*

A Customizable Compiler Framework for Embedded Systems

Ashok Halambi Aviral Shrivastava Nikil Dutt Alex Nicolau

ahalambi@ics.uci.edu aviral@ics.uci.edu dutt@ics.uci.edu nicolau@ics.uci.edu
Center for Embedded Computer Systems

Department of Information and Computer Science

University of California, Irvine, CA 92697-3425, USA

Extended Abstract submitted to SCOPES 2001

*This work was partially supported by grants from NSF
(MIP-9708067) and ONR (N00014-93-1-1348).

1 Introduction

Embedded Systems containing programmable com-
ponents (i.e. processor-memory based systems) are
used to provide for the dual needs of short design times,
and higher design flexibility. Designers may reuse pre-
verified processor, memory Intellectual Property (IP)
blocks to shorten the design times. In addition, the
programmability of such systems allows for modifica-
tions late in the design stage and also allows for eas-
ler upgrading as compared to non-programmable ASIC
solutions. Previously, software for such programmable
embedded systems was developed using assembly-level
languages. However, the high degree of software con-
tent for newer designs and shrinking time-to-market cy-
cles has resulted in migration to a high-level language
(such as C, C++, Java) based software development
environment.

To effectively explore the processor-memory design
space and develop software in a high-level language, the
designer requires a high quality software toolkit (pri-
marily a highly optimizing compiler and cycle-accurate
simulator). Compilers for embedded systems have been
the focus of several research efforts [11] recently. A
promising approach to automatic compiler generation
is the “retargetable compiler” approach. A compiler is
classified as retargetable if it can be adapted to gen-
erate code for different target processors with signifi-
cant reuse of the compiler source code. Retargetability
is typically achieved by providing target machine in-
formation (in an Architecture Description Language —
ADL) as input to the compiler along with the program
corresponding to the application.

The complexity in retargeting the compiler depends
on the range and features of target processors it sup-
ports and also on its optimizing capability. Embedded
processors typically have irregular pipeline, datapath,
and memory structures. Conventional compiler tech-
niques do not work well under these constraints. There-
fore, recent research has concentrated on techniques
that target embedded processor characteristics. Exam-
ples of such techniques include optimized memory ad-
dress computation, SIMD (Single Instruction, Multiple
Data) optimization, data placement etc. However, the
problem of integrating these techniques with the tradi-
tional compiler phases (including machine-independent
optimizations, code selection, instruction scheduling,
etc.) still remains. The “optimal” ordering of all these
techniques is very much dependent on the processor
architecture and application characteristics. Further-
more, the ordering is also influenced by the optimiza-
tion criteria (such as power, cost, performance, etc.).
In this paper we present Transmutations, a com-

piler customization framework that integrates the var-
ious embedded system compilation techniques, and al-
lows for dynamic ordering between the compiler phases.
The Transmutations framework is a part of the EX-
PRESS retargetable compiler for embedded systems.

2 Related Work

The problem of generating efficient software toolkits
for embedded systems has been the focus of several re-
cent research activities. [6] contains a survey of some of
the recent efforts in automatically generating the soft-
ware toolkit from a specification of the system in an
Architecture Description Language (ADL). In this pa-
per we focus on the problem of increasing the efficiency
of the compiler by customizing it for the given appli-
cation and architecture (and also the design goals).

Previous research in the area of compilers for embed-
ded systems has resulted in the development of var-
ious techniques to increase the efficiency of the com-
piler for performance, code-size and power goals. Also,
there have been some projects that aim to incorpo-
rate these individual techniques in a complete compiler
flow for a (narrow) range of processors. The CodeSyn
[10] project demonstrated a compiler for a limited
embedded processor class with irregular architectures.
CHESS [9] is a retargetable code generation environ-
ment for fixed-point DSP processors. CHESS uses the
nML [3] ADL to achieve retargetability. The AVIV [7]
compiler, using the ISDL [4] ADL, produces machine
code optimized for size. The MSSQ and RECORD
compilers use the MIMOLA [1] ADL to achieve retar-
getability. MMSQ 1s able to produce microcode for a
large range of datapath architectures, but suffers from
low code quality. The RECORD compiler, however,
targets mainly DSP architectures.

The quality of generated code is heavily influenced
by the ordering of the compiler optimizations (also
known as phases). Most compilers rely on a predeter-
mined ordering of the phases. However, as these phases
are mutually dependent and may adversely affect each
other, this approach is sub-optimal when retargeting
the compiler for a wide range of processors and ap-
plications. Simultaneous execution of all the phases
in order to avoid restricting the solution space is not
practical because of the large number of optimizations.
An example of this is the Integer Linear Programming
based approach proposed in [17], which suffers from
extremely high runtime requirements.

In recent years, techniques that integrate some op-
timizations in order to mitigate the phase ordering
problem have been reported. For example, instruction
scheduling and register allocation have been integrated

in [13], [2]. However, most such techniques have only
considered RISC like architectures with homogeneous
register files.

The AVIV compiler attempts to solve the
phase ordering problem by performing a heuristic
branch-and-bound step that executes resource alloca-
tion/assignment, operation grouping, and scheduling
concurrently. The CHESS compiler uses data routing
as a technique to simultaneously solve the problems of
code selection and register allocation.

Mutation Scheduling (MS) [14] integrates code se-
lection and register allocation into instruction schedul-
ing by “adapting”the computation of values to con-
form to varying resource constraints and availability.
As the problems are NP-hard, MS depends on heuris-
tic guidance to limit the search space. However, MS
only integrated the traditional compiler phases and
mainly considered homogeneous architectures. Trans-
mutations incorporates MS and further, as explained
in Section 3.2, provides for changing the ordering of
other embedded systems optimizations (such as mem-
ory optimizations, SIMD, etc.).

3 EXPRESS Retargetable Compiler

In order to effectively compile for modern embedded
processor architectures, the compiler needs to incor-
porate a large set of optimizations. These optimiza-
tions may target different aspects of the architecture
(e.g. conditional instructions) or the application (e.g.
SIMD). The EXPRESS retargetable compiler adopts a
“toolbox” approach to incorporating both traditional
and embedded systems specific compiler optimizations.
However, in such an approach, the phase ordering be-
tween the optimizations has a huge impact on the qual-
ity of generated code. The problem of determining the
‘optimal’ phase ordering is further complicated by the
fact that most applications have regions with different
characteristics (e.g. loop regions, if-block regions, etc)
which require different optimization orderings. Stat-
ically determined phase orderings may not be able to
satisfy the stringent constraints of performance, power,
code size, etc. The compiler requires the ability to
dynamically determine, based on the region(s) of in-
terest, the best ordering of optimizations. The EX-
PRESS compiler incorporates Transmutations, an ap-
proach that attempts to provide for dynamic ordering
of the phases based on the program characteristics and
available resources. In the following, we first present
a brief overview of the EXPRESS compiler and then
describe the Transmutations framework in detail.

3.1 EXPRESS

EXPRESS is an optimizing, memory-aware, Instruc-
tion Level Parallelizing (ILP) compiler. EXPRESS
uses the EXPRESSION ADL [5] to retarget itself to a
wide class of processor architectures and memory sys-
tems. Figure 1 shows the EXPRESS compiler along
with the Transmutations framework. The inputs to
EXPRESS are the application specified in C; and the
processor architecture specified in EXPRESSION. The
front-end i1s GCC based and performs some of con-
ventional optimizations. The core transformations in
EXPRESS include RDLP [15] — a loop pipelining
technique, TiP§S : Trailblazing Percolation Scheduling
[12] — a speculative code motion technique, Instruc-
tion Selection, Register Allocation and If-Conversion —
a technique for architectures with predicated Instruc-
tion Sets. The back-end generates assembly code for
the processor ISA. We use SIMPRESS [8], a cycle accu-
rate, structural simulator to analyze the performance
of generated code.

Application Application Characteristics: Architecture Characteristics Architecture
(€. CH) (EXPRESSION)

Structural Parameters

Profiling Information

DataTypes & Sizes Instruction Set Info.

(Transmutations Control Script]

!

Front-End | | TRANSMUTATIONS

Cost Function
(Power, Performance, etc.)

‘ Control Heuristics ‘

|

Optimizations : If-Conversion, Software Pipelining, SIMD, etc.
- - Code Selection, |LP Scheduling, Register Allocation

GUI Code Mutations : Architecture Independent and/or Specific

Code Generator
EXPRESS

Assembly/Machine Code

Figure 1. EXPRESS Framework

3.2 Transmutations Framework

Mutation Scheduling (MS) attempts to couple the
phases of Instruction Selection and Register Alloca-
tion into the ILP Scheduler by providing semantically
equivalent computations of program values which have
different resource usage patterns. MS adopts a “lo-
cal” view of the search space by only providing for

mutations of values through algebraic transformations.
Transmutations incorporates MS and also provides a
framework for phase-ordering between all transforma-
tions, including the traditional compiler optimizations
and memory optimizations. Furthermore, Transmuta-
tions attempts to customize the compiler for a wide
variety of architecture styles including RISC, VLIW
and Superscalar.

Through the Transmutations framework, the EX-
PRESS compiler is able to dynamically “adapt” both
the program code and the order of transformations
based on the resource availability and program region
characteristics. Examples of code mutations [14] possi-
ble in EXPRESS include architecture-independent mu-
tations such as Tree Height Reduction (THR), and
architecture-specific mutations such as Strength Re-
duction, Synonyms etc. Each code mutation has a cost
function that determines its impact on performance,
The heuristics in the
Transmutations framework use this information in or-
der to assign priorities for the mutations based on the
resource availability. The heuristics also determine the
ordering of the compiler phases. Transmutations also

code size, memory access etc.

allows for user-guidance through the Transmutations
Control Script as shown in Figure 1. In the script, the
user can specify new mutation transformations, strate-
gies for phase orderings, and also specify the heuristics
and cost functions. This allows the user to customize
the compiler based on the application and processor
domain.

4 Experiments

We conducted some experiments to demonstrate the
importance of customizing the optimization flow based
on the architecture, the application and the design
goals. While EXPRESS supports various phase order-
ings of all the optimizations, in this paper we focus
on two very important transformations : If-Conversion
and Speculative code motion. We performed experi-
ments with ordering these two transformations along
with other conventional optimizations such as Dead
Code Removal.

If-Conversion is a technique for converting control
dependent operations into conditionally executed op-
erations. This technique is very useful for predicated
architectures which allow for conditional execution of
operations based on the value of a Boolean source
operand, referred to as the guarding predicate. If-
conversion eliminates the branch instruction and con-
verts control dependencies to data dependencies. As a
result, the true and the false branch basic-blocks of a
if-statement get merged into a larger basic-block with

greater parallelism. However, If-Conversion may in-
crease the number of instructions that get executed
dynamically because instructions from both paths of
the branch get executed. Furthermore, depending on
the architecture, If-Conversion may also increase the
code size. We consider two architectural choices in sup-
porting predication : restricted (also known as Partial
Predication) and aggressive (also known as Full Pred-
ication). In the restricted version only a limited set
of predicated instructions are available in the ISA. In
our experiments, the Partially Predicated architecture
only supports conditional moves, while the Fully Pred-
icated architecture supports the guarded execution of
all operations.

The speculative code motion technique in EX-
PRESS is based on the TiPS (Trailblazing Percolation
Scheduling) technique developed at UC, Irvine. TiPS
is a beyond basic block scheduling technique that at-
tempts to extract the maximum ILP available in the
application.
performance while limiting the code size explosion as-

TiPS has been proven to extract good

sociated with most speculative code motion techniques.

The simulation architecture platform 1s a MIPS
variant with 2 ALUs; a Float Unit, a Branch and a
Load/Store unit. It accepts the MIPS ISA, and also
supports both Partial and Full Predication. We as-
sume that the latency of each operation is 1 cycle and
the branch mis-prediction penalty is 4 cycles. We chose
the MIPS as our experimental platform because of the
wide variety of architecture styles with the same ISA.
The MIPS R4000 is RISC, while the MIPS R10000 is
superscalar with ILP and the R12000 supports Partial
Predication with conditional moves. The demonstrator
benchmarks are control-intensive kernels with nested-if
structures. These benchmarks have been chosen from
the Trimaran [16] suite, and also from scientific com-
putation benchmarks.

Partial Pred.
Pred. Spec. Pred. & Spec.
Bench | Spdup | Size | Spdup | Size | Spdup | Size
dag 1.00 | 1.00 1.4 0.94 | 1.26 1.00
ifthen 1.00 | 1.00 | 1.22 | 0.95 | 1.28 1.00
hyper 1.00 | 1.00| 0.98 | 1.00| 1.17 1.00
minloc | 1.00 | 1.00 | 1.12 | 1.10 | 1.32 1.00

Table 1. Phase Ordering for Partial Predication

Table 1 presents the speedup and code size ob-
tained on the Partial Predication model. The second
and third columns present the normalized speedup and
code size (respectively) after If-Conversion alone. The
next two columns present the speedup and code size for

Speculation alone as compared to If-Conversion. The
last two columns present the speedup and code size ob-
tained by performing Speculation after If-Conversion.
As can be seen from the table, the optimal ordering of
these transformations is dependent on the application
and also the compilation goals. For example, for the
tfthen benchmark, Speculation alone performs compa-
rably to Predication followed by Speculation and at
This is because,
in the partial predication model, a lot of conditional

the same time has lower code size.

moves are inserted during If-Conversion. This con-
tributes both to the code size and to reduced paral-
lelism. However, for the minloc benchmark, Specula-
tion suffers from code size explosion and lower perfor-
mance as compared to Predication and Speculation.
There is no difference in code size with Predication
alone as compared to Predication and Speculation be-
cause Predication converts Ifs to straight line code and
thus prevents code explosion during the Speculation
phase.

Full Pred.
Pred. Spec. Pred. & Spec.
Bench | Spdup | Size | Spdup | Size | Spdup | Size
dag 1.00 | 1.00| 1.26 | 1.09| 1.15 1.00
ifthen 1.00 | 1.00 | 1.11 1.08 | 1.32 1.00
hyper 1.00 | 1.00| 0.98 | 1.06 | 1.18 1.00
minloc | 1.00 | 1.00 | 1.15 | 1.08 | 1.23 1.05

Table 2. Phase Ordering for Full Predication

Table 2 presents the speedup and code size obtained
on the Full Predication model. We discern some slight
variations to the speedup and code size numbers as
compared to the Partial Predication model. In partic-
ular, Speculation alone always results in a code increase
of 6 — 10% as compared to Predication alone. This is
because If-Conversion does not insert any conditional
moves and instead chooses to convert the conditional
operations into their predicated counterparts. Once
again, however, the optimal ordering of these phases is
very much dependent on the application and the design
goal. The EXPRESS customizable compiler, which al-
lows for dynamic ordering of the phases, is very useful
and can provide significant advantages over predeter-
mined static phase orderings.

5 Summary

Software generation for embedded systems is very
complex because of the wide variety of architectural
styles, diverse application domains and design goals. In

this paper we present a customizable retargetable com-
piler framework that determines the phase-ordering be-
tween transformations dynamically based on the re-
source availability and the program region characteris-
tics. We present some experiments with ordering If-
Conversion — a predicated execution technique, and
Speculative code motion. The results indicate that
flexibility in the ordering of the transformations is im-
portant while compiling for embedded systems. Our
future work includes performing experiments explor-
ing the various phase orderings, and also incorporating
more transformations into the EXPRESS compiler.

References

[1] S. Bashford, U. Bieker, B. Harking, R. Leupers,
P. Marwedel, A. Neumann, and D. Voggenauer. The
MIMOLA Language Version 4.1. University of Dort-
mund, 1994.

[2] D. Berson, R. Gupta, and M. L. Soffa. Resource spack-
ling: A framework for integrating register allocation in
local and global schedulers. In Working Conf. on Par.
Arch. and Comp. Techniques, 1994.

[3] M. Freericks. The nMIL machine description formal-
ism. Technical Report 1991/15, Fachbereich Infor-
matik, TU Berlin, 1991.

[4] G. Hadjiyiannis, S. Hanono, and S. Devadas. ISDL: An
instruction set description language for retargetability.
In Proc. of 34th Design Automation Conf., pages 299—
302, 1997.

[5] A. Halambi, P. Grun, V. Ganesh, A. Khare, N. Dutt,
and A. Nicolau. EXPRESSION: A language for archi-
tecture exploration through compiler/simulator retar-
getability. In Proc. of Design Automation and Test in
FEurope, 1999.

[6] A. Halambi, P. Grun, H. Tomiyama, N. Dutt, and
A. Nicolau. Automatic software toolkit generation for
embedded systems-on-chip. In Proc. of Intn’l Conf. on
VLSI and CAD, 1999.

[7] S. Hanono and S. Devadas. Instruction selection, re-
source allocation, and scheduling in the AVIV retar-
getable code generator. In Proc. of 35th Design Au-
tomation Conf., pages 510-515, 1998.

[8] A. Khare, N. Savoiu, A. Halambi, P. Grun, N. Dutt,
and A. Nicolau. V-SAT: A visual specification and

analysis for system-on-chip exploration. In Proc.
EUROMICRO-99, 1999.
[9] D. Lanneer, J. Van Praet, A. Kifli, K. Schoofs,

W. Geurts, F. Thoen, and G. Goossens. CHFESS: Re-
targetable Code Generation for Fmbedded DSP Pro-
cessors, In Code Generation for Embedded Processors
(P. Marwedel and G. Goossens, ed.), pages 85-102.
Kluwer Academic Publishers, 1995.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

C. Liem, P. Paulin, M. Cornero, and A. Jerraya. In-
dustrial experience using rule-driven retargetable code
generation for multimedia applications. In Proc. of 8th
Int’l Symp. System Synthesis, pages 60—65, 1995.

P. Marwedel and G. Goossens, editors. Code Gen-
eration for Embedded Processors. Kluwer Academic
Publishers, 1995.

A. Nicolau and S. Novack. Trailblazing: A hierarchical
approach to percolation scheduling. In Proc. of Intn’l
Conf. on Parallel Processsing, 1993.

A. Nicolau, R. Potasman, and H. Wang. Register al-
location, renaming and their impact on parallelism.
Lang. and Compilers for Par. Comp., 1991.

S. Novack and A. Nicolau. Mutation scheduling: A
unified approach to compiling for fine-grain paral-
lelism. In Languages and Compilers for Parallel Com-
puting, 1994.

S. Novack and A. Nicolau. Resource directed loop
pipelining : Exposing just enough parallelism. The
Computer Journal, 1997.

Trimaran Release: http://www.trimaran.org. The

MDES User Manual, 1997.
T. Wilson, G. Grewal, B. Halley, and D. Banerji. An

integrated approach to retargetable code generation.
In Proc. of 7th Int. Symp. on High-Level Synthes:s,
1994.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

