
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. , NO. , 2023 1

Generic Soft Error Data and Control Flow Error
Detection by Instruction Duplication

Moslem Didehban, Hwisoo So*, Prudhvi Gali, Aviral Shrivastava, Kyoungwoo Lee*

Abstract—Transient faults or soft errors are considered one of the most daunting reliability challenges for microprocessors. Software
solutions for soft error protection are attractive because they can provide flexible and effective error protection. For instance, nZDC [1]
state-of-the-art instruction duplication error protection scheme achieves a high degree of error detection by verifying the results of
memory write operations and utilizes an effective control-flow checking mechanism. However, nZDC control-flow checking mechanism
is architecture-dependent and suffers from some vulnerability holes. In this work, we address these issues by substituting nZDC
control-flow checking mechanism with a general (ISA-independent) scheme and propose two transformations, coarse-grained
scheduling, and asymmetric control-flow signatures, for hard-to-detect control flow errors. Fault injection experiments on different
hardware components of synthesizable Verilog description of an OpenRISC-based microprocessor reveal that the proposed
transformation shows 85% less silent data corruptions compared to nZDC. In addition, programs protected by the proposed scheme
run on average around 37% faster than nZDC-protected programs.

Index Terms—Reliability, Transient Faults, Soft Errors, Compiler, Silent Data Corruption.

✦

1 INTRODUCTION

ADVANCES in semiconductor technology have brought
computer-based systems into virtually all aspects

of human life. This unprecedented proliferation of
semiconductor-based systems has significantly increased
the extent of safety-critical applications i.e., applications
with unacceptable consequences of failure. For instance,
consider an object identification task in a semi-autonomous
vehicle, which is responsible to detect obstacles in the road
ahead and issuing emergency break requests after detecting
close obstacles. Clearly, errors propagating to the output
of such critical tasks can lead to a tragedy. In fact, errors
affecting even a single pixel of an image may lead to
wrong object classification [2]. Transient faults or soft errors
caused by energetic particles, electromagnetic interference,
or electrical noises are one of the main sources of hardware
malfunctions in miniaturized microprocessors [3].

Traditionally, soft errors were mainly a concern for high-
altitude applications (e.g., satellites and airplanes), and
hardware redundancy-based solutions have been used to
mitigate the problem of soft errors. Due to continued device
scaling and higher integration, nowadays soft errors also
cause reliability issues for terrestrial applications [4]. Al-
though due to the temporary and untraceable nature of soft
errors, it is difficult to precisely quantify their contribution
to digital devices’ failure rates, they have been considered
a first-class suspect in many system-level failure scenarios
[5, 6].

Redundancy is the main strategy to cope with the effect
of soft errors. In general, the manifestation of errors can

• M. Didehban, P. Gali and A. Shrivastava are with Arizona State
University, Tempe, AZ 85287, USA.

• H. So and K. Lee are with Yonsei University, Seoul.

* Co-corresponding authors

Manuscript received April 30, 2018; revised August 30, 2018.

be detected by performing computations redundantly and
checking the results frequently. Hardware-level error mit-
igation schemes utilize hardware redundancy and execute
redundant computations on different hardware modules.
Examples are ARM Cortex-R dual/triple core lock-step
microprocessors [7, 8]. On the other hand, software-level
solutions are based on the temporal redundant execution
of computations on the underlying hardware. While protec-
tions offered by hardware-level error-tolerant solutions are
hardwired to the hardware, protections offered by software-
level solutions are flexible and can be adjusted based on
application resilience requirements [1, 9, 10].

In-thread instruction replication is one of the most
prominent software-level error protection solutions [1, 9, 11,
12, 13, 14]. These schemes assume that the microprocessor
memory hierarchy (including TLBs, Caches, and memory) is
ECC-protected (Error Detection and Correction Code) and fo-
cus on detecting errors on microprocessor core components.
For instance, SWIFT [9] transformation replicates the execu-
tion of computational instructions, i.e. arithmetic and logical
operations, and checks for errors by comparing the values
of redundant register operands of critical instructions, i.e.
memory and control-flow operations before their execu-
tion. Recent studies show the effectiveness of instruction
replication-based schemes on the commercial off-the-shelf
microprocessor in radiation-prone environments[15, 16].

However, most of the existing schemes can detect soft
errors that only impact the execution of computational
instructions and leave the execution of critical instructions
unprotected. Our previous solution nZDC (near Zero silent
Data Corruption [1]) improves the error coverage ability of
the state-of-the-art instruction duplication-based solutions
by protecting the execution of both critical and computa-
tional operations. nZDC transformation consists of data-
flow and control-flow error detection parts. While nZDC
data-flow error detection transformation is generic (can be



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. , NO. , 2023 2

applied on all existing instruction set architectures) and
effective (detects almost all data flow errors), its control-flow
checking mechanism is limited. First, nZDC control-flow
transformation is vulnerable to some errors causing unex-
pected jumps. Second, it relies on ISA support for certain
conditional operations. If implemented on an architecture
that does not support such operations (i.e. RISC-V[17]),
new vulnerabilities will be exposed and its performance
overhead increases considerably.

Targeting embedded safety-critical applications, in this
work we propose generic-nZDC (gZDC), which is a combi-
nation of nZDC data-flow error detection mechanism with
an inverted branch mechanism [18] and a generic control-
flow error protection ([14]) solution. We also advise a novel
coarse-grain main-redundant instruction scheduling policy
and an asymmetric control-flow signature scheme to pro-
vide protection against hard-to-detect control-flow errors.
To evaluate the effectiveness of our scheme, we performed
around half a million transient fault injection experiments
on a synthesizable Verilog description of an OpenRisc-based
embedded microprocessor. Experimental results show that
the gZDC-protected programs suffer from 85% less silent
data corruption compared to nZDC-protected programs and
their execution time is 37% faster.

2 RELATED WORK

Software-level redundancy can be applied on different soft-
ware abstract levels ranging from coarse-grained process-
level [19, 20, 21] and thread-level [22, 23, 24, 25, 26] re-
dundancy to fine-grained instruction-replication schemes
[1, 9, 11, 12, 27]. In addition, several researchers [18, 28,
29, 30, 31, 32, 33] proposed hybrid (hardware and software)
schemes. In this work, we focus on pure software-level
fine-grained schemes because they can potentially provide
a high degree of error coverage and such solutions do
not require any modifications in the underlying operating
system or microprocessor.

Instruction-level soft error detection schemes work
based on inserting redundant assembly-level instructions
in the original application’s code and checking the results
of main and redundant computations for error detection
[1, 9, 11, 12, 14, 27]. Such solutions should make sure that
the target application’s data flow and control flow take
place as expected. Data flow protection concerns the correct
execution of memory write instructions while control flow
protection focuses on executing the right memory write
operations in the correct order.

2.1 Data-flow protection

Error Detection by Duplicated Instructions (EDDI Oh
et al. [27]) is one of the earliest work on the instruc-
tion duplication-based error detection area. EDDI parti-
tions available architectural registers and memory address
space into two halves and duplicates instructions during
the compilation. For each main instruction, EDDI issues a
shadow instruction with the same opcode as the original
ones but uses a different set of registers. Duplicated mem-
ory (write/read) instructions perform memory operations
redundantly on different memory locations. Error detection

takes place by checking the results of store and branch
instructions register operands immediately before their ex-
ecution. Figure 1(b) shows the EDDI transformation corre-
sponding to the original code shown in Figure 1(a)1. In the
Figure, the main instructions are shown in bold. EDDI error
checking instruction (Underlined instruction) compares the
results of computations (value of R4 and R4* registers)
before writing them to the memory. If any error affects the
execution of computational instructions (ADDs and MULs)
and leads to a discrepancy between store value redundant
registers (R4 and R4*) the error will be detected. However,
since there is only one instance of store address register (SP)
which is used in both redundant store instructions, the store
address register is a single point of failure.

Reis et al. [9] proposed SWIFT (SoftWare Implemented
Fault Tolerance), which is composed of several optimiza-
tions on EDDI transformation. The authors of SWIFT elim-
inate the need for memory partitioning by arguing that the
memory subsystem can be protected by ECC. As a result,
SWIFT transformation (shown in Figure 1(c)) only dupli-
cates arithmetic instructions and inserts checking operations
for both value and address register operands of memory
write instructions. To maintain an error-free and consistent
input replication on memory load operations, SWIFT checks
for errors in the address register operand of memory read in-
structions and copies the loaded value into the correspond-
ing redundant register immediately after the execution of
the load. Furthermore, many proposals also presume ECC-
protected memory and improve the performance overhead
of SWIFT by taking advantage of hardware-detected errors
and rare hardware events (Shoestring[11]) or selective repli-
cation ([12, 35]).

In our previous work nZDC [1], we investigated the
error detection capability provided by existing instruction
duplication error detection (without memory replication)
schemes. We observed that since such solutions do not
replicate memory write instructions, any error directly af-
fecting store operations remains undetected. In fact, since
prior solutions use almost half of the user-available registers
for redundant computations, they increase register allocator
pressure to generate more spill (load and store from/to the
stack) codes which leads to more vulnerable operations.
To address this issue, we proposed loading the written
value back from the memory and checking it against the
redundant computed value (Figure 1(d)).

2.2 Control-flow protection
There are two types of control flow errors: (1) unwanted
jump errors which cause unexpected jumps from an arbi-
trary location in the program’s memory space to another.
In this case the control-flow of the program changes in a
way that is not permitted in its control flow (CF) graph.
Examples of soft errors causing unwanted jumps are errors
on PC/nPC registers, errors on target address fields of
branch instructions, errors altering the opcode of a non-
branch instruction to a branch/jump, and errors on the
address field of a branch target address buffer structure. (2)

1. Note that to avoid confusion in the implementation of the EDDI
scheme, we use the exact sample code provided in [34] paper written
by the authors of the original EDDI paper.



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. , NO. , 2023 3

ADD R3, R1, R2  
MUL R4, R3, R5  
ST 0(SP), R4  

(a) Original Code

ADD R3, R1, R2  
ADD R3*, R1*, R2*  
MUL R4, R3, R5  
MUL R4*, R3*, R5*  
BNE R4, R4*, Err  
ST 0(SP), R4  
ST offset (SP), R4*

(b) EDDI

ADD R3, R1, R2  
ADD R3*, R1*, R2*  
MUL R4, R3, R5  
MUL R4*, R3*, R5*  
BNE R4, R4*, Err  
BNE SP, SP*, Err  
ST 0(SP), R4  

(c) SWIFT

ADD R3, R1, R2  
ADD R3*, R1*, R2*  
MUL R4, R3, R5  
MUL R4*, R3*, R5*  
ST 0(SP), R4  
LD  R4, 0(SP*)
BNE R4, R4*, Err  

(d) nZDC

Fig. 1. Data-flow transformation for EDDI, SWIFT, and nZDC schemes. Main instructions are bold, and registers of redundant instructions are noted
by an asterisk. EDDI only checks for errors in the value register of store operations (R4 and R4*) and duplicates memory subsystem. SWIFT
transformation does not duplicate the memory subsystem and checks for errors in both address (SP and SP*) and value registers (R4 and R4*) of
store instructions. nZDC transformation improves the coverage of SWIFT by checking for errors in the result of the store instruction.

Wrong direction control-flow errors which alter the direction
of a branch, i.e., from taken to not-taken or vice-versa.
These types of errors can be caused by errors affecting the
computation of compare instruction register operands, the
opcode of original compare and branch instructions, or even
program status flag registers.

A popular solution for unwanted jumps is to embed
some predefined signatures in the code and dynamically
check their value. Control-Flow Checking by Software
Signatures (CFCSS Oh et al. [36] is a well-known signature
monitoring approach to prevent unwanted jump errors.
The main idea of CFCSS is to assign unique values (called
signatures) for each basic block and insert the signature
updating instructions at the start of every basic block. This
update is based on the signatures of the current basic block
and the previous basic block. Errors that alter the control-
flow and skip the execution of these signature updating
operations will be detected if they cause a discrepancy be-
tween dynamically computed signatures and the statically
assigned ones. However, recent investigations demonstrate
that if applied without other error protection schemes, ex-
isting control flow detection techniques not only impose
significant performance degradation but in many cases also
increase the total program’s execution vulnerability against
soft errors ([37, 38, 39]).

SWIFT transformation adopts the concept of CFCSS
with duplicated data-flow schemes. Instead of verifying the
operands of comparison operations, it duplicates the com-
pare instruction with shadow registers. While the result of
the original compare instruction is used for the real branch
instruction, SWIFT transformation utilizes the result of
shadow compare instruction to update signature registers.
If the result of shadow compare instruction leads to a taken
branch, SWIFT updates the signature registers by the differ-
ence between the signatures assigned to the present basic
block and the target basic block. If the branch instruction is
not taken, SWIFT updates the signature registers regardless
of the result of the shadow compare instruction. However,
SWIFT transformation fails to detect wrong direction control
flow errors that alter the direction of the branch from taken
to not taken.

To protect the execution of control flow instructions
and detect wrong-direction errors, nZDC scheme duplicates
compare operations and double checks for the direction of

branch instructions (Figure 2(b)). To accomplish compare
operation duplication, nZDC transforms all cmp instructions
to subs instructions (marked as Z3 and Z6 in Figure 2(b)).
nZDC research targets ARM-v8 ISA which in subs operation
behaves as same as cmp but also preserves the subtrac-
tion result. nZDC control-flow transformation assigns two
specific registers named CDR and CCR for the result of
the redundant subs instructions. nZDC does not simply
compare CDR and CCR registers for error detection. Instead,
it executes a series of conditional invert and xor operations
for each of these control flow registers to detect errors af-
fecting the execution of a branch operation. Furthermore, to
detect the manifestation of unwanted jumps, nZDC control-
flow assigns static signatures to each program basic blocks
(#sigBB0, #sigBB1, and #sigBB2 in Figure 2(b)) and encodes
(by performing Xor operation) the value of these static sig-
natures in the computations of CDR and CCR registers. In a
fault-free run and a taken branch case, CCR register first sets
to the subtraction of compare instruction operands values
(Z6), then its value gets xor-ed by the destination basic
block register (Z7). And in the destination basic block, CCR
register gets xor-ed by the destination basic block signature
again. At this point, CCR value is equal to its value in the
source basic block before being xor-ed. Then it gets xnor-ed
by the CDR register that has the bitwise-inverted value of
CCR register. Therefore, CCR register should always hold
the value of zero before its next update. Otherwise, error
detection flag will be raised (Z5). Note in a fault-free run at
the beginning of each basic block the value of CDR register
is equal to the inverted value of CCR and the result of their
xnor (Z2) operation is always zero. The only difference in
the case of a not taken branch is that CDR register gets xor-
ed by the xor-ed value of the static signature of the taken
basic block and not taken basic block.

2.2.1 Drawbacks of nZDC control-flow transformation

1) Vulnerability. In nZDC control flow transformation dur-
ing the execution of each basic block body (shown by the
vertical red line in Figure 2(b)) the value of the CCR register
is Zero and the CDR register is dead. That implies any
unwanted jump error that changes the control flow from
inside the body of a basic block into the body of another
basic block remains undetected by nZDC control flow error
detection instruction (Z5 in Figure 2(b)) as far as the erro-



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. , NO. , 2023 4

cmp R1, R2

beq BB1

BB #2

BB #0

Not Taken

Taken

(body of BB#0)

BB #1

(a)

(Z1)  eor CCR, CCR, #sigBB0

(Z2)  eon CCR, CCR, CDR

(body of BB#0)

(Z3)  subs  CDR, R1, R2

(Z4)  cinv CDR, CDR, eq

(Z5)  cbnz CCR, 0, ERROR

(Z6)  subs CCR, R1*, R2*

(Z7)  eor CCR, CCR, #sigBB1

(Z8)  beq BB1

(Z9)   beq ERROR

(Z10) cinv CDR, CDR, ne

(Z11) eor CDR, CDR, (#sigBB1 

xor #sigBB2)

BB #0

(A1) eor CCR, CCR, #sigBB0

(A2) eon CCR, CCR, CDR

(body of BB#0)

(A3)  sub  CDR, R1, R2

(A4)  bne R1, R2, SKIP_INV0

(A5)  inv    CDR, CDR
SKIP_INV0:

(A6)   bne CCR, 0, ERROR

(A7)    sub  CCR, R1*, R2

(A8)    eor CCR, CCR, #sigBB1

(A9)    beq R1*, R2*, BB1

(A10)  beq R1*, R2*, ERROR

(A11)  beq R1*, R2*, SKIP_INV1

(A12)  inv    CDR, CDR
SKIP_INV1:

(A13)  eor CDR, CDR, (#sigBB1 

xor #sigBB2)

BB #0

U
n

d
ete

cte
d

 
Ju

m
p

(b) (c)

Fig. 2. (a) Original code consists of basic block computations and a
compare and branch instruction, (b) nZDC control-flow transformation
inserts 9 extra instructions to protect the execution of the original com-
pare and branch instructions on an ISA with conditional instructions,
and (c) nZDC control-flow protection requires 11 extra instructions on
architecture without conditional codes (e.g. RISC-V) and also introduces
new undetected errors.

neous jump doesn’t cause any mismatch between original
compare instruction main and shadow register operands.

2) Code Bloat. nZDC requires many extra instructions
to protect one branch instruction. For each original com-
pare/branch operation, nZDC control-flow transformation
inserts 10 extra instructions only for control-flow error de-
tection as shown in Figure 2(b).

3) Portability. nZDC requires conditional arithmetic or
bit manipulation instructions, such as Z3 and Z6 in Figure
2(b). Therefore, architectures (like RISC-V2) that do not
support conditional instructions cannot implement the orig-
inal nZDC without additional transformation. Figure 2(c)
shows nZDC control flow transformation on an architecture
that does not support conditional codes. To implement the
functionality of the conditional codes, two extra branches
(A4 and A11) are introduced.

These extra instructions to port nZDC into architec-
tures without conditional instructions exacerbate the vul-
nerability and code bloat problems of nZDC. First, extra
instructions naturally exacerbate the inefficiency of nZDC
control-flow protection since it requires extra instructions
to perform the roles of the unsupported instructions. In
addition, these instructions expose new vulnerabilities. For
instance, consider an error on the functional unit responsible
for effective address calculation of the first added branch
instruction (A4). Assume the error causes an unwanted
backward jump to the instruction A1 or A2 or anywhere
in the body of the BB0 (dashed arrow in Figure 2(c)). Such
error leads to extra computations and remains undetected.
However, if we consider the same error on the branch
instruction Z8 in Figure 2(b), nZDC detects the error since

2. RISC-V bitmanip extension [40] supported conditional move in-
structions before the ratification (0.9.4 version), but the version ratified
in November 2021 (1.0.0 version) does not include the conditional move
instructions.

the update on the CCR register has happened before the
erroneous branch and its value is not Zero.

3 PROPOSED SOLUTION: GZDC
To improve nZDC error protection and its portability, in
this work we introduce generic-nZDC (gZDC) which com-
bines the most effective general control-flow error detection
techniques with nZDC data-flow error detection strategy.
gZDC also uses a coarse-grained main-redundant instruc-
tion scheduling strategy and asymmetric control flow sig-
natures for hard-to-detect control flow errors.

3.1 Fault Model and Failure Mode
gZDC assumes that the microprocessor TLBs and memory
subsystem is protected by ECC and aims to protect the rest
of the microprocessor core components including micro-
processor pipeline registers, register file, program counter
register, functional units, and load-store unit.

In line with previous works [1, 9, 12, 27], the fault model
under the consideration is transient a single-bit flip or a
single event upset. As Sangchoolie et al. [41] demonstrated
in most cases single-bit flip error detection also covers many
multiple-bit errors. gZDC goal is to prevent an applica-
tion from generating seemingly correct but wrong output
or SDCs (Silent Data Corruption). Therefore, reducing the
number of hardware detected failures, i.e., segmentation
faults and exceptions, is not the goal of this work.

3.2 Wrong Direction Control Flow Errors
To detect wrong-direction control-flow errors, gZDC per-
forms a redundant check on the direction of each condi-
tional branch instruction. This is based on the concept of
an inverted branch scheme [18] where redundant direction-
checking branch instructions are added to the code. These
branch-checking instructions use redundant registers, and
their destination is always the error detection routine. The
only difference is that against [18] we use replicated registers
for branch-checking instructions for redundancy. Contin-
gent upon the direction of the original branch instruction,
the opcode of branch checking instructions (particularly
branch condition) can be either equal or opposite to the
original branch condition. Basically, there are two possible
paths after each conditional branch instruction: (1) Taken
path – when the branch condition is true and control of
execution (PC) should be updated, and (2) Fall through
path – when the branch condition is false and there will
be no change in program control flow. Based on the possible
outcomes of a conditional branch (taken or not taken) the
opcode and the position of branch checking instructions are
determined as follows:
Direction checking for taken branches: Placing branch-
checking instructions after the conditional branches are
taken is a waste because branch-checking instructions
would not even get a chance to be executed. A naive solu-
tion can be placing branch checking instructions right at the
beginning of the branch target basic block. Unfortunately,
such a solution will lead to a false alarm when the branch
target basic block is a merge basic block – it has more than
one predecessor. For instance, consider the program shown



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. , NO. , 2023 5

BNE   R1, R2, .BB3

.BB0

BNE   R1, R2, .BB-CH

.BB0

.BB2 .BB3

BNE R1*, R2*, .Err

BEQ R1*, R2*, .Err
Jump    .BB3
Jump    .Err

.BB2

.BB3

.BB-CH

Jump  .BB3

Jump  .BB3

Jump  .Err

.BB1

.BB1

(a) Original Control-Flow (b) gZDC wrong-direction control-flow error detection

1

3
2

4

4

Fig. 3. gZDC inserts a branch direction check basic block between all control flow edges from a taken conditional branch to a merge basic block.
The inserted BB is always composed of a branch direction-check instruction followed by two direct jump instructions.

in Figure 3(a). In the code, control can reach .BB3 (target
address of the conditional branch BNE R1, R2, .BB3)
from either .BB0 or .BB1. When control reaches the .BB3
from .BB0 the value of R1 register is “not equal(NE)” to
the value of R2. However, this condition may or may not
be true if the control lands to .BB3 from .BB1 block. To
address this issue, gZDC transformation first creates an
intermediate block (.BB-CH in Figure 3(b)), then verifies
the direction of the branch by executing branch checking
instruction (marked as 2⃝ in the Figure), and finally transfers
the control flow to the target basic block by inserting a
direct jump instruction (marked as 3⃝ in the Figure). The
condition of branch checking instruction in the taken branch
cases is against the original conditional branch instructions.
For example, in this example, the opcode of branch check-
ing instruction in the intermediate block .BB-CH is “BEQ
(Branch Equal)” which is opposite to the “BNE (Branch
Not Equal)” operation. The reason is that if the original
branch is taken, the condition is true (R1 is not equal to
R2 in our example) and the opposite condition should be
false. Therefore, the branch checking instruction is always
not taken and control will transfer to the destination block
by the next direct jump. However, if an error influences
the direction of the branch and alters its direction from not
taken to taken, the control flow will reach the intermediate
block wrongly. In those cases, the program control flow will
be directed to the error handling block by branch-checking
instruction because their condition is always opposite to the
original error-free branch – the branch-checking instruction
is taken because the original error-free branch was not taken.

Furthermore, to make sure that the actual jump takes
place (control redirects to the destination BB), we insert a
direct jump to the error detection block, after the original

direct jump instruction (marked as 4⃝ in Figure 3). This is
required for the cases where an error alters the opcode of
the jump instruction (marked as 3⃝ in Figure 3) to another
instruction and causes wrong-direction control flow error.

Direction checking for not taken branches: For the cases
where the original branch is not taken and control flow
falls through the basic block right after the branch, gZDC
inserts a branch checking instruction with the exact same
opcode (condition) immediately after the original branch3.
Instruction marked as 1⃝ in Figure 3 is an example of
branch checking instruction for not taken branches. The key
point here is that if the original branch is not taken, the
branch-checking instruction will be not taken as well and
the program execution continues as expected. However, if
an error alters the direction of the original branch from taken
to not taken, the branch-checking instruction will direct the
program’s control flow to the error handling block. Note
that all conditional branches in 3 can be changed to separate
compare and branch instructions (for the cases where the
underlying architecture only supports cmp/branch) with-
out any effect on the proposed solution.

3.3 Unexpected Jumps

We divide unwanted jumps (defined in section 2.2) into
intra-BB (unwanted jumps within a basic block) and inter-
BB (unwanted jumps from one basic block to another)
jumps. gZDC adopts different solutions to address each of
these cases:

3. Technically, in this case, a new basic block will be inserted between
the original basic block and the fall-through basic block.



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. , NO. , 2023 6

…
M
R
M
R
M
R
M
R
…

…
M
M
M
M
R
R
R
R
…

(a) (b)

Fig. 4. Impact of fine-grained vs coarse-gained instruction scheduling on
intra-BB undetected unwanted jumps. Main and Redundant instructions
are shown by M and R letters respectively and arrows represent unde-
tected intra-BB forward unwanted jumps. Part (a) shows a fine-grained
instruction scheduling that leaves many unwanted jumps undetected
because such jumps cause no mismatch between the state of redundant
registers. Part (b) shows a coarse-grained scheduling policy that has a
lesser chance of undetected unwanted jump errors.

Intra-BB unwanted jump detection: To detect the manifes-
tation of intra-BB unwanted jumps, we introduce a novel
static instruction scheduling scheme. Figure 4(a) illustrates
a widely-used scheduling policy (used by [9] and [1] tech-
niques) for scheduling main and redundant instructions.
Such instruction scheduling (i.e., interleaving main and
redundant operations one by one) is extremely vulnerable
to unexpected short jumps.

We define equal-point-of-execution as program execu-
tion points4 which at that point the value of all corre-
sponding main and redundant registers are equal. Any
unexpected jump from an equal-point-of-execution that skips
(in a forward or backward direction) over the exact same
number of main and redundant instructions will remain
undetected. For instance, all program execution points be-
fore the execution of main instructions (represented by M in
Figure 4(a)) are equal-point-of-execution5. Dashed arrows in
Figure 4 represent forward unwanted jumps that cannot be
detected by instruction duplication-based schemes because
they do not cause any mismatch in the state of registers.
Note that Figure 4 only shows forward undetected jumps,
undetected backward jumps can be easily pictured by re-
versing the direction of arrows. Figure 4(b) shows an alter-
native scheduling policy (called coarse-grained scheduling
of main and redundant instructions) which significantly re-
duces the chance of undetected jump errors. The main idea
behind coarse-grained scheduling is that if an unexpected
jump leads to a discrepancy between the state of main and
redundant registers, most probably will be detected later by
further data-flow error checking operations.

Furthermore, the presence of gZDC data-flow and
control-flow error-checking operations restricts the window
of the coarse-grained scheduling policy. For instance, Fig-

4. Program execution points are points between two consecutive
instructions in a program.

5. Note that if redundant instructions are inserted into the code
before the instruction scheduler phase in the compilation pipeline,
the scheduling of main and redundant instructions may be different.
Nevertheless, our definition of equal-point-of-execution is independent of
scheduling policy.

Store R1  [R2]
load  R1 [R2*]
BNE  R1, R1*, Err

(a)

Store R1  [R2]

load  R1 [R2*]
BNE  R1, R1*, Err

(b)

M
ai

n
 

C
o

m
p

u
ta

ti
o

n
s

R
ed

u
n

d
an

t 
C

o
m

p
u

ta
ti

o
n

s

M
ai

n
 

C
o

m
p

u
ta

ti
o

n
s

R
ed

u
n

d
an

t 
C

o
m

p
u

ta
ti

o
n

s

Fig. 5. Coarse-grained scheduling in the presence of store and checking
operations. Part (a) shows that adding store operation and the corre-
sponding checking operations at the end of the basic block introduces
new possibilities for undetected unwanted jumps. Dashed arrows rep-
resent these undetected jumps. Part (b) shows gZDC coarse-grained
main-redundant instruction scheduling policy.

ure 5(a) shows a naive implementation of the proposed
scheduling strategy for a basic block with a store instruc-
tion. Compared to Figure 4(b), the number of possible
undetected unwanted jumps actually increases from 1 to 5.
Now, jumps from the beginning of the basic block to the
right before store or right before error checking instruction
(BNE R1, R1*, Err) are also undetectable. In addition,
jumps from right before the store to the end of the basic
block or right before error-checking instructions also remain
undetected. To mitigate this problem, we consider store
instruction as a main and checking load operation and
error checking instruction (BNE R1, R1*, Err) as redun-
dant instructions. Figure 5(b) shows the gZDC instruction
scheduling policy which reduces the number of undetected
jumps from 5 to 2. Note that, we do not count a short
jump skipping over the last two instructions in Figure
5(b), because such unwanted jumps are benign and do not
change the functionality of the program. Note that if there
is a dependency between a store and prior load operations
inside a basic block (they access the same memory location),
the redundant load should be inserted before the conflicting
store. Similar to the store case, placing wrong direction
control-flow checking operations at the end of basic blocks
(Figure 6(a)) also introduces new vulnerable cases for un-
wanted jump errors. Figure 6(b) demonstrates gZDC wrong
direction control-flow errors with coarse-grained scheduling
policy. As shown, gZDC transformation first schedules the
main stream of instructions followed by the conditional
branch instruction. Then it inserts the corresponding redun-
dant stream of instructions and direction-checking opera-
tions in both taken and fall-through paths.
Inter-BB unwanted jump detection: Coarse-grained
main/redundant instruction scheduling not only reduces
the chance of intra-BB unwanted jumps but also is effective
against inter-BB unwanted jump errors. The reason is the
drastic reduction in the number of equal-point-of-execution
(i.e., the program points that live main and redundant reg-
isters have the same values). Generally, all unwanted (intra-



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. , NO. , 2023 7

BEQ R1*, R2*, .Err
Jump   .BB1
Jump   .Err

BNE R1, R2, .BB-CH

.BB0

.BB-CH

.BB1

.BB2
Fall Through Path

(b)

BNE R1*, R2*, .Err

M
ai

n
 

C
o

m
p

u
ta

ti
o

n
s

R
ed

u
n

d
an

t 
C

o
m

p
u

ta
ti

o
n

s

R
ed

u
n

d
an

t 
C

o
m

p
u

ta
ti

o
n

s

BEQ R1*, R2*, .Err
Jump   .BB1
Jump   .Err

.BB0

.BB-CH

.BB1

.BB2
Fall Through Path

(a)

BNE R1*, R2*, .Err

M
ai

n
 

C
o

m
p

u
ta

ti
o

n
s

R
ed

u
n

d
an

t 
C

o
m

p
u

ta
ti

o
n

s

BNE R1, R2, .BB-CH

Fig. 6. Coarse-grained scheduling in the presence of conditional branch
operations. (a) Naive scheduling by inserting the conditional branch at
the end of the basic block. (b) gZDC wrong direction control flow and
coarse-grained instruction scheduling.

/inter- basic block) jumps from program point S to E remain
undetected if both S and E are equal-point-of-executions in
instruction-replication schemes. That is because such un-
wanted jumps cause no discrepancy in the state of main
and redundant registers and therefore there is no chance
to be detected by error-checking instructions. The coarse-
grained scheduling policy reduces the chance of undetected
unwanted errors by simply reducing the number of equal-
point-of-execution in instruction-duplication schemes.

To further reduce the possibility of undetected jumps,
similar to existing signature-based control-flow checking
schemes [42, 43] gZDC encodes static control-flow footprints
(or signatures) into the program. And it checks their results
before and after the system calls for error detection. gZDC
transformation designates two specific general-purpose reg-
isters, called MICR (Main Instruction Check Register) and
RICR (Redundant Instruction Check Register) for control-
flow signature updating and checking. These two registers
get updated during the execution of the program and their
values are checked against each other for error detection
purposes before and after system calls. Defining these two
redundant registers imposes another condition to program
equal-point-of-executions. Now, for a point of execution to
satisfy the condition of equal-point-of-executions apart from
equal value for all live main and redundant registers, MICR
and RICR registers should also have the exact same values.
The key point in gZDC unwanted jump detection strategy is
asymmetrical updates for MICR and RICR registers which
try to keep the values of MICR and RICR registers different
as far as it is possible and therefore removes the equal-point-
of-executions.

Listing 1 shows gZDC asymmetric control flow registers
updating algorithm6. Algorithm 1 consists of three phases:
1) updating MICR, 2) updating RICR, and 3) eliminating
symmetric updates. First, the compiler assigns a unique
number called basic block signature to each program’s basic

6. The redundant signature registers only carry the same value before
system calls or at the end of the function and error detection operations
also will be inserted both before/after system calls and at the end of
functions.

Algorithm 1 gZDC asymmetric CF signature updating
Input: gZDC coarse-grained scheduled program
Output: gZDC coarse-grained scheduled program with un-

wanted jump error detection
Initialization : MICR = RICR = 0;

1: Assign unique number Sigi to each main-instruction-
included BBi in Input
/*First Phase: Updating MICR*/
/*Top-down control flow traversal*/

2: for each BBi in Input do
3: if (BBi is a main-instruction-included BB) then
4: lmInst = last main instruction in BBi

5: Create Instruction Inst: MICR = MICR ⊕ Sigi
6: Insert Inst after lmInst
7: end if
8: end for

/*Second Phase: Updating RICR*/
/*Top-down control flow traversal*/

9: for each BBi in Input do
10: if (BBi is a predecessor of a join BB) then
11: aggrSig = aggregated xor of BBi signature with its

all consecutive predecessors to the first join BB
12: frInst = first redundant instruction in BBi

13: Create Instruction Inst: RICR = RICR ⊕ aggrSig
14: insert operation Inst before frInst
15: end if
16: end for

/*Third Phase: eliminating symmetric updates*/
/* bottom-up control flow traversal*/

17: for each BBi in Input do
18: if (BBi includes MICR and RICR instructions)

then
19: immMICR = immediate value of MICR updating

instruction in BBi

20: immRICR = immediate value of RICR updating
instruction in BBi

21: if immMICR == immRICR then
22: randomNum = a random number
23: immRICR = immRICR ⊕ randomNum
24: for each preBBi of BBi do
25: if preBBi includes a RICR updating instruc-

tion then
26: immRICR = immediate value of RICR up-

dating instruction in preBBi

27: immRICR = immRICR ⊕ randomNum
28: else
29: frInst = first redundant instruction in

preBBi

30: Create Instruction Inst: RICR = RICR ⊕
randomNum

31: insert Inst before frInst
32: end if
33: end for
34: end if
35: end if
36: end for



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. , NO. , 2023 8

block that has at least one main instruction. Note that main
instructions are arithmetic, logical or memory operations
that use only main (not shadow) registers as their operands.
Then it inserts instructions to update the value of the MICR
register by xoring the value of the MICR register with the
basic block signature right after the last main instruction in
the basic blocks (lines 4-6). By the end of this step, each basic
block that includes at least one main instruction includes
one MICR-updating operation. In the second phase (lines
9-16), RICR-updating operations will be inserted only into
BBs that are predecessors of join BBs7. These lazy updates on
the RICR register lead to asymmetric (updates with differ-
ent immediate values) on MICR and RICR registers which
minimizes the number of equal-point-of-executions. To insert
a RICR-updating instruction into a basic block, we first
calculate the correct immediate value of xor operation which
is an aggregated xor between all basic block signatures in a
backward path from the current BB to the first join BB (line
11).

Figure 7 shows gZDC asymmetric control-flow signa-
ture updating algorithm for a simple case. As Figure 7(a)
illustrates both BB0 and BB1 are join BBs. Applying gZDC
wrong direction control flow error detection transformation
(Figure 7(b)) increases the number of program BBs by three
(BB0_1, BB0_2, and BB0_CH are added by gZDC trans-
formation). This transformed control flow graph includes
two basic blocks with main instruction (BB0 and BB0_1)
and two BBs with join successor ((BB0_2 and BB0_CH)).
According to phase one of the Algorithm 1, MICR-updating
instructions are inserted into BB0 and BB0_1 right after
the last main instruction. These instructions are shown as
MICR ⊕ sig_BB0 and MICR ⊕ sig_BB0_1 in the Figure.
Based on the second phase of the algorithm, RICR-updating
operations are inserted into BB0_2 and BB0_CH. To com-
pute the offset of xor operation for BB0_2, we should
traverse the control-flow graph backward to the last join
BB (The dashed arrow in the Figure shows this path). Such
a path consists of BB0_2, BB0_1, and BB0. However, since
BB0_2 does not include any main instruction, it does not
have a signature and the aggregated signature is calculated
by xoring the signature of BB0_1 (Sig_BB0_1) and sig-
nature of BB0 (Sig_BB0). The last instruction in BB0_2
shows the inserted RICR-updating instruction. Similar to the
BB0_2, a RICR-updating instruction is also inserted in the
BB0_CH.

The last phase of Algorithm 1 (lines 17 to 36) deals
with the problem of symmetric updates on both MICR
and RICR registers. Symmetric updates lead to new equal-
point-of-executions which alleviates the chance of undetected
jumps. For instance, unwanted jumps from the beginning
to the end of a BB which consists of main instructions
followed by symmetric updates on MICR and RICR regis-
ters and redundant instructions remain undetected because
such jumps do not cause any mismatch in the state of
the pair main/redundant registers. To detect symmetric
update cases, gZDC transformation goes over all program
basic blocks starting from the end of the program and first
checks if a basic block contains both MICR-updating and
RICR-updating instructions (line 18). If yes, it extracts the

7. Basic blocks with more than one predecessor are join basic blocks.

.BB0

M
ai

n

BNQ R1*, R2*, .Err
RICR Ꚛ = sig_BB0 Ꚛ sig_BB0_1 
Jump   .BB0
Jump   .Err

.BB0_CH

R
ed

u
n

d
an

t

BEQ R1*, R2*, .Err
RICR Ꚛ = sig_BB0 Ꚛ sig_BB0_1 

R
ed

u
n

d
an

t

Load R1  [R3*] 
BNQ R1*, R1*, .Err

R
ed

u
n

d
an

t

Store R1 [R3] 

.BB0

M
ai

n

BEQ R1, R2, . BB0_CH

BEQ R1, R2, .BB0

MICR Ꚛ= sig_BB0

MICR Ꚛ = sig_BB0_1

.BB0_1

.BB0_2

(a) Original Code (b) Generic-nZDC transformation with unwanted jump detection 

.BB1

.BB1

Fig. 7. Complete gZDC data-flow and control-flow transformations for a
simple loop. (a) shows control-flow for a simple loop, and (b) shows cor-
responding gZDC code with static signature updating operations. MICR-
updating instructions are inserted into the main-instruction-included-BB
and RICR-updating instructions are inserted into successor BBs of a join
BBs. The dashed arrow shows the backward trace path to compute the
aggregated signature required for RICR-updating instruction in BB0 2.

immediate field of signature updating instructions to see
if those values are the same (lines 18-21). If yes, then it
generates a random number and updates the immediate
field of RICR-updating instruction (lines 2-23). This makes
signature updating instructions asymmetric. To maintain
consistency, signature modification for predecessor BBs of
the current BB is required (lines 24 to 33). For that purpose,
the generated random number should be xor-ed with the
RICR-updating instruction in the predecessor blocks. If the
predecessor block does not include a RICR-updating in-
struction, the algorithm creates one and inserts it into the
basic block before its first redundant instruction (lines 29
and 31).

4 EXPERIMENTAL METHODOLOGY

In this section, we describe our experimental environment
and evaluation strategy to measure the error coverage and
performance overhead of the SWIFT, nZDC, and gZDC
transformations. Note that for nZDC control-flow transfor-
mation we use an equivalent implementation (similar to
Figure 2(c)).

4.1 Microprocessor and Fault injection Environment

We used the single-issue 5-stage pipeline Mor1kx cappuc-
cino microprocessor (the last version of OpenRISC1000
processor family) which is capable of running the Linux
operating system [44]. The microprocessor configuration is
shown in table 1. We simulated the synthesizable HDL
Verilog codes of Mor1kx microprocessor by Icarus Verilog
simulator [45].



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. , NO. , 2023 9

TABLE 1
Mor1kx microprocessor configuration

Parameter Value
ISA OpenRISC

CPU model In-order Single-issue Mor1kx
Pipeline 5 stage (cappuccino)

# of General Purpose Registers 32
Branch prediction BTFN

L1 D/I cache 8KB(2 way)/8KB(2 way)
Cache line size 32 bytes

D/I Cache Latency Miss(20 cycle)/Hit(1 cycle)
RAM size 32 MB

Instr. 
Cache

Data Cache

LSU

Branch predictor

Decode 
execute

Execute CTRL

Register 
File

W
B

Protected by ECC

Unprotected

P
C

M
u
x

Not Vulnerable

Dec
oder

Func. 
Unit

Fetch/Decode Unit

Fetch

Fig. 8. Mor1kx architecture. Caches and Branch predictor are excluded
from fault injection analysis.

Figure 8 illustrates the high-level block diagram of the
mor1kx microprocessor. The microprocessor core compo-
nents include instruction and memory caches, a simple
branch predictor, a register file, a processor data path,
and a load-store unit. Note that for simplicity, forwarding
paths from ALU to Decode/Execute and from WriteBack
to Decode/Execute stages are not shown in the Figure. In
line with previous works [1, 9, 11, 12, 13, 46], we assume
that instruction/Data caches are ECC-protected and are ex-
cluded from our fault injection sites (these components are
highlighted as protected by ECC in the Figure). We also ex-
clude branch predictor because as pinpointed by Mukherjee
et al. [47], transient errors on such performance-enhancing
structures do not cause lead to a failure. We injected single
bit-flip faults on the rest of the microprocessor hardware
components which are Fetch/Decode, Decode/Execute, Ex-
ecute Control, Register File, ALU, LSU, and WriteBack. Table
2 summarizes the number of fault sites and the injected fault
model in fault injection target components.

4.2 Compilation and Binary Generation

We utilize clang and LLVM-or1k [48] compiler infrastruc-
tures and compile 8 programs from the Mibench [49] test
suite and a 10x10 matrix multiplication for mor1kx micro-
processor with -O3 optimization level. Note that we compile
the whole application as appeared in the Mibench test
suite and did not reduce programs to micro-benchmarks.
We choose to implement error detection transformations

TABLE 2
Fault Injection Features

Component Fault Model # of fault sites
Register File Single Event Upseta 1024

Fetch/Decode Unit Single Event Upset 200
Decode/Execute Unit Single Event Upset 216
Execute/Control Unit Single Event Upset 183

Write/Back Unit Single Event Upset 32
ALU Single-event transientb 36
LSU Single-event transient 101

a Errors are injected on flip-flops.
b Errors are injected on combinational circuits.

as late back-end passes (right before assembly code emis-
sion) in the LLVM-or1k compiler. The reason is to take
advantage of all standard compiler optimizations like dead
code elimination and common-subexpression elimination
and to prevent optimizations from removing redundant and
error-checking codes. We only apply protection schemes to
user-level functions and exclude standard library functions
from all evaluations including performance overhead and
error coverage estimation. However, to expand the domain
of evaluation for the benchmarks which spend most of
their execution time in the library calls (e.g., qsort program
heavily uses library provided qsort function), we manually
copy the source code of the dominant library function call to
the program source code from open-source GNU C (glibc)
library and apply protection to them. We generate four
executable versions for each benchmark:
Original (ORG) version is the unprotected version of the
program without applying any software-level protection
scheme.
SWIFT version is protected by SWIFT data and control flow
protection transformations. Note that we include SWIFT
signature-based control-flow error detection in this version.
nZDC version is protected by nZDC data-flow transfor-
mation (shown in Figure 1(d)) and functionally-equivalent
control-flow error detection (shown in Figure 2(c) ).8

gZDC-WithoutJumpDet version is protected by nZDC
data-flow transformation (shown in Figure 1(d)) and generic
wrong direction control-flow error detection (explained in
Subsection 3.2).
gZDC version is gZDC-WithoutJumpDet plus coarse-
grained main-redundant instruction scheduling policy
and asymmetric execution control-flow footprints (Algo-
rithm 1). We develop and evaluate gZDC and gZDC-
WithoutJumpDet separately to show the effectiveness of the
coarse-gain scheduling and asymmetric control-flow signa-
ture techniques on error detection and their implications on
performance overhead.

4.3 Fault Injection Process and Output Classification

For each fault injection experiment, we randomly select a
fault injection site, b, and a fault injection time, t among
all 1792 fault injection sites and all cycles that a program
executes user-level functions. Then we start the simulation

8. Although OpenRISC ISA supports cmov (conditional move) in-
struction, we did not use cmov operations in our implementation since
our goal here is to evaluate the effectiveness of SWIFT and nZDC on
embedded architectures that do not support conditional codes like basic
RISC-V or Xtensa ISA.



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. , NO. , 2023 10

7301
(7.65%)

1092
(1.14%)

395
(0.41%)

338
(0.35%)

59
(0.06%)

ORG SWIFT nZDC gZDC-WithoutJumpDet gZDC

10000

1000

10

1

100

Sc
al
ed

-S
D
C

Fig. 9. gZDC transformation reduces the number of scaled-SDCs from
7,301 to 59 compared to the original code, more than a hundredfold
improvement.

normally and once the execution reaches cycle t, we invert
the logical value of b (by XORing it with ’1’) for one cycle.
We let the execution continues till execution terminates
permanently or the execution time exceeds from allowable
simulation time which is 2 times more than the fault-free run
of the program. We classify the result of each fault injection
trial into one of the following categories:
Masked: Fault injection simulation terminates normally and
generates the exact same output as a fault-free run.
SW Detected: Cases where the protection scheme detects
the manifestation of error and raises the error detection flag.
OS/HW Detected: Fault injection simulation runs that ter-
minate permanently by generating an exception (i.e. seg-
mentation faults or unknown instruction exception) or cause
a time-out error.
Silent Data Corruption (SDCs): Cases where execution
terminates normally, but the results are different from the
fault-free execution.

For each version of a program, we conducted 10,600 ran-
dom fault injection experiments on hardware components
listed in table 2, which statistically provides around a 2.5%
error margin for a 99% confidence level [50]. The number
of injected errors in each hardware component depends on
the number of flip-flops on that component. For instance,
since the register file includes around 57% of targeted fault
sites (1024 of 1792), around 57% (around 6,000) of all injected
errors also were injected in the register file. Since we have
9 benchmarks, we injected 95,400 (10,600 * 9) faults for
each version of the programs. Overall, for all versions of
programs, we injected 477,000 (5 * 95400) fault injection
experiments.

Since all error detection schemes including SWIFT and
gZDC transformations presume some type of backward re-
covery (i.e. restarting or checkpoint/rollback [51]) as a post
error detection handling strategy, errors in the Exceptions
and Hangs category can be considered harmless. The
only difference between Exceptions and Hangs and
Detected errors is that the former is identified by op-
erating system or hardware protection schemes and later
is recognized by software-level error protection schemes.
Nevertheless, in both cases, the recovery routine should
be invoked to remove the manifestation of error from the
system. Similar to many prior research [9, 11, 12, 14], we

consider SDC-induced faults as failed cases because such
errors remain unnoticed.

4.4 Number of scaled SDCs as Comparison Metric
To fairly quantify and compare the error detection capa-
bility of SWIFT, nZDC, gZDC-WithoutJumpDet, and gZDC
techniques, we use the number of scaled SDCs (or scaled-
SDC for short). This metric was introduced in [52] and
is calculated based on an overhead-dependent correction
factor. This metric has been used in several recent works
[1, 26, 53, 54] and captures the negative impact of runtime
overhead (α) of protection schemes on execution reliability.
Scaled-SDC is estimated as below:

scaled− SDC = #ofSDCs× α (1)

Since there is no runtime overhead for the original ver-
sion of programs the number of scaled-SDCs is in fact equal
to the number of SDCs. As pinpointed by [52] considering
the number of SDCs (or percentage of SDCs) significantly
overestimates the error coverage capability of the protection
schemes and leads to the wrong conclusion.

4.5 Error Coverage Results and Analysis
Processor-wide error coverage: Figure 9 shows the number
of scaled SDCs (calculated based on equation 1) for different
benchmarks extracted from our microprocessor-wide fault
injection experiments. In the Figure, X-axis represents differ-
ent benchmarks and Y-axis represents the number of scaled-
SDCs on a logarithmic scale. The rightmost set of bars (de-
noted as total) represents the aggregated number of scaled-
SDCs for each version of programs across all benchmarks.
This aggregated sum can be seen as a large application that
consists of all the benchmarks. As shown in Figure, from
95,400 fault injection experiments conducted on the original
version of the programs around 7.65% of them result in
SDCs. SWIFT transformation reduces the number of scaled-
SDC to 1.14%. nZDC transformation reduces the number
of SDCs by around 95% compared to SWIFT transforma-
tion. The number of scaled-SDCs in gZDC-WithoutJumpDet
scheme is very close to nZDC. Finally, gZDC improves
the scaled-SDC rate to only around 0.06%, which is less
than 1/6 of nZDC. These processor-wide results show the
effectiveness of coarse-grained main-redundant instruction
scheduling policy and asymmetric execution control-flow
footprints (Algorithm 1) in the reduction of the number of
SDCs.
Component-wise error coverage: Figure 10 shows the ag-
gregated number of scaled-SDCs per component for differ-
ent versions of programs across all benchmarks. We start
by looking at the register file since around 60% (4411 of
7301) of all SDCs in original programs (Figure 10(a)) were
caused by faults injected on the register file. We can see that
SWIFT transformation is effective in protecting the register
file and it reduces the scaled-SDCs to only 474 cases –
almost 90% reduction of scaled-SDCs for the register file.
Further examination (recreating the SDC cases and tracing
the trajectory of inserted faults to the final output) shows
that almost in all of the SDC cases of SWIFT-protected
programs injected fault alters the value of a dead register



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. , NO. , 2023 11

Fig. 10. Component-wise scaled SDC analysis. While instruction duplication schemes can effectively improve the register file vulnerability, errors
affecting the fetch/decode stage of the pipeline remain the main source of SDCs.

40%

50%

60%

70%

80%

90%

100%

SHA MM Dijkstra Bitcount CRC Stringsearch Qsort ADPCMC

Fa
u

lt
 D

is
tr

ib
u

ti
o

n
 

Masked OS/HW Detect SW Detect Scaled-SDC

Fig. 11. Error Distribution.

operand9 of memory instructions immediately before actual
use (read) of register by the instruction. We have realized
that in some cases error happens even before checking
instruction, but since the check instruction gets its value
from pipeline forwarding passes (not from the register file)
the error remains undetected. Furthermore, since SWIFT
transformation cannot detect unwanted taken to not taken
branch direction changes, any corruptions of the register file
that alter the branch direction from taken to not taken can
result in SDCs without being detected when the corrupted
registers are overwritten after the branch instruction.

Consequently, although SWIFT reduces almost 90%
scaled-SDCs compared to the unprotected version on the
register file, the register file is still the biggest vulnera-
ble hardware component for SWIFT-protected schemes as
shown in Figure 10(b). On the other hand, All nZDC-based
transformations (Figure 10(c), (d), and (e)) considerably
reduce the register file scaled-SDCs rate. That is because
they detect errors by checking registers after the execution
of critical instructions (i.e., memory and control-flow opera-
tions) rather than before their execution. However, there are
still a few SDC cases for nZDC-based transformations and
our tracking reveals that in all SDCs scenarios errors hit the
address register of silent stores.

9. A register operand is dead if the next access to that register is a
write operation.

As Figure 10 reveals bits in the fetch/decode stage of the
pipeline are the most challenging parts of hardware to pro-
tect against errors by software-level redundancy schemes
as faults injected on them cause the majority of failed
cases almost in all protected versions of the programs.
While the number of scaled-SDC due to error injection
on fetch/decode stage flip-flops for the original version
of programs is around 861, SWIFT, nZDC, and gZDC-
WithoutJumpDet transformations can only improve such
failures by slightly more than 65%. The main reason is that
soft errors affecting several components in the fetch/decode
stage of the pipeline frequently induce unwanted jumps.
Examples of these components are the fetch/decode stage
including PC (32 fault injection site), next PC (32 fault
injection site) and instruction address bus register (32 fault
sites), instruction address bus register (32 fault sites), and
decoded instruction (32 fault injection sites). However,
gZDC transformation can significantly mitigate the SDC rate
of the fetch/decode stage by more than 94%. This shows
that unwanted jump detection transformations proposed in
section 3.3 are really effective.

Bits in the Decode/Execute stage of the pipeline show
similar behavior to the fetch/decode stage in terms of the
effectiveness of the protection scheme. We can see, while
around 551 SDCs were caused due to fault injection on
Decode/Execute bits in the original version of programs,



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. , NO. , 2023 12

SWIFT transformation can only reduce the number of
scaled-SDCs to 106 (around 75% improvement). On the
other hand, nZDC-based schemes are much more effec-
tive against errors in the Decode/Execute stage of the
pipeline. The reason for this is because as demonstrated
in Figure 1 the SWIFT transformation leaves the execution
of memory write operations unprotected while they are
in microprocessor pipeline stages. Note that while nZDC
and gZDC-WithoutJumpDet transformations are more ef-
fective than SWIFT, they cannot completely remove the
SDC rate for Decode/Execute stage component. We inves-
tigated some of the failed cases and realized that errors in
some registers in these components (i.e. 32 bit immediate
address register) can cause unwanted jumps while being
used by branch/jump operations. As Figure 10 shows the
gZDC transformation reduces the decode/execute stage
SDCs rate by 65% and 85% compared to nZDC and gZDC-
WithoutJumpDet transformations, respectively. For the De-
code/Execute stage of the pipeline, nZDC is more effec-
tive than gZDC-WithoutJumpDet transformation because it
is equipped with an unwanted jumps detection solution
while gZDC-WithoutJumpDet does not have any support
for unwanted jump error detection. Execute/Ctrl errors also
follow the same trend as Decode/Execute stage.

The Writeback stage of the pipeline is responsible to
select the source of register file updates (functional unit in
cases of arithmetic instructions or memory in case of load
operations). Many of the faults affecting this unit (around
14%) cause SDC in the original version of programs. Al-
though sensitive to errors, since the area of the writeback
stage is small the chance of faults hitting its circuitry is
low, and therefore its contribution to processor-wide vul-
nerability is small. While nZDC-based transformations can
significantly reduce the writeback stage vulnerability (by
∼98%), SWIFT transformation improves its reliability by
∼80% (from 265 SDCs to 33).

All four versions of instruction duplication schemes can
effectively protect execution against single-event transient
faults impacting ALU calculation results. Only a few errors
cause SDC in SWIFT-protected programs and in those cases
error hits the computations of the memory address of load
operations. For the load store unit (LSU), SWIFT transforma-
tion reduces the number of scaled SDCs from 127 to 40. For
nZDC-based transformations, the scaled number of SDCs
for LSU is in order of ∼10 (around 1/5 compared to SWIFT)
which shows the effectiveness of the load-back checking
error detection strategy. Nevertheless, they are still SDC
cases and our investigation attributes them to silent stores
(store value is already in the store memory address). As we
highlighted in [14], errors affecting the address part of a
silent store cannot be detected by nZDC data flow checking
solution.
Impact of protection schemes on fault distribution: Figure
11 shows the impact of instruction duplication schemes on
error propagation and distribution. In the Figure, the x-
axis shows different versions of benchmarks and the y-axis
represents the percentage of masked, OS/HW Detected, SW
Detected, and scaled-SDCs. Across all benchmarks, both
SWIFT and nZDC-based transformations (nZDC, gZDC-
WithoutJumpDet, and gZDC) considerably reduce the num-
ber of masked errors (the lowest segment of each bar in

2.62

3.74
2.57

2.72

0

1

2

3

4

5

Ex
ec

u
ti

o
n

 T
im

e

ORG SWIFT nZDC gZDC-WithoutJumpDet gZDC

Fig. 12. Due to nZDC complex control-flow detection strategy, the execu-
tion time overhead of nZDC is considerably higher than other solutions.

Figure 11) by on average around 20%. Similarly, the number
of OS/HW detected faults also decrease on an average by
half (from 14% to 7% for SWIFT and to around 9% for
gZDC-WithoutJumpDet and gZDC). Since the main goal
of instruction duplication error protection schemes is to
prevent a program from producing wrong results, an ideal
scheme should only detect faults that are going to alter the
final program output. However, frequent error checks of
instruction duplication-based schemes introduce some false
alarms by detecting benign faults (faults that are going to
be masked) as well as overprotection by detecting errors
that are covered by OS/HW error protection schemes. To
estimate false alarms and overprotection of applied error
protection schemes, we can analyze the difference between
SW-detected errors of protected programs and the percent-
age of SDCs for the original version of programs. While only
on an average 8% of injected faults lead to SDCs in original
versions of programs, error checks in SWIFT, nZDC, gZDC-
WithoutJumpDet and gZDC raise the error detection flag
on average around 31.1%, 34%, 30.2%, and 34.17% of times,
respectively.

4.6 Performance Overhead

Figure 12 depicts the execution time overhead of SWIFT,
nZDC, gZDC-WithoutJumpDet, and gZDC transformations
which is on a geometric mean around 2.62x, 3.74x, 2.60x, and
2.75x, respectively. From this imposed overhead, around
2.4x is because of the data-flow error detection part which
includes instruction duplication and execution of frequent
error detection/checking instructions. The rest is because
of control-flow detection related computations. Note that
since we tested the benchmarks on a small microprocessor
(Mor1kx), this performance result might overestimate the
performance overhead of the protection schemes. This is be-
cause the performance overhead of each protection scheme
can be potentially improved by hardware optimization in
high-performance processors such as macro-op fusion [55].

To measure the performance overhead imposed by the
lack of conditional instruction for SWIFT and nZDC trans-
formations (Figure 2 (c)), we also implemented SWIFT and
nZDC with the conditional move instruction that is sup-
ported by OpenRISC. On a geometric mean, the runtime



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. , NO. , 2023 13

TABLE 3
Overhead of control-flow protection based on the number of extra

instructions

SWIFT nZDC
gZDC-

Without
JumpDet

gZDC

Basic block
without Branch 2 or 4* 7 0 1 ∼2

+ #ofStore

Basic block
with Branch

Taken 4 or 6** 11 3 4 ∼5
+ #ofStore

Not
taken 4 or 6** 14 2 3 ∼4

+ #ofStore
*Requires 4 instructions for the basic blocks with store
**Requires 6 instructions for the basic blocks with store

overhead decreases from 2.62x to 2.53x and from 3.74x to
3.61x for SWIFT and nZDC transformations, respectively.

nZDC transformation suffers from significantly higher
performance degradation due to its complex and lengthy
control flow error detection strategy. Table 3 shows the num-
ber of dynamic instructions required by the control-flow
protection part of the transformations described in Section
4.1. The first row shows the number of extra instructions
for the basic blocks with only one successor. The second
and third rows show the number of extra instructions in
cases where the last operation in the basic block is a branch.
nZDC control flow transformation requires considerably
more instructions for all three cases. For instance, while
SWIFT transformation requires only 2 extra instructions for
storeless basic blocks (4 extra instructions for basic blocks
with store instructions), nZDC transformation always adds
7 extra instructions to update and verify the value of CCR
and CDR registers. The burden of the extra instructions be-
comes worse for the branch protection in nZDC transforma-
tion. Due to the code bloat issue discussed in Section 2.2.1,
nZDC requires up to 14 dynamic instructions to protect
compare and branch instructions.10 Even with the support of
ISA-dependent instructions such as cinv and subs in Figure
2 (b), nZDC still requires up to 10 extra instructions.

The performance overhead of nZDC is similar to other
techniques for SHA and CRC benchmarks. This is because
the average size of basic blocks is relatively big and there-
fore the protection overhead is dominated by instruction
duplication and data-flow error checking operations. On the
other hand, nZDC shows significant performance overhead
for some benchmarks such as STRINGSEARCH and AD-
PCMC(D) because these programs have many small basic
blocks where the nZDC control-flow protection overhead
is larger than its data-flow protection. We observed that
for several basic blocks, the number of extra instructions
required for control-flow protection is larger than the num-
ber of original and shadow instructions. On the other
hand, gZDC-WithoutJumpDet transformation requires a
minimum number of extra instructions (up to 3) for control
flow protection. These extra instructions include shadow
compare instructions and additional branch instructions
that are illustrated in Figure 6 (b). Note that the ”Jump .Err”
instruction in Figure 6(b) will not be executed in the absence

10. Since some instructions such as A2 and A4 in Figure 2 (c) should
be implemented with multiple instructions in OpenRISC, the number
of extra instructions is higher than the one in Figure 2 (c).

3.44

4.29
2.94

3.26

0

1

2

3

4

5

6

Ex
ec

u
ti

o
n

 T
im

e 
O

ve
rh

ea
d

ORG SWIFT nZDC gZDC-WithoutJumpDet gZDC

Fig. 13. gZDC code size overhead is less than SWIFT and nZDC.

of errors.
In addition to the wrong direction control flow er-

ror detection of gZDC-WithoutJumpDet, gZDC transforma-
tion also applies coarse-grained master-shadow instruction
scheduling that does not increase the dynamic number
of instructions, and asymmetric control-flow footprints to
update MICR and RICR registers. While updating the RICR
register can be skipped with lazy updates, MICR should be
updated (1 + number of store operations in the basic block)
times for one original basic block since store operation
splits the basic block as shown in Figure 7. Overall, while
the runtime overhead of gZDC transformation is only 6%
more than gZDC-WithoutJumpDet, it achieves significantly
better error coverage which proves the effectiveness of the
coarse-grained master-shadow instruction scheduling and
asymmetric control-flow signatures.

Since SWIFT, nZDC, and gZDC do not divide the data
memory, they do not incur considerable data memory
overhead. On the other hand, all of the instruction repli-
cation schemes inevitably incur code size overhead due
to the additional instructions . Figure 13 shows the code
size overhead for SWIFT, nZDC, gZDC-WithoutJumpDet,
and gZDC. On a geometric mean, SWIFT, nZDC, gZDC-
WithoutJumpDet, and gZDC show 3.4x, 4.3x, 2.9x, and 3.3x
code size increases, respectively. Remarkably, gZDC shows
the smallest average code size among the tested protection
schemes.

5 LIMITATIONS OF GZDC
Multi-threaded workloads. gZDC transformation issues
redundant loads to the exact same memory location and
expects that they receive the same value in fault-free runs.
However, since that assumption does not hold for threaded
applications with shared data, then gZDC transformation
will cause a false alarm in such environments. Similarly,
gZDC uses the load-back checking strategy for store op-
erations assuming consecutive stores and loads from the
exact same memory location see the same value in fault-
free execution. However, that condition is not true in multi-
threaded environments.

Undetected errors. As shown in Figure 9 and Figure
10, gZDC shows 59 scaled-SDCs (22 raw SDCs). We ana-
lyzed the SDC failures in gZDC to identify the reason for
undetected failures. The undetectable soft errors in gZDC



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. , NO. , 2023 14

are 1) errors affecting the address computations of silent
stores[14]. That is because a silent store can wrongly update
an arbitrary location of memory but the issued load after
the store still seems the correct value. 2) If an error changes
the opcode of silent operations (operations that do not cause
any update in the state of architectural registers except PC)
to memory write, the error remains undetected. Note that
this is a limitation of all existing single-memory instruction
duplication schemes. 3) while the proposed unexpected
jumps are effective, still there can be cases where an un-
wanted jump error remains undetected i.e., jumps from one
equal-point-of-execution to another.

Permanent faults. Since gZDC executes both main and
redundant streams on one processor, the original instruc-
tion and the corresponding shadow instruction usually be
executed in the same execution paths. Therefore, if there is a
permanent fault, also known as a hard error, in the execution
path of the processor and both the original and shadow
instructions are executed with the faulty component, gZDC
cannot detect such a fault since the original and shadow
stream will be corrupted identically. To detect permanent
faults, gZDC relies on additional solutions such as BIST
(built-in self-test). Similarly, semi-permanent faults cannot
be detected by gZDC if the fault occurs before the execution
of original instructions and persists till the execution of the
corresponding shadow instructions.

External memory accesses and peripheral registers.
Since gZDC assumes that redundant loads will receive the
same values in fault-free execution, its data-flow protection
should not be adopted for external memory accesses or
peripheral registers that their state might be changed by
other sources. Solutions similar to SeRoHAL [35] can be
used to enable error detection on such part of the execution.

6 CONCLUSION

We present a generic and effective software-level instruction
duplication error detection scheme. The proposed scheme
comprises three main error detection optimizations: i) data-
flow error detection on the results of store instructions,
ii) wrong-direction control-flow error detection by insert-
ing redundant branch and compare operations, and iii)
coarse-grained main-redundant instruction scheduling and
asymmetric control-flow signatures for unexpected jump
error detection. We evaluated the effectiveness of the pro-
posed scheme by performing extensive microprocessor-
wide Verilog-level fault injection experiments. Results show
that the proposed scheme reduces the rate of silent data
corruption errors by around 2 orders of magnitude.

ACKNOWLEDGMENTS

This work was partially supported by funding from Na-
tional Science Foundation Grants No. CPS 1646235, CCF
1723476 - the NSF/Intel joint research center for Com-
puter Assisted Programming for Heterogeneous Architec-
tures (CAPA); by National Research Foundation of Korea
(NRF) grant funded by the Korea government(MSIT) (No.
RS-2022-00165225).

REFERENCES

[1] M. Didehban and A. Shrivastava, “nZDC: A com-
piler technique for near Zero Silent Data Corrup-
tion,” in Design Automation Conference (DAC), 2016 53nd
ACM/EDAC/IEEE. IEEE, 2016, pp. 1–6.

[2] G. Li, S. K. S. Hari, M. Sullivan, T. Tsai, K. Pattabira-
man, J. Emer, and S. W. Keckler, “Understanding error
propagation in deep learning neural network (DNN)
accelerators and applications,” in Proceedings of the
International Conference for High Performance Computing,
Networking, Storage and Analysis. ACM, 2017, p. 8.

[3] R. C. Baumann, “Soft errors in advanced semiconduc-
tor devices-part I: the three radiation sources,” IEEE
Transactions on device and materials reliability, vol. 1,
no. 1, pp. 17–22, 2001.

[4] E. Ibe, H. Taniguchi, Y. Yahagi, K.-i. Shimbo, and
T. Toba, “Impact of scaling on neutron-induced soft
error in SRAMs from a 250 nm to a 22 nm design rule,”
IEEE Transactions on Electron Devices, vol. 57, no. 7, pp.
1527–1538, 2010.

[5] A. Haggag, N. Sumikawa, and A. Shaukat, “Reliabil-
ity/yield trade-off in mitigating “no trouble found”
field returns,” in On-Line Testing Symposium (IOLTS),
2015 IEEE 21st International. IEEE, 2015, pp. 174–175.

[6] A. Haggag, N. Sumikawa, A. Shaukat, J. J. Lee,
N. Aghel, and C. Slayman, “Mitigating “No trouble
found” component returns,” in Reliability Physics Sym-
posium (IRPS), 2015 IEEE International. IEEE, 2015, pp.
3C–5.

[7] X. Iturbe, B. Venu, E. Ozer, and S. Das, “A Triple
Core Lock-Step (TCLS) ARM® Cortex®-R5 Processor
for Safety-Critical and Ultra-Reliable Applications,” in
Dependable Systems and Networks Workshop, 2016 46th
Annual IEEE/IFIP International Conference on. IEEE,
2016, pp. 246–249.

[8] W. Lyons, “Enabling increased safety with fault robust-
ness in microcontroller applications,” ARM Corporation,
2010.

[9] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and
D. I. August, “SWIFT: Software implemented fault
tolerance,” in Proceedings of the international symposium
on Code generation and optimization. IEEE Computer
Society, 2005, pp. 243–254.

[10] A. Shrivastava and M. Didehban, “Software ap-
proaches for in-time resilience,” in 2019 56th ACM/IEEE
Design Automation Conference (DAC). IEEE, 2019, pp.
1–4.

[11] S. Feng, S. Gupta, A. Ansari, and S. Mahlke,
“Shoestring: probabilistic soft error reliability on the
cheap,” in ACM SIGARCH Computer Architecture News,
vol. 38, no. 1. ACM, 2010, pp. 385–396.

[12] I. Laguna, M. Schulz, D. F. Richards, J. Calhoun, and
L. Olson, “IPAS: Intelligent protection against silent
output corruption in scientific applications,” in Code
Generation and Optimization (CGO), 2016 IEEE/ACM In-
ternational Symposium on. IEEE, 2016, pp. 227–238.

[13] M. Didehban, S. R. D. Lokam, and A. Shrivastava,
“InCheck: An in-application recovery scheme for soft
errors,” in Design Automation Conference (DAC), 2017
54th ACM/EDAC/IEEE. IEEE, 2017, pp. 1–6.



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. , NO. , 2023 15

[14] M. Didehban, A. Shrivastava, and S. R. D. Lokam,
“NEMESIS: A software approach for computing in
presence of soft errors,” in Computer-Aided Design
(ICCAD), 2017 IEEE/ACM International Conference on.
IEEE, 2017, pp. 297–304.

[15] B. James, H. Quinn, M. Wirthlin, and J. Goeders, “Ap-
plying compiler-automated software fault tolerance to
multiple processor platforms,” IEEE Transactions on Nu-
clear Science, 2019.

[16] M. Bohman, B. James, M. J. Wirthlin, H. Quinn, and
J. Goeders, “Microcontroller compiler-assisted software
fault tolerance,” IEEE Transactions on Nuclear Science,
vol. 66, no. 1, pp. 223–232, 2018.

[17] “The RISC-V Instruction Set Man-
ual.” https://content.riscv.org/wp-
content/uploads/2017/05/riscv-spec-v2.2.pdf,
[accessed May-2020].

[18] J. R. Azambuja, S. Pagliarini, M. Altieri, F. L. Kastens-
midt, M. Hubner, J. Becker, G. Foucard, and R. Velazco,
“A fault tolerant approach to detect transient faults
in microprocessors based on a non-intrusive reconfig-
urable hardware,” IEEE Transactions on Nuclear Science,
vol. 59, no. 4, pp. 1117–1124, 2012.

[19] A. Shye, J. Blomstedt, T. Moseley, V. J. Reddi, and D. A.
Connors, “PLR: A software approach to transient fault
tolerance for multicore architectures,” IEEE Transactions
on Dependable and Secure Computing, vol. 6, no. 2, pp.
135–148, 2009.

[20] B. Döbel, H. Härtig, and M. Engel, “Operating system
support for redundant multithreading,” in Proceedings
of the tenth ACM international conference on Embedded
software. ACM, 2012, pp. 83–92.

[21] Y. Zhang, S. Ghosh, J. Huang, J. W. Lee, S. A. Mahlke,
and D. I. August, “Runtime asynchronous fault toler-
ance via speculation,” in Proceedings of the Tenth Inter-
national Symposium on Code Generation and Optimization.
ACM, 2012, pp. 145–154.

[22] C. Wang, H.-s. Kim, Y. Wu, and V. Ying, “Compiler-
managed software-based redundant multi-threading
for transient fault detection,” in Proceedings of the Inter-
national Symposium on Code Generation and Optimization.
IEEE Computer Society, 2007, pp. 244–258.

[23] Y. Zhang, J. W. Lee, N. P. Johnson, and D. I. August,
“DAFT: decoupled acyclic fault tolerance,” International
Journal of Parallel Programming, vol. 40, no. 1, pp. 118–
140, 2012.

[24] K. Mitropoulou, V. Porpodas, and T. M. Jones,
“Comet: Communication-optimised multi-threaded
error-detection technique,” in 2016 International Confer-
ence on Compliers, Architectures, and Sythesis of Embedded
Systems (CASES). IEEE, 2016, pp. 1–10.

[25] H. So, M. Didehban, Y. Ko, A. Shrivastava, and K. Lee,
“EXPERT: Effective and flexible error protection by
redundant multithreading,” in Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2018.
IEEE, 2018, pp. 533–538.

[26] H. So, M. Didehban, A. Shrivastava, and K. Lee, “A
software-level redundant multithreading for soft/hard
error detection and recovery,” in 2019 Design, Automa-
tion & Test in Europe Conference & Exhibition (DATE).
IEEE, 2019, pp. 1559–1562.

[27] N. Oh, P. P. Shirvani, and E. J. McCluskey, “Error
detection by duplicated instructions in super-scalar
processors,” IEEE Transactions on Reliability, vol. 51,
no. 1, pp. 63–75, 2002.

[28] M. Grosso, M. S. Reorda, M. Portela-Garcia, M. Garcı́a-
Valderas, C. López-Ongil, and L. Entrena, “An on-line
fault detection technique based on embedded debug
features,” in 2010 IEEE 16th International On-Line Testing
Symposium. IEEE, 2010, pp. 167–172.

[29] J. R. Azambuja, Â. Lapolli, L. Rosa, and F. L. Kas-
tensmidt, “Detecting sees in microprocessors through
a non-intrusive hybrid technique,” IEEE Transactions on
Nuclear Science, vol. 58, no. 3, pp. 993–1000, 2011.

[30] J. R. Azambuja, G. Nazar, P. Rech, L. Carro, F. L.
Kastensmidt, T. Fairbanks, and H. Quinn, “Evaluat-
ing neutron induced see in sram-based fpga protected
by hardware-and software-based fault tolerant tech-
niques,” IEEE Transactions on Nuclear Science, vol. 60,
no. 6, pp. 4243–4250, 2013.

[31] L. Parra, A. Lindoso, M. Portela, L. Entrena,
F. Restrepo-Calle, S. Cuenca-Asensi, and A. Martı́nez-
Álvarez, “Efficient mitigation of data and control flow
errors in microprocessors,” IEEE Transactions on Nuclear
Science, vol. 61, no. 4, pp. 1590–1596, 2014.

[32] L. Parra, A. Lindoso, M. Portela-Garcia, L. Entrena,
B. Du, M. S. Reorda, and L. Sterpone, “A new hy-
brid nonintrusive error-detection technique using dual
control-flow monitoring,” IEEE Transactions on Nuclear
Science, vol. 61, no. 6, pp. 3236–3243, 2014.

[33] A. Lindoso, L. Entrena, M. Garcı́a-Valderas, and
L. Parra, “A hybrid fault-tolerant leon3 soft core proces-
sor implemented in low-end sram fpga,” IEEE Transac-
tions on Nuclear Science, vol. 64, no. 1, pp. 374–381, 2016.

[34] M. N. Lovellette, K. Wood, D. Wood, J. H. Beall, P. P.
Shirvani, N. Oh, and E. J. McCluskey, “Strategies for
fault-tolerant, space-based computing: Lessons learned
from the argos testbed,” in Aerospace Conference Proceed-
ings, 2002. IEEE, vol. 5. IEEE, 2002, pp. 5–5.

[35] P. R. Kleeberger, J. Rivera, D. Mueller-Gritschneder, and
U. Schlichtmann, “Serohal: generation of selectively
robust hardware abstraction layers for efficient protec-
tion of mixed-criticality systems,” in Proceedings of the
24th Asia and South Pacific Design Automation Conference,
2019, pp. 33–38.

[36] N. Oh, P. P. Shirvani, and E. J. McCluskey, “Control-
flow checking by software signatures,” IEEE transac-
tions on Reliability, vol. 51, no. 1, pp. 111–122, 2002.

[37] S. Schuster, P. Ulbrich, I. Stilkerich, C. Dietrich, and
W. SchröDer-Preikschat, “Demystifying Soft-Error Mit-
igation by Control-Flow Checking–A New Perspective
on its Effectiveness,” ACM Transactions on Embedded
Computing Systems (TECS), vol. 16, no. 5s, p. 180, 2017.

[38] A. Rhisheekesan, R. Jeyapaul, and A. Shrivastava,
“Control flow checking or not?(for soft errors),” ACM
Transactions on Embedded Computing Systems (TECS),
vol. 18, no. 1, pp. 1–25, 2019.

[39] A. Shrivastava, A. Rhisheekesan, R. Jeyapaul, and C.-
J. Wu, “Quantitative analysis of control flow checking
mechanisms for soft errors,” in Proceedings of the 51st
Annual Design Automation Conference. ACM, 2014, pp.
1–6.



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. , NO. , 2023 16

[40] “RISC-V Bit manipulation extension repository,”
https://github.com/riscv/riscv-bitmanip, [accessed 4-
Nov-2022].

[41] B. Sangchoolie, K. Pattabiraman, and J. Karlsson, “One
bit is (not) enough: An empirical study of the impact of
single and multiple bit-flip errors,” in 2017 47th Annual
IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN). IEEE, 2017, pp. 97–108.

[42] O. Goloubeva, M. Rebaudengo, M. S. Reorda, and
M. Violante, “Soft-error detection using control flow
assertions,” in Defect and Fault Tolerance in VLSI Systems,
2003. Proceedings. 18th IEEE International Symposium on.
IEEE, 2003, pp. 581–588.

[43] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti,
“Control-flow integrity,” in Proceedings of the 12th ACM
conference on Computer and communications security.
ACM, 2005, pp. 340–353.

[44] “mor1kx - an OpenRISC Processor IP Core.”
https://github.com/openrisc/mor1kx, [accessed
March-2018].

[45] S. Williams, “Icarus verilog,” On-line:
http://iverilog.icarus.com, 2006.

[46] Q. Liu, C. Jung, D. Lee, and D. Tiwari, “Compiler-
directed soft error detection and recovery to avoid due
and sdc via tail-dmr,” ACM Transactions on Embedded
Computing Systems (TECS), vol. 16, no. 2, pp. 1–26, 2016.

[47] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Rein-
hardt, and T. Austin, “A systematic methodology
to compute the architectural vulnerability factors
for a high-performance microprocessor,” in Microar-
chitecture, 2003. MICRO-36. Proceedings. 36th Annual
IEEE/ACM International Symposium on. IEEE, 2003, pp.
29–40.

[48] “llvm-or1k - Low Level Virtual Machine for
Or1k.” https://github.com/openrisc/llvm-or1k, [ac-
cessed September-2018].

[49] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin,
T. Mudge, and R. B. Brown, “Mibench: A free, com-
mercially representative embedded benchmark suite,”
in Workload Characterization, 2001. WWC-4. 2001 IEEE
International Workshop on. IEEE, 2001, pp. 3–14.

[50] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert,
“Statistical fault injection: Quantified error and con-
fidence,” in Proceedings of the Conference on Design,
Automation and Test in Europe. European Design and
Automation Association, 2009, pp. 502–506.

[51] Q. Liu, C. Jung, D. Lee, and D. Tiwari, “Compiler-
directed lightweight checkpointing for fine-grained
guaranteed soft error recovery,” in SC’16: Proceedings
of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis. IEEE, 2016,
pp. 228–239.

[52] H. Schirmeier, C. Borchert, and O. Spinczyk, “Avoiding
pitfalls in fault-injection based comparison of program
susceptibility to soft errors,” in Dependable Systems and
Networks (DSN), 2015 45th Annual IEEE/IFIP Interna-
tional Conference on. IEEE, 2015, pp. 319–330.

[53] E. Cheng, S. Mirkhani et al., “CLEAR: Cross-layer ex-
ploration for architecting resilience: Combining hard-
ware and software techniques to tolerate soft errors
in processor cores,” in Design Automation Conference

(DAC), 2016 53nd ACM/EDAC/IEEE. IEEE, 2016, pp.
1–6.

[54] M. Didehban and A. Shrivastava, “A compiler tech-
nique for processor-wide protection from soft errors
in multithreaded environments,” IEEE Transactions on
Reliability, vol. 67, no. 1, pp. 249–263, 2018.

[55] C. Celio, P. Dabbelt, D. A. Patterson, and K. Asanović,
“The renewed case for the reduced instruction set
computer: Avoiding isa bloat with macro-op fusion for
risc-v,” arXiv preprint arXiv:1607.02318, 2016.

Moslem Didehban received his MS degree in
computer architecture engineering from Amirk-
abir University of Technology, Tehran, in 2010.
He received his Ph.D.in Computer Systems from
Arizona State University, Tempe, in 2018. His
research interests include involving error re-
silience designs, computer architecture and mi-
croprocessor simulation, embedded software,
and compiler optimizations.

Hwisoo So is a PhD student in Dependable
Computing Lab at Yonsei University. He re-
ceived Bachelor’s degree in Computer science
from Yonsei University, and currently, he is in
integrated PhD Course at the same university.
His research interests include reliability issues
such as comprehensive vulnerability estimation
of computer architecture and hardware/software
based protection schemes against soft and hard
errors based on redundancy.

Prudhvi Gali is a masters student at Arizona
State University focusing more on Embedded
systems. Working as a graduate research assis-
tant at compiler and micro-architecture lab. Prior
joining to ASU worked as an embedded software
developer at NXP. Areas of interest: Reliability of
processors, Real time systems, Compilers.

Aviral Shrivastava is a full Professor in the
School of Computing Informatics and Decision
Systems Engineering at the Arizona State Uni-
versity, where he has established and heads the
Make Programming Simple Labs.

He received his Ph.D. and Masters in Informa-
tion and Computer Science from the University
of California, Irvine, and bachelors in Computer
Science and Engineering from Indian Institute of
Technology, Delhi. Prof. Shrivastava’s research
lies in the broad area of Software for Embedded

and Cyber-Physical Systems. He is currently serving as associate editor
for ACM Transactions Embedded Computing Systems (ACM TECS),
IEEE Transactions on MultiScale Computing (IEEE TMSC), IEEE Trans-
actions on Computer-Aided Design (IEEE TCAD), and Springer Inter-
national Journal on Parallel Processing (Springer IJPP), and Springer
Design Automation for Embedded Systems (Springer DAEM). He is
currently the program chair of CODES+ISSS 2017, one of the top
conferences in embedded systems.

Kyoungwoo Lee is an associate professor in
the department of computer science and engi-
neering at Yonsei University, Seoul, South Ko-
rea.He received B.S. and M.S. degrees in com-
puter science from Yonsei University in 1995 and
1997, respectively, and Ph.D. degree in informa-
tion and computer science at the University of
California at Irvine in 2008. His research is in the
area of embedded systems, with a specific focus
on cross-layer design and optimization for error-
aware and energy-efficient embedded systems.


