on-chip
(csoc). In Proc. ISVLSI (2003), pp. 107–112.

[3] BOUWENS, F., BEREKOVIC, M., SUTTER, B. D., AND GAYDADJIEV, G.
Architecture enhancements for the adres coarse-grained reconfigurable array. In
Proc. HiPEAC (2008), pp. 66–81.

[4] CHEN, D. C. Programmable arithmetic devices for high speed digital signal
processing. PhD thesis, University of California, Berkeley, 1992.

[5] CHEN, L., AND MITRA, T. Graph minor approach for application mapping on
cgras. In Proc. FPT (2012).

[6] DE SUTTER, B., COENE, P., VANDER AA, T., AND MEI, B.
Placement-and-routing-based register allocation for coarse-grained
reconfigurable arrays. In Proc. LCTES (2008), pp. 151–160.

[7] DIMITROULAKOS, G., GALANIS, M., AND GOUTIS, C. Exploring the design
space of an optimized compiler approach for mesh-like coarse-grained
reconfigurable architectures. In Proc. IPDPS (2006), pp. 113–122.

[8] FRIEDMAN, S., CARROLL, A., VAN ESSEN, B., YLVISAKER, B., EBELING,
C., AND HAUCK, S. Spr: an architecture-adaptive cgra mapping tool. In Proc.
FPGA (2009), pp. 191–200.

[9] GOLDSTEIN, S., SCHMIT, H., MOE, M., BUDIU, M., CADAMBI, S.,
TAYLOR, R., AND LAUFER, R. Piperench: a coprocessor for streaming
multimedia acceleration. In Proc. ISCA (1999), pp. 28 –39.

[10] GRAHAM, R. L., KNUTH, D. E., AND PATASHNIK, O. Concrete
Mathematics: A Foundation for Computer Science, 2nd ed. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1994.

[11] HAMZEH, M., SHRIVASTAVA, A., AND VRUDHULA, S. Epimap: using
epimorphism to map applications on cgras. In Proc. DAC (2012),
pp. 1284–1291.

[12] HARTENSTEIN, R. A decade of reconfigurable computing: a visionary
retrospective. In Proc. DATE (2001), pp. 642–649.

[13] HARTENSTEIN, R., AND KRESS, R. A datapath synthesis system for the
reconfigurable datapath architecture. In Proc. ASP-DAC (1995), pp. 479 –484.

[14] HATANAKA, A., AND BAGHERZADEH, N. A modulo scheduling algorithm for
a coarse-grain reconfigurable array template. In Proc. IPDPS (2007), pp. 1–8.

[15] HUFF, R. A. Lifetime-sensitive modulo scheduling. In Proc. PLDI (1993),
pp. 258–267.

[16] KEJARIWAL, A., VEIDENBAUM, A., NICOLAU, A., TIAN, X., GIRKAR, M.,
SAITO, H., AND BANERJEE, U. Comparative architectural characterization of
spec cpu2000 and cpu2006 benchmarks on the intel core 2 duo processor. In
Proc. SAMOS (july 2008), pp. 132 –141.

[17] LEE, J.-E., CHOI, K., AND DUTT, N. D. Compilation approach for
coarse-grained reconfigurable architectures. IEEE Design and Test of
Computers 20, 1 (2003), 26–33.

[18] LEE, M.-H., SINGH, H., LU, G., BAGHERZADEH, N., KURDAHI, F. J.,
FILHO, E. M. C., AND ALVES, V. C. Design and implementation of the
morphosys reconfigurable computingprocessor. J. VLSI Signal Process. Syst. 24
(2000), 147–164.

[19] MEI, B., VERNALDE, S., VERKEST, D., DE MAN, H., AND LAUWEREINS,
R. Dresc: a retargetable compiler for coarse-grained reconfigurable
architectures. In Proc. IEEE FPT (dec. 2002), pp. 166 – 173.

[20] MIRSKY, E., AND DEHON, A. Matrix: a reconfigurable computing
architecture with configurable instruction distribution and deployable resources.
In Proc. FPGAs for Custom Computing Machines (1996), pp. 157 –166.

[21] MIYAMORI, T., AND OLUKOTUN, K. Remarc: Reconfigurable multimedia
array coprocessor. IEICE Trans. on Information and Systems (1998), 389–397.

[22] PARK, H., FAN, K., MAHLKE, S. A., OH, T., KIM, H., AND KIM, H.-S.
Edge-centric modulo scheduling for coarse-grained reconfigurable
architectures. In Proc. PACT (2008), pp. 166–176.

[23] RAU, B. R. Iterative modulo scheduling: an algorithm for software pipelining
loops. In Proc. MICRO (1994), pp. 63–74.

[24] TAYLOR, M. B. Is dark silicon useful?: harnessing the four horsemen of the
coming dark silicon apocalypse. In Proc. DAC (2012), pp. 1131–1136.

[25] YOON, J., SHRIVASTAVA, A., PARK, S., AHN, M., AND PAEK, Y. A graph
drawing based spatial mapping algorithm for coarse-grained reconfigurable
architectures. IEEE Trans. on VLSI Systems 17, 11 (2009), 1565–1578.

APPENDIX
A. COMPATIBILITY GRAPH CONSTRUC-

TION
Construction of Compatibility Graph P = (VP , EP) is com-

pleted in two steps. In the first step, the set of nodes in this graph is
formed. Then directed unweighed arcs between nodes are created.

A.1 Nodes
First we define the Cartesian product of set of nodes in graph

RII and D. Every element in this set represents a pair of an oper-
ation and a resource in RII . Basically a pair of nodes represents
potential mapping of an operation to a resource. Since operations
at graph D are scheduled, we can easily reject a large number of
potential mapping of operations represented by some elements in
CP . For instance, consider ui = (vRi , vDi) ∈ CP . This potential
mapping of operation vDi on vRi can be rejected under the follow-
ing conditions. If the ALU of vRi does not support operation of vDi ,
then the mapping of this of vDi to vRi is not feasible. Similarly, if
vRi is not present at the cycle when vDi is scheduled, then ui is not
a potential solution. Based on observation above, we create the set
of nodes in P .

Let CP = {VR × VD} (Cartesian product). The set of nodes in
P is a subset of CP . Thus, each node ui = (vRi , vDi) ∈ CP rep-
resents a pair of a resource4 at RII and an operation. We define vRi
and vDi compatible if resource vRi supports (its ALU) the boolean
function of operation vDi and it is present at the same cycle (in RII)
that the operation is scheduled. In Figure 2(c), let PE(t, n) repre-
sents PEn at cycle t in the resource graph. Assume that operation
a is scheduled at cycle 1. Then pair (PE(1, 2), a) is a compati-
ble pair because PE(1, 2) is present at the cycle 1. None of pairs
(PE(2, 1), a) nor (PE(2, 2), a) are compatible because they are
not present at time 1.

A.2 Binary Arcs
Next, REGIMap constructs the set of arcs in P . In this step,

we define a reflexive and symmetric relation, called compatibility,
between pairs of nodes in VP . Note that each element in VP rep-
resents a potential mapping of a node to a resource. compatibility
between elements ui = (vRi , vDi) and uj = (vRj , vDj) in VP essen-
tially implies that both mapping can co-exist in the solution. More
precisely, when vDi is mapped to vRi , does it restrict vDj from being
mapped to vRj . If there is an arc from ui to uj , then if ui is in a
solution mapping, uj can also be in that solution.

Two nodes ui and uj where i 6= j are incompatible if one of the
following conditions holds:

1. ui and uj represent the same operation (vDi = vDj).

2. ui and uj represent the same resource (vRi = vRj).

3. There is an arc between the operation ui represents to the one
uj represents, but there is no communication from resources
ui represents to uj represents.

There are two considerations for the 3rd case. vDi and vDj can be
scheduled apart (more than one cycle apart) and there is no arc in
RII to connect resources apart more than one cycle. For this case,
REGIMap tags ui and uj incompatible if they represent different
PEs in the CGRA.

4We do not use the term PE to avoid confusion between physical
PE or replicated PEs in RII

The second problems arises when there is an inter-iteration data
dependency between operations ui and uj represent. Similar to the
previous case, REGIMap tags them incompatible, if they represent
different PEs in the CGRA.

For example, consider the following nodes (PE(1, 2), a) and
(PE(2, 1), b) in Figure 2(d). These nodes are compatible because
there is an arc from a to b in DFG as well as an arc between
PE(1, 2) and PE(2, 1). However, (PE(1, 2), a) and (PE(1, 1), a)
are not compatible because they both represent operation a. On the
other hand, (PE(3, 2), a) and (PE(4, 2), d) are compatible5 be-
cause both nodes represent the same physical PE at CGRA where
a and d are scheduled 3 cycles apart.

When there is a symmetric compatibility between ui and uj , two
directed arcs between them are to be formed. Next, REGIMap
looks for a pair of nodes representing two operations with intra-
iteration data dependency scheduled more than one cycle apart.
Next, weigh of arcs needs to be assigned.

B. ARC WEIGHT ASSIGNMENT TO THE
COMPATIBILITY GRAPH

The weight of arcs represent the number of registers required
to establish a path between a pair of mappings. Let T : VD →
N be the schedule function. Consider ui = (vRi , vDi) and uj =
(vRj , vDj) where there is an arc between vDi and vDj and they are not
scheduled in two consecutive cycles. The weight of arc between ui

and uj is to be increases by:

R =

⌈
T (vDj)− T (vDi)

II

⌉
(1)

When these operations are scheduled less than II cycles, one regis-
ter is sufficient to carry-out data dependency between them. How-
ever, when they are scheduled more than II cycles apart, this data
dependency must be carried-out across multiple iterations of the
loop. Thus, when a new iteration starts, when vDi of the next iter-
ation of the loop is executed, if the previous output has not been
consumed yet, the output of this operation must be stored in a dif-
ferent register. Otherwise, it overwrites a register that has not been
read yet by the consumer operations.

Note that a register is allocated when vDi is executed on vRi until
vDj is executed on vRj at all resources representing same PE as vRi
represents. Therefore, the weight of arcs from all uk representing
those resources to vRi must be increased by R. At T (vDj), a register
is to be released at vRj until a new data is produced by vDi at the
next iteration of the loop. Thus the arc from nodes representing
resources between vRj and vRi to vRi must be increased by R− 1.

In Figure 2(d), operations a and d are scheduled more than one
cycle apart. The weight of arc from (PE(3, 2), a) to (PE(4, 2), d)
should to be increased by 2 6. However, the weight of arc from
(PE(4, 2), d) to (PE(3, 2), a) is only increased by 1 because one
register is to be released when d is executed.

Operations with inter-iteration data dependencies are to be con-
sidered next. Let ui = (vRi , vDi) and uj = (vRj , vDj) represent two
operations with inter-iteration data dependency. Let e(vD

i ,vD
j) be

the inter-iteration distance of these operations. The weight of arc

5II = 2
6d 4−1

2
e = 2

between ui and uj is to be increases by:

R = e(vD
i ,vD

j) −

⌊

T (vD
j)−T (vD

i)

II

⌋
− 1 if T (vDj) ≥ T (vDi)⌈

T (vD
j)−T (vD

i)

II

⌉
otherwise

(2)

When vDj is scheduled after vDi and T (vDj) − T (vDi) > II , be-
cause of the repetitive execution of the loop, the inter-iteration dis-
tance between them decreases because they belong to different it-
eration of the loop at execution. On the contrary, when vDi is
scheduled after vDj , by increasing the schedule distance, their inter-
iteration distance increases.

Similar to the previous case, at all resources between vRi to vRj ,
R registers should be available to establish a path between vRi to
vRj . Therefore, the weight of arcs from all nodes uk representing
above-mentioned resources to ui must be increased by R. How-
ever, the weight of arcs from nodes representing the resources be-
tween vRj to vRi that represent same PE of vRi to ui must be in-
crease by R−1. This step also considers operations with self inter-
iteration data dependency. Note that the weight of arcs between
two node in P is to be update only if those nodes are compatible.

C. PROBLEM REDUCED TO NODE TOTAL
WEIGHT CONSTRAINED MAXIMUM
CLIQUE

THEOREM C.1. In graph P , there is a maximum clique C (of
size |VD|) such that the sum of the weight of outgoing arc is less
than the size of register file,i.e. ∀ui ∈ VC : Sui < NR where
Sui =

∑
∀(ui,uj)∈EC

{e(ui),(uj)} and where NR is the size of
register file of PEs, iff there is a placement of operation so that the
maximum of NR registers are used at each PE.

D. FINDING MAXIMAL CLIQUE
ALGORITHM

REGIMap conducts a greedy strategy to find a clique in P . Al-
though P is a directed graph, the arcs between nodes are formed
symmetrically though the weight of arcs can be different. Thus,
finding a clique in P is similar to finding a clique in an undirected
graph.

To find a clique, REGIMap starts with an empty clique. To max-
imize the clique size, REGIMap finds a node that is connected to
all nodes present at clique. In the case of many, REGIMap selects
the one with the maximum number of arcs to the nodes outside the
clique. This heuristic is applied to increase the chance of maxi-
mizing the clique size. When the size of a clique cannot be further
increased, if finds a nodes outside the clique connected to all nodes
inside the clique expect one. In that case, REGIMap replaces this
new node with the old one and tries to further increase the size
of the clique. When this condition is checked for all nodes at P
REGIMap stores this clique in a list.

REGIMap later finds the intersect of pairs of cliques. This inter-
sect is the next initial clique to be maximized. At the end, REGIMap
returns the maximum clique it finds after the above steps. At every
step to increase a clique size, when a nodes is selected, the sum of
the weights of outgoing arcs from the selected node to all nodes in
clique is checked to be less than NR. If a node violates this condi-
tion, it cannot be added to the clique. Note that during intersection
of cliques, there is no need to verify the number of allocated regis-
ters.

Once the size of the clique increases to |VD|, the placement is
complete. A clique at the end of this step, represents the placement
of operations and the sum of weight of outgoing arcs of a node,
determines how many registers are used at all PEs. If the size of
maximum clique is less than |VD|, some nodes in D could not be
placed, thus REGIMap, change those nodes at the next step.

E. REGIMAP ALGORITHM
REGIMap initially extracts the minimum II using technique

in [15]. Then operations are scheduled with the goal of minimiz-
ing II . In the next step, REGIMap constructs a time extended re-
source graph. In this graph, only PEs are present. Afterwards, a
compatibility graph P is to be generated from scheduled DFG and
RII . When P is constructed, a maximum clique C = (VC , EC) in
graph P where the sum of weight of outgoing arcs at all nodes is
less than the register file size must be found. The mapping is com-
pleted when |VC | = |VD|. If REGIMap fails to find such a clique,
it reschedules operations not present in the clique and tries again
until a mapping is found. The REGIMap algorithm is presented in
Algorithm 1.

Algorithm 1: REGIMap(Input D, Input CGRA)

begin
MII ← DetermineMII(D, |VD|);
S ← |VC |; Ds ← D;
while true do

N ←∞;
while true do

DS , II ← Schedule(DS , S);
if II > MII then

MII ←MII + 1;
S ← |VC |; DS ← D;
break;

RII ← Construct_Resource_Graph(C, MII);
P ← Construct_Compatibility_Graph(DS , RII);
C ←Weight_Constrained_Max_Clique(P);
if |VC | = |VDs | then

Return C;
else

if |VDS | − |VC | > N then
S ← S − 1; DS ← D;
break;
else

DS ← Re-Schedule(VDS − VC);
N ← |VDS − VC |;

Re-Scheduling: If a placement fails to place and allocate regis-
ters for some operations, the set of unplaced operations are resched-
uled. REGIMap reschedules those operations to one cycle earlier
than their current schedule cycle, or insert extra routing nodes if
failed operation requires register for placement (relaxing routing
problem). If the schedule cycle of an operation is decreased to a
cycle lower than least feasible one (determined by scheduling), or
adding extra nodes increases lower bound II , then the DFG is to
be rescheduled with a new heuristic. At this step, the number of
available PEs is set to be N − 1 where N was the number of avail-
able PEs at the previous scheduling attempt. N is initially set to the
number of PEs. Please note that decreasing the number of available
resources can increase II at scheduling. In such a case, REGIMap

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
e

rf
o

rm
a

n
ce

 R
a

ti
o

 (
M

II
/I

I)

REGI

DRECS

Res Bounded Rec Bounded

Size of Register File = 2

(a) Performance of compiled loops using REGIMap and DRESC for a 4 × 4 CGRA with 2 registers at each PE

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
e

rf
o

rm
a

n
ce

 R
a

ti
o

 (
M

II
/I

I)

REGI

DRECS

Size of Register File = 4

Res Bounded Rec Bounded

(b) Performance of compiled loops using REGIMap and DRESC for a 4 × 4 CGRA with 4 registers at each PE

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
e

rf
o

rm
a

n
ce

 R
a

ti
o

 (
M

II
/I

I)

REGI

DRECS

Size of Register File = 8

Res Bounded Rec Bounded

(c) Performance of compiled loops using REGIMap and DRESC for a 4 × 4 CGRA with 8 registers at each PE

0.001

0.1

10

1000

100000

C
o

m
p

il
a

ti
o

n
 T

im
e

 (
S

)

REGI

DRECS

Size of Register File = 2

Res Bounded Rec Bounded

(d) The compilation time of loops using REGIMap and DRESC for a 4 × 4 CGRA with 2 registers at each PE

0.001

0.1

10

1000

100000

C
o

m
p

il
a

ti
o

n
 T

im
e

 (
S

)

REGI

DRECS

Size of Register File = 4

Res Bounded Rec Bounded

(e) The compilation time of loops using REGIMap and DRESC for a 4 × 4 CGRA with 4 registers at each PE

0.001

0.1

10

1000

100000

C
o

m
p

il
a

ti
o

n
 T

im
e

 (
S

)

REGI

DRECS

Size of Register File = 8

Res Bounded Rec Bounded

(f) The compilation time of loops using REGIMap and DRESC for a 4 × 4 CGRA with 8 registers at each PE

Figure 9: The performance of compiling and compilation time of loops using REGIMap versus DRESC for different size of register file at PEs.

increases MII by one and reset the number of available resources
to be the number of PEs. When MII increases, REGIMap pro-
ceeds with a new scheduling and placement attempt.

F. HOW IS THE PROBLEM OF REGISTER
ALLOCATION ON CGRA DIFFERENT
THAN ON VLIW ARCHITECTURES?

Register allocation in the problem of mapping application to VLIW
architectures is essentially different from CGRAs. In a VLIW ar-
chitectures, the register file is central providing connection to all
functional units at a high bandwidth. Therefore, when dependent
operations mapped to separate resources, data dependency between
them can readily satisfied using central register file. In CGRA,
however, the register files are distributed along with functional units
or PEs. When two dependent operation are mapped to separate re-
sources, data should explicitly routed between them. Therefore,
communication cost is proportional to the distance of resources
where dependent operation are mapped. This implies a tight de-
pendency between placement and register allocation in CGRA ap-
plication mapping while it is not the case for VLIW architectures
where communication cost is approximately constant.

If registers are to be allocated after scheduling and placement in
CGRAs, in the case of a failure in register allocation, the cost of
inserting spill code is to reconstruct an entire new mapping. This
cost is primarily due to the modulo scheduling where the execution
is repetitive. Insertion of spill code is a typical technique utilized
in compilers for VLIW processor. Therefore, a different policy for
register allocation is required in the area of CGRA application map-
ping.

G. MORE RESULTS

Application REGIMap IPC
Swim_Calc 10.52
YUV2RGB 12.33

Sobel 9.67
Lowpass 13.5

SOR 12.5
Laplace 11.5

GSR 12
Wavelet 10
Forward 7.25

Compress 9
Mpeg2 10

Average Res- Bounded 10.75

Table 1: Instruction per cycle (IPC) of mapping of res-bounded loops of
CGRA using REGIMap.

