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Abstract 
This paper proposes a new method to optimize a BCH error correc­
tion decoder in multi-channel configurations. We break the BCH 
decoding process into its three basic blocks: syndrome calculation, 
the error locator polynomial generation, and the roots of the error 
locator polynomial computation. While an existing multi-channel 
BCH decoder consists of several single-channel BCH decoders op­
erating in parallel, this paper utilizes a pooled group of shared 
decoding blocks. By considering the frequency of errors, the pro­
posed pooled group approach requires fewer hardware blocks than 
in a traditional multi-channel configuration with a negligible im­
pact on performance. Combined with a specialized root finding unit 
for blocks with only 1 error, our scheme reduces hardware area by 
47%-71% and dynamic power by 44%-59% with 2% performance 
degradation in typical NAND flash systems. With a constant hard­
ware area, the proposed scheme can improve throughput by 3x-5x 
or NAND flash lifetime by 1 .4x-4 . 5x. 

1. Introduction 
Error rates in storage and communication channels are increas­
ing [1] .  Forward Error Correction (FEC) is a commonly used 
method to decrease the error rates of those channels[4]. FEC adds 
redundant information to the message to allow the receiver to cor­
rect errors. Bose-Chaudhuri-Hocquenghem (BCH) codes are very 
commonly used across a wide range of systems [2]. Some of the 
systems that utilize BCH error correction are; wireless communi­
cation links, NAND flash storage, magnetic storage, on-chip cache 
memories, DRAM memory arrays, and data buses. 

Although encoding BCH is fairly straightforward, performing 
the decoding steps is much more complex [ 10]. System design­
ers must balance the high complexity of BCH decoders with their 
overall system requirements [3]. The decoders must provide high 
throughput, either by running at high clock speeds or by imple­
menting bit-parallel operation. The maximum clock speed of the 
decoder is limited by the process technology and the complexity of 
the decoder. Additionally, adding bit-parallel operation increases 
the area of the decoder and makes it more difficult to achieve high 
clock speeds. Limited available area for the decoder can also limit 
the number of errors that can be corrected. 
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The savings of a more area efficient BCH decoder can be used 
instead to add bit-parallel operation to improve throughput. Alter­
natively the decoder could be designed to correct more errors ex­
tending the useful life of flash memory or increasing the bit-rate of 
a communication channel. 

Figure 1. Basic BCH decoder structure 

A typical BCH decoder implementation is essentially a 3-stage 
pipeline as shown in figure l. The three stages of the pipeline are 
syndrome calculation, generating the error locator polynomial, and 
finding the roots of the error locator polynomial [ 12]. Each pipeline 
stage operates simultaneously and independently. Data is passed 
between the stages when the current stage is complete and the next 
stage is ready to receive the data. This pipelined configuration al­
lows the decoder to operate on 3 codes simultaneously. The first 
stage, syndrome calculation is similar in fashion to encoding and 
at similar cost. A simple logic circuit known as a Linear Feedback 
Shift Register (LFSR) is typically used for syndrome calculation. 
As LFSRs are used in encoding and syndrome calculation, work 
has gone to optimize high speed bit-parallel LFSR operation for 
BCH [25]. Calculating the error locator polynomial, whose roots 
reveal the locations of errors in the codeword, is performed by suc­
cessive approximation using the Berlekamp-Massey algorithm. The 
implementation of the algorithm requires many multipliers and di­
viders, and consumes a large portion of the decoder. General work 
into optimized Berlekamp-Massey implementations has been done 
as well as the sharing of BerJekamp-Massey units between BCH 
channels. Solving for the roots of the error locator polynomial is 
typical performed by brute force using an algorithm known as a 
Chien search [1 3]. This algorithm searches for roots in the error 
locator polynomial by evaluating it for each possible error loca­
tion. The Chien search can be expanded to a bit-parallel architec­
ture. Optimization of this algorithm has been researched heavily, 
especially in the bit-parallel case due to the large area require­
ments [22] [26]. 

Previous works have concentrated on optimizing the stages of 
single-channel decoders. Much progress has been made on im­
proving the performance and efficiency of individual stages of the 
BCH decoding process. Although syndrome calculation is the sim­
plest step, it has still received much attention as similar hardware 
is also used for BCH encoding. As performing operations in a bit­
parallel manner can be used to improve performance, lun et al. [ 17] 
have presented work in improving LFSR performance. Addition­
ally, Lee, Yoo, and Park [ 1 8] have presented work on improving 
the syndrome calculation techniques. Generating the error loca­
tor polynomial is the most algorithmically complex step of BCH 



decoding. Compounding the issue, it cannot be modified for bit­
parallel operation to improve throughput. Jamro has demonstrated 
a method of preloading the initial two steps of the algorithm as 
well as utilizing basis rearrangement to combine two serial steps 
into one [2 1] .  The final stage of the algorithm is root finding, typi­
cally implemented by the Chien search. Kristian has demonstrated 
the straightforward step to convert the Chien search from a purely 
serial operation to a bit-parallel operation [ 14]. As moving to bit­
parallel operation quickly increases hardware area, Chen, Yanni, 
and Parhi have developed a group matching scheme to reduce the 
hardware complexity in the bit-parallel case [22]. 

In order to achieve further advances in BCH decoding, we ex­
amine the decoding process as a whole and specifically as imple­
mented in multi-channel architectures. A multi-channel BCH de­
coder is typically designed by putting several single-channel BCH 
decoders together in parallel. For each set of decoded blocks, only 
a small fraction of the full error correcting capability is used. For 
instance, if no error is present in a block, which can be detected dur­
ing the syndrome calculation, no additional stages are required. If 
one error is present in a block, the error locator polynomial can be 
solved directly rather than through a brute force search. For a wide 
range of error rates, these two cases are very common. Our idea 
then is to optimize a multi-channel architecture for the common 
case, rather than the worst case. We use these observations along 
with the reduced root solver to optimize the stages of the BCH de­
coder pipeline so that the area requirements are greatly reduced 
while the optimization incurs a negligible performance degrada­
tion. The proposed optimizations reduce power consumption and 
area requirements greatly. Additionally, by trading our saved area 
for greater complexity, we can improve throughput and error cor­
recting capability as well. 

In this paper, we examine a fixed architecture decoder config­
ured for a representative range of error correction capability. Al­
though the design techniques discussed apply to many uses of the 
BCH algorithm, in this paper we will be specifically analyzing a 
decoder for a typical NAND flash controller. This allows us to ex­
amine four different possible benefits; increased throughput, lower 
area, decreased power consumption, and increased flash memory 
lifetime through greater decoder strength. The base configuration 
for our decoder is 8 channels, each 4 bits wide running at 200 MHz. 
This provides a total throughput of 6 .4  Cbit/s. We cover decod­
ing strengths of 5 bits, 7 bits, 8 bits, and 10 bits for a data size of 
4096 bit or 5 1 2  B. This covers a typical range of error rates. For 
the design parameters examined in this paper, we achieve an area 
savings of 47%-71% if we allow a 2% performance degradation. 
For our test platform, this translates to a dynamic power savings 
between 44% and 62%. Rather than reducing the area of the opti­
mized design, we can keep the area the same and instead improve 
performance. Our technique increases throughput by 3x-5x with 
the same area. Also, we can increase the error correcting capabil­
ity of the decoder with the same area, which increases the usable 
life of flash memory. The ageing of flash memory is determined 
by the number of Program/Erase (PIE) cycles each block has un­
dergone. As the number of PIE cycles increases, the error rate also 
increases. There is a threshold then where the number of PIE cycles 
and associated error rate exceeds the error correction capability of 
the BCH decoder. Although the raw error rate increases rapidly as 
flash memory ages, our optimized decoder can improve flash life­
time by 1 .4x-4 .5x. 

2. Background and Related Work 
2.1 Error Rates 

The key component to understanding FEC and the improvements 
in this paper is understanding error rates. 
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Information theory tells us that coding systems exist that allow 
us to use noisy communication channels reliably [23]. 

BCH is a block based error correction code meaning that it 
operates on a block of bits at time [1 1] .  It transforms the input 
data by adding specially calculated redundant check bits to form 
a codeword. The appropriate code can be selected for a number of 
bits to be corrected and a chosen block size. Larger block sizes have 
lower storage overhead, but higher algorithmic complexity. 

If the number of errors that occur within the codeword exceeds 
the capability of the chosen code, an uncorrectable error occurs. 
This determines the new channel error rate. This rate is calculated 
by determining the probability that t or fewer errors will occur in a 
block (where t is the number of errors that can be corrected by the 
code) and then working backwards to obtain the new bit error rate 
of the channel. This calculation also accounts for the coding loss, 
the additional probability that an error will occur in the redundant 
bits of the codeword. 

In order to perform these calculations, the necessary values are 
the raw channel Bit Error Rate (BER), p, the number of bits in 
the codeword, n, the error correcting capability of the code, t, and 
the desired uncorrectable BER. As long as the actual raw channel 
BER remains at or below the estimated value, the probability of 
an uncorrectable error occurring will also remain at or below the 
targeted BER. The most basic calculation is determining that an 
error free message is received. This is true if every bit in the 
message is correct [6, p. 168]. We will represent this probability 
with Po(n). 

Po(n) = ( 1 - pt ( 1 )  

I t  is  straightforward to  calculate from eq. 1 the probability that 
at least one error has occurred, ...,Po(n). 

...,Po(n) = 1 - Po(n) (2) 

...,Po(n) = 1 - ( 1 - pt (3) 

Moving on from this, we can calculate the probability that 
exactly m errors occur in a message, Peq(m, n). 

Peq(m, n) = pm(1 - pt-m (:) (4) 

By summing eq. 4 for various values of m, we can calculate the 
probability that m or fewer errors occur, Ple( m, n): 

m 
Ple(m, n) = L Peq(k, n) (5) 

k=O 

Ple(m, n) = � [pk(1 - pt-k (�)] (6) 

We can then use eq. 6 to find the probability that more than m 
errors occur, Pgt (m, n). 

Pgt(m,n) = 1- P1e(m,n) (7) 

Pgt(m, n) = 1 - � [pk(1 - p)n-k (�)] (8) 

Eq. 8 is important in selecting a BCH code as it shows the prob­
ability that a block contains an uncorrectable error. We can then 
work backwards to find the uncorrectable error rate by plugging 
the result of eq. 8 into eq. 1 and reversing it. 

p(t,n)uncorr = 1- Pgt(t,n)l/n (9) 



Thus given a BER, p, a block size n, and a designed uncor­
rectable error rate, a sufficient t can be found. 

2.2 Flash Memory Lifetime 

The push to maxi mize the storage capacity of NAND flash memory 
has led to a storage medium that requires extensive error correction 
in order to be reliable. The primary causes of increasing error rates 
in flash memory are due to a decreasing process size and an increase 
in the number of bits stored per cell. Both of these techniques are 
able to increase storage space well beyond the additional overhead 
required by Error Correcting Code (ECC). 

The properties that lead to high storage densities within flash 
memory also lead to a lower lifetime. The wearing out of flash 
memory cells is caused by the high voltages incurred during PIE 
cycles. These high voltages lead to a deterioration of the tunnel 
oxide within the cell which then allows leakage. Smaller process 
geometries have a smaller tunnel oxide layer which wears faster. 
The smaller process geometries leave less margin for damage that 
occurs to the cell. 

The lifetime of flash memory is rated by the number of PIE 
cycles it is intended to endure before being retired. Typical PIE 
lifetimes are rated in thousands of cycles. The targeted lifetime in 
PIE cycles is chosen as a compromise between durability and ECC 
requirements. However, by reducing the area and power required 
by BCH decoding substantially, that compromise can be shifted and 
the lifetime of the flash memory extended. 

The data collected by Cai et al. [5] shows that the relation 
between PIE cycles and error rates generally follows a polynomial 
growth. The BER for 3x-nm technology Multi-level Cell (MLC) 
NAND flash examined in their research closely follows the relation: 

BER = A * age2 ( 10) 

Where A is a constant specific to a given flash memory. In 
rearranging the equation to show the relation between age and 
BER, the constant is eliminated and the following relation is shown: 

( 1 1 ) 

So that a doubling of the PIE cycles leads to a quadrupling of 
the BER. Figure 2 shows the relation between PIE cycles, the BER, 
and the strength of the BCH code required [5]. 
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Figure 2. PIE cycles, BER, and ECC strength relation [5] 
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2.3 BCH Codes 

BCH codes are implemented using finite fields. A short overview 
of finites fields is necessary in understanding both the mechanism 
of BCH codes and the proposed improvements. 

2.3.1 Finite Field Overview 

As the name implies, a finite field contains a finite number of el­
ements. Within the set of elements, operations are defined such as 
addition, subtraction, multiplication, and division. All such opera­
tions on field elements result in another field element. Although a 
wide variety of finite fields can be defined, the use of a binary fi­
nite fields makes for a straightforward implementation using digital 
systems. 

A binary finite field is defined by its degree, n, denoted as 
GF(2n). The elements of a finite field are created by a generator 
polynomial. Each element in the field is a successive power of the 
generator polynomial. Thus the index of the element within the 
field is known as the power form. For example, for GF(23), with 
a generator polynomial of x3 + x + 1, the field is produced shown 
in table 1 :  

Table 1 .  x3 + X + l over GF(23) 
Power form Polynomial Binary 

form representation 

0 0 bOOO 
XU 1 bOOI 
x' x bOlO 

XL XL b100 
x0 x+l bOl l  
x" XL +x b110 

XV XL + X + 1 bI l l  
xl) XL + 1 b101 

Finite field addition and subtraction is performed by adding or 
subtracting the polynomial form. Because the order of the field is 
two (binary field), addition and subtraction are equivalent. In either 
case, any two equal powers of x cancel out. For example, adding 
x2 and x2 + x + 1 produces x + 1. This is the equivalent of the 
logical Exclusive or (XOR) operation. 

Finite field multiplication is performed by mUltiplying the two 
polynomials together, performing elimination of terms as described 
above, and then taking the result modulo the generator polynomial. 
Finite field division is the inverse of finite field multiplication. 

When utilizing finite fields for BCH codes, the number of ele­
ments in the field is equal to the number of bits within a codeword. 
For instance, GF(28) contains 255 elements (excluding 0). The 
associated BCH block size would be 255 bits. 

In order to make BCH codes easier to work with, only a portion 
of the codeword is used and the rest of the bits are set to zero. For 
instance, when using a block size of 16 bytes (128 bits), a BCH 
code with a block size of 255 bits would be selected. Throughout 
this paper, codewords are assumed to be constructed in this way. 

2.3.2 Finite Field Operations Utilizing LFSR 

LFSRs are commonly used for finite field operations. The basic 
operation of a LFSR allows one to transform a finite field element 
to the next or previous element within the field. This is equivalent 
to multiplying or dividing by Xl. Thus repeated operation can 
multiply or divide by any power of x. 

A LFSR consists of a set of registers interconnected in a ring 
configuration. Between each register there can be an XOR gate. 
The XOR gate combines the value of the previous register with 
feedback from the highest register. An example LFSR is shown in 



figure 3 .  The configuration shown can be used to produce the finite 
field shown in table 1 .  This is because the connections match the 
binary representation of the generator polynomial. In this config­
uration, the LFSR will cycle through each element of the field in 
order. 

Figure 3. Example LFSR 

LFSRs are commonly used for BCH operations, either in their 
default form, or in a slightly modified form that allows other oper­
ations, such as determining the remainder of a division [19]. 

2.3.3 Encoding 

BCH encoding is performed by dividing the input data by a spe­
cially formed polynomial. This is performed utilizing a modified 
LFSR that accepts a bit of input data per clock cycle. At the end 
of the operation, the LFSR contains the remainder of the operation 
which is the redundant code bits [20]. 

2.3.4 Decoding 

The decoding process is broken into three stages which operate 
independantly. The input codeword is passed into the first stage 
and error locations are generated by the final stage. Figure 4 shows 
the hardware stages of the decoding process. In the figure, the red 
squares within the codeword represent error locations. 

Codeword 

Figure 4. BCH decoding process 

2.3.5 Decoding - Syndrome Computation 

Error 
locations 

The syndromes are a set of values that once computed, depend only 
on the error locations within the message, and not on the message 
itself. The number of syndromes is twice the number of errors 
that the BCH code can correct, t. The syndromes are generated by 
dividing the codeword by a set of minimal polynomials producing 
a set of remainders. Because of relations between the minimal 
polynomials, many syndrome elements can be easily derived from 
the other elements, reducing the amount of computation required. A 
useful property of the syndromes is that if all calculated syndromes 
are zero, then no errors exist in the received message. 

Syndrome computation operates on one input bit at a time which 
limits the overall bandwidth of the decoder to the clock rate of the 
syndrome units. However, syndrome calculation can be modified to 
perform bit-parallel operations, greatly increasing the throughput 
of the syndrome calculation stage at the cost of increased area and 
power. 

2.3.6 Decoding - Error Locator Polynomial Generation 

The error locator polynomial is defined such that its roots give the 
locations of the errors within the message. The number of roots, 
or degree, of the error locator polynomial indicates the number of 
errors within the message. The second stage of the BCH decoding 
process is to generate the error locator polynomial from the set of 
syndromes. 

62 

The Berlekamp-Massey algorithm was developed to generate 
the error locator polynomial from a set of syndromes. It is an 
iterative algorithm which calculates a discrepancy at each stage, 
refining the approximation. This process requires several finite field 
mUltiplications, divisions, and additions per cycle of the algorithm 
which contributes to the overall complexity of the decoder. 

2.3.7 Decoding - Root Finding 

To find error locations, roots of the error locator polynomial must 
be found. Since the degree of polynomial can be as large as t, a 
brute force algorithm is used for hardware BCH implementations. 
An optimized algorithm used for this brute force search has been 
developed and is known as a Chien search. To implement the Chien 
search, a set of registers is loaded with the coefficients of the error 
locator polynomial. During each cycle of the Chien search, each 
register is multiplied by xn, where n is the degree of x associated 
with the given coefficient. At the end of each cycle, all registers are 
summed. If the sum of all the registers is zero, then a root has been 
located. The cycle number indicates the index within the block of 
the error location. 

The order of the Chien output can be made to match the order 
of the input message. Thus the output of the BCH decoder is a 
set of locations within the message that must be toggled to correct 
received errors. 

2.4 Current Methods of Improving Performance 

Although increasing clock rate leads directly to an increase in 
throughput, there is a limit due to the complexity involved in the 
decoder. There are two other methods of increasing the throughput, 
implementing bit-parallel operation in the syndrome calculation 
and root finding, and implementing multiple BCH decoders in a 
system operating in parallel. 

Both the input and output of the BCH decoder handle data se­
rially, one bit per clock cycle. The logical result of multiple clock 
cycles can be combined allowing the input and output to operate 
on multiple bits in parallel. Bit-parallel operation is a straightfor­
ward implementation and typically requires few modifications to 
an overall system to implement. However, as bit-parallel operation 
increases the complexity of the decoder, it decreases the achievable 
clock rate and thus has limits. Additionally, bit-parallel operation 
cannot be applied to generating the error locator polynomial, and 
thus the overall throughput of the system will come to be limited 
by this step. 

Implementing multiple BCH channels bypasses these problems 
as it is simply a duplication of the BCH engine. Multiple channels 
require modification of the overall system to implement and can be 
made in two primary situations. 

The first is the case of a multi-channel architecture. For exam­
ple, a system that has multiple data channels connected to flash 
memory [8]. 

The second is to interleave the BCH code. Interleaving not only 
leads to increased throughput, but also offers error correction ad­
vantages in certain types of channels [9]. This is because in many 
types of channels, errors tend to occur in bursts. With interleaved 
operation the burst is broken up across many codewords, decreasing 
the probability that a single burst will overwhelm the error capabil­
ity of the chosen BCH code [7]. 

Both methods of multi -channel operation scale each property of 
the system (throughput, area, power) in a purely linear fashion. 

2.5 Current Methods of Improving Efficiency 

Improving the efficiency of each stage of decoding can lead to 
lower area requirements, lower power consumption, and increased 
clock speeds leading to higher throughput. As such, many ideas 
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Figure 5. Probabilities of errors at BER of 1 x 10-4 

have been put forth to improve the efficiency of each BCH decoding 
stage. 

For instance, it has been shown that a relation exists between 
many of the syndromes [24, p. 1 52]. This makes it possible to only 
calculate a limited set of syndromes, and then apply the relations 
to expand them into the full set of syndromes. This decreases the 
overall area and power requirements of the decoder. 

Additionally, it has been shown that there are multiple methods 
of finding each syndrome element [27]. For a given element, it 
can be shown which method is the most efficient. This information 
can then be used to calculate each syndrome in the most efficient 
way possible. This not only decreases the overall area and power 
requirements of the decoder, but because it decreases complexity, 
can also increase clock speeds and throughput. 

Work has also gone into decreasing the complexity of bit­
parallel LFSRs. This work can be and has been applied to bit­
parallel syndrome calculation [25]. 

As the step of generating the error locator polynomial can limit 
the overall throughput of the decoder, improving its efficiency, in­
creasing the achievable clock rate, and decreasing the overall num­
ber of clock cycles required is important. General optimizations 
to finite field operations, such as more efficient multipliers and di­
viders, can be applied to generating the error locator polynomial. 

Jamro has shown how linking multipliers which operate on dif­
ferent bases can lead to a reducing in the number of clock cy­
cles required [2 1] .  This is done by linking a serial multiplier that 
takes parallel input and produces serial output with a multiplier 
that takes serial input and produces parallel output. However, as 
these two multipliers operate on a different bases, an efficient basis 
conversion circuit linking the two multipliers is shown. Addition­
ally, Jamro shows how the first two rounds of the algorithm can be 
skipped by pre-calculating the necessary state of the registers. Both 
of these optimizations reduce the latency of generating the error lo­
cator polynomial. By reducing the latency, this allows the decoder 
to run at a higher overall throughput. 

The Chien search requires a number of multipliers equal to 
the number of coefficients in the error locator polynomial [22]. 
Additionally, bit-parallel operation requires a duplication of this set 
of multipliers for each output bit as well as a multiplier to load each 
coefficient with the appropriate value. 

3. Main Observations 
In order to push the uncorrectable error rate very low, BCH de­
coders are very oversized compared to the number of errors they 
typically correct. The common case is for only a fraction of the 
decoder to be used. This is shown clearly in figure 5 .  

This observation alone does not allow us  any improvement 
because at any time the full decoder may be required. We instead 
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observe that on average only a small percentage of the decoder 
is required and then apply that observation to a multi-channel 
decoder. By applying our observation to a multi-channel decoder, 
we can include at least one full BCH decoder. The remainder of the 
decoding hardware can be reduced decoders of some kind. These 
reduced decoders could reduce our overall hardware requirements 
greatly. 

To route data properly, we need to consider how many errors 
a block has. Assume that there is no error. All syndromes are 
evaluated to zero and the block needs no further processing. 

To calculate the number of errors beyond zero, we must find the 
error locator polynomial. Any reduction in the complexity of the 
decoder beyond zero errors must then be in the root search. The 
case of only one error is a very common case and a good target to 
optimize for. The optimization here is fairly straightforward as the 
error locator polynomial will only be one degree in this case. Rather 
than a brute force search, the root can be found algebraically. 

The trade-off with such a system is that there is a possibility 
that insufficient resources will be available to decode a certain set 
of blocks. For example, if 5 of the 8 blocks contain errors but 
only 4 error locator units are present. If this occurs, decoding will 
be delayed until resources are available and performance will be 
degraded. Fortunately, it is fairly straightforward to calculate this 
performance drop and thus intelligently trade-off a small drop in 
performance for a large reduction in area and power requirements. 

4. Our Approach 
4.1 Architecture 

The basic design of a BCH decoder is broken down into three 
pipeline stages. For our multi-channel architecture, we implement 
those stages as stations fed by round robin arbitrators. The arbitra­
tors collect data from each stage and then passes it to the next. The 
general layout of the decoder is shown in figure 6. In the example 
configuration, there are 3 error polynomial generator units (�), one 
traditional Chien solver (C) and two reduced root solvers (1') . 

Figure 6. An example of the proposed BCH decoder 

The overall architecture can be configured for a given number 
of channels, error locator polynomial generators, traditional Chien 
search units, and reduced root solver units. 

4.1.1 Syndromes 

For every channel, the syndromes must be computed. This means 
that the number of syndrome units will be equal to the number of 
channels. We fix each syndrome unit to a channel and each unit 
contains a bit counter. The counter will be used to track how many 
bits the unit has received and if the syndrome is ready. 

On the input side, the syndrome unit contains two control sig­
nals. An input to indicate that it should start accepting syndrome 
data, and an output that acknowledges that signal. If the unit is busy 



or contains processed syndrome data, it will not acknowledge the 
start signal. 

On the output side, the syndrome unit contains an additional 
two control signals. One signal indicates that the syndrome unit 
contains processed syndrome data. The other control signal is an 
input that clears this state and allows the unit to accept new data. 

4.1.2 SyndromelError Locator Polynomial Interconnect 

This interconnect passes data from the channel syndrome units to 
the pool of error locator polynomial generators. The unit primarily 
consists of a register to hold the syndromes, an index to the current 
syndrome input unit, and an index to the current error locator 
polynomial unit. Both indexes operate in a purely round robin 
fashion. The unit also contains a circuitry to check its currently 
stored syndrome against zero. It determines if it is necessary to 
pass the syndrome data to the error locator polynomial unit or if it 
can be skipped. 

The general operation is to wait on the currently indexed syn­
drome unit. When a syndrome is ready, it accepts the syndrome 
and stores it in its syndrome register. It also stores the index to as­
sociate the data with a channel. It then waits for the syndrome to be 
compared against zero. If the check indicates no errors are present, 
it sets a flag indicating that the current channel output should skip 
root finding for the next data set. 

If the check indicates errors are present, it waits for the next 
error locator polynomial generator unit to become ready. When 
ready, it passes its syndromes to that unit and sets the start bit 
for that unit. It also passes the currently stored channel number so 
that the error locator polynomial will be associated with the correct 
channel. 

4.1.3 Error Locator Polynomial Generator 

If any error exists within the codeword, we must find the error lo­
cator polynomial. The control signals on this unit are similar to the 
control signals on the syndrome unit. A start and start acknowledge 
signal on the input, and a signal to indicate done state and a signal 
to clear the done state on the output. 

The output of the error locator polynomial generator unit in­
cludes the error locator polynomial and also the number of errors 
detected within the codeword. The only configuration available for 
the error locator polynomial are the BCH code parameters. 

4.1.4 Error Locator PolynomiaVRoot Solver Interconnect 

This interconnect is similar to the syndrome interconnect except 
that it must serve two possible pools. The first destination pool 
consists of traditional Chien root solvers and the second destination 
pool consists of reduced root solvers. When the currently selected 
error locator polynomial is ready, the interconnect stores the error 
locator polynomial, the error count, and the associated channel 
number. 

The interconnect must then determine based on the error count 
which pool to serve. It keeps two separate indexing counters, one 
for each pool. If the error count is 1 then the reduced root solver 
pool is used, otherwise the traditional Chien pool is used. 

When the appropriate root solver is ready, the interconnect 
signals it to start and passes the error locator polynomial along with 
the associated channel number. 

4.1.5 Traditional Chien Root Solver 

The traditional Chien root solver units consist of a set of coeffi­
cient registers. Each register is wide enough to contain a finite field 
element from the given BCH configuration. The number of regis­
ters required is equal to the maximum number of errors that the 
code can correct. The registers are each multiplied by the appropri­
ate degree of x each cycle and each cycle all registers are summed 
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together. If the sum is zero, then an error has been located. This op­
eration is duplicated for bit-parallel operation, with the number of 
bits shared per register being configurable in order to meet timing. 
Additionally, the summing operation provides an opportunity for a 
configurable amount of pipelining. 

The unit contains a start signal that is used to load new values in 
the coefficient registers, starting the algorithm. Due to the pipelined 
nature of the summation operation, an output signal is provided that 
indicates that the first bit (or set of bits) of errors is being output on 
the current cycle. 

The glue logic surrounding the root solver contains a multi­
plexor that connects to the busy signal of the output stages. The 
output stage then counts the number of cycles necessary for the 
algorithm to complete. 

4.1.6 Reduced Root Solver 

The reduced root solver can be used to find the error location for 
codewords with a single bit error. It offers large advantages over 
the traditional Chien search since it only requires a single register. 
It also is more efficient in the multi-bit case as for each bit, since 
the register is compared against a constant. 

If only one error exists in a codeword, the error locator polyno­
mial is of degree 1 and of the form: 

Ax+B=O 
Which can be solved in a single step as: 

x = -B/A 

( 12) 

( 1 3) 

Because of the algorithm we use to find our error locator poly­
nomial, B is always 1 .  Additionally, negation is a null operation 
within finite fields. This reduces the equation further to the form: 

x = l/A ( 14) 

Although implementing an inverter would produce the value of 
x in a single cycle, the value would be of little use on its own. This 
is because the value is in the standard basis for the finite field and 
not the power form. The power form would give us a direct integer 
index to the location of the error. The binary representation of the 
sequencing of the standard basis (polynomial form) can be seen in 
table 1 .  

Converting from the power form to the standard basis is an 
algorithmically complex operation. It is generally on the order of 
O( N) where N in the number of elements in the field. Rather than 
attempt to convert from the power form to the standard basis, we 
make two observations. 

Our first observation is that we need to cycle through each bit in 
the codeword in order to output error locations regardless of how 
our solver functions. Our second observation is summed up by the 
following re-arrangement: 

Ax = 1 ( 1 5) 
If we load a register with A and multiply it repeatedly by Xl, it 

will eventually reach the value of 1 .  Once it has we have multiplied 
A by the correct power of x and found the root. Because we are 
only mUltiplying by Xl per cycle we can use a LFSR instead of a 
multiplier. 

To start, we load the LFSR with the value of A. Then during 
each cycle, we advance the LFSR and compare the value with 1 .  If 
they match we have found the location of the root. 

Expanding this to support multiple bits scales very well. We 
advance the LFSR a number of cycles equal to the number of bits 
instead of just once. For each output bit, we compare the value in 
the LFSR with the next value in the finite field starting with 1 for 
the first bit. 



4.1.7 Output Units 

The output units multiplex the data from the root solvers and output 
it from the decoder. Each channel has an associated output unit. The 
output units provide the data indicating which bits are in error as 
well as a signal to indicate the start of a new block. Within each 
output unit is a counter to keep track of when the output for the 
given block is complete and the next block can be processed. 

The output units are driven by two flags. One flag indicates that 
the output unit should expect data from a root solver, the other 
flag indicates that the output unit should output one block's worth 
of error free data. Whenever the output unit completes its current 
block, it examines these flags to determine what it should output 
next. 

Whenever the flag indicating that data from a root solver should 
be processed, the associated index of that solver is stored as well. 
This allows the output unit to assign its multiplexor to accept data 
from the appropriate solver. 

4.2 Determining the Number of Units 

Part of the design is to select the appropriate number of each unit 
type. The number of units included in a given design is determined 
by the expected error rate and the acceptable miss rate. The miss 
rate indicates the likelyhood that within any given set of blocks, 
there would be insufficient hardware to process the data. In this 
case the effected input channel is stalled and the decoding of that 
block is deferred until hardware is available. The overall throughput 
of the system is reduced by the miss rate. 

We need to decide the number of units in two stages. The first 
stage is the error locator polynomial generator units. Units are only 
required for blocks with one or more errors. Therefore the number 
of units is chosen based on the probability that more than m blocks 
contain one or more errors. We start by using eq. 2 to determine the 
probability that a single block contains one or more errors. Then we 
plug this probability into eq. 8 and choose the message size n to be 
equal to the number of channels. By evaluating this equation for 
different values of m, we can find the number of blocks required to 
be below the miss rate probability. 

The result of evaluating this equation for the chosen set of BCH 
parameters and an acceptable miss rate of 2% is shown in figure 7. 
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Figure 7. Probability that more than m blocks contain at least one 
error where n = 

8 

Figure 7 shows that for a BER of S x 10-6, only I unit is 
required with a 2% miss rate. For a BER of 1 x 10-4, S units are 
required. 
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The next step determines the number of traditional Chien search 
units required. This is calculated similarly to the above, but we 
examine the probability that more than one error occurs since our 
reduced root solver can only handle one error. We first use eq. 8 to 
find the probability that more than one error occurs within a single 
block. And then we use eq. 8 again, but this time with the message 
size set to the number of channels and p set to the value found 
above. 

The result of evaluating this equation across multiple values of 
m is shown in figure 8 .  
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Figure 8. Probability that more than m blocks contain more than 
one error where n = 
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Figure 8 shows that for a BER of 1 x 10-4, 2 units are required. 
For all other examined error rates only I unit is required. The 
remaining units are filled in with reduced root solvers. Note that 
for any decoder at least one traditional Chien solver is required. 

A miss rate of 2% is chosen for our experiments as it is a very 
small performance penalty, but still large enough for smaller unit 
counts to be used. In order to demonstrate the variability of units 
required for a given miss rate, the BER of 2 x 10-4 is examined. 
This BER provides a wide range of required units across a set of 
given miss rates. 
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Figure 9. Units required for BER of 2 x 10-4 

As shown in Figure 9, the gain seen for a given miss rate falls 
off quickly beyond 2%. Although 2% was chosen for the exper-



iments in this paper, the additional gains achieved through much 
higher miss rates may still be desirable on extremely constrained 
designeds. 

5. Experiments 

5.1 Setup 

In order to test our ideas and approach, we have implemented them 
on a Field Programmable Gate Array (FPGA) in Verilog. A Xilinx 
Virtex-6 FPGA has been chosen as a target as it has sufficient logic 
resources and Input/Outputs (lOs) for implementing the necessary 
experiments. 

Our Veri log code is written to be configured through Verilog pa­
rameters. This allows the properties of the decoder to be configured 
at compile time. The build tools can then compile and verify a va­
riety of configurations in a batch form without modification to the 
codebase. 

Validation of the design is performed with a set of testbenches. 
These verify the correctness of the compiled code and algorithms. 
The testbenches operate by generating a stream of random input 
data as well as random bit errors. Because the natural probability of 
the maximum number of correctable errors occurring is extremely 
low, each possible number of errors is selected equally. This allows 
the code to be fully exercised. The input data is fed to a BCH en­
coder and then bits are flipped in accordance with the generated 
error locations. The modified data is then passed to the BCH de­
coder and the error locations output is compared with the true error 
location data. 

The area of a given design is calculated by implementing the 
design fully. All inputs and outputs of the design are assigned 
registers as would be done in a system design to meet 10 timing. 
As the configurability of the design leads to a wide range of 10 
configurations, the tool is permitted to automatically assign 10 
locations. The comparative area of design is then measured by 
FPGA slice usage. 

Power estimation is performed using the Xilinx XPower Ana­
lyzer. Since the static power consumption of an FPGA does not 
vary significantly based on logic usage, dynamic power consump­
tion is compared. 

In order to ensure a fair comparison, all designs are constrained 
to run at at least 200 MHz. This ensures that complex designs will 
pay an area penalty as the tool will duplicate registers to meet 
timing. 

5.2 Baseline Configuration 

Our baseline configuration is an 8 channel decoder. Not only do 
many systems contain a similar number of channels, but it also 
allows us to fully demonstrate the advantages of our approach. 

Each channel is 4 bits wide. Most flash memory systems operate 
in an 8 bit wide configuration, but a 4 bit wide configuration 
was chosen for two reasons. First to allow the design to have 
headroom for demonstrating the increase in throughput possible in 
the optimized design. Second, many decoders operate at a higher 
clock rate than the data bus. For a decoder operating at double 
the clock rate of an 8 bit data bus, 4 bit wide operation would be 
required. 

The baseline decoder operates on 4096 bit, or 5 1 2  B blocks. 
This is a typical block size for the error rates examined in this 
paper [ 15][16]. Similar results should be obtainable across a wide 
range of possible block sizes. 

Flash manufacturers typically do not publish BER values for 
released flash memory. They instead publish the error correction 
strength required to reduce the error rate below an acceptable 
threshold, typically 1 x 10-15 [5]. Knowing the error correction 
strength required, the block size, and the targeting uncorrectable 
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error rate, we can work backwards to estimate the associated BER. 
The values chosen are shown in the table 2. 

Table 2. Targeted ECC Range 
Strength (errors) Estimated Bits of ECC 

BER required 

5 5 x 10 -0 65 
7 2 x 10-0 9 1  
8 5 x 10-v 1 04 
1 0  1 x 10  -4 130 

5.3 Area Optimized BCH Decoder 

Our area optimized BCH decoder reduces the hardware area while 
it impacts performance only 2%.  The reduced number of units re­
quired is shown in the table 3. Although 8 syndrome calculation 
blocks are always required, the number of error locators and tradi­
tional Chien search blocks decreases as BER decreases to meet the 
given error rate with 2% miss rate. 

Table 3. Hardware Units Required 
BER Syn- Error Trad. Reduc. 

drome Locator Chien Root 

5 x 10-b 8 1 1 0 
2 x  10 -0 8 3 1 2 
5 x 10-b 8 4 1 3 
I x  lO-Q 8 5 2 3 

The area is then compared with the baseline decoder and the 
results are shown in Figure 10 .  Note that the area includes all hard­
ware components such as arbitrators to build the BCH decoders 
which are not required in the baseline implementation. By optimiZ­
ing the number of units and utilizing the reduced root solver we 
reduce required area by 47%-71 % compared to the baseline imple­
mentation. 
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The smaller area of the decoder also translates to dynamic 
power savings. By profiling the designs we can estimate the power 
consumed by each design. The results are shown in figure 1 1 .  This 
equates to a 44%-59% reduction in dynamic power requirements. 
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5.4 Throughput Optimized BCH Decoder 

While the proposed area optimized BCH decoder sacrifices a small 
amount of performance to reduce the required hardware area, it 
is possible to devise a throughput optimized BCH decoder while 
holding area constant to improve the performance. The optimiza­
tion is achieved by increasing the bit-parallel configuration param­
eter until a maximum throughput is found at the same area cost as 
the baseline configuration. 
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Figure 12. Requirements of 2 x 10- 5 design 

Figure 12 shows the process as applied to the 2 x 10- 5 BER 
configuration. The area consumed by the baseline unoptimized 
design is shown by the red line. The discontinuity in results is due 
to an additional level of hardware duplication in the Chien search 
when moving to a 20 bit wide unit to meet timing. 

While the unopti mized design consumes an area of 3 1 68 slices, 
our optimized design consumes an area of only 1 272 slices. Both 
designs accept 4 bits per cycle in the syndrome calculation stage, 
and output 4 bits per cycle in their output stage. We then implement 
the optimized design at 8 bits, 16 bits, 1 8  bits, and 20 bits per cycle. 
These designs increase throughput by operating on more input and 
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output bits per clock cycle. We can see that the optimized design 
operating at 1 8  bits per cycle only consumes 2874 slices, which is 
less than the unoptimized design operating at only 4 bits per cycle. 

Thus it is possible to implement an l 8-bit design within the 
same area, leading to a 4 .5x improvement in performance. Note 
that there is 2% performance degradation due to the miss rate, 
which is negligible compared with the performance gain of 450%. 
Similar improvements in performance are possible with our other 
configurations and are shown in figure 1 3 .  The amount of perfor­
mance improvement is related to the area savings provided by the 
optimized decoder. 
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5.5 Flash Lifetime Optimized Design 
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Similarly, the area reduction can be utilized to increase the lifetime 
by providing higher error correction strength. To provide stronger 
error correction, a larger hardware area is required. The area reduc­
tion in our approach is utilized to provide greater error correction 
strength in a smaller area. For an 8 channel unit and a 2% targeted 
miss rate, the hardware area requirement in our approach for a BER 
of 1 x 10-4 becomes similar to the area in the baseline approach for 
a BER of 5 x 10- 6 . Table 4 shows the units required in our approach 
for different given BERs. 

Table 4. Hardware Units Required 
BER Syn- Error Trad. Reduc. 

drome Locator Chien Root 

l . 2 x  10 -q 8 6 3 3 
l .5 x 10 -4 8 7 3 4 
2.0 x l0 -q 8 7 4 3 

Table 5 compares the error correction capability between the 
baseline approach and the proposed optimization with a given hard­
ware area constraint. For instance, for the hardware area with which 
the baseline approach can handle a BER of 5 x 10- 6 , the proposed 
approach can handle a BER of 1 x 10-4 . Note that in the table, 
our approach requires no larger hardware area than the baseline 
approach. In addition to increased error correction capability, our 
implementation includes additional hardware units to meet the 2% 
miss rate. Therefore, our approach can correct more errors than the 
baseline approach without sacrificing performance, hardware area, 
and power consumption. 



Table 5. Error correction capability 
Original Original t Optimized Optimized t 

BER BER 

5 x 10 - 0  5 1 .0 x 10 -q  1 0  
2 x 10 - 0  7 1 . 2 x 10 -4 1 1  
5 x 10 -0 8 1 .5 x 10 -q  1 2  
1 x 10  -4 1 0  2.0 x 10 -4 1 3  

Equation 1 1  shows the relation between BER and ageing. Since 
the proposed scheme can correct more errors, allowing a decoder 
targeted for a higher BER, the lifetime of the same NAND flash 
memory is prolonged compared with the baseline implementation. 
Figure 14  shows the lifetime improvement over the baseline BCH 
decoder. As a BER decreases, more hardware reduction is achiev­
able and more errors can be corrected by utilizing the reduced area. 
The flash lifetime is extended by 1 . 4x-4 . 5x. 
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6. Conclusion 
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This paper proposes new multi-channel BCH error correction de­
coder optimization techniques to reduce the hardware area require­
ment by considering a common error case. The proposed scheme 
utilizes a pooled group of shared decoding blocks. Compared with 
a traditional multi-channel implementation, it reduces the hard­
ware area by 47%-71 %. The area reduction also saves the dynamic 
power consumption by 44%-59%. In our approach, if the reduced 
hardware area is utilized to increase the performance, the through­
put is improved by 3x-5x and the lifetime of NAND flash increases 
by 1 .4x-4 . 5x if it is utilized to correct more errors. 
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