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ABSTRACT
Coarse-Grained Reconfigurable Architectures (CGRAs) are an at-
tractive platform that promise simultaneous high-performance and
high power-efficiency. One of the primary challenges in using
CGRAs is to develop efficient compilers that can automatically
and efficiently map applications to the CGRA. To this end, this
paper makes several contributions: i) Using Re-computation for
Resource Limitations: For the first time in CGRA compilers, we
propose the use of re-computation as a solution for resource limita-
tion problem. This extends the solutions space, and enables better
mappings, ii) General Problem Formulation: A precise and gen-
eral formulation of the application mapping problem on a CGRA is
presented, and its computational complexity is established. iii) Ex-
tracting an Efficient Heuristic: Using the insights from the problem
formulation, we design an effective global heuristic called EPIMap.
EPIMap transforms the input specification (a directed graph) to an
Epimorphic equivalent graph that satisfies the necessary conditions
for mapping on to a CGRA, reducing the search space. Experi-
mental results on 14 important kernels extracted from well known
benchmark programs show that using EPIMap can improve the per-
formance of the kernels on CGRA by more than 2.8X on average,
as compared to one of the best existing mapping algorithm, EMS.
EPIMap was able to achieve the theoretical best performance for 9
out of 14 benchmarks, while EMS could not achieve the theoreti-
cal best performance for any of the benchmarks. EPIMap achieves
better mappings at acceptable increase in the compilation time.

Categories and Subject Descriptors
C.3 [SPECIAL-PURPOSE AND APPLICATION-BASED SYS-
TEMS]: [Real-time and embedded systems]; D.3.4 [Processors]:
[Code generation, Compilers, Optimization]

General Terms
Algorithms, Design, Performance

Keywords
Coarse-Grained Reconfigurable Architectures, Compilation, Mod-
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1 Introduction
The fundamental challenge faced by all segments of the microelec-
tronics industry is the simultaneous demand for high-performance
and higher power-efficiency. The next generation ultra high def-
inition TVs and software defined radios require performance and
power efficiencies of tens of Giga (109) operations per second per
watt (Gops/W) [25]. On the other hand, experts believe that for
Exascale computing (1018 ops/s = 109 Gops) to be really practical,
power efficiencies of at least hundreds of Gops/W are necessary.
Even under the most aggressive scaling scenarios and the most op-
timistic assumptions on the impact of high clock frequencies on
power and thermal characteristics, fundamental innovations at the
architecture level are also needed [5].

At the architecture level, accelerators are a promising approach
to improve both the performance and power-efficiency of execu-
tion. Although special purpose or function specific hardware accel-
erators (e.g. for FFT) can be very power efficient, they are expen-
sive, not programmable, and therefore limited in usage. Graphics
Processing Units (GPUs) are becoming very popular; although pro-
grammable, they are limited to accelerating only “parallel loops.”
Field Programmable Gate Arrays are general-purpose, but they lose
a lot of power-efficiency in managing the fine-grain reconfigurabil-
ity they provide. Coarse-Grained Reconfigurable Architectures or
CGRAs have been shown to be an excellent alternative as they not
only have power efficiencies close to hardware accelerators, but
can be utilized for a wide range of applications because they are
programmable. For instance, the ADRES CGRA has been shown
to achieve performance and power efficiency of 60 GOPS/W in 32
nm CMOS technology [6]. A catalog of existing CGRA designs
and architectures is given in [13].

A CGRA is simply an array of processing elements (PEs) inter-
connected by a 2-D grid. A PE typically consists of an arithmetic
logic unit (ALU) and a few registers. It is referred to as coarse
grained reconfigurable because each PE can be programmed to ex-
ecute different instructions at the cycle level granularity. CGRAs
are completely statically scheduled. Computation is laid out on
CGRA, with PEs operating on the output of their neighboring PEs.
Very little power, other than the PE power is expended in perform-
ing an ALU operation; therefore CGRAs are very power-efficient.

Even though the possible performance and power-efficiency of
a CGRA is very high, what can be achieved is critically limited
by the compiler technology. A CGRA compiler is much more
complex than a regular compiler, since in addition to the regular
task of “expressing application in terms of machine instructions,” a
CGRA compiler must: i) perform explicit pipelining of operations
(or software pipelining), ii) map operations to PEs, and iii) route
data between PEs so as not to violate data dependencies. Since all
of these are hard problems, existing CGRA compilers use “search



Figure 1: (a) a 2 × 2 CGRA, (b) an input DFG, (c) a time extended CGRA, (d) a valid mapping of the given DFG (b) on CGRA (a) with iteration latency
=II= 4, (e) another mapping for the given DFG with iteration latency= 4 and II = 2, lower II is achieved because two iterations of the loops are executed
simultaneously, Dark color PEs in (e) execute an operation of another iteration. (f) Only nodes from one iteration of the loop is shown for (e). II is a key
performance metric, with the lesser II the better throughput.

based” heuristics to map applications to the CGRA, but the quality
of mapping is not good. Towards improving compilers for CGRA,
this paper makes three important contributions:
1. Re-computation for limited resource problem: A major chal-
lenge to effective application mapping on CGRA is resource lim-
itation. Traditional approach is to use routing to find a solution
within the given resource limitation. However our formulation and
method utilizes both routing and re-computation to find a solution
within the resource limitation which often leads to better mappings.
2. General problem formulation and complexity analysis: We
show that the mapping problem can be described as that of finding
a subgraph in a minimally Time-Extended CGRA (TEC) graph that
is Epimorphic to the input graph. This is important, because even
though several application mapping heuristics exist for CGRA, the
problem has not been formulated before, and we believe that this is
the reason for the poor performance of existing heuristics.
3. Distilling an effective heuristic: Insights from the problem
formulation enable us to identify the necessary conditions for a
feasible solution, and distill an effective and theoretically justified
heuristic, which we name EPIMap. EPIMap allows for a systematic
search of the solution space which results in high quality mapping.

We compare the quality of mappings generated by EPIMap with
the EMS [23] algorithm, which is one the best existing mapping
algorithm both in terms of quality and compilation time [1]. Ex-
perimental results on 14 important kernels extracted from stan-
dard benchmarks, including SPEC2006 show that i) EPIMap gener-
ates mappings that have on average 2.85X better performance than
EMS; ii) In 9 out of 14 benchmarks, EPIMap finds the optimum
mapping while EMS could not find the optimum mapping for any
of these benchmarks, and iii) the improvement in mapping quality
comes at acceptable (one time) cost of increase in compile time.

2 Background and Related Works
A CGRA is a 2-D mesh of PEs, with each PE having an ALU and a
register file (Figure 2). Each PE is connected to its neighbors, and
the output of a PE at cycle t is accessible to its neighboring PEs
in the next cycle. In addition, a common data bus from the data
memory provides data to all the PEs in a row. The earlier work
on CGRAs include XPP [4], PADDI [7], PipeRench [11], KressAr-
ray [14], Morphosys [18], MATRIX [21], and REMARC [22].

Since many applications spend most of the time on loops [24],
this paper focuses on the problem of mapping the innermost loops
on a CGRA. A single iteration of a loop is represented as a Data
Flow Graph (DFG), which is a directed graph D = (Vd, Ed) where
nodes represent operations and arc (a, b) ∈ Ed iff the output of op-
eration a is an input of operation b. (a, b) ∈ Ed implies that oper-
ation b can only be executed after operation a has been completed.

The inputs to the problem are a DFG of a loop (extracted by the
compiler) and a M×N CGRA. The output is a valid mapping of the
nodes in the DFG to the PEs in the CGRA. The goal is to minimize

the total execution time of the entire loop. Figure 1 illustrates all
the aspects of the problem. Figure 1(a) shows a 2× 2 CGRA, and
Figure 1(b) shows a DFG of a loop. To map the loop on the CGRA,
first the CGRA must be extended in time. Figure 1(c) shows the
CGRA extended 4 steps in time. The loop DFG must be mapped
on TEC. Figure 1(d) shows a valid mapping of the loop DFG onto
the TEC. The mapping is valid, because data dependencies between
nodes are preserved. For example, node a at time t and c at time
t+1 are mapped onto the PE4. Since the result of node a is stored
in PE4, the output of a (PE4 at time t) will be available for c
(PE4 at t + 1). Nodes b and e are mapped on PE1 at times t and
t + 2 respectively. The output of b must be retained in PE1 until
e is executed at t + 2. Shown by a dashed node, this represents
routing from PE1 at time t to itself at time t+ 2.

It is important to note that the execution on the CGRA is pipelined.
Pipelining essentially means that we can execute instructions of dif-
ferent iterations of the loop at the same time. This explicit pipelin-
ing of schedule is referred to as software pipelining and modulo
scheduling [24] is one of the most popular techniques for the same.
The performance metric here is initiation interval (II), rather than
the schedule length. II is the number of cycles between the start
of two consecutive iterations of a loop. Figure 1(e) shows another
way to execute the same loop DFG with instructions from other it-
erations also executing simultaneously. The dark circle nodes in the
diagram represent the operations of the ith iteration, while the light
square nodes represent the operations of the (i−1)th iteration, and
the light hexagon nodes represent the operations of the (i + 1)th

iteration. Note that the schedule length is 4 cycles, but the II is
only 2 cycles. This is because the dark circle nodes representing
the ith iteration span from time t to t+ 3, but the operations of the
next iteration, i.e., the light hexagon nodes start from time t + 2.
This mapping of one iteration is then shown in Figure 1(f), where
we have removed the nodes from other iterations for clarity and
easier comparison with Figure 1(d). Note that PEs that are shaded
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Figure 2: A 4× 4 CGRA. PEs are connected in a 2-D mesh. Each PE is an
ALU plus a local register file.



Figure 3: (a) a 2 × 2 CGRA, (b) input DFG where node b has out-degree of 4. (c) a valid mapping of the input DFG using routing, achieves II = 3. (d)
shows the mapping of the input DFG using re-computation, achieves II = 3. (d) another mapping using both routing and re-computation, achieves II = 2.

black indicate their use in other iterations. As compared to Fig-
ure 1(d), since a new iteration starts every 2 cycles in Figure 1(f),
the throughput and performance improve by a factor of 2.

This mapping and scheduling of the loop DFG on the CGRAs is
done by the compiler. Recognizing the significant influence of the
compiler on the achieved performance, much recent research has
focused on efficient application mapping schemes [2, 3, 8, 9, 12,
15, 17, 20, 23, 26]. Each of these schemes impose their own restric-
tions and employ different, albeit intuitively justifiable, heuristic
local decisions. For instance, many of these earlier works partition
the problem in to three subproblems, namely, scheduling (when to
perform an operation), placement (on which PE to perform an op-
eration) and routing (how to route data between PEs), and solve
these independently using a generic search method such as simu-
lated annealing [15, 20], or use techniques developed in high-level
hardware synthesis [9]. Since the key metric used in all the methods
is II , the existing methods select an II , attempt to solve the three
problems (possibly in different order), and if a feasible solution is
not found, increase the II and repeat.

One of the major drawbacks of compiler research in this area is
the lack of a precise and general formulation of the problem. Proper
problem formulation allows us to systematically solve the mapping
problem. Next, we first explain the concept of re-computation and
why it is needed, then we show our problem formulation which
allows for both routing and re-computation, and finally present our
EPIMap heuristic before showing the experimental results.

3 What is Re-computation and Why?
Resource limitation is a major problem when trying to map a loop
DFG onto a CGRA. One kind of resource limitation that is seen
very often is the out-degree problem. Figure 3 illustrates the out-
degree problem, and its solutions. The node b in the DFG in Fig-
ure 3(b) has an out-degree of 4 whereas the maximum out-degree
of PEs in the TEC is 3 (if b is mapped on PE4 at time t+1, then a
dependent operations can only be mapped on PE4, PE1, or PE3

at time t + 2). Normally, if a node has out-degree greater than the
maximum out-degree of the TEC, then it cannot be mapped onto
the CGRA. In this example, only three of the dependent operations
(among c, d, e, and f ) can be mapped at time t+ 2, and the fourth
will have to be mapped at time t + 3; but if we do that, the fourth
operation cannot receive the value of b.

Figure 3(c) shows how routing can be used to solve this out-
degree problem. Operation b is performed on PE4 at time t + 1.
At time t+2, PE3, being adjacent to PE4, copies the result of b to
its output register. At time t + 3, PE3 uses its own output (which
has b) to perform operation f , and PE2, which is adjacent to PE3,
uses the result in PE3’s output register (result of b) to perform
operation e. Thus PE3 just routes the output of operation b at time
t + 2, to make it available at time t + 3. Another, slightly non-
intuitive way to solve the out-degree problem is re-computation.
Figure 3(d) shows that operation b is performed on both PE4 and

PE3 at time t+ 1. Then their results are used by dependent nodes
c, d, e and f in time t+ 2.

Note that this is not routing, but re-computation because there
is no path between two PEs on which b is mapped. In this exam-
ple, routing, and re-computation both enable an II of 3. Another
example of re-computation, explained in detail in Appendix A il-
lustrates a case, where re-computation leads to better II than pos-
sible by routing. But, even in this example, Figure 3(e) shows that
performing both routing and re-computation, the input graph can
be mapped with an II of 2. Using only one of them, the best
achievable II is 3. Consequently, the problem formulation must
uniformly account for routing and re-computation.

4 Problem and Complexity
Let D = (Vd, Ed) be the input DFG, and C = (Vc, Ec) the TEC,
extended to some number k time steps1. Let C∗ = (Vc∗ , Ec∗) be
a subset of C where Vc∗ ⊆ Vc and Ec∗ ⊆ Ec. In Appendix B,
we give a formal definition of a valid mapping of operations in
D to PEs in C, but intuitively, a valid mapping is one that allows
correct execution of the DFG by satisfying all the data dependen-
cies. Of course, valid mappings must allow overlapping operations
in different time steps, and resolve out-degree and resource con-
flict problems by routing and/or re-computation. We define valid
mappings in terms of Epimorphisms, which forms the basis of our
algorithm and heuristic.

DEFINITION 1. Let G and H be two digraphs. A mapping f :
V (G) → V (H) is a Homomorphism if (f(u), f(v)) ∈ E(H) ⇒
(u, v) ∈ E(G). It is called an Epimorphism if it is node surjective,
i.e., every node in H is an image of some node in G. Note that node
surjective implies arc surjective [16].

Simply stated, for every valid mapping there exists a smallest k
for which there is an Epimorphic map M : C∗ → D that sat-
isfies certain conditions. Conversely, an Epimorphic map from
M : C∗ → D, for some k, that satisfies the same conditions cor-
responds to a valid mapping. Thus the optimization problem is to
construct an Epimorphism M : C∗ → D, where C∗ is a subgraph
of a minimally extended TEC C. The problem formulation and the
NP-completeness proof is explained in detail in Appendix C.

Now we see how the formulation works. Consider a node (i.e.
a PE) i ∈ Vc∗ . Let i′ = M(i) ∈ Vd. i′ be the operation that is
mapped to PE i. For example, if the node i is PE4 at time t in
Figure 1(d), then, in the mapping shown, i′ = M(PE4,t) = a.
Similarly, let j ∈ Vc∗ : ∃(j, i) ∈ Ec∗ , and let j′ be the operation
that is mapped to PE j. For example, j is the PE4 at time t + 1,
and j′ = M(PE4,t+1) = c. Then epimorphism requires that if
there is an arc between a and c, then there must be an arc between
PE4 at time t, and PE4 at time t+1. This example illustrates how
epimorphism ensures that data dependencies are preserved.
1To avoid cumbersome notation, we don’t show the explicit depen-
dence on k, which is to be determined and minimized.



Our problem formulation seamlessly captures routing and re-
computation. Whenever we use routing/re-computation, a set of
PEs in the TEC map to one operation in the DFG. For example,
in Figure 3(c), in which the out-degree problem is resolved using
routing, PE4 of time t+ 1, and PE3 of time t+ 2 are mapped to
operation b. Since operation a has an arc to operation b, epimor-
phism requires that there be at least one arc between the set of PEs
that are mapped to a, and the set of PEs that are mapped to b. This
is true, since there is an arc from PE4 at time t (where operation a
is mapped), to PE4 at time t + 1 (where operation b is mapped).
Similarly the data dependencies with operations c, d, e, and f are
satisfied. In Figure 3(d), in which the out-degree problem is re-
solved using re-computation, a set of two PEs, PE4 of time t+ 1,
and PE3 of time t+1 are mapped to operation b. In this case also,
the data dependencies with the other operations are satisfied.

Again, to use routing or re-computation, a set of PEs in the TEC
map to one operation in the DFG. The only difference is the pres-
ence/absence of arc between the PEs in the set. In Figure 3(c), PE4

of time t + 1, and PE3 of time t + 2 have an arc between them,
so they transfer data through routing. On the other hands, in Fig-
ure 3(d), PE4 of time t+1, and PE3 of time t+1 do not have an
arc between them, therefore the operation b has to be recomputed.

We now explain the conditions. Essentially, the condition is just
to ensure that the PE at which computation, or re-computation hap-
pens, receives all the input operands. Thus, if we consider a node
(i.e. a PE) i ∈ Vc∗ . Let i′ = M(i) ∈ Vd. i′ is the operation that is
mapped to PE i. Let j ∈ Vc∗ : ∃(j, i) ∈ Ec∗ . Then if there is no
PE that is connected to i onto which operation i′ is mapped, (i.e.
if (j, i) ∈ Vc∗ and M(j) 6= i′), then for any k′ : ∃(k′, i′) ∈ Vd,
there must exist a k ∈ Vc∗ : ∃(k, i) ∈ Ec∗ and M(k) = k′.

5 EPIMap
In this section, we describe our heuristic algorithm called EPIMap.
EPIMap reduces search space because of three main reasons: i) it
changes the input DFG to ensure that the graph meets necessary
mapping conditions; ii) it determines a more accurate lower bound
on II , and iii) when a placement is impossible, it changes nodes
(re-computation or routing) that are left unmapped and attempts a
new placement. A combination of routing and re-computation can
be achieved when a node cannot be placed multiple times.

5.1 Overview

The EPIMap algorithm is presented in Algorithm 1. EPIMap ini-
tially changes the input DFG to hold the necessary mapping condi-
tions (line 1-4). In the prepared DFG, it determines the minimum
II (line 5). Then it attempts to find a valid mapping for this II .
EPIMap achieves this in the While loop shown in line 6. If such
a mapping cannot be found, it collects the set of nodes left un-
mapped and changes their input through routing or re-computation
(line 24). In addition, it stores the number of unmapped nodes in
the previous attempt (line 25). In the next attempt, if the number
of unmapped nodes increases, it avoids further attempt for the pre-
pared DFG, restores the original DFG, and decreases the number
of operations at each cycle (line 21, 22) and retries again. If at any
point of time MII increases and becomes greater than II (line 12),
EPIMap restores the original DFG, increases II , and attempts for a
new mapping (line 12-16). EPIMap repeats these steps until a valid
mapping can be achieved.

5.2 Necessary Mapping Conditions

We first characterize the properties of a DFG so that it is mappable.
1. Out-degree of each operation must be less than the out-
degree of PEs in the TEC. If there is a node u with out-degree

larger than that of PEs in the TEC, then a feasible mapping cannot
be found. This can be fixed by either routing or re-computation. To
perform routing, EPIMap adds a new node v and moves some out-
going arcs to v. Then it adds the arc (u, v). EPIMap performs re-
computation by creating a new node v and connecting all nodes that
have an outgoing arc to node u, to v, i.e. ∀r ∈ Vd : (r, u) ∈ Ed,
add a new arc (r, v). Function Constraint_Outdegree in EPIMap is
called to perform this step. From definition 1, we can immediately
conclude that the modified graph is epimorphic to the input graph.

2. DFG must be balanced. A linear ordering of the nodes can
be obtained by topological sorting. EPIMap schedules operations
using this order. If there is an arc (i, j) between nodes i (scheduled
at time ti) and j (scheduled at time tj) where ti−tj > 1, then DFG
is not balanced. The formal definition of a balanced graph is given
in the Appendix D. When such an arc is found, EPIMap adds extra
nodes and balances the graph. From Definition 1, we can conclude
that the balanced graph is epimorphic to the input graph. For exam-
ple, in Figure 1(b), there is a distance of 2 between orders of node
b and e. To overcome this problem, another b node is inserted be-
tween those nodes as illustrated in Figure 1(d). It should be noted
that EPIMap removes every cycle in the DFG because topological
sorting is impossible for cyclic graphs. This step partially sched-
ules the operations while maintaining the routing. EPIMap calls
Balance function for this phase.

3. The number of nodes at each level must be less than the
number of PEs in the CGRA (non-time extended). If a level
violates this constraint, EPIMap finds a set of nodes that can be
moved to the other levels (previous or next) with the minimum cost.
Here, the cost is the number of extra nodes that should be added to
the DFG to preserve the data dependency of nodes. Again, from
definition 1, this graph is also epimorphic to the input DFG. This
step completes scheduling while maintaining routing. At the end
of this step, cycles in the DFG are restored.

5.3 Determining Minimum II
While result of previous steps schedules the operations based on the
necessary conditions on the DFG, this step finds a modulo sched-
ule for the operations. Let MII denote the minimum II . This
can be expressed as MII = Max(ResMII,RecMII), where
ResMII = d n

M×N
e is the resource constrained minimum II

and n is the number of operations in the DFG, and RecMII is
recurrence-constrained MII . Recurrence-constrained indicates inter-
iteration dependency of operations in a loop. When such a depen-
dency exists, the next iteration cannot start until the results from the
previous iteration becomes available [24]. When MII is found,
EPIMap folds (modulo schedules) the DFG (after preprocessing).
To create such a graph, called MDFG, EPIMap assigns a level to
each node. The level of each node in MDFG is the level of that
node in the preprocessed DFG modulo MII . In MDFG, if the
number of nodes at each level is less than the number of PEs in the
CGRA, MII is feasible, otherwise, EPIMap moves operations to
next or previous levels to satisfy this constraint. If satisfying this
constraint is impossible, EPIMap increases MII until such a graph
can be achieved. This phase is completed by DetermineMII and
UpdateMII functions. It should be noted that EPIMap determines
II accurately without any attempt to actually place the operations
onto the CGRA.

5.4 Placement
EPIMap places operations (assigns nodes in the DFG to the nodes
in the TEC) by finding the maximum common subgraph (MCS)
(line 17) between the TEC and MDFG using Levi’s algorithm [19].
If MCS is isomorphic to DFG, the mapping is completed. Oth-
erwise, DFG must be changed. Since MCS is an NP-Complete



Algorithm 1 EPIMap(Input D, Input C)

1: Dp ← Constraint_Outdegree(D);
2: M ← |Vc|;
3: Dp ← Balance(Dp);
4: Dp ← Constraint_Levels(Dp, M);
5: II ← DetermineMII(Dp); Di ← Dp;
6: while Mapping is not found do
7: N=∞;
8: while true do
9: Di ← Balance(Di);

10: Di ← Constraint_Levels(Di, M);
11: Dmp,MII ← UpdateMII(Di, M);
12: if MII > II then
13: II ← II + 1;
14: M ← |Vc|;
15: Di ← Dp; break;
16: end if
17: CS ←MCS (Dmp, II, C);
18: if VCS = VDmp then
19: return CS;
20: else
21: if VDi − VCS > N then
22: M ←M − 1; Di ← Dp; break;
23: else
24: Di ← ChangeInput(VDi − VCS , Di);
25: N ← |VDi − VCS |;
26: end if
27: end if
28: end while
29: end while

problem [10], we have modified Levi’s algorithm to keep track of
the number of attempts that did not increase the number of nodes in
the common subgraph. When the number of unsuccessful attempts
reaches a threshold value, EPIMap avoids further attempts.

6 Experimental Results
We have modified GCC and defined a new C pragma directive to
specify the loops in the source code. We have taken loops from
different applications including SPEC2006 benchmarks programs.

To evaluate the effectiveness of EPIMap, we compare the av-
erage II achieved using EPIMap with that achieved by EMS [23].
EMS uses a node selection scheme to map operations. To show that
EPIMap generates better mappings than EMS even if EMS uses a
better node selection scheme, we created 500 random node selec-
tion orders and selected the mapping that EMS generates with the
best II . The mapping results for this case are labeled BCEMS.
The original EMS results are labeled EMS.

We assume a 4 × 4 homogeneous CGRA, and PEs are capable
of performing fixed-point and logical operations. Access to the
memory as well as other operations have latency of 1 cycle. We
assume that there is enough memory to hold the instructions and
variables of loops where PEs have 2 local registers. In addition, we
assume that all PEs have access to the data memory but the data bus
is shared among PEs in a row and is mutually exclusive. For load
and store operations, two instructions are executed, one for address
generation and one that generates/loads data.

6.1 EPIMap Generates Better Mapping

Figure 4(a) shows the average achieved II of different benchmarks
using different mapping techniques. The first observation is that on
average, EPIMap achieves a lower II than both EMS and BCEMS

in all applications. We also note that even with better node selection
scheme, EMS results is worse than EPIMap.

In the best case, EPIMap-II = 0.19×EMS-II (Swim_calc2), and
EPIMap-II = 0.28×BCEMS-II (LowPass). This means that in the
best case, EPIMap accelerates Swim_calc2 by a factor of 5.25X
more than EMS and by 3.5X more than BCEMS, as the perfor-
mance is inversely proportional to II . On average, EPIMap finds
mappings with II of 0.35X and 0.44X of that EMS and BCEMS,
which translates to a 2.26X and 2.84X better performance, respec-
tively.

6.2 EPIMap’s II is close to Minimum II
In Figure 4(b), the relative II (in percentage) is calculated by divid-
ing MII by resulting II , i.e. MII

II
; thus, the higher value implies

a mapping that is closer to an optimal II .
We observe that EPIMap achieves the lower bound (MII) in 9

out of 14 benchmarks. In the five cases where EPIMap could not
achieve the MII , it was either because there was no mapping that
can achieve MII or the threshold value was reached before a valid
mapping was found.

The average relative II gets worse for the applications with com-
plex memory access patterns including Bzip2 which has many mem-
ory related store instructions (bus is shared and mutually exclusive).
In addition, there are many loops in Bzip2 with the number of nodes
nearly equal to the number of nodes in the TEC. When EPIMap re-
duces the number of operations at each level of the preprocessed
DFG, some nodes will be rescheduled. To maintain data depen-
dency for those nodes, extra nodes need to be added to the DFG.
Therefore, ResMII increases.

We also note that EMS and BCEMS could not achieve MII for
any benchmark. The average relative II of EMS is 45% of the
average relative II of BCEMS, and never exceeds 60% for average
relative II of BCEMS. However, on the average, MII

EPIMap−II
≈

0.92, whereas MII
EMS−II

≈ 0.30 and MII
BCEMS−II

≈ 0.47. EPIMap
produces mapping that achieve II which is much closer to MII
than either EMS or BCEMS.

6.3 DFG Modification Reduces Search Space Significantly
Experimental results show that EPIMap generates valid mappings
in 70% of loops in 6 benchmarks including: Sor, Sobel, Lowpass,
Laplace, wavelet, and Sjeng in the first try before any attempt is
made to reduce the number of operations at each level (second
heuristic). However, EMS tries on average 7.87 unsuccessful IIs
to find a valid mapping for these benchmarks. For each unsuc-
cessful II , EMS searches for different node mappings and routing.
This shows that changing input graph to ensure that it satisfies the
necessary mapping conditions reduces search space substantially.

6.4 Counter-Intuitive Minimum IIs after Limiting Number of
Nodes at Each Cycle

In the first glance, it seems that reducing number of nodes at each
cycle increases II . However, for 50% of loops in Swim_cal1,
Swim_cal2, H.264, Jpeg, Libquantum and Sjecg, this constraint is
used on average 3 times but it did not increase the achieved II .

This is because the number of nodes in the modified DFG of
these loops is less than the number of nodes in the TEC. This dif-
ference allows EPIMap to add more nodes to the DFG without in-
creasing ResMII . Hence, we conclude that level constraint does
not reduce mapping quality unless the number of nodes in the ex-
tended CGRA and modified DFG are close.

6.5 Reasonable Compilation Time
We measured the running time of EPIMap and EMS on an Intel
Core2 machine with CPU frequency of 2.66 GHz. Figure 4(c)
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Figure 4: The comparison of achieved II of different applications using
EPIMap, EMS, and BCEMS. On average, EPIMap achieves lesser II than
other techniques. This better mapping quality comes at the cost of more
compilation time of those applications.

shows the relative increase in execution (RIE) time of EPIMap
and its actual execution time for different applications, where the
threshold of EPIMap is 107. The bars show the RIE time of EPIMap
to EMS, i.e. TEPI−TEMS

TEMS
for different benchmarks. The actual

EPIMap execution time is depicted by the solid line.

It can be observed that EPIMap achieves better average II at the
cost of more execution time, the time it takes for EPIMap to gener-
ate a valid mapping or compilation time of application. In fact, the
average RIE time of EPIMap to EMS is around 5.8. However, we
can observe that the actual compilation time is fairly low, mostly
less than 30 seconds on average.

7 Summary

CGRAs are promising structures that provide high-performance
and high power-efficiency. However, achieving high power-efficiency
is challenging primarily because compilation for CGRA is difficult.
In this paper, we formulate the problem of mapping application
onto a CGRA and establish its complexity. We also characterize the
necessary conditions for application specification to find a feasible
mapping. To tackle the mapping problem, we proposed a heuristic
algorithm called EPIMap. EPIMap is different from the existing
methods in the sense that it systematically searches the solution
space to find a valid mapping. Our experimental results show that
EPIMap generates mapping which leads to significant performance
improvement compared to EMS.
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APPENDIX
A Example of the Need for Re-computation
One form of resource limitation problem is resource conflict prob-
lem. If due to the modulo scheduling, the number of nodes using
the same resource exceeds the number of available resources, we
call it resource conflict problem. There is a resource conflict be-
tween nodes b, e and f in Figure 3(b) when it is mapped onto a
2× 2 CGRA (Figure 3(a)). For such a mapping MII = d 6

4
e = 2.

To meet data dependencies, node b has to be executed on a PE that
is adjacent to PEs executing nodes c and d. In addition, nodes e
and f should be mapped on PEs which are also adjacent to PEs
executing nodes c and d. In mapping shown in Figure 3(c), nodes
c and d are mapped onto PE4 and PE2 respectively. Therefore,
there are two PEs adjacent to these PEs, PE1 and PE3. Due to
the modulo scheduling, nodes b from iteration i, e, and f from it-
eration i − 1 are executed at the same time. At this time, there are
three nodes but two available resources. In Figure 3(c), node b is
executed on two different PEs to overcome this problem. Without
re-computation, it is impossible to find a valid mapping for II = 2.

B Formal Problem Definition
DEFINITION 2. Valid Mapping: Let n be the number of nodes

in Vd, i.e. n = |Vd|, and C = (Vc, Ec) be TEC. Let C∗ =
(Vc∗ , Ec∗) be a subset of C, i.e., C∗ ⊆ C. Let S = {s1, s2, s3, ..., sn}
be a set of n disjoint subsets of Vc∗ such that 1 ≤ ∀i ≤ n, |si| ≥ 1.
A mapping function f : Vd → S is a valid mapping iff ∀u, v ∈ Vd :
(u, v) ∈ Ed,

∀v′ ∈ f(v), there must be a path from a node u′ ∈ f(u) to
v′. The nodes in this path must only be nodes in f(v).

In this definition, the set of PEs in the TEC are partitioned into
some sets si. The number of sets in this partition must be n to
ensures that every node in the DFG will be mapped into a set.
si > 0 ensures that every operations is executed at least once.
If the number of PEs in a set si is more than one, it implies that
the nodes mapped into si will be executed, and/or routed, and/or
re-computed.

A mapping is valid if data dependencies between nodes in the
DFG are preserved after mapping. When there is an arc between
two nodes (u, v) ∈ Ed in the DFG, every PE in the set sv that
executes node v, can receive the result of execution of u as input.
Thus, for every PE in the set sv , there must be a path from PEs
in the set su where u is mapped into. More precisely, every PE in
the set su either executes u or routes the result of execution of u.

Figure 5: (a) An input DFG, (b) a 2 × 2 CGRA, (c) the best achievable
mapping. There is resource conflict between nodes b and nodes e or f
(II = 2). Re-computing node b allows us to avoid this conflict.

Therefore, the result of u can be routed from PEs in this set to the
PEs executing node v that need u as an input.

C Problem Formulation
In this section, we formulate the problem of mapping a DFG onto
a CGRA as finding an Epimorphic subgraph of TEC onto the input
DFG. For simplicity, we assume that input DFG is acyclic.

To do this, Theorem 1 states that when a node a is mapped to
a set of nodes in TEC, the nodes in this set are only connected
to each other (routing) or they are connected to the nodes on which
the adjacent nodes of a are mapped (re-computation is there if more
than one node in that set). Then Theorem 2 states that every valid
mapping implies an Epimorphic function from a subgraph of TEC
to the input DFG. Using Theorem 1 and 2, we prove that every node
a in the DFG whose in-degree is greater than 0 would be mapped
onto a node in TEC which has input either from the nodes that a is
mapped onto (routing) or from all the nodes that the input subgraph
of a is mapped onto in Theorem 3. Then, Theorem 4, also proves
the converse, that every Epimorphic function from a subgraph of
TEC to the input DFG that holds the aforementioned properties
implies a valid mapping. Consequently, they are equivalent.

Finally, since we prove the equivalence of problem of mapping
application onto a CGRA with graph Epimorphism which is an NP-
Complete problem [16], therefore CGRA application mapping is
NP-Complete.

THEOREM 1. In a valid mapping, every node u ∈ Vd that is
mapped onto a set si ⊂ Vc∗ where |si| > 1, ∀g, h ∈ si, if there is
a path P between g and h then P only passes through some nodes
in si.

PROOF. Let’s assume that there is a path P ′ between g and h
which passes through some nodes not in si. Without loss of gen-
erality, let’s assume that P ′ starts from g passes through at least
one node k /∈ si and ends in h. Therefore, there is an arc between
f−1(g) and f−1(k) and also an arc between f−1(k) and f−1(h)
where f−1(h) = f−1(g) in the DFG. This implies that there is a
cycle in the input DFG which contradicts with our assumption that
the DFG is acyclic.

THEOREM 2. Let D(Vd, Ed) be the input DFG and Ck(Vc, Ec)
be the CGRA graph extended in time k. Every valid mapping im-
plies an Epimorphic function M : C∗ −→ D where C∗ is a sub-
graph of C.

PROOF. Let Vc∗ be the set of nodes in C∗ and Ec∗ be the set of
arcs.

• m is function. A mapping is valid if each PE executes the
maximum of one operation per cycle. Therefore, ∀i ∈ Vc∗ ,M(i)
is exactly one element in Vd.

• m is surjective. A valid mapping maps implies that every
nodes in graph D must be mapped onto some PEs in TEC.
Therefore, it is surjective.

• S is homomorphic to D. In a valid mapping, every node i ∈
Vd is mapped to a set of nodes si ⊂ Vc∗ . Therefore, ∀a, b ∈
Vc∗ , if there is an arc (a, b) ∈ Ec∗ , then either a, b ∈ si or
a ∈ si, b ∈ sj where si 6= sj . The first case simply implies
homomorphism according to definition. We claim that the
second case also implies homomorphism. Let’s assume node
j ∈ Vd is mapped to sj . If there is an arc between nodes i and
j then it implies a homomorphism. Otherwise, it is trivial to
see that if there is no arc between i and j but between a and b,
then we can remove (a, b) from Es and mapping will be still
valid.



Both graphs in Figure 3(c) and Figure 3(d) are Epimorphic to
Figure 3(b). All arcs in the mapping correspond to an arc in
the input DFG. However, there is an arc between PE4 at time
t and PE3 at time t+ 2. The second one is used for routing.
Figure 3(d) shows another mapping. In this mapping there
is an arc between PE4 time t and PE4 at time t + 1. This
arc is mapped into the arc between nodes a and b in the input
DFG. Similarly, there is an PE4 time t and PE3 at time t+1
which is also mapped into the same arc. This case, node b is
executed two times (re-compuation).

DEFINITION 3. Input subgraph: for every node i in a digraph
D(Vd, Ed), there exists a subgraph G(Vg, Eg) such that Vg is the
set of all nodes j : (j, i) ∈ Ed in addition to node i; also Eg is the
set of all arcs (j, i) : (j, i) ∈ Ed.

DEFINITION 4. An isomorphism from G(Vg, Eg) onto H(Vh, Eh)
is defined as f : Vg −→ Vh such that:

1. |Eg| = |Eh|
2. |Vg| = |Vh|
3. ∀u, v ∈ Vg : (u, v) ∈ Eg iff (f(u), f(v)) ∈ Eh [10].

THEOREM 3. Every valid mapping implies an Epimorphic func-
tion M : C∗ −→ D such that ∀i ∈ Vc∗ , input subgraph of M(i)
K(Vk, Ek), input subgraph of i L(Vl, El): if Indegree(M(i)) >
0⇒

1. ∀j ∈ Vl : M(j) = M(i) or

2. K and L are isomorphic.

PROOF. • Theorem 2 proves that every valid mapping im-
plies an Epimorphic function M : C∗ −→ D.

• Let’s assume a ∈ Vd is mapped onto set sa ⊂ Vc∗ . ∀i ∈
Vc∗ : Indegree(i) > 0 either:

– all incoming arcs of i are from nodes j ∈ sa which im-
plies ∀j ∈ Vl : M(j) = M(i).

– input arcs of i are from a combination of nodes j ∈ sa
and nodes k /∈ sa. This case cannot happen according to
Theorem 1.

– all incoming arcs are from nodes j /∈ sa. In this case,
we show that in order to have a valid mapping, K and
L should be isomorphic. Let’s assume that K and L are
not isomorphic. Then either Vk 6= Vl or Ek 6= El. If the
number of nodes or arcs are different then the mapping
cannot be valid. It should be noted that the only node
in K with incoming arcs is M(i) and i is the node in L
with incoming arcs. Therefore, the connection topology
cannot violate isomorphism constraint if the mapping is
valid.

THEOREM 4. Every Epimorphic function M : C∗ −→ D
with following constraint implies a valid mapping. Constraint:
∀i ∈ Vc∗ , input subgraph of M(i) K(Vk, Ek), input subgraph
of i L(Vl, El): if Indegree(M(i)) > 0⇒

1. ∀j ∈ Vl : M(j) = M(i) or

2. K and L are isomorphic.

PROOF. • Because the function is surjective, all nodes in D
must be covered by at least one node in C∗.

• Since epimorphism preserves node adjacency [16] and the
function is surjective, then all arcs in Ed are covered by an
arc in Ec∗ which implies, for all u, v ∈ Vd : (u, v) ∈ Ed

there is an arc between (m−1(u),m−1(v)).

• ∀u ∈ Vd : indegree(u) > 0 where K(Vk, Ek) is input
subgraph of u and L(Vl, El) is input subgraph of m−1(u):

– if ∀j ∈ Vl : M(j) = u, there must be a node v ∈
Vc∗ such that input subgraph of v is isomorphic to K.
Because function is surjective, all arcs of Ek must be
mapped. Therefore, according to the constraint, since
the first case cannot happen, there exists a node whose
input subgraph is isomorphic with K which implies u is
mapped properly.

– if K and L are isomorphic, then mapping of u is valid.

THEOREM 5. Every valid mapping from an input DFG D(Vd, Ed)
onto CGRA graph extended in time k Ck(Vc, Ec) is equivalent to
an Epimorphic function M : C∗ −→ D such that ∀i ∈ Vs :
K(Vk, Ek) input subgraph of M(i), L(Vl, El) input subgraph of
i : if Indegree(M(i)) > 0⇒

1. ∀j ∈ Vl : M(j) = M(i) or

2. K and L are isomorphic.

where C∗(Vc∗ , Ec∗) : C
∗ ⊆ C.

PROOF. • From Theorem 3, every valid mapping implies an
Epimorphic function M : C∗ −→ D with above-mentioned
constraints.

• From Theorem 4, every Epimorphic function M : C∗ −→ D
with above-mentioned constraints implies a valid mapping.

THEOREM 6. The problem of mapping an input DFG onto a
CGRA is NP-Complete.

PROOF. Mapping an input DFG onto a CGRA is in NP . The
decision problem of the above problem is: Given an input DFG D,
a certificate which is a T , a given graph G′ that is a subgraph of the
extended in time graph of CGRA and a mapping from subsets of
G′ onto nodes in D, is mapping to G′ a valid mapping? The yes-
instance of this problem can be verified in polynomial time. For
every arc in the G′ we can verify the valid mapping conditions by
checking the corresponding arc in the input DFG. Therefore, map-
ping is in NP . Finding minimum Epimorphism has been proved
to be NP-Complete [16]. We have shown the equivalence of valid
mapping and Epimorphism, therefore, we conclude that the prob-
lem of finding a valid mapping is NP-Complete.

D Formal Definitions
DEFINITION 5. Balanced graph G(Vg, Eg): a graph is bal-

anced if ∀i, j ∈ Vg such that there are two paths P1(i, j) and
P2(i, j) between them then the length of paths are equal. In addi-
tion, ∀i, j ∈ Vg : if ∃k, l ∈ Vg such that P1(i, k), P2(j, k), P3(i, l),
and P4(j, l) then L(P1)−L(P2) = L(P3)−L(P4) where L(Pi)
is the length of path Pi.


