
Languages Must Expose Memory Heterogeneity

Xiaochen Guo
Lehigh University

xig515@lehigh.edu

Aviral Shrivastava
Arizona State University

aviral.shrivastava@asu.edu

Michael Spear
Lehigh University

spear@cse.lehigh.edu
Gang Tan

Pennsylvania State University
gtan@cse.psu.edu

ABSTRACT
The last decade has seen an explosion in new and innovative mem-
ory technologies. While certain technologies, like transactional
memory, have seen adoption at the language level, others, such as
sandboxed memory, scratchpad memory, and persistent memory,
have not received any systematic programming language support.
This is true even though the underlying compiler-level mechanisms
for these mechanisms are similar. In this paper, we argue that pro-
gramming languages must be enhanced to expose heterogeneous
memory technologies to programmers, so that they can enjoy the
benefits of those technologies and be able to reason about programs
that use the advanced features of novel memory technologies. We
sketch a language design that allows programmers to specify mem-
ory requirements and behaviors, for both data and code. We further
describe how a compiler can support such a language and suggest
hardware improvements that can improve efficiencies of heteroge-
neous memories.

CCS Concepts
•Software and its engineering → General programming lan-
guages; Access protection; Concurrent programming languages;
•Information systems→ Storage class memory;

Keywords
Scratchpad Memory; Nonvolatile Memory; Security; Sandboxing;
Transactional Memory; Concurrency

1. INTRODUCTION
While the end of Moore’s law and Dennard scaling is largely

credited with ushering in the multicore era, a second and more sig-
nificant shift has also taken place. Increasingly, the value of a new
microprocessor is coming not from the sophistication or number
of processing pipelines, but novelty at the interface between the
pipeline and memory. Innovation at this level takes many forms, to
include physical structures, like non-volatile memory (NVM) [13]
and uncached scratchpad memories [2], and virtual interfaces like
coarse-grained cache-level atomicity (transactional memory [15])

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MEMSYS 2016 October 3–6, 2016, Washington, DC, USA
c© 2016 ACM. ISBN 978-1-4503-4305-3. . . $15.00

DOI: http://dx.doi.org/10.1145/2989081.2989122

and fine-grained, compartmentalized memory protection (e.g., In-
tel Software Guard Extensions [9]).

Memory innovations can increase programmer productivity (e.g.,
by eliminating the need to write code that serializes a data structure
to disk), increase performance (e.g., by safely executing irregular
codes in parallel), reduce energy (e.g., by favoring the use of low-
power coprocessors), and enhance higher-order software properties
like confidentiality and integrity. Unfortunately, programming lan-
guages have not evolved to facilitate the use of advanced memory
features.

For the most part, today’s languages assume that memory is a ho-
mogeneous array of untyped, volatile, shared memory. While prior
developments in memory interfaces, such as caches and separate in-
struction memories, could hide invisibly behind this language-level
interface, new features cannot. Today’s languages rarely allow pro-
grammers to express what is confidential or persistent, nor do they
make it easy for programmers exploit emerging memory-related
technologies to reduce power consumption and avoid the overhead
of pessimistic synchronization. Worse yet, the lack of an abstract
interface to feature-rich memories means that software implemen-
tations of those features, suitable for execution on legacy hardware
or with programs whose behavior exceeds hardware capacities, is
cumbersome and error-prone, often resulting in inefficient code. As
a result, the desire to exploit memory features encourages program-
mers to write machine-specific, unportable software that cannot be
analyzed and verified statically.

In this paper, we take the position that programming languages
must expose advanced memory features. The implementation of
these features must be possible even in the absence of hardware
support, and the semantics of these features must be specified inde-
pendently from actual hardware implementations. Based on our ex-
periences in four separate domains, Security, Persistence, Scratch-
pads, and Transactions, we propose a set of language features that
serve as a starting point for moving beyond homogeneous byte ar-
rays, to regions of feature-rich memory that can be exploited with-
out cumbersome or machine-specific code. Through abstract in-
strumented memory interfaces at the compiler level, the syntax of
our memory interface can be transformed into correct implementa-
tions on legacy hardware, and efficient implementations on emerg-
ing systems.

2. BACKGROUND AND MOTIVATION
In this section, we briefly review persistent memory, sandboxed

memory, scratchpad memory, and transactional memory to moti-
vate the need for language support for feature-rich memories.

Persistent Memory.
Emerging storage-class memory (SCM) technologies have en-

abled system designers to re-architect main memory to exhibit per-
sistence in addition to byte addressability. There are three leading
technologies in emerging SCMs—phase-change memory (PCM),
spin-torque transfer magnetoresistive RAM (STT-MRAM), and re-
sistive RAM (ReRAM). These storage-class memories represent
information using resistance rather than electrical charge, and re-
tain the stored information after power off [5,8,13]. Persistence can
be applied at any level of the memory hierarchy, from STT-MRAM
based caches to ReRAM or PCM based main memories. A data
structure in persistent memory may require position-independence,
so that it can be relocated to different locations in process address
spaces. To ensure durability, additional invariants (such as no point-
ers to volatile memory, or log-based atomic commit) may be re-
quired [4]. The programming model can, in turn, restrict when and
how persistent memory can be accessed [3], and may introduce the
need for complex logging to handle failures in the middle of a re-
gion that modifies a persistent heap.

Sandboxed Memory.
It is often necessary for an application to incorporate untrusted

code (e.g., third-party libraries and plugins) and data. To protect
the application, it is beneficial to isolate untrusted code and data
so that their bad effects can be controlled. A sandboxed memory
provides the abstraction layer that enables a memory region to hold
untrusted code and data and also allows managed interaction with
unsandboxed memory. We believe it prudent to take a broad view
of sandboxing. For example, instructions in a sandbox might guar-
antee that the targets of their memory instructions cannot access
memory outside the sandbox, and the targets of their return instruc-
tions cannot be modified at run time in a manner that violates the
control-flow integrity of the program. Sandboxing techniques may
be used to ensure both the integrity memory outside of the sandbox,
and the confidentiality of certain regions of memory.

Scratchpad Memory.
Scratchpad Memory (SPM) is small, raw memory present close

to the core. It is different from a cache in that SPM has a distinct
address space, and the data movement in an out of the SPM is con-
trolled by software, rather than performed automatically by hard-
ware. As a result SPM is also called Software Programmable Mem-
ory. By eschewing coherence hardware, SPM uses less energy and
is simpler to design and verify. SPMs are widely employed in em-
bedded systems, where the system designer — by carefully man-
aging the staging of the data to and from the scratchpad, through
the use of buffered Direct Memory Access (DMA) calls — can
achieve extremely efficient execution. SPMs are also often used
in accelerators, such as GPUs and the IBM Cell processor, to fa-
cilitate high-performance, low-power computing, where the cores
within the accelerator do not access the global, coherent memory
of the host processor, but instead operate on a small private region
of memory.

Transactional Memory.
Transactional memory provides atomicity without mutual exclu-

sion, through the use of speculation. Accesses within a transac-
tional region of code are logged, so that writes can be undone and
reads can be ensured to remain valid throughout the duration of the
transaction. Modern hardware TM systems, such as Intel TSX [15]
and products from IBM [7,10,14], are “best effort”, and cannot sup-
port transactions that perform system calls, exceed a single quan-
tum, or access more data that fits (roughly) in some level of the

cache. Transactions that the hardware cannot support can be run in
a software mode, in order to still execute in parallel and monitor
potential conflicts with concurrent hardware and software transac-
tions.

In order for programmers to use these features, programming
languages must expose appropriate interfaces. These interfaces
typically introduce some amount of instrumentation to insert the
appropriate instructions on individual memory references, and on
the boundaries of code regions that employ these features. In some
cases, such as confidentiality and persistence, the features do not
make sense without the ability to attach their use to certain vari-
ables and objects. Furthermore, as we think of these features at a
high level, it is increasingly desirable to compose them. For ex-
ample, the isolation of a SPM could be used to provide a degree
of sandboxing, or a transaction might operate over persistent con-
fidential data. We take the position that languages must provide a
unified interface that enables the use and continued creation of ar-
bitrary abstract memory features. In addition to making the above
four technologies easier to use, such an infrastructure will enable
new technologies (encrypted memory, lossy memory, compressed
memory, provenance-monitoring memory, etc.), both through soft-
ware simulation and ultimately hardware support.

3. LANGUAGE DESIGN FOR ADVANCED
MEMORY FEATURES

Rapid innovation in memory features presents a challenge to tra-
ditional language design. As an example, consider the addition of
TM to C++ [1]: an idea from 1993, which gained traction beginning
in 2001, led to the formation of a working group in 2007, a draft
specification in 2012, and a C++ technical specification in 2015.
The feature may be adopted in C++20. If each new memory fea-
ture requires new keywords, and complex interactions with existing
language features, then each is likely to take the same trajectory.

One challenge for TM in C++ was that it introduced a need for
substantial instrumentation machinery. Once that instrumentation
is present in the compiler, its re-purposing for new features be-
comes less burdensome. However, properties like persistence and
confidentiality expose an additional need: a feature may be a prop-
erty of a variable or field, not of a region of code. In a manner
similar to annotation types in C# and Java, we anticipate a rela-
tively straightforward path to adding new type attributes and anno-
tations. However, for clarity, we will focus on only four features in
the discussion below. To that end, Table 1 depicts two classes of
properties that must be exposed to languages: static data properties
(SDPs) and code region properties (CRPs).

Static Data Properties Code Region Properties
Persistence Risk of Racy accesses

Confidentiality Access restrictions
Locality

Table 1: Two Classes of Properties.

3.1 Static Data Properties
SDPs allow a programmer to specify a feature required of an ob-

ject or field of an object. As a simple example, consider a social
graph in which we would like a user’s name to be public, but the
birthday confidential. An annotation on the birthday field is the
most natural way to achieve this end: the programmer specifically
does not want to have to identify every attempted use of the field;

instead, the aim is to have the compiler guarantee the field’s se-
crecy. However, rigid annotations make code reuse more challeng-
ing. Consider if the graph is persistent: should fields representing
pointers to other nodes within the graph be marked as persistent?
If they were, then a programmer wishing to copy and then analyze
a subgraph would be required to perform the analysis in persistent
memory! Instead, we argue that it must be possible for SDPs to
be dynamic properties. Dynamic SDP support will enable greater
code reuse, as the same graph construction and traversal code can
be used on both persistent and non-persistent graphs.

A complicating consequence of dynamic SDPs is that pointer
types must become more complex. If a pointer may, at different
times, reference memory of different features, then the type of the
referenced object must be embedded in the pointer. In addition, cer-
tain memories, such as persistent memory, may favor a segmented
addressing scheme. In this case, the size of a pointer field might
depend on the features of the object it references.

3.2 Annotated Code Regions
Certain memory features, like SPM with non-coherent memory,

are only profitable at the point where they are executing enough
code to compensate for the cost of data movement; similarly, TM
does not make much sense in the context of single memory ac-
cesses. Similarly, accesses to confidential data might be permitted
only when made from a region that has been granted special per-
missions.

To support these aims, we propose that languages support arbi-
trary annotations on regions of code within a function. The defini-
tion of a feature includes rules that affect the relationship between
an annotated variable access and the features of the enclosing code
region. As an example, confidential data may only be accessed
from a code region that is appropriately annotated, and such a re-
gion may not be nested within a code region explicitly annotated as
forbidding confidential accesses.

Annotations should be as abstract as possible, to afford maxi-
mum flexibility to the implementation and to enable composition.
For example, rather than specify that a region must run as a trans-
action, we specify that a region has the potential to race with con-
current regions. Alternatively, with a suitable race detector, the
attribute could be inverted, and all regions run as transactions un-
less proven to be free of races. Similarly, rather than request that a
region run on a scratchpad, the programmer should provide a pre-
diction of the memory accesses made by the region. If the compiler
can prove the prediction likely, it can generate code to offload the
computation. This facilitates composition. Suppose that a region
that may race, but has a predictable access pattern. It could be ex-
ecuted by (1) atomically fetching the input data, (2) offloading the
computation to a scratchpad, (3) computing a diff to represent the
writes by the region, and then (4) using a commit protocol to apply
the diff only if the read set remained valid.

3.3 A Behavior Model
To unify emerging memory features, it is valuable to have a

model for how computation unfolds in the face of pathology. In
concurrent programming, a useful model is to imagine that threads
run at arbitrary speeds (or, equivalently, that a thread may expe-
rience an arbitrary delay between any two instructions). In se-
curity, a strong adversary may be able to modify any data mem-
ory at any time (because of a overflown buffer, for example), and
the system must ensure certain invariants (such as control flow in-
tegrity) nonetheless. We propose as a baseline model that a ma-
chine can be arbitrarily powered off at arbitrary points, but some
invariants might hold when the machine is powered on (e.g., ex-

ecution resumes from the last checkpoint, all persistent memory
is unchanged, but all non-persistent memory might hold arbitrary
values). This model subsumes both the “arbitrary delay” model of
concurrency, and the “arbitrary memory overwrite” model in secu-
rity, while also supporting persistence and accelerators.

4. AN EXAMPLE
We present an example to show potential use cases for the pro-

posed language support for feature-rich memories. In this example,
a bi-directional social graph consists of nodes representing users
and edges representing friendship relations. As shown in Figure 1,
a node holds information about a user, which includes sensitive in-
formation that needs to be protected via the “confidential” SDP.

The nodes themselves will be persistent. This is achieved at the
allocation site, by indicating that the root pointer references a per-
sistent node. Under the rule that a persistent structure cannot have
references to volatile memory (which would become dangling ref-
erences upon a power failure), the friends of the root node must,
then, also be persistent. Thus in the event of a power failure, we
should be able to retain a consistent graph without losing the most
recent updates.

s t r u c t node {
s t r i n g name ;
i n t age ;
[c o n f i d e n t i a l] d a t e b i r t h d a y ;
u r l p i c t u r e ;
u r l c o l l a g e ;
d a t e j o i n e d ;
node∗ f r i e n d s ;
d a t e l a s t _ u p d a t e ;
d a t e c o l l a g e _ u p d a t e ;

} ;

/ / c r e a t e an empty , p e r s i s t e n t graph
[p e r s i s t e n t] node∗ r o o t = new node () ;

Figure 1: Data type for nodes in a social graph.

Code regions that need to access confidential data must be marked
with the “confidential” CRP. This declaration simplifies static anal-
ysis, because the source of information leakage will be among the
code regions that declare “confidential”. In the example illustrated
in Figure 2, we show a function that will be applied to nodes in
the social graph to update users’ ages. This requires accessing con-
fidential birthday data. We assume that this is a system task, and
that system tasks are performed by selecting a random set of root
nodes, and launching a depth-first search from each selected node.
The last_update field is used to terminate a recursive search,
by revealing that the current node was visited by a concurrent sys-
tem update task. To handle this concurrency, as well as concurrent
accesses to satisfy user requests, this code region must be marked
both “confidential” and “avoid_races”. The runtime system may
exploit TSX, SGX, or software libraries in order to achieve the de-
sired behavior. Note, too, that if a researcher copied the graph to
volatile memory, the same code should be able to operate effec-
tively. When running on persistent memory, the end of the region
should be instrumented by the compiler to ensure the durability and
atomicity of any updates.

Instead of enabling confidential accesses, a system designer might
wish to prevent certain codes from accessing confidential data. Con-
sider a situation where the owner of the social graph wants to allow
a third-party developer to run code that accesses the graph. In this
case, the programming language should provide a simple mecha-

void d f s_ on (node∗ n)
{

[a v o i d _ r a c e s , c o n f i d e n t i a l] {
i f (t o o _ o l d (n−> l a s t _ u p d a t e)) {

n−>age = y e a r (now () − n−>b i r t h d a y) ;
n−> l a s t _ u p d a t e = now () ;
/ / r e q u e s t a l l f r i e n d s be t r a v e r s e d
re turn true ;

}
e l s e re turn f a l s e ;

}
}

Figure 2: Syntax for concurrent accesses to confidential data.

nism to restrict a region to accessing non-confidential data. With
the specification, sandboxed memory will be able to manage re-
stricted memory accesses. Decoupling data properties from code
region properties allows a rich set of semantics to be expressed
without excessive annotations, as shown in Figure 3. Regardless
of what CRPs are specified within the supplied function f(), the
calling context has forbidden access to confidential data, and the
runtime system should be able to enforce that restriction.

void a p p l y _ e a c h (void (∗ f) (c o n s t node ∗) , node∗ n)
{

[a v o i d r a c e s , ! c o n f i d e n t i a l] {
f (n) ;

}
}

Figure 3: Syntax for restricting access to confidential data
when executing untrusted code.

The above two examples show that certain run-time behaviors,
like persistence, can be inferred from the dynamic access pattern
of a computation. In the cases where the compiler can precisely
predict this pattern, or the programmer can make a conservative
estimate, we propose this information be provided as a CRP. The
compiler can then choose to use an SPM, if the region exhibits high
spatial or temporal locality. Programmers might even wish to give
a hint that, while they haven’t determined the exact access pattern,
they expect high locality. In this case, a conservative runtime sys-
tem could run the code on an SPM, but insert some DMAs into the
code on the SPM to fetch data when the statically predicted work-
ing set is incorrect or too large for the SPM.

Figure 4 depicts one such case. In our hypothetical social net-
work, a system update task creates a “collage” image for each user,
by weighting the user’s friends’ profile pictures according to the
predicted strength of the friendship. For users with few friends,
the entire computation might fit on an SPM. The make_collage
function also uses a highlocality CRP internally, so that the
image processing task can be executed on an SPM even when the
friend traversal cannot.

5. COMPILER SUPPORT
Given a program with annotations on data and code, a compiler

translates it to executable code that uses the provided memory tech-
nologies in hardware or in software or in a combination of both.
Ideally, the compiler should be portable across architectures, which
have varying degrees of support for different memory technologies.
What we envision is that the compiler takes in a description of hard-
ware support and uses a mix of hardware and software to enforce

void u p d a t e _ c o l l a g e (node∗ n)
{

[a v o i d r a c e s , ! c o n f i d e n t i a l , h i g h l o c a l i t y] {
i f (t o o _ o l d (n−>c o l l a g e _ u p d a t e)) {

s e t s ;
f o r (f r i e n d : f r i e n d s)

s . add (we ig h t (n , f r i e n d) , f r i end−> p i c t u r e)
/ / a h i g h l o c a l i t y r e g i o n
n−>c o l l a g e = m a k e _ c o l l a g e (s) ;
n−>c o l l a g e _ u p d a t e = now () ;

}
}

}

Figure 4: Syntax for suggesting that execution be offloaded to
an SPM.

the desired memory properties that are specified in the program.
The description of hardware support tells, for example, if hardware
TM is available. For a region of code that disallows data races, the
compiler then uses hardware TM when it is available and, if not,
uses a software implementation that relies on program instrumen-
tation. The same can happen for sandboxed memory, where the
absence of SGX might lead the compiler to emit code that encrypts
certain fields or variables.

We propose that compilers adopt an abstract instrumented mem-
ory interface at the level of the compiler intermediate language to
facilitate the instrumentation support of many memory technolo-
gies. The interface must provide a set of instrumentation primitives:
(1) a region-begin instrumentation primitive that should be inserted
at the beginning of a code region; (2) a region-end primitive that
should be inserted at the end of a code region; (3) a memory-
read instrumentation primitive that performs instrumented memory
reads; (4) a memory-write instrumentation primitive that performs
instrumented memory writes. Each primitive is also annotated with
a tag about what memory technologies are applicable to the prim-
itive. Our experience suggests that this abstract interface can ac-
commodate transactional memory, sandboxed memory, persistent
memory, scratchpad memory, as well as other emerging memory
technologies. For a specific combination of memory technologies
and architectures, the implementation of those primitives differs.
The interface provides a nice separation between a compiler’s view
of instrumentation and the implementation details.

For instrumentation, the compiler inserts tagged instrumentation
primitives at appropriate places according to the annotations in the
program. For instance, if a code region should not have data races,
the compiler inserts a region-begin primitive at the beginning of
the code region, a region-end primitive at the end of the region, and
replaces all memory reads (writes) with instrumented memory-read
(memory-write) primitives. All the inserted primitives are tagged
with transactional memory. At the back end of the compiler, those
instrumentation primitives are lowered to appropriate instruction
sequences depending on whether hardware transactional memory
is available in the target architecture.

One benefit of exposing an abstract instrumented memory inter-
face to the compiler is that the compiler can optimize the inserted
instrumentation (for example, by removing unnecessary instrumen-
tations). Due to the similarities among instrumentations, we believe
it will be possible to have an optimization engine that can perform
general optimizations on all aforementioned memory technologies,
and compositions thereof. Figure 5 presents a diagram showing the
inputs and outputs of the optimization engine.

Semantics of
instrumentation

Opt Engine
Based on SMT

Optimized
program

Opt rules
in DSL

Input program

Figure 5: Diagram for the optimization engine.

One input to the engine is optimization rules in a Domain-Specific
Language (DSL). Such rules are manually written in the DSL and
tell how specific optimizations should be performed with respect
to some preconditions, and what kinds of postconditions are sat-
isfied after the optimization. For instance, one rule might specify
that the translation of a memory address performed in an instru-
mented region can be lifted outside of a loop, given a set of con-
ditions [16]. Another input to the engine is the semantics of in-
strumentation according to a particular memory technology. For
instance, the semantics should tell us that a sandboxed memory
address stays inside a predetermined address range, or that a condi-
tional load cannot be hoisted above its condition when the transac-
tional memory has weak semantics [12]. The optimization engine
then takes an input program, applies optimizations according to the
rules and the semantics of instrumentation, and outputs a program
with optimized instrumentation.

We recognize that there are many research challenges when build-
ing such an optimization engine. First is the design of the DSL,
where recent innovations by Lopes et al. provide a promising av-
enue [11]. Second, we may need to split an instrumentation of
a memory access into multiple phases, such as pre-validation, ac-
tual memory access, and post-validation, noting that the ordering
requirements within a single access, and across accesses, may be
dependent on the memory feature [6]. The third challenge is how
to write general optimization rules in the DSL. Clearly we should
limit the number of rules that are specific to a single memory tech-
nology, though some will be unavoidable. Another challenge is
the design and implementation of the optimization engine itself.
We suspect that SMT (Satisfiability Modulo Theories) solvers may
provide the best approach.

Note that when these obstacles are addressed, the outcome will
be more than simply an ability for programming languages to use
instrumented memories efficiently. Tooling will be possible, so that
properties of a program can be analyzed statically. We leave this
topic for future work.

6. HARDWARE SUPPORT
The focus of this position paper is on programming language

support for programming feature-rich memories. We note, how-
ever, that generic language support will reveal broad opportunities
for new hardware structures that can can be leveraged to further
improve efficiencies within each memory. When many features
use the same mechanisms, those mechanisms become more criti-
cal, and hardware acceleration more profitable. We briefly suggest
ideas for improving hardware, which can provide further benefits.

Address Translation in Hardware.
One commonality across the four memory technologies is some

form of address translation, or variable remapping. For transac-

tional memory the true location of reads and writes may be differ-
ent when write buffering. When persistent memories are mapped
into a process address space, the pointers are represented as offsets.
In sandboxing approaches, out-of-bound memory accesses may be
remapped to in-bound address spaces. Scratchpad memories work
their own separate address space from DRAM. Therefore as soon
as some data is brought into the SPM, it must then be accessed
using the new address. Thus some form of address translation is
needed for all of the four example memory features. Implementing
address remapping or address translation in hardware will reduce
the number of software-level instrumentation instructions for lan-
guage implementations. If the address translation is implemented
in hardware, it will be simpler to implement a small table lookup
using Content Addressable Memory (CAM) structures. To further
reduce the hardware overhead, it is also possible to reuse and aug-
ment existing hardwares. The translation lookaside buffer (TLB)
is already used for fast virtual-to-physical address translation. The
hardware acceleration of the proposed address mapping can be im-
plemented by augmenting the TLB with reconfigurable logic and
additional states for each entry. Based on our initial studies, we
suspect that a userspace-managed, TLB-like mechanism for fine-
grained remapping into cache-line-sized base/offset regions will be
broadly useful.

Metadata Management in Hardware.
The use of metadata is another commonality in all four mem-

ory features. All abstract memory features need to create, use, and
modify metadata. The metadata typically stores the state of exe-
cution that must be maintained to implement the memory feature.
For example, techniques to manage the code of an application on
SPM work by partitioning the space reserved for code on the SPM
into regions, and then map the functions in the application to the
regions. Of the functions that are mapped to a region, only one
function can be in the region at any point in time. When a function
is called, its region is checked; if it contains some other function,
then the code of the new function must be brought into the SPM
(through DMA), otherwise, the execution can continue. The state
of the SPM, specifically which functions are present in the regions,
must be maintained as a metadata. This metadata must be updated
as new functions are brought in. Access to metadata can be fre-
quent, and therefore it will be beneficial to implement metadata
storage and updates in hardware, rather than in software data struc-
tures. This will further reduce the cost of each instrumentation,
making the implementation more efficient.

Prefetching in Hardware.
Prefetching is a general technique to reduce miss penalty in caches.

With language support for emerging memory technologies, it will
be possible to design reconfigurable domain specific hardware prefetch-
ers for the supported memory features. A careful coordination of
compiler and hardware prefetching mechanisms will significantly
reduce data access latencies. A particularly interesting combina-
tion is the creation of a virtual scratchpad for caching metadata, and
asynchronous transfers for populating the scratchpad with metadata
needed to enforce control flow integrity (CFI). This would enable
per-function CFI enforcement, without latency at function bound-
aries. Coupling this technique with complex strided prefetch, we
may even be able to fetch the CFI information for a complete sub-
graph of a control flow graph, and then validate CFI for the whole
subgraph. Naturally, these more aggressive prefetch techniques in-
troduce new heuristics, since some of the fetched data may not be
used. Introducing priority within the strides being prefetched, or
pipelining techniques, can alleviate these problems. And while we

have focused this discussion on function-related metadata, the same
techniques could be used to fetch the code of functions to execute
on a scratchpad, metadata for a strided access within a transaction,
or speculative fetching of metadata before pointer chasing.

7. CONCLUSIONS
Innovations at the interface between microprocessors memory

are becoming increasingly important. On the one hand, emerg-
ing applications are continuously requiring richer features to be
provided by the system, such as fine-grained isolation and atom-
icity; on the other hand, hardware innovations are constantly en-
abling new capabilities, such as byte-addressable persistent mem-
ory, scratchpad memories, and hardware-enforced data confiden-
tiality.

We argue that programming languages must have a unified mem-
ory interface that can support these memory features. Furthermore,
the interface must also be extensible, to support new semantics re-
quired by programmers, new capabilities enabled by hardware, or
new memory features that do not exist yet. A unified interface
will enable programmers to start exploring hardware features be-
fore they become available; it will enable hardware vendors to gain
users for new features without having to make significant invest-
ments into compiler infrastructure; and it will enable researchers
to explore means for composing multiple memory features, so that
programmers can enrich their programs through the use of memory
technologies that lead to less code, more secure code, code that can
be more easily proven correct, and code that uses less energy while
completing in less time.

As a step toward this goal, we introduced language extensions
that allow programmers to request memory features in both data
and code regions, and we demonstrated an example use case in
social graphs. We showed that this language design can be simple
and flexible. We also discussed potential optimizations of compiler
supports and hardware accelerations. We believe that the proposed
language will have a game-changing impact on both hardware and
software designs.

Acknowledgments
This material is based upon work supported by the National Sci-
ence Foundation at Arizona State University under Grants CCF
1055094 (CAREER), CCF-0916652, and CNS 1525855; at Penn-
sylvania State University under Grant CCF-1149211 (CAREER),
and at Lehigh University under Grant CCF-1253362 (CAREER).
Any opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not neces-
sarily reflect the views of the National Science Foundation.

8. REFERENCES
[1] A.-R. Adl-Tabatabai, T. Shpeisman, and J. Gottschlich. Draft

Specification of Transactional Language Constructs for C++,
Feb. 2012. Version 1.1, http://justingottschlich.com/
tm-specification-
for-c-v-1-1/.

[2] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and
P. Marwedel. Scratchpad Memory: Design Alternative for
Cache on-chip Memory in Embedded Systems. In Proc. of
CODES+ISSS, pages 73–78, 2002.

[3] D. Chakrabarti, H.-J. Boehm, and K. Bhandari. Atlas:
Leveraging Locks for Non-volatile Memory Consistency. In
Proceedings of the 29th ACM Conference on
Object-Oriented Programming, Systems, Languages, and
Applications, Amsterdam, The Netherlands, Oct. 2014.

[4] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K.
Gupta, R. Jhala, and S. Swanson. NV-Heaps: Making
Persistent Objects Fast and Safe with Next-generation,
Non-volatile Memories. In Proceedings of the Sixteenth
International Conference on Architectural Support for
Programming Languages and Operating Systems, Newport
Beach, CA, Mar. 2011.

[5] Everspin Technology. Ddr3 dram compatible mram - spin
torque technology. http://www.everspin.com/ddr3-dram-
compatible-mram-spin-torque-technology.

[6] T. Harris, M. Plesko, A. Shinar, and D. Tarditi. Optimizing
Memory Transactions. In Proceedings of the 27th ACM
Conference on Programming Language Design and
Implementation, Ottawa, ON, Canada, June 2006.

[7] IBM(R). Power ISA(tm) Transactional Memory, 2.07 edition,
Dec. 2012.

[8] Intel Corporation. 3D XPointTM Unveiled—The Next
Breakthrough in Memory Technology.
http://www.intel.com/content/www/us/en/architecture-and-
technology/3d-xpoint-unveiled-video.html.

[9] Intel Corporation. Intel Software Guard Extensions (Intel
SGX), 2015.
http://https://software.intel.com/sites/default/files/332680-
002.pdf.

[10] C. Jacobi, T. Slegel, and D. Greiner. Transactional Memory
Architecture and Implementation for IBM System Z. In
Proceedings of the 45th International Symposium On
Microarchitecture, Vancouver, BC, Canada, Dec. 2012.

[11] N. P. Lopes, D. Menendez, S. Nagarakatte, and J. Regehr.
Provably correct peephole optimizations with alive. In
Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages
22–32, 2015.

[12] V. Menon, S. Balensiefer, T. Shpeisman, A.-R.
Adl-Tabatabai, R. Hudson, B. Saha, and A. Welc. Practical
Weak-Atomicity Semantics for Java STM. In Proceedings of
the 20th ACM Symposium on Parallelism in Algorithms and
Architectures, Munich, Germany, June 2008.

[13] Micron Technology. Micron announces availability of phase
change memory for mobile devices, 2012.
http://investors.micron.com/releasedetail.cfm?releaseid=692563.

[14] A. Wang, M. Gaudet, P. Wu, J. N. Amaral, M. Ohmacht,
C. Barton, R. Silvera, and M. Michael. Evaluation of Blue
Gene/Q Hardware Support for Transactional Memories. In
Proceedings of the 21st International Conference on Parallel
Architectures and Compilation Techniques, Minneapolis,
MN, Sept. 2012.

[15] R. Yoo, C. Hughes, K. Lai, and R. Rajwar. Performance
Evaluation of Intel Transactional Synchronization Extensions
for High Performance Computing. In Proceedings of the
International Conference for High Performance Computing,
Networking, Storage and Analysis, Denver, CO, Nov. 2013.

[16] B. Zeng, G. Tan, and G. Morrisett. Combining control-flow
integrity and static analysis for efficient and validated data
sandboxing. In 18th ACM Conference on Computer and
Communications Security (CCS), pages 29–40, 2011.

