
Optimization of Multi-Channel BCn
Error Decoding for Common Cases

Russ Dill Dr. Aviral Shrivastava Dr Hyunok Oh

Hanyang University

hoh@hanyang.ac.kr
Arizona State University

russ.dill@asu.edu
Arizona State University

avi ral.sh rivastava@asu.edu

Abstract
This paper proposes a new method to optimize a BCH error correc­
tion decoder in multi-channel configurations. We break the BCH
decoding process into its three basic blocks: syndrome calculation,
the error locator polynomial generation, and the roots of the error
locator polynomial computation. While an existing multi-channel
BCH decoder consists of several single-channel BCH decoders op­
erating in parallel, this paper utilizes a pooled group of shared
decoding blocks. By considering the frequency of errors, the pro­
posed pooled group approach requires fewer hardware blocks than
in a traditional multi-channel configuration with a negligible im­
pact on performance. Combined with a specialized root finding unit
for blocks with only 1 error, our scheme reduces hardware area by
47%-71% and dynamic power by 44%-59% with 2% performance
degradation in typical NAND flash systems. With a constant hard­
ware area, the proposed scheme can improve throughput by 3x-5x
or NAND flash lifetime by 1 .4x-4 . 5x.

1. Introduction
Error rates in storage and communication channels are increas­
ing [1] . Forward Error Correction (FEC) is a commonly used
method to decrease the error rates of those channels[4]. FEC adds
redundant information to the message to allow the receiver to cor­
rect errors. Bose-Chaudhuri-Hocquenghem (BCH) codes are very
commonly used across a wide range of systems [2]. Some of the
systems that utilize BCH error correction are; wireless communi­
cation links, NAND flash storage, magnetic storage, on-chip cache
memories, DRAM memory arrays, and data buses.

Although encoding BCH is fairly straightforward, performing
the decoding steps is much more complex [10]. System design­
ers must balance the high complexity of BCH decoders with their
overall system requirements [3]. The decoders must provide high
throughput, either by running at high clock speeds or by imple­
menting bit-parallel operation. The maximum clock speed of the
decoder is limited by the process technology and the complexity of
the decoder. Additionally, adding bit-parallel operation increases
the area of the decoder and makes it more difficult to achieve high
clock speeds. Limited available area for the decoder can also limit
the number of errors that can be corrected.

978-1-4673-8320-2/15/$31.00 ©20 15 IEEE 59

The savings of a more area efficient BCH decoder can be used
instead to add bit-parallel operation to improve throughput. Alter­
natively the decoder could be designed to correct more errors ex­
tending the useful life of flash memory or increasing the bit-rate of
a communication channel.

Figure 1. Basic BCH decoder structure

A typical BCH decoder implementation is essentially a 3-stage
pipeline as shown in figure l. The three stages of the pipeline are
syndrome calculation, generating the error locator polynomial, and
finding the roots of the error locator polynomial [12]. Each pipeline
stage operates simultaneously and independently. Data is passed
between the stages when the current stage is complete and the next
stage is ready to receive the data. This pipelined configuration al­
lows the decoder to operate on 3 codes simultaneously. The first
stage, syndrome calculation is similar in fashion to encoding and
at similar cost. A simple logic circuit known as a Linear Feedback
Shift Register (LFSR) is typically used for syndrome calculation.
As LFSRs are used in encoding and syndrome calculation, work
has gone to optimize high speed bit-parallel LFSR operation for
BCH [25]. Calculating the error locator polynomial, whose roots
reveal the locations of errors in the codeword, is performed by suc­
cessive approximation using the Berlekamp-Massey algorithm. The
implementation of the algorithm requires many multipliers and di­
viders, and consumes a large portion of the decoder. General work
into optimized Berlekamp-Massey implementations has been done
as well as the sharing of BerJekamp-Massey units between BCH
channels. Solving for the roots of the error locator polynomial is
typical performed by brute force using an algorithm known as a
Chien search [1 3]. This algorithm searches for roots in the error
locator polynomial by evaluating it for each possible error loca­
tion. The Chien search can be expanded to a bit-parallel architec­
ture. Optimization of this algorithm has been researched heavily,
especially in the bit-parallel case due to the large area require­
ments [22] [26].

Previous works have concentrated on optimizing the stages of
single-channel decoders. Much progress has been made on im­
proving the performance and efficiency of individual stages of the
BCH decoding process. Although syndrome calculation is the sim­
plest step, it has still received much attention as similar hardware
is also used for BCH encoding. As performing operations in a bit­
parallel manner can be used to improve performance, lun et al. [17]
have presented work in improving LFSR performance. Addition­
ally, Lee, Yoo, and Park [1 8] have presented work on improving
the syndrome calculation techniques. Generating the error loca­
tor polynomial is the most algorithmically complex step of BCH

decoding. Compounding the issue, it cannot be modified for bit­
parallel operation to improve throughput. Jamro has demonstrated
a method of preloading the initial two steps of the algorithm as
well as utilizing basis rearrangement to combine two serial steps
into one [2 1] . The final stage of the algorithm is root finding, typi­
cally implemented by the Chien search. Kristian has demonstrated
the straightforward step to convert the Chien search from a purely
serial operation to a bit-parallel operation [14]. As moving to bit­
parallel operation quickly increases hardware area, Chen, Yanni,
and Parhi have developed a group matching scheme to reduce the
hardware complexity in the bit-parallel case [22].

In order to achieve further advances in BCH decoding, we ex­
amine the decoding process as a whole and specifically as imple­
mented in multi-channel architectures. A multi-channel BCH de­
coder is typically designed by putting several single-channel BCH
decoders together in parallel. For each set of decoded blocks, only
a small fraction of the full error correcting capability is used. For
instance, if no error is present in a block, which can be detected dur­
ing the syndrome calculation, no additional stages are required. If
one error is present in a block, the error locator polynomial can be
solved directly rather than through a brute force search. For a wide
range of error rates, these two cases are very common. Our idea
then is to optimize a multi-channel architecture for the common
case, rather than the worst case. We use these observations along
with the reduced root solver to optimize the stages of the BCH de­
coder pipeline so that the area requirements are greatly reduced
while the optimization incurs a negligible performance degrada­
tion. The proposed optimizations reduce power consumption and
area requirements greatly. Additionally, by trading our saved area
for greater complexity, we can improve throughput and error cor­
recting capability as well.

In this paper, we examine a fixed architecture decoder config­
ured for a representative range of error correction capability. Al­
though the design techniques discussed apply to many uses of the
BCH algorithm, in this paper we will be specifically analyzing a
decoder for a typical NAND flash controller. This allows us to ex­
amine four different possible benefits; increased throughput, lower
area, decreased power consumption, and increased flash memory
lifetime through greater decoder strength. The base configuration
for our decoder is 8 channels, each 4 bits wide running at 200 MHz.
This provides a total throughput of 6 .4 Cbit/s. We cover decod­
ing strengths of 5 bits, 7 bits, 8 bits, and 10 bits for a data size of
4096 bit or 5 1 2 B. This covers a typical range of error rates. For
the design parameters examined in this paper, we achieve an area
savings of 47%-71% if we allow a 2% performance degradation.
For our test platform, this translates to a dynamic power savings
between 44% and 62%. Rather than reducing the area of the opti­
mized design, we can keep the area the same and instead improve
performance. Our technique increases throughput by 3x-5x with
the same area. Also, we can increase the error correcting capabil­
ity of the decoder with the same area, which increases the usable
life of flash memory. The ageing of flash memory is determined
by the number of Program/Erase (PIE) cycles each block has un­
dergone. As the number of PIE cycles increases, the error rate also
increases. There is a threshold then where the number of PIE cycles
and associated error rate exceeds the error correction capability of
the BCH decoder. Although the raw error rate increases rapidly as
flash memory ages, our optimized decoder can improve flash life­
time by 1 .4x-4 .5x.

2. Background and Related Work
2.1 Error Rates

The key component to understanding FEC and the improvements
in this paper is understanding error rates.

60

Information theory tells us that coding systems exist that allow
us to use noisy communication channels reliably [23].

BCH is a block based error correction code meaning that it
operates on a block of bits at time [1 1] . It transforms the input
data by adding specially calculated redundant check bits to form
a codeword. The appropriate code can be selected for a number of
bits to be corrected and a chosen block size. Larger block sizes have
lower storage overhead, but higher algorithmic complexity.

If the number of errors that occur within the codeword exceeds
the capability of the chosen code, an uncorrectable error occurs.
This determines the new channel error rate. This rate is calculated
by determining the probability that t or fewer errors will occur in a
block (where t is the number of errors that can be corrected by the
code) and then working backwards to obtain the new bit error rate
of the channel. This calculation also accounts for the coding loss,
the additional probability that an error will occur in the redundant
bits of the codeword.

In order to perform these calculations, the necessary values are
the raw channel Bit Error Rate (BER), p, the number of bits in
the codeword, n, the error correcting capability of the code, t, and
the desired uncorrectable BER. As long as the actual raw channel
BER remains at or below the estimated value, the probability of
an uncorrectable error occurring will also remain at or below the
targeted BER. The most basic calculation is determining that an
error free message is received. This is true if every bit in the
message is correct [6, p. 168]. We will represent this probability
with Po(n).

Po(n) = (1 - pt (1)

I t is straightforward to calculate from eq. 1 the probability that
at least one error has occurred, ...,Po(n).

...,Po(n) = 1 - Po(n) (2)

...,Po(n) = 1 - (1 - pt (3)

Moving on from this, we can calculate the probability that
exactly m errors occur in a message, Peq(m, n).

Peq(m, n) = pm(1 - pt-m (:) (4)

By summing eq. 4 for various values of m, we can calculate the
probability that m or fewer errors occur, Ple(m, n):

m
Ple(m, n) = L Peq(k, n) (5)

k=O

Ple(m, n) = � [pk(1 - pt-k (�)] (6)

We can then use eq. 6 to find the probability that more than m
errors occur, Pgt (m, n).

Pgt(m,n) = 1- P1e(m,n) (7)

Pgt(m, n) = 1 - � [pk(1 - p)n-k (�)] (8)

Eq. 8 is important in selecting a BCH code as it shows the prob­
ability that a block contains an uncorrectable error. We can then
work backwards to find the uncorrectable error rate by plugging
the result of eq. 8 into eq. 1 and reversing it.

p(t,n)uncorr = 1- Pgt(t,n)l/n (9)

Thus given a BER, p, a block size n, and a designed uncor­
rectable error rate, a sufficient t can be found.

2.2 Flash Memory Lifetime

The push to maxi mize the storage capacity of NAND flash memory
has led to a storage medium that requires extensive error correction
in order to be reliable. The primary causes of increasing error rates
in flash memory are due to a decreasing process size and an increase
in the number of bits stored per cell. Both of these techniques are
able to increase storage space well beyond the additional overhead
required by Error Correcting Code (ECC).

The properties that lead to high storage densities within flash
memory also lead to a lower lifetime. The wearing out of flash
memory cells is caused by the high voltages incurred during PIE
cycles. These high voltages lead to a deterioration of the tunnel
oxide within the cell which then allows leakage. Smaller process
geometries have a smaller tunnel oxide layer which wears faster.
The smaller process geometries leave less margin for damage that
occurs to the cell.

The lifetime of flash memory is rated by the number of PIE
cycles it is intended to endure before being retired. Typical PIE
lifetimes are rated in thousands of cycles. The targeted lifetime in
PIE cycles is chosen as a compromise between durability and ECC
requirements. However, by reducing the area and power required
by BCH decoding substantially, that compromise can be shifted and
the lifetime of the flash memory extended.

The data collected by Cai et al. [5] shows that the relation
between PIE cycles and error rates generally follows a polynomial
growth. The BER for 3x-nm technology Multi-level Cell (MLC)
NAND flash examined in their research closely follows the relation:

BER = A * age2 (10)

Where A is a constant specific to a given flash memory. In
rearranging the equation to show the relation between age and
BER, the constant is eliminated and the following relation is shown:

(1 1)

So that a doubling of the PIE cycles leads to a quadrupling of
the BER. Figure 2 shows the relation between PIE cycles, the BER,
and the strength of the BCH code required [5].

200
- --.- BER

00

@
:l

100 cs.
E

50 �

10-4 = � __ L-____ -L ____ � ______ �� O
3k 6k 12k 24k

PIE cycles

Figure 2. PIE cycles, BER, and ECC strength relation [5]

61

2.3 BCH Codes

BCH codes are implemented using finite fields. A short overview
of finites fields is necessary in understanding both the mechanism
of BCH codes and the proposed improvements.

2.3.1 Finite Field Overview

As the name implies, a finite field contains a finite number of el­
ements. Within the set of elements, operations are defined such as
addition, subtraction, multiplication, and division. All such opera­
tions on field elements result in another field element. Although a
wide variety of finite fields can be defined, the use of a binary fi­
nite fields makes for a straightforward implementation using digital
systems.

A binary finite field is defined by its degree, n, denoted as
GF(2n). The elements of a finite field are created by a generator
polynomial. Each element in the field is a successive power of the
generator polynomial. Thus the index of the element within the
field is known as the power form. For example, for GF(23), with
a generator polynomial of x3 + x + 1, the field is produced shown
in table 1 :

Table 1 . x3 + X + l over GF(23)
Power form Polynomial Binary

form representation

0 0 bOOO
XU 1 bOOI
x' x bOlO

XL XL b100
x0 x+l bOl l
x" XL +x b110

XV XL + X + 1 bI l l
xl) XL + 1 b101

Finite field addition and subtraction is performed by adding or
subtracting the polynomial form. Because the order of the field is
two (binary field), addition and subtraction are equivalent. In either
case, any two equal powers of x cancel out. For example, adding
x2 and x2 + x + 1 produces x + 1. This is the equivalent of the
logical Exclusive or (XOR) operation.

Finite field multiplication is performed by mUltiplying the two
polynomials together, performing elimination of terms as described
above, and then taking the result modulo the generator polynomial.
Finite field division is the inverse of finite field multiplication.

When utilizing finite fields for BCH codes, the number of ele­
ments in the field is equal to the number of bits within a codeword.
For instance, GF(28) contains 255 elements (excluding 0). The
associated BCH block size would be 255 bits.

In order to make BCH codes easier to work with, only a portion
of the codeword is used and the rest of the bits are set to zero. For
instance, when using a block size of 16 bytes (128 bits), a BCH
code with a block size of 255 bits would be selected. Throughout
this paper, codewords are assumed to be constructed in this way.

2.3.2 Finite Field Operations Utilizing LFSR

LFSRs are commonly used for finite field operations. The basic
operation of a LFSR allows one to transform a finite field element
to the next or previous element within the field. This is equivalent
to multiplying or dividing by Xl. Thus repeated operation can
multiply or divide by any power of x.

A LFSR consists of a set of registers interconnected in a ring
configuration. Between each register there can be an XOR gate.
The XOR gate combines the value of the previous register with
feedback from the highest register. An example LFSR is shown in

figure 3 . The configuration shown can be used to produce the finite
field shown in table 1 . This is because the connections match the
binary representation of the generator polynomial. In this config­
uration, the LFSR will cycle through each element of the field in
order.

Figure 3. Example LFSR

LFSRs are commonly used for BCH operations, either in their
default form, or in a slightly modified form that allows other oper­
ations, such as determining the remainder of a division [19].

2.3.3 Encoding

BCH encoding is performed by dividing the input data by a spe­
cially formed polynomial. This is performed utilizing a modified
LFSR that accepts a bit of input data per clock cycle. At the end
of the operation, the LFSR contains the remainder of the operation
which is the redundant code bits [20].

2.3.4 Decoding

The decoding process is broken into three stages which operate
independantly. The input codeword is passed into the first stage
and error locations are generated by the final stage. Figure 4 shows
the hardware stages of the decoding process. In the figure, the red
squares within the codeword represent error locations.

Codeword

Figure 4. BCH decoding process

2.3.5 Decoding - Syndrome Computation

Error
locations

The syndromes are a set of values that once computed, depend only
on the error locations within the message, and not on the message
itself. The number of syndromes is twice the number of errors
that the BCH code can correct, t. The syndromes are generated by
dividing the codeword by a set of minimal polynomials producing
a set of remainders. Because of relations between the minimal
polynomials, many syndrome elements can be easily derived from
the other elements, reducing the amount of computation required. A
useful property of the syndromes is that if all calculated syndromes
are zero, then no errors exist in the received message.

Syndrome computation operates on one input bit at a time which
limits the overall bandwidth of the decoder to the clock rate of the
syndrome units. However, syndrome calculation can be modified to
perform bit-parallel operations, greatly increasing the throughput
of the syndrome calculation stage at the cost of increased area and
power.

2.3.6 Decoding - Error Locator Polynomial Generation

The error locator polynomial is defined such that its roots give the
locations of the errors within the message. The number of roots,
or degree, of the error locator polynomial indicates the number of
errors within the message. The second stage of the BCH decoding
process is to generate the error locator polynomial from the set of
syndromes.

62

The Berlekamp-Massey algorithm was developed to generate
the error locator polynomial from a set of syndromes. It is an
iterative algorithm which calculates a discrepancy at each stage,
refining the approximation. This process requires several finite field
mUltiplications, divisions, and additions per cycle of the algorithm
which contributes to the overall complexity of the decoder.

2.3.7 Decoding - Root Finding

To find error locations, roots of the error locator polynomial must
be found. Since the degree of polynomial can be as large as t, a
brute force algorithm is used for hardware BCH implementations.
An optimized algorithm used for this brute force search has been
developed and is known as a Chien search. To implement the Chien
search, a set of registers is loaded with the coefficients of the error
locator polynomial. During each cycle of the Chien search, each
register is multiplied by xn, where n is the degree of x associated
with the given coefficient. At the end of each cycle, all registers are
summed. If the sum of all the registers is zero, then a root has been
located. The cycle number indicates the index within the block of
the error location.

The order of the Chien output can be made to match the order
of the input message. Thus the output of the BCH decoder is a
set of locations within the message that must be toggled to correct
received errors.

2.4 Current Methods of Improving Performance

Although increasing clock rate leads directly to an increase in
throughput, there is a limit due to the complexity involved in the
decoder. There are two other methods of increasing the throughput,
implementing bit-parallel operation in the syndrome calculation
and root finding, and implementing multiple BCH decoders in a
system operating in parallel.

Both the input and output of the BCH decoder handle data se­
rially, one bit per clock cycle. The logical result of multiple clock
cycles can be combined allowing the input and output to operate
on multiple bits in parallel. Bit-parallel operation is a straightfor­
ward implementation and typically requires few modifications to
an overall system to implement. However, as bit-parallel operation
increases the complexity of the decoder, it decreases the achievable
clock rate and thus has limits. Additionally, bit-parallel operation
cannot be applied to generating the error locator polynomial, and
thus the overall throughput of the system will come to be limited
by this step.

Implementing multiple BCH channels bypasses these problems
as it is simply a duplication of the BCH engine. Multiple channels
require modification of the overall system to implement and can be
made in two primary situations.

The first is the case of a multi-channel architecture. For exam­
ple, a system that has multiple data channels connected to flash
memory [8].

The second is to interleave the BCH code. Interleaving not only
leads to increased throughput, but also offers error correction ad­
vantages in certain types of channels [9]. This is because in many
types of channels, errors tend to occur in bursts. With interleaved
operation the burst is broken up across many codewords, decreasing
the probability that a single burst will overwhelm the error capabil­
ity of the chosen BCH code [7].

Both methods of multi -channel operation scale each property of
the system (throughput, area, power) in a purely linear fashion.

2.5 Current Methods of Improving Efficiency

Improving the efficiency of each stage of decoding can lead to
lower area requirements, lower power consumption, and increased
clock speeds leading to higher throughput. As such, many ideas

0 .2 -

2 4 6 8 10

Number of errors in a single block

Figure 5. Probabilities of errors at BER of 1 x 10-4

have been put forth to improve the efficiency of each BCH decoding
stage.

For instance, it has been shown that a relation exists between
many of the syndromes [24, p. 1 52]. This makes it possible to only
calculate a limited set of syndromes, and then apply the relations
to expand them into the full set of syndromes. This decreases the
overall area and power requirements of the decoder.

Additionally, it has been shown that there are multiple methods
of finding each syndrome element [27]. For a given element, it
can be shown which method is the most efficient. This information
can then be used to calculate each syndrome in the most efficient
way possible. This not only decreases the overall area and power
requirements of the decoder, but because it decreases complexity,
can also increase clock speeds and throughput.

Work has also gone into decreasing the complexity of bit­
parallel LFSRs. This work can be and has been applied to bit­
parallel syndrome calculation [25].

As the step of generating the error locator polynomial can limit
the overall throughput of the decoder, improving its efficiency, in­
creasing the achievable clock rate, and decreasing the overall num­
ber of clock cycles required is important. General optimizations
to finite field operations, such as more efficient multipliers and di­
viders, can be applied to generating the error locator polynomial.

Jamro has shown how linking multipliers which operate on dif­
ferent bases can lead to a reducing in the number of clock cy­
cles required [2 1] . This is done by linking a serial multiplier that
takes parallel input and produces serial output with a multiplier
that takes serial input and produces parallel output. However, as
these two multipliers operate on a different bases, an efficient basis
conversion circuit linking the two multipliers is shown. Addition­
ally, Jamro shows how the first two rounds of the algorithm can be
skipped by pre-calculating the necessary state of the registers. Both
of these optimizations reduce the latency of generating the error lo­
cator polynomial. By reducing the latency, this allows the decoder
to run at a higher overall throughput.

The Chien search requires a number of multipliers equal to
the number of coefficients in the error locator polynomial [22].
Additionally, bit-parallel operation requires a duplication of this set
of multipliers for each output bit as well as a multiplier to load each
coefficient with the appropriate value.

3. Main Observations
In order to push the uncorrectable error rate very low, BCH de­
coders are very oversized compared to the number of errors they
typically correct. The common case is for only a fraction of the
decoder to be used. This is shown clearly in figure 5 .

This observation alone does not allow us any improvement
because at any time the full decoder may be required. We instead

63

observe that on average only a small percentage of the decoder
is required and then apply that observation to a multi-channel
decoder. By applying our observation to a multi-channel decoder,
we can include at least one full BCH decoder. The remainder of the
decoding hardware can be reduced decoders of some kind. These
reduced decoders could reduce our overall hardware requirements
greatly.

To route data properly, we need to consider how many errors
a block has. Assume that there is no error. All syndromes are
evaluated to zero and the block needs no further processing.

To calculate the number of errors beyond zero, we must find the
error locator polynomial. Any reduction in the complexity of the
decoder beyond zero errors must then be in the root search. The
case of only one error is a very common case and a good target to
optimize for. The optimization here is fairly straightforward as the
error locator polynomial will only be one degree in this case. Rather
than a brute force search, the root can be found algebraically.

The trade-off with such a system is that there is a possibility
that insufficient resources will be available to decode a certain set
of blocks. For example, if 5 of the 8 blocks contain errors but
only 4 error locator units are present. If this occurs, decoding will
be delayed until resources are available and performance will be
degraded. Fortunately, it is fairly straightforward to calculate this
performance drop and thus intelligently trade-off a small drop in
performance for a large reduction in area and power requirements.

4. Our Approach
4.1 Architecture

The basic design of a BCH decoder is broken down into three
pipeline stages. For our multi-channel architecture, we implement
those stages as stations fed by round robin arbitrators. The arbitra­
tors collect data from each stage and then passes it to the next. The
general layout of the decoder is shown in figure 6. In the example
configuration, there are 3 error polynomial generator units (�), one
traditional Chien solver (C) and two reduced root solvers (1') .

Figure 6. An example of the proposed BCH decoder

The overall architecture can be configured for a given number
of channels, error locator polynomial generators, traditional Chien
search units, and reduced root solver units.

4.1.1 Syndromes

For every channel, the syndromes must be computed. This means
that the number of syndrome units will be equal to the number of
channels. We fix each syndrome unit to a channel and each unit
contains a bit counter. The counter will be used to track how many
bits the unit has received and if the syndrome is ready.

On the input side, the syndrome unit contains two control sig­
nals. An input to indicate that it should start accepting syndrome
data, and an output that acknowledges that signal. If the unit is busy

or contains processed syndrome data, it will not acknowledge the
start signal.

On the output side, the syndrome unit contains an additional
two control signals. One signal indicates that the syndrome unit
contains processed syndrome data. The other control signal is an
input that clears this state and allows the unit to accept new data.

4.1.2 SyndromelError Locator Polynomial Interconnect

This interconnect passes data from the channel syndrome units to
the pool of error locator polynomial generators. The unit primarily
consists of a register to hold the syndromes, an index to the current
syndrome input unit, and an index to the current error locator
polynomial unit. Both indexes operate in a purely round robin
fashion. The unit also contains a circuitry to check its currently
stored syndrome against zero. It determines if it is necessary to
pass the syndrome data to the error locator polynomial unit or if it
can be skipped.

The general operation is to wait on the currently indexed syn­
drome unit. When a syndrome is ready, it accepts the syndrome
and stores it in its syndrome register. It also stores the index to as­
sociate the data with a channel. It then waits for the syndrome to be
compared against zero. If the check indicates no errors are present,
it sets a flag indicating that the current channel output should skip
root finding for the next data set.

If the check indicates errors are present, it waits for the next
error locator polynomial generator unit to become ready. When
ready, it passes its syndromes to that unit and sets the start bit
for that unit. It also passes the currently stored channel number so
that the error locator polynomial will be associated with the correct
channel.

4.1.3 Error Locator Polynomial Generator

If any error exists within the codeword, we must find the error lo­
cator polynomial. The control signals on this unit are similar to the
control signals on the syndrome unit. A start and start acknowledge
signal on the input, and a signal to indicate done state and a signal
to clear the done state on the output.

The output of the error locator polynomial generator unit in­
cludes the error locator polynomial and also the number of errors
detected within the codeword. The only configuration available for
the error locator polynomial are the BCH code parameters.

4.1.4 Error Locator PolynomiaVRoot Solver Interconnect

This interconnect is similar to the syndrome interconnect except
that it must serve two possible pools. The first destination pool
consists of traditional Chien root solvers and the second destination
pool consists of reduced root solvers. When the currently selected
error locator polynomial is ready, the interconnect stores the error
locator polynomial, the error count, and the associated channel
number.

The interconnect must then determine based on the error count
which pool to serve. It keeps two separate indexing counters, one
for each pool. If the error count is 1 then the reduced root solver
pool is used, otherwise the traditional Chien pool is used.

When the appropriate root solver is ready, the interconnect
signals it to start and passes the error locator polynomial along with
the associated channel number.

4.1.5 Traditional Chien Root Solver

The traditional Chien root solver units consist of a set of coeffi­
cient registers. Each register is wide enough to contain a finite field
element from the given BCH configuration. The number of regis­
ters required is equal to the maximum number of errors that the
code can correct. The registers are each multiplied by the appropri­
ate degree of x each cycle and each cycle all registers are summed

64

together. If the sum is zero, then an error has been located. This op­
eration is duplicated for bit-parallel operation, with the number of
bits shared per register being configurable in order to meet timing.
Additionally, the summing operation provides an opportunity for a
configurable amount of pipelining.

The unit contains a start signal that is used to load new values in
the coefficient registers, starting the algorithm. Due to the pipelined
nature of the summation operation, an output signal is provided that
indicates that the first bit (or set of bits) of errors is being output on
the current cycle.

The glue logic surrounding the root solver contains a multi­
plexor that connects to the busy signal of the output stages. The
output stage then counts the number of cycles necessary for the
algorithm to complete.

4.1.6 Reduced Root Solver

The reduced root solver can be used to find the error location for
codewords with a single bit error. It offers large advantages over
the traditional Chien search since it only requires a single register.
It also is more efficient in the multi-bit case as for each bit, since
the register is compared against a constant.

If only one error exists in a codeword, the error locator polyno­
mial is of degree 1 and of the form:

Ax+B=O
Which can be solved in a single step as:

x = -B/A

(12)

(1 3)

Because of the algorithm we use to find our error locator poly­
nomial, B is always 1 . Additionally, negation is a null operation
within finite fields. This reduces the equation further to the form:

x = l/A (14)

Although implementing an inverter would produce the value of
x in a single cycle, the value would be of little use on its own. This
is because the value is in the standard basis for the finite field and
not the power form. The power form would give us a direct integer
index to the location of the error. The binary representation of the
sequencing of the standard basis (polynomial form) can be seen in
table 1 .

Converting from the power form to the standard basis is an
algorithmically complex operation. It is generally on the order of
O(N) where N in the number of elements in the field. Rather than
attempt to convert from the power form to the standard basis, we
make two observations.

Our first observation is that we need to cycle through each bit in
the codeword in order to output error locations regardless of how
our solver functions. Our second observation is summed up by the
following re-arrangement:

Ax = 1 (1 5)
If we load a register with A and multiply it repeatedly by Xl, it

will eventually reach the value of 1 . Once it has we have multiplied
A by the correct power of x and found the root. Because we are
only mUltiplying by Xl per cycle we can use a LFSR instead of a
multiplier.

To start, we load the LFSR with the value of A. Then during
each cycle, we advance the LFSR and compare the value with 1 . If
they match we have found the location of the root.

Expanding this to support multiple bits scales very well. We
advance the LFSR a number of cycles equal to the number of bits
instead of just once. For each output bit, we compare the value in
the LFSR with the next value in the finite field starting with 1 for
the first bit.

4.1.7 Output Units

The output units multiplex the data from the root solvers and output
it from the decoder. Each channel has an associated output unit. The
output units provide the data indicating which bits are in error as
well as a signal to indicate the start of a new block. Within each
output unit is a counter to keep track of when the output for the
given block is complete and the next block can be processed.

The output units are driven by two flags. One flag indicates that
the output unit should expect data from a root solver, the other
flag indicates that the output unit should output one block's worth
of error free data. Whenever the output unit completes its current
block, it examines these flags to determine what it should output
next.

Whenever the flag indicating that data from a root solver should
be processed, the associated index of that solver is stored as well.
This allows the output unit to assign its multiplexor to accept data
from the appropriate solver.

4.2 Determining the Number of Units

Part of the design is to select the appropriate number of each unit
type. The number of units included in a given design is determined
by the expected error rate and the acceptable miss rate. The miss
rate indicates the likelyhood that within any given set of blocks,
there would be insufficient hardware to process the data. In this
case the effected input channel is stalled and the decoding of that
block is deferred until hardware is available. The overall throughput
of the system is reduced by the miss rate.

We need to decide the number of units in two stages. The first
stage is the error locator polynomial generator units. Units are only
required for blocks with one or more errors. Therefore the number
of units is chosen based on the probability that more than m blocks
contain one or more errors. We start by using eq. 2 to determine the
probability that a single block contains one or more errors. Then we
plug this probability into eq. 8 and choose the message size n to be
equal to the number of channels. By evaluating this equation for
different values of m, we can find the number of blocks required to
be below the miss rate probability.

The result of evaluating this equation for the chosen set of BCH
parameters and an acceptable miss rate of 2% is shown in figure 7.

I

10-1 -

Q
�

10-4 :B '" n
.D 0 BER
...

c.. DOSxlO-6

10-7 _ D02xl0-5
DOSxl0-5
• [] I X 10-4

10-10 I II IU III I
1 2

I

I
3

m
4

I

2%-

-

� I
5

Figure 7. Probability that more than m blocks contain at least one
error where n =

8

Figure 7 shows that for a BER of S x 10-6, only I unit is
required with a 2% miss rate. For a BER of 1 x 10-4, S units are
required.

65

The next step determines the number of traditional Chien search
units required. This is calculated similarly to the above, but we
examine the probability that more than one error occurs since our
reduced root solver can only handle one error. We first use eq. 8 to
find the probability that more than one error occurs within a single
block. And then we use eq. 8 again, but this time with the message
size set to the number of channels and p set to the value found
above.

The result of evaluating this equation across multiple values of
m is shown in figure 8 .

101 -

2%

10-4 -

.£
:B

10-9 '"
.D

-
0

c.. BER

DOSxlo-6
10-14 - D02xlO-5

10-19

DOSxl0-5

n D[]lxl0-4

I I I
1 2 3 4

m

Figure 8. Probability that more than m blocks contain more than
one error where n =

8

Figure 8 shows that for a BER of 1 x 10-4, 2 units are required.
For all other examined error rates only I unit is required. The
remaining units are filled in with reduced root solvers. Note that
for any decoder at least one traditional Chien solver is required.

A miss rate of 2% is chosen for our experiments as it is a very
small performance penalty, but still large enough for smaller unit
counts to be used. In order to demonstrate the variability of units
required for a given miss rate, the BER of 2 x 10-4 is examined.
This BER provides a wide range of required units across a set of
given miss rates.

8._----,-----,-----,------,--.

6

2 Unit type

-+- Poly. Gen.
____ Chien

°
O
�========�----�----L-�

5 10 15 20

Miss rate

Figure 9. Units required for BER of 2 x 10-4

As shown in Figure 9, the gain seen for a given miss rate falls
off quickly beyond 2%. Although 2% was chosen for the exper-

iments in this paper, the additional gains achieved through much
higher miss rates may still be desirable on extremely constrained
designeds.

5. Experiments

5.1 Setup

In order to test our ideas and approach, we have implemented them
on a Field Programmable Gate Array (FPGA) in Verilog. A Xilinx
Virtex-6 FPGA has been chosen as a target as it has sufficient logic
resources and Input/Outputs (lOs) for implementing the necessary
experiments.

Our Veri log code is written to be configured through Verilog pa­
rameters. This allows the properties of the decoder to be configured
at compile time. The build tools can then compile and verify a va­
riety of configurations in a batch form without modification to the
codebase.

Validation of the design is performed with a set of testbenches.
These verify the correctness of the compiled code and algorithms.
The testbenches operate by generating a stream of random input
data as well as random bit errors. Because the natural probability of
the maximum number of correctable errors occurring is extremely
low, each possible number of errors is selected equally. This allows
the code to be fully exercised. The input data is fed to a BCH en­
coder and then bits are flipped in accordance with the generated
error locations. The modified data is then passed to the BCH de­
coder and the error locations output is compared with the true error
location data.

The area of a given design is calculated by implementing the
design fully. All inputs and outputs of the design are assigned
registers as would be done in a system design to meet 10 timing.
As the configurability of the design leads to a wide range of 10
configurations, the tool is permitted to automatically assign 10
locations. The comparative area of design is then measured by
FPGA slice usage.

Power estimation is performed using the Xilinx XPower Ana­
lyzer. Since the static power consumption of an FPGA does not
vary significantly based on logic usage, dynamic power consump­
tion is compared.

In order to ensure a fair comparison, all designs are constrained
to run at at least 200 MHz. This ensures that complex designs will
pay an area penalty as the tool will duplicate registers to meet
timing.

5.2 Baseline Configuration

Our baseline configuration is an 8 channel decoder. Not only do
many systems contain a similar number of channels, but it also
allows us to fully demonstrate the advantages of our approach.

Each channel is 4 bits wide. Most flash memory systems operate
in an 8 bit wide configuration, but a 4 bit wide configuration
was chosen for two reasons. First to allow the design to have
headroom for demonstrating the increase in throughput possible in
the optimized design. Second, many decoders operate at a higher
clock rate than the data bus. For a decoder operating at double
the clock rate of an 8 bit data bus, 4 bit wide operation would be
required.

The baseline decoder operates on 4096 bit, or 5 1 2 B blocks.
This is a typical block size for the error rates examined in this
paper [15][16]. Similar results should be obtainable across a wide
range of possible block sizes.

Flash manufacturers typically do not publish BER values for
released flash memory. They instead publish the error correction
strength required to reduce the error rate below an acceptable
threshold, typically 1 x 10-15 [5]. Knowing the error correction
strength required, the block size, and the targeting uncorrectable

66

error rate, we can work backwards to estimate the associated BER.
The values chosen are shown in the table 2.

Table 2. Targeted ECC Range
Strength (errors) Estimated Bits of ECC

BER required

5 5 x 10 -0 65
7 2 x 10-0 9 1
8 5 x 10-v 1 04
1 0 1 x 10 -4 130

5.3 Area Optimized BCH Decoder

Our area optimized BCH decoder reduces the hardware area while
it impacts performance only 2%. The reduced number of units re­
quired is shown in the table 3. Although 8 syndrome calculation
blocks are always required, the number of error locators and tradi­
tional Chien search blocks decreases as BER decreases to meet the
given error rate with 2% miss rate.

Table 3. Hardware Units Required
BER Syn- Error Trad. Reduc.

drome Locator Chien Root

5 x 10-b 8 1 1 0
2 x 10 -0 8 3 1 2
5 x 10-b 8 4 1 3
I x lO-Q 8 5 2 3

The area is then compared with the baseline decoder and the
results are shown in Figure 10 . Note that the area includes all hard­
ware components such as arbitrators to build the BCH decoders
which are not required in the baseline implementation. By optimiZ­
ing the number of units and utilizing the reduced root solver we
reduce required area by 47%-71 % compared to the baseline imple­
mentation.

5 ,000

4 ,000

�
</J <!) U

;.:::: 3 ,000 </J
-

«
0
� 2 ,000 OJ

-
<!)

«
1 , 000 -

0

Config

D 0 Baseline
Do Optimized

-

In

r-
r-

-
-

2 x lO- 5 5 x lO- 5

BER

Figure 10. Area saving results

c-

-

-
-

-

1 x lO-4

The smaller area of the decoder also translates to dynamic
power savings. By profiling the designs we can estimate the power
consumed by each design. The results are shown in figure 1 1 . This
equates to a 44%-59% reduction in dynamic power requirements.

2

� 1 . 5 '"

� <!)
::: 1 0
0.
u
'E �
c
>-.

Q 0 .5

o

I

Config

Do Baseline
o o Optimized

r-

-

I

I

r-
r-

-
-

I

2 x lO- 5 5 x lO- 5

BER

Figure 11. Power saving results

-
-

-

r-

-

1 x lO-4

5.4 Throughput Optimized BCH Decoder

While the proposed area optimized BCH decoder sacrifices a small
amount of performance to reduce the required hardware area, it
is possible to devise a throughput optimized BCH decoder while
holding area constant to improve the performance. The optimiza­
tion is achieved by increasing the bit-parallel configuration param­
eter until a maximum throughput is found at the same area cost as
the baseline configuration.

4 ,000 .----,------.------.----------,---,

Baseline (4-bit)

3 ,000 -
� '" <!)
.� -;;;
«
0 2 ,000 -
Q.,
�
� <!)

«
1 , 000 -

0 L---�
5

------�
10

�------
l
L
5
------�

20
�

Number of parallel bits

Figure 12. Requirements of 2 x 10- 5 design

Figure 12 shows the process as applied to the 2 x 10- 5 BER
configuration. The area consumed by the baseline unoptimized
design is shown by the red line. The discontinuity in results is due
to an additional level of hardware duplication in the Chien search
when moving to a 20 bit wide unit to meet timing.

While the unopti mized design consumes an area of 3 1 68 slices,
our optimized design consumes an area of only 1 272 slices. Both
designs accept 4 bits per cycle in the syndrome calculation stage,
and output 4 bits per cycle in their output stage. We then implement
the optimized design at 8 bits, 16 bits, 1 8 bits, and 20 bits per cycle.
These designs increase throughput by operating on more input and

67

output bits per clock cycle. We can see that the optimized design
operating at 1 8 bits per cycle only consumes 2874 slices, which is
less than the unoptimized design operating at only 4 bits per cycle.

Thus it is possible to implement an l 8-bit design within the
same area, leading to a 4 .5x improvement in performance. Note
that there is 2% performance degradation due to the miss rate,
which is negligible compared with the performance gain of 450%.
Similar improvements in performance are possible with our other
configurations and are shown in figure 1 3 . The amount of perfor­
mance improvement is related to the area savings provided by the
optimized decoder.

20

c .S e;; 1 5 <!)
0. 0

Q)
� 1 0 �
Z
o:s

5

0

-

n I

-

n n I

Config

Do Baseline
Do Optimized

-

r-

n I
2 x lO- 5 5 x l0- 5 1 X 10-4

BER

Figure 13. Throughput optimization results

5.5 Flash Lifetime Optimized Design

-

-

-

-

Similarly, the area reduction can be utilized to increase the lifetime
by providing higher error correction strength. To provide stronger
error correction, a larger hardware area is required. The area reduc­
tion in our approach is utilized to provide greater error correction
strength in a smaller area. For an 8 channel unit and a 2% targeted
miss rate, the hardware area requirement in our approach for a BER
of 1 x 10-4 becomes similar to the area in the baseline approach for
a BER of 5 x 10- 6 . Table 4 shows the units required in our approach
for different given BERs.

Table 4. Hardware Units Required
BER Syn- Error Trad. Reduc.

drome Locator Chien Root

l . 2 x 10 -q 8 6 3 3
l .5 x 10 -4 8 7 3 4
2.0 x l0 -q 8 7 4 3

Table 5 compares the error correction capability between the
baseline approach and the proposed optimization with a given hard­
ware area constraint. For instance, for the hardware area with which
the baseline approach can handle a BER of 5 x 10- 6 , the proposed
approach can handle a BER of 1 x 10-4 . Note that in the table,
our approach requires no larger hardware area than the baseline
approach. In addition to increased error correction capability, our
implementation includes additional hardware units to meet the 2%
miss rate. Therefore, our approach can correct more errors than the
baseline approach without sacrificing performance, hardware area,
and power consumption.

Table 5. Error correction capability
Original Original t Optimized Optimized t

BER BER

5 x 10 - 0 5 1 .0 x 10 -q 1 0
2 x 10 - 0 7 1 . 2 x 10 -4 1 1
5 x 10 -0 8 1 .5 x 10 -q 1 2
1 x 10 -4 1 0 2.0 x 10 -4 1 3

Equation 1 1 shows the relation between BER and ageing. Since
the proposed scheme can correct more errors, allowing a decoder
targeted for a higher BER, the lifetime of the same NAND flash
memory is prolonged compared with the baseline implementation.
Figure 14 shows the lifetime improvement over the baseline BCH
decoder. As a BER decreases, more hardware reduction is achiev­
able and more errors can be corrected by utilizing the reduced area.
The flash lifetime is extended by 1 . 4x-4 . 5x.

5

r-

4
0
. �
<!)
E 3

�
"0 <!)

2 N
·s
0..
0

1

0 I

r-

-

I I

2 x lO- 5 5 x lO- 5

BER

Figure 14. Improved lifetime

6. Conclusion

-

-

-

-

-

I
1 x lO-4

This paper proposes new multi-channel BCH error correction de­
coder optimization techniques to reduce the hardware area require­
ment by considering a common error case. The proposed scheme
utilizes a pooled group of shared decoding blocks. Compared with
a traditional multi-channel implementation, it reduces the hard­
ware area by 47%-71 %. The area reduction also saves the dynamic
power consumption by 44%-59%. In our approach, if the reduced
hardware area is utilized to increase the performance, the through­
put is improved by 3x-5x and the lifetime of NAND flash increases
by 1 .4x-4 . 5x if it is utilized to correct more errors.

References
[1] Luyi, Sui, Fu Jinyi, and Yang Xiaohua. "Forward error correction."

Computational and Information Sciences (lCCIS), 2012 Fourth Interna­
tional Conference on. IEEE, 20 1 2 .

[2] Sun, Fei, Ken Rose, and Tong Zhang. "On the u s e of strong BCH
codes for improving multilevel NAND flash memory storage capacity."
IEEE Workshop on Signal Processing Systems (SiPS) : Design and
Implementation. 2006.

[3] Strukov, Dmitri. "The area and latency tradeoffs of binary bit­
paraUel BCH decoders for prospective nanoelectronic memories."

68

Signals, Systems and Computers, 2006. ACSSC'06. Fortieth Asilomar
Conference on. IEEE, 2006.

[4] Rate, Switch. "Forward error correction schemes for digital communi­
cations." (1 983).

[5] Cai, Yu, et al . "Error patterns in MLC NAND flash memory:
Measurement, characterization, and analysis." Design, Automation &
Test in Europe Conference & Exhibition, 20 1 2 . IEEE, 20 1 2 .

[6] Houghton, A. , e d . Error coding for engineers. Springer Science &
Business Media, 200 1 .

[7] Shi, Yun Q . , et al. "Interleaving for combating bursts o f errors." Circuits
and Systems Magazine, IEEE 4. 1 (2004) : 29-42.

[8] Abraham, Michael. "NAND flash trends for SSD/Enterprise." Flash
Memory Summit (20 10) .

[9] Lee, Kihoon, et al . " 1 00GB/S two-iteration concatenated BCH decoder

architecture for optical communications." Signal Processing Systems
(SIPS), 2010 IEEE Workshop on. IEEE, 20 1 0 .

[1 0] ZambeUi, Cristian, e t al. " A cross-layer approach for new reliability­
performance trade-offs in MLC NAND flash memories." Proceedings of
the Conference on Design, Automation and Test in Europe, 20 1 2 .

[1 1] Bose, Raj Chandra, and Dwijendra K. Ray-Chaudhuri. "On a class
of error correcting binary group codes ." Information and control 3 . 1
(1 960): 68-79.

[1 2] Hong, Jonathan, and Martin Vetterli. "Simple algorithms for BCH
decoding." Comm., IEEE Transactions on 43.8 (1 995): 2324-23 33 .

[1 3] Litwin, Louis. "Error control coding in digital communications
systems." RF Design, July (200 1) .

[1 4] Kristian, Hans, e t al. "Ultra-fast-scalable B C H decoder with efficient­
Extended Fast Chien Search." Computer Science and Information
Technology (ICCSIT), 2010 3rd IEEE International Conference on.
Vol. 4. IEEE, 20 1 0 .

[I 5] Cooke, Jim, Berrett, B . , Schulthies, Y. " 1 0 1 : A n Introduction to
NAND Flash and How to Design It in to Your Next Product." Micron
(2006) : 1 -28 .

[I 6] Cooke, Jim. "NAND 20 1 : An Update on the Continued Evolution of
NAND Flash" Micron (20 1 0 .

[1 7] Jun, Zhang, e t a l . "Optimized design for high-speed parallel BCH
encoder." VLSI Design and Video Technology, 2005 . Proceedings of
2005 IEEE International Workshop on. IEEE, 2005.

[1 8] Lee, Youngj oo, Hoyoung Yoo, and In-Cheol Park. "Small-area parallel
syndrome calculation for strong BCH decoding." Acoustics, Speech and
Signal Processing (ICASSP), 20 1 2 IEEE International Conference on.
IEEE, 20 1 2 .

[1 9] Saluja, Kevval K. "Linear Feedback Shift Registers Theory and
Applications." Department of Electrical and Computer Engineering,
University of Wisconsin-Madison (1 987): 4-14.

[20] Lee, Je-Hoon, et al . "Implementation of ParaUel BCH Encoder
Employing Tree-Type Systolic Array Architecture." (20 1 3) .

[2 1] Jamro, Ernest. "The design o f a VHDL based synthesis tool for BCH
codecs ." The university of Huddersfiel (1 997).

[22] Chen, Yanni, and Keshab K. Parhi. "Small area paraUel Chien search
architectures for long BCH codes." IEEE Transactions on Very Large
Scale Integration (VLSI) Systems 1 2 . 5 (2004) : 545-549.

[23] Shannon, C . E. "A Mathematical Theory of Communication." Bell
System Technical Journal, July 1 948, p .623

[24] Lin, Shu and Costello, Daniel J. "Error control coding: fundamentals
and applications." Pearson-Prentice Hall Upper Saddle River, 1983

[25] Lowy, Menahem. "Parallel implementation of LFSRs for low power
applications." Circuits and Systems II: Analog and Digital Signal
Processing, IEEE Transactions on 43.6 (1 996): 458-466.

[26] Hu, Qingsheng, et al . "Low complexity parallel Chien search
architecture for RS decoder." Circuits and Systems, 2005. ISCAS 2005.
IEEE International Symposium on. IEEE, 2005 .

[27] Cho, Junho, and Wonyong Sung. "Efficient software-based encoding
and decoding of BCH codes ." Computers, IEEE Transactions on 58.7
(2009): 878-889.

