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Abstract—Aggressive transistor scaling down and near-
threshold computing have rendered modern microprocessor sus-
ceptible to soft errors. Software approaches that protect compu-
tations against soft errors are desirable because they offer flexible
protection and are suitable for mixed-critical systems. In particu-
lar, fine-grain instruction duplication based techniques are deemed
to be most effective; however, many of the existing instruction du-
plication techniques either suffer from many vulnerable intervals
or are not suitable for multithreaded environments. In this paper,
we present multithreded near zero silent data corruption (MZDC),
a software scheme which provides high-level processor-wide er-
ror coverage in multithreaded environments. MZDC duplicates all
programs’ instructions and uses diagnosis block after replicated
memory operations to overcome the inconsistency issue in a mul-
tithread environment. Statistical fault injection experiments on a
dual-core ARM cortex-A53 p architecturally simulated micropro-
cessor show that on average, MZDC can achieve more than 37 x
better fault coverage than the state-of-the-art.

Index Terms—Compiler transformation, multithreading, relia-
bility, soft errors, transient faults.

1. INTRODUCTION

APID technology scaling, high integration density, and
R near-threshold computing are viewed as the main drivers
of modern microprocessors power and performance improve-
ments. The irony is that these reasons that make all our techno-
logical dreams possible are the same reasons why modern micro-
processors are becoming increasingly prone to transient faults
[1]-[3]. Among many sources of transient faults in systems (e.g.,
electrical noise, external interference, and crosstalk), subatomic
particle strikes (low and high energy neutrons) on sensitive areas
of a transistor are considered as the major source of transient
faults or soft errors in electronic devices [4]. While high energy
neutrons (100 KeV-1 GeV from cosmic background) have been
considered as the main source of soft errors in the past, ITRS
2015 [5] predicts that soon even low-energy ground-level muon
particles will become the main source of soft errors. This results
in a multiplicative effect because of the presence of exponen-
tially more low-energy particles than those at higher energies
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[6]. At the current technology node, a soft error may occur in
a high-end server once every 170 h, but this is also expected to
increase exponentially with technology scaling [7], [8].

Most soft error protection solutions have been developed
at the hardware level. For instance, systems, such as IBM Z-
series servers [9], HP NonStop-systems [10], and HERMES
[11], execute instructions on redundant pipelines, and compare
the redundantly-computed for errors. However, the expensive
cost of such hardware techniques restricts their applicability to
cost-agnostic systems, such as aircrafts and space shuttles.

Software approaches have a distinct advantage in that they
can be applied to any existing processor, and their application
can be more prudent, i.e., they can be applied only to more
critical or vulnerable applications. More than a dozen software-
based in-application instruction replication approaches have
been proposed, including EDDI [12], SWIFT [13], nZDC [14],
SWIFT-R [15], [16], Shoestring [8], IPAS [17], DRIFT [18],
ESoftCheck [19], and [20]-[22]. The key idea in these meth-
ods is that soft errors can be detected by duplicating compu-
tational/logical instructions of programs with different sets of
registers and frequently comparing the values of these redun-
dant registers. Memory operations, compare, branch, and func-
tion call instructions are the typical soft error checking points
in the existing instruction-replication based techniques. Our
in-depth investigation of the existing fine-grained instruction-
duplication based schemes reveals that they either suffer from
many single points of failures (unprotected instructions) or are
not applicable to the multithreaded environment. For instance,
SWIFT [13], TPAS [17], and ESoftCheck [19] schemes can
detect the manifestation of errors only if the error permutes
the execution of a duplicated instructions. Nevertheless, about
20%—40% of program instructions including memory (read and
write) and control flow instructions (e.g., compare, branch, and
call instructions) are not replicated and therefore are suscepti-
ble to soft errors. Other schemes (i.e., EDDI [12], nZDC [14],
DRIFT [18], Casted [23], and Shoestring [8]) may face frequent
false alarms in multithreaded applications. Examples of that
are where correctly synchronized shared accesses, such as bar-
riers, flag-synchronization are implemented by nonlock-based
methods. In such cases, programmer allowed race conditions or
benign races [24] are deciphered as the manifestation of soft
error, and the program’s execution will be interrupted by the
soft error protected scheme.

In this paper, we explore the problem of memory instruc-
tion replication in multithreaded applications. Then we propose
MZDC or multithreaded nZDC, which checks the results of
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redundant memory read instructions right after their execution
and utilizes an off-critical-path diagnosis blocks to distinguish
between soft errors and intervening memory stores operations
from other threads. Furthermore, in the case of error, MZDC
provides information about error propagation scope which can
be used for recovery purposes, i.e., an error is local to the thread
or error has been propagated to the shared memory. Further-
more, we propose several optimizations to reduce the perfor-
mance overhead of MZDC technique without jeopardizing its
coverage.

We evaluated the effectiveness of MZDC scheme using fault
injection experiments. We have implemented SWIFT [13] and
MZDC in the LLVM compiler [25] for ARM v7-aISA. We com-
piled several applications from Splash-2 [26] and ParMiBench
benchmarks suite [27], and run them on gemS5 [28] full sys-
tem mode while simulating an ARM cortex-53 dual-core like
microprocessor. We inject thousands of faults in different mi-
croarchitectural components and find that when compared to the
state-of-the-art, MZDC reduces the effective failure rate (EFR)
by approximately 30x.

II. BACKGROUND

The general idea behind most error detection approaches is
that by executing two redundant versions of computations, the
presence of an error can be concluded from any discrepancy in
results. The redundant computations can take place at different
design layers —hardware [11], [29]-[32] only, software only [8],
[12]-[14], [18]-[20], [33], or hybrid methods [34], [35]. This
section provides an overview of the existing hardware error
detection schemes. Then we focus on the most well-known
software-level fault detection scheme.

A. Hardware Approaches

Traditional, hardware error detection techniques explore the
spatial redundancy and run two redundant executions on differ-
ent hardware components — different core or different execu-
tion path inside a core, and compare the redundantly computed
results. These techniques achieve a high degree of fault cov-
erage, but also introduce a considerable amount (more than
2x) of performance, power, and area overheads. Hardware
multithreading techniques, such as RMT [30], execute redun-
dant threads in a simultaneous multithreaded processor to pro-
tect computations against soft errors. In such techniques, two
exactly similar threads, named leading and trailing threads,
are executed on one or different core(s) of a multithreaded
processor, and error-detection is accomplished by checking
some redundantly-computed result (mainly store instruction’s
value and address). Although redundant multithreading based
techniques suffer from significantly less performance over-
head than traditional fully redundant lock-stepped processors
[36], they still require modifications in underlying hardware by
adding some hardware components, such as load value queue
and store value queue [30]. Researchers have also explored
chip-multiprocessors (CMP) to address the problem of soft er-
rors. Now, instead of running two redundant threads (such as in
SRT), redundant processes can execute on different cores of a
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CMP, thus providing better performance overhead [31]. Overall,
all these techniques demand moderate to significant hardware
modification, and are not suitable for mixed-critical systems
[37] because their protection is hard-wired to the hardware.

B. Software Approaches

In order to achieve a low-cost and flexible fault tolerance
mechanism, several software-level techniques have been pro-
posed. Among software-only fault tolerance techniques, low-
level instruction-duplication based schemes [8], [12], [13], [15],
[18]-[20] are the most popular ones. The main idea behind such
methods is that by partitioning programmer available registers
into two sets and replicating program instructions with different
registers, the manifestation of soft errors can be detected by
inserting checking instructions (CI) at some specific points of
execution. For example, EDDI [12] duplicates all program in-
structions expect compare and branch instructions and performs
checking operations before stores and conditional branches. Al-
though EDDI seems to be very effective, an error during the
execution of branch or compare instructions can corrupt the pro-
gram’s output. In addition, since EDDI duplicates the memory
subsystem, its performance overhead can be very high, espe-
cially for memory-intensive applications.

In an attempt to improve the performance and fault coverage
of EDDI, SWIFT [34] eliminates the need of memory dupli-
cation by assuming that the memory subsystem is protected
(by other means, such as ECC). In SWIFT transformation, all
computational/logical instructions are duplicated with different
registers and the CI are inserted before three type of instructions

1) memory read operations,

2) memory write operations, and

3) control flow instructions, i.e., compare, branch, and func-

tion calls.

Fig. 1(a) shows the SWIFT data flow transformation and the
corresponding original code. In the figure, shadow registers are
different from the master ones by a star (x1* is the shadow for
x1). In the snippet code presented in the figure, original “mov”
(inst. O1) and “add” (inst. O2) instructions are duplicated by
SWIFT transformation. This transformation is marked by DI
in the figure because we classify these type of instructions as
duplicatable instruction (DI). SWIFT transformation does not
duplicate the memory read instructions; however, it checks for
error in address register before the execution of such instruc-
tions and copies the loaded value into the corresponding shadow
register. The SWIFT memory read instruction transformation is
marked by read in the figure. For the “load” (inst. S5) in-
struction, the value of address register x3 is checked against
the redundant-computed value x3*, before the execution of
“load” instruction and the loaded value x1 is copied into the
corresponding shadow register x1* right after the “load” in-
struction. We named this extra “move” instructions (inst. S6) as
“copying-move” instruction. SWIFT transformation only ex-
ecutes one version of memory writes instructions; however,
the register operands of such instructions are checked before
their execution. The memory write instruction transformation is
marked as Write in the figure, and, as it shows, the “store” in-
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(s1) mov  x3, #Oxff (s1) cmp  x1, x1*5
(52) mov  x3*, #Oxff (s2’) b.ne error >>-<,.
(s3)cmp  x3, x3* (s3)cmp  x2, x2* 3
(s4) b.ne error (§Q (s4') b.ne error :
ea‘\ (s5) load x1, [x3, #40] (s5’) cmp  x1, x2
(O1) mov x3, #Oxff (s6) mov x1*, x1 .BBO: , ' .
(02) load x1, [x3, #40] ’ (01’) cmp x1, x2 (s6’) xor RTS, #sig-BBO, #sig-BB1
(03) add x3, x1, #4 (s7)add X3, x1, #4 (02') b.eq .BB1 -Branch I (s7’) b.eq .BB1
(04) store x3, [x2, #321 (s8) add x3*, x1*, #4 (s8') xor RTS, #sig-BBO, #sig-BB2
% (s9) cmp  x3, x3* -BBL: S .
(s10) b.ne error ERE 5"I~% .BB1:
' (3 Sk (s9') xor GSR, GSR, RTS
xm

(s12) b.ne error
(s13) store x3, [x2, #32]

(@

(s11) cmp x2, x2* xI

Fig. 1.

struction operands, x3, x2 are checked against their shadows
x3*, x2* before the execution of store instruction.

To protect the control flow of a program, SWIFT checks the
“compare” instructions register operands before the execution
of those instructions and uses statically-assigned signatures to
detect errors affecting the execution of “branch” instructions.
Fig. 1(b) shows the SWIFT control flow transformation. Before
the execution of cmp (inst. s57), the register operands x1 and x2
are checked against their shadow registers x1 * and x2 *. Before
each “branch” instruction (including function calls) or in the
end of each basic-block, the run-time-signature (RTS) register is
computed from the current basic-block signature and the branch
destination basic-block signature (inst. S6’ and S8”). The control
flow error detection takes place in the beginning of each basic-
block, by extracting the basic-block signature from the RTS and
general signature registers (GSR) registers, and checking the
dynamically calculated signature against the statically-assigned
ones. This checking process is labeled as Sign-check in the
figure.

For more than a decade, SWIFT has been considered as
the most effective in-thread instruction-duplication technique
in terms of fault coverage. Acknowledging the near perfect fault
detection ability of SWIFT, several works [8], [18], [18]-[20]
have tried to improve the performance overhead of SWIFT trans-
formation. For instance, in Shoestring [8], the authors express
that “SWIFT has the advantage of being purely software-based,
thus requiring no specialized hardware, and can achieve nearly
100% coverage”. Targeting noncritical applications, Shoestring
compromises between fault coverage and performance overhead
of instruction duplication by taking advantage of low-level hard-
ware symptom detectors and applying instruction duplication to
those instructions which error on them most likely cause no
symptom. Similarly, research IPAS [17], also apply instruction-
duplication judiciously of most critical instructions of programs
and tradingoff coverage for performance overhead. On the other
hand, DRIFT [18] and ESoftCheck [19] try to improve SWIFT

(s10’) cmp GSR, #sig-BB1

(s11’) b.ne error

(b)

SWIFT transformation: part (a) data flow protection and (b) control flow protection.
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Fig.2. Baseline processor. Note that Caches and branch predictor are excluded
from our error coverage analysis.

performance overhead without jeopardizing its fault coverage.
A recent study [38] explores the use of vector instruction for
instruction-replication based fault tolerant techniques and illus-
trates considerable performance improvements.

III. LIMITATION OF THE EXISTING INSTRUCTION-DUPLICATION
TECHNIQUES

Ideally, a perfect software fault detection scheme should be
able to protect the execution of all program instructions against
soft errors on various hardware components. However, the main
error coverage limitation of existing instruction-duplication
techniques is that they can only detect the impact of errors on the
execution of some instructions (i.e., the ones that they replicate)
and leave the rest unprotected. To provide a detailed analysis
of the protection offered by instruction-duplication techniques,
in particular, SWIFT [13], we investigate the impact of sin-
gle bit flip transient faults on different hardware components
while executing a SWIFT-protected program. We consider an
in-order baseline processor (shown in Fig. 2) and examine the
impact of errors on the different type of instructions in a SWIFT-
protected code. We limit our analysis to the microprocessor core
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4
TABLE I

SOFTWARE-HARDWARE VIEW OF SWIFT PROTECTION
Inst. Type Fetch Decode 1Q FUs Commit LSQ RF
DI p! P P p P na P
MemRead NP? NP NP NP NP NP NP
CopMov P P P P P na3 NP
MemWrite NP NP NP NP NP NP NP
OrgCMP NP NP NP NP NP na NP
OrgBr NP NP P P P na NP
CI NP NP P P P na P
!Protected.
2NotProtected.

3Not applicable.

components excluding branch predictor and memory subsystem.
We do not consider soft errors in branch predictor structure be-
cause we assume that the soft errors on branch predictor will
affect the performance of the processor, not its functionality
[39]. We assume that memory subsystem, including TLBs and
caches error detection and correct code (ECC) are protected by
ECC and the data is protected while it is in memory. However,
faults on cache controllers while decoding an address can still
result in a wrong access (read/write) to the memory, and an
ECC-protected cache is not immune to such errors [40]. In fact,
a recent in-field research [41], reveals that non-DRAM mem-
ory failures from the memory controller and memory channel
contribute the majority of memory errors.

First, we classify the instructions in a SWIFT-protected code
into seven categories

1) Duplicable instructions (DIs): these are program compu-
tational/logical instructions that are duplicated by SWIFT
transformation,

2) Memory read instructions (MemRead): these are load in-
structions that SWIFT checks their address register before
their execution,

3) Copying-move (CopMov) instructions: these are inserted
after MemRead instructions to provide consistent input
replication for shadow and master instructions,

4) Memory write instructions (MemWrite): wherein value
and address register operands are checked before their
execution,

5) Original compare (OrgCMP) instructions: wherein regis-
ter operands are checked to prevent control flow errors,

6) Original branch (OrgBR) instructions, and

7) Checking instructions (CIs), which includes instruction
responsible for updating the RTS and GSR registers,
checking for discrepancy in signatures or redundantly
computed registers, and terminating the program execu-
tion in case of error.

Table I summarizes the protection offered by SWIFT in the
presence of single bit-flip in different hardware components.
The rows in table represent various type of instructions in a
SWIFT-protected program and the columns show various hard-
ware components. If SWIFT transformation is able to detect the
effect of error in component Comp ., while it is utilized with
instruction Inst ., the letter P (Protected) is placed in the lo-
cation (Inst.,comp.) of the table; otherwise, it is filled by
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NP (NotProtected), which means SWIFT transformation cannot
protect the execution of instruction Inst . against faults in the
hardware component Comp.

A. Duplicable Instructions

The first row in the table says that SWIFT transformation can
detect errors affecting the execution of a duplicated instruction,
regardless of the location of the fault. If the error happens on
any hardware component while processing a DI, the impact of
error will get masked or detected by SWIFT CIL. It is worth
mentioning that if an error hits some specific bits in the micro-
architectural resources, e.g., the valid-bit of an entry holding
two redundant instants of a duplicated instruction, the error
alters both instructions in the same way and remains undetected.
However, we do not consider these rare scenarios because by
interleave scheduling [12] of master and shadow instructions,
this possibility can be eliminated.

B. Memory Read Instructions (MemRead)

As the second row of Table I shows SWIFT transformation
leaves memory read instructions unprotected during their ex-
ecution. This occurs because there is no redundant version or
execution check for load instructions. Therefore, all errors that
modify the address or the size of loaded value can result to a
failure. Examples of such errors are: errors that hit fetch, de-
code, or issue stage registers while they are occupied by load
instruction. Errors on the functional unit that is responsible for
load effective address calculation. Errors on memory read re-
quest address or size while the load request is processing in the
load-store queue. Even if an error hits the source register of a
memory read instruction [e.g., register x3 of 1oad in Fig. 1(a)]
before getting directly' accessed by the memory read instruc-
tion, it will cause a wrong-memory-location access error. Note
that in this case, since the state of load address register is differ-
ent from its shadow, the error will remain undetected if the next
access to the load source register is a write.

Note that the execution of memory read instructions are
unprotected in many similar instruction-based replication
techniques—including [15], [19], [20], [22], [23], [33], [38],
and [42]-[46].

C. Copying Mov Instructions (CopMov)

Soft error on all microprocessor hardware components, ex-
pect register file, while processing CopMoyv instructions is cov-
ered by SWIFT transformation. If an error hits a CopMov in-
struction source registers [e.g., x1 of CopMov instruction (inst.
s6) in the Fig. 1(a)], the error will propagate from master regis-
ter (x1), to its corresponding shadow register (x1 *) and remain
unnoticed.

All instruction-replication based techniques that do not du-
plicate the memory read instructions, including [15], [19], [20],
[22], [23], [33], [38], and [42]-[46], also suffer from this vul-
nerable interval.

! An instruction accesses a register directly, if that is the last access to the
register so far.
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D. Memory Write Instructions (MemWrite)

Similar to MemRead instructions, memory write instructions
are also vulnerable all through their execution. Errors affecting
opcode, data, and address register pointers, immediate, shift,
size, and rotate field while a memory write instruction is pro-
cessing by pipeline registers are the examples of such undetected
errors. Likewise, errors altering memory effective address while
the instruction is utilizing functional unit or load-store queues
also remain undetected. Furthermore, the operands of store in-
structions are also susceptible to soft errors that occur before
the register gets accessed directly by such instructions. However,
there is a chance that such errors in the register file are detected
by the upcoming CI if the next access to faulty registers is a read.
Memory write instructions are also single-point-of-failure in
many fine-grain instruction-replication techniques—including
[8], [15], [18], [19], [21]-[23], [33], [38], and [42]-[48].

E. Original Compare Instructions (OrgCMP)

As the Fig. 1(b) shows SWIFT transformation adds checks to
the operands of compare (inst. s5”) to avoid wrong-direction
control flow errors. However, since the compare instruction
itself is not duplicated, errors during the execution of compare
instruction itself, can change the control-flow of the program
and remain undetected. Note that in this case, the signature-
based part of SWIFT control flow checking mechanism is also
unable to detect the error because the RTS register is set for
both (taken or not-taken) directions (inst. s6’ and s8”). There are
many similar techniques, including [8], [12], [15], [18], [19],
[21]-[23], [38], [42]-[44], and [46]-[48] that suffer from the
same control-flow vulnerability.

F. Original Branch Instructions (OrgBr)

The original branch instructions are vulnerable to soft errors
when they are in the fetch and decode units. If an error changes
the branch opcode or condition field of a branch instruction, it
can change the direction of the branch from taken to not-taken or
vice versa, and the error remains unnoticed. Most of the errors
that change the target address of a branch will get detected by
the signature-part of the SWIFT control flow checking mecha-
nism. However, if an error causes a jump back to the body of the
source basic-block (after the signature-CI) it still remains un-
detected because the signature-checking part is already passed.
Furthermore, in Table I, it is noted that the branch instructions
are not protected in the register file. This is because the source
register for (direct or indirect) branch instructions is the pro-
gram status flag register, which holds zero, overflow, negative,
and carry bits, and if an error happens on the flag register, the
direction of the branch will be changed and the error is unde-
tectable. For function calls, depending on the implementation,
if just one copy of registers is sent to the callee function, the reg-
isters are unprotected between checking (in caller function) and
duplicating time (in callee function). Many of similar works,
including [8], [15], [18], [19], [21]-[23], [38], [42]-[44], and
[46]-[48], also suffer suffer the same problem.

G. Checking Instructions

SWIFT transformation inserts a plenty of CI into the code to
ensure the correct execution of the program. These CI are either
redundant-register mismatch-CI (i.g. instructions s3, s4, s9, s10,
sll,s12,s1°,82°, s3’, and s4’ in Fig. 1) or signature setting/CI
(i.e., instructions 5’6, s8’, s9°, s10’, and s11’). Generally, errors
affecting these instructions just cause false alarms and not lead
to a failure. However, in some special cases (e.g., the opcode
of a Cl instruction changes to a store instruction), it is possible
that the program experiences failure because of soft error on a
CI instruction.

Overall, the memory and control-flow instructions are the
main single-point-of-failures in many in-thread instruction-
replication based techniques. In [49] and [50], the amount of
MemRead, MemWrite, OrgCMP and OrgBr instructions are re-
ported as 50%, 55%, and 40% on average for X86, ARM, and
MIPS processors, respectively.

IV. MULTITHREADED PROGRAMS CHALLENGES

In order to improve the performance overhead and error cover-
age of SWIFT, several schemes, including shoestring [8], nZDC
[14] and DRIFT [18] simply duplicate memory read instruc-
tions and do not insert checking operations before/after such
instructions. The intuition behind such optimization is that if
there is any soft error in the load instruction address register, it
will cause a discrepancy between loaded value and eventually
will be detected by further checks. This solution works well on
single threaded applications, however, in a multithreaded en-
vironment, such schemes encounter frequent false alarms [51],
[52]—interrupting the program execution because of soft er-
ror while in fact there is no error. Note that these false alarms
are mainly an issue for soft error detection only schemes that
replicate memory operations.

The main reason behind false alarm in instruction-duplication
(with redundant memory read operation) schemes is that they
decipher race conditions as soft errors. Although generally, a
multithreaded program is better to be data race free, however, in
many cases the developers may allow some harmless (benign)
data race conditions. Benign data race conditions are defined
as races that do not affect the correctness of the program [24].
Most of these benign race conditions are allowed intentionally
by the developers to achieve better performance and they are ac-
cepted in real applications, such as Windows Vista and Internet
Explorer [53]-[56]. The research [57] investigates 14 applica-
tions in the Splash-2 benchmark suite and conclude that seven
of them contain benign data races.

For example, consider the snippet code shown in Fig. 3 which
represents a user-level synchronization barrier extracted from
Cholesky program from SPLASH2 benchmark suite. Function
“Send” [Fig. 3(a)] is responsible to update shared variables
taskQ and probeQ. A user-level synchronization scheme is
implemented in function “GetBlock™ [Fig. 3(b)] which uses
busy-waiting to check for update in the taskQ and probeQ
shared variables. Note that the updates (write accesses) on these
shared variables are protected by explicit LOCK and UNLOCK



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LOCK (tasks[i].taskLock ) ;

// Update shared variables
// tasks[i].probeQ and tasks[i].taskQ

UNLOCK (tasks[i].taskLock ) ;

(a) Protected Update on shared variables (Cholesky send function)

while (! tasks[j].taskQ && !tasks[j].probeQ);

(b) User-defined Synchronization (Cholesky GetBlock function)

Loop:
load
load
cmp
beq
cmp
beq

temp1 ,[x1] // x1 is memory address of tasks [ j ]. taskQ
temp2 ,[x2] // x2 is memory address of tasks [ j ]. probeQ
templ, #0

.Loop

temp2, #0

.Loop

(c) Assembly-level implementation of part (b)

Loop:
§§ __—Ioad temp1 ,[x1] // x1 is memory address of tasks [ j ]. taskQ
-qéjS load templ* ,[x1*]//x1* is shadow register for x1
g L
-§§ _—Ioad temp2,[x2] // x2 is memory address of tasks [ j ]. probeQ
%3 load temp2* ,[x2*] // x2* is shadow register for x2
g L
:’s:g rcmp templ, templ*
82 [bne .Error
“s cmp templ, #0
beq .Loop
(=l
:E:% cmp temp2, temp2*
2= [bne .Error
Y cmp temp2, #0
beq .Loop

(d) Protected version of (c)

Fig.3. Memory write intervening problem. The snippet code in part (a) and (b)
are extracted from “send” and “GetBlock” functions implemented in mf.C file
from Cholesky application (SPLASH2 kernel program). Part (c) shows a simple
assembly-level implementation of part (b). Part (d) shows a naive instruction
duplication scheme which suffers from false alarm.

mechanism, however, the read accesses (in dequeue function)
are not protected. Fig. 3(c) shows a corresponding low-level
implementation for the busy-waiting loop shown in Fig. 3(a)
which is materialized by two memory read and two compare
operations.

Now let us assume that we want to protect the “GetBlock”
function by applying an instruction-duplication scheme which
replicates memory read instructions. Examples of such soft error
protection schemes are EDDI [12], shoestring [8], nZDC [14],
or DRIFT [18]. Adopting such soft error protection scheme
will result to assembly code shown in Fig. 3(d). Such transfor-
mation can result in false alarms in a concurrent environment
where a thread executing “Send” function updates the shared
variable(s) between redundant load operations. To quantify the
impact of intervening store problem we have implemented a
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user-level synchronization mechanism similar to the one illus-
trated in Fig. 3(b) and initiate 10 workers which update the
shared variables in a protected region of the code [similar to
the Fig. 3(a)]. We applied load duplication and run the program
for 1000 times on an Intel Core 17 desktop PC. We observed
that in 30% of runs the error flag was raised and the program
execution was terminated. A naive solution to this problem is to
protect all accesses to the shared variables by explicit LOCK and
UNLOCK mechanisms. However, the performance overhead of
such implicit protection strategy is significant.

V. MZDC METHOD

In this section, we introduce a multithreaded full instruction-
replication based technique, named MZDC technique that not
only protects the execution of all programs instructions, but also
does not suffer from intervening store problem in multithreaded
applications.

A. MZDC: Main Idea and Assumptions

MZDC is a fine-grain instruction-duplication based technique
whose goal is to never permit a program to generate a wrong
output. In other words, the MZDC transformation tries to detect
all errors that may lead to silent data corruption or a user-visible
failure. For this purpose, MZDC divides the program available
registers into two sets, and duplicates of all programs instruc-
tions (including computational, memory read, compare, direct
branches), excluding memory write and conditional branches.
For these nonduplicated instructions, MZDC adopts specific
strategies to verify the correctness of their execution. In line
with related works [8], [13], [14], [18], [20], and [23], MZDC
assumes an ECC-protected memory subsystem and tries to pro-
tect the execution of the program’s instruction on microproces-
sor core components. Against multithreaded unsafe transforma-
tions, such as [8], [12], [14], [18], [20], and [23], MZDC takes
into account race conditions and inserts extra CI to determine the
presence of soft errors from (benign/harmful) race conditions.
Note that MZDC is not developed to determine concurrency
or race bugs in a program. The main assumption is that the
MZDC transformation should just provide soft error protection
of a given program and do not change its behavior.

B. Computational and Memory Read Instruction
Transformation

MZDC transformation duplicates all program computational
and logical instructions, as well as memory read instructions.
Load instruction duplication enables MZDC to protect against
soft errors that happen during the execution of load instructions
in microprocessor data path. Furthermore, load duplication also
helps to protect a program from transient faults that may happen
on the cache/memory controller during the execution of mem-
ory read operation. For instance, if an error alters the memory
controller address decoder circuitry while processing a memory
read request, it can cause loading from the wrong address. Even
though the memory is assumed to be ECC protected, but ECC
cannot help to detect wrong address memory operations. Note
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=& . .
£s .Diagnosis
E% if (%, 1= x,*)
E g’ jump .SoftError(Local);
° counter++;
Xy, Xy v Xl*l Xz* .
L1: if (counter > THRESHOLD)
load x, € [X,]; counter = 0;
load x,* < [x,*]; load x; < [x,];
if (X, 1= x,%) mov x;*, X,;
jump .Diagnosis; jump .L2;
L2: jump .L1;
Fig. 4. MZDC load instruction transformation.

that since both replicated load instructions read from an ex-
actly same memory address, load duplication does not increase
program memory footprint. However, since in multithreaded
programs there is no guarantee that duplicated loads receive the
same data from the memory, the MZDC transformation inserts
special CI right after replicated load instructions.

Fig. 4 illustrates MZDC memory read instruction transforma-
tion. As it shows MZDC transformation redirects the program
control to a diagnosis block if the results of redundant loads
are different. In the diagnosis block, it first checks for errors in
loads address registers (x2 and x2* in the figure). In case of
a mismatch, the soft error detection flag will be raised with the
hint of that error is thread local; the soft error has modified the
execution of this thread and has not propagated to the memory.
This information regarding the scope of error propagation can
be useful for error recovery purposes, i.e., the application can
decide whether the recovery is necessary, and if so, whether all
threads should be rolled back or not.

If there is no error in replicated load address registers, there
can be two possibilities for the inconsistency: 1) soft error hap-
pens during the execution of one of the load instructions and
for instance, alters the effective address, or 2) intervening store
from the other thread has modified the state of the memory.
Either way, by jumping back to right before redundant-load in-
structions, the problem should be solved. If the soft error was
the reason for the discrepancy (mismatch between x1 and x1 *
in the figure), simply re-execution provides recovery. If the dis-
crepancy comes from an intervening store instruction (such as a
race condition), the problem will be solved by repeating the exe-
cution of redundant loads. However, to prevent a program from
going to an infinite loop (due to frequent memory update by
other threads between the redundant loads instructions) MZDC
transformation uses a threshold-based mechanism. Basically,
it counts the number of iterations that a particular diagnostic
routine has been involved (counter++ in the figure). If the
number of iterations exceeds a predefined value, the MZDC
first resets the counter. Then performs just one load and copies
the loaded value to the corresponding shadow register, and trans-
fers the program execution to right after the CI in the original
control flow of the program.

Redundant

_ .Diagnosis
computations

// store register operands are erroneous
if (Xg 1=x.% || %, 1= %,%)
jump .SoftError(Global);

// Check for wrong-address memory
ypdate errors
if (Xaftr == Xprev)

jump .SoftError(Global);

* X *
: R
Check for wrong-value memory update
. N ore
before Store errors OR race conditions
load Xprev € [x,];

counter++;
if (Xaftr != Xprey && counter < THRESHOLD)
jump .before Store;

// Prevent from infinite loops
if (counter >= THRESHOLD)
counter=0;

jump .after Store;

store x; > [x,];
load X,q, € [X,*];
if ( Xaftr I= Xl*)
jump .Diagnosis;
.after Store:

Fig. 5. MZDC memory write instruction transformation.

Note that since the execution of diagnosis block is rare, the
performance overhead of MZDC transformation is acceptable.
Moreover, as we describe in Section VI-A, there is no need to
insert checking instructions after all memory read instructions.

C. Memory Write Instruction Transformation

To verify the correct execution of memory write instructions,
MZDC transformation adopts checking-load strategy that was
introduced by nZDC scheme [14]. The main idea is to load back
the stored value from the memory and check it against its re-
dundant computed version. The checking-load strategy works in
single-threaded applications, however, it fails in multithreaded
applications where race conditions on memory update accesses
are allowed. That is because if an intervening memory write
instruction from other threads modifies the memory state, the
loaded value by checking-load instruction will be different from
the stored value and causes false alarms. An important note is
that against the benign race conditions on read access to a shared
variable, race conditions on write access are rare. However, as
mentioned before MZDC goal is to protect the program’s ex-
ecution against soft errors even in the cases that a program
(intentionally or because of a bug) may miss updates (writes) on
some shared variables because of the race conditions on such
variables.

Fig. 5 shows the MZDC transformation for a store instruc-
tion. In the figure, the original store instruction is shown as bold
and the rest of instructions are inserted for soft error protection
by MZDC transformation. For each memory write instruction,
MZDC transformation inserts two load instructions, one before
the memory write instruction, named diagnosis-load, and one
after, called checking-load operation. The target address of these
loads is as same as the memory write instruction. The diagnosis
load (destination register xprev in the figure) is inserted to
assist the diagnosis process and we explain its purpose in detail
later. The address register operand of the checking-load instruc-
tion is the shadow register of the original store instructions
and its destination (register xaftr in the figure) can be any
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arbitrary free register. MZDC transformation redirects the exe-
cution of the program to a diagnosis block if the loaded value
by the checking-load instructions is not equal to the shadow
register of store value register operand.

Store diagnosis routine is responsible to determine the cause
of mismatch, which can be soft error or race condition. Store
diagnosis routine first checks for the discrepancy between store
register operands and their shadows. If there is any mismatch,
the error flag will be raised with a hint of global error; soft error
is propagated to the shared memory. Second, the diagnosis rou-
tine checks for errors which may happen during the execution
of store instruction and cause a wrong memory update. For in-
stance, soft errors on functional units while computing memory
effective address of store operation can cause wrong memory
update error. The diagnosis routine detects such wrong mem-
ory update errors by comparing the result of the diagnosis load
instruction (the load instruction inserted before the store) and
the checking load instruction (the load instruction inserted after
the store). If the loaded values by diagnosis and checking load
instructions are different, it means that the store instructions
have not updated the memory target address that it supposed to
update. Therefore, since we have already rolled out the chance
of soft error on the store address register in the first step, we
presume that soft error happens during the execution of store
instruction and alters its effective address. In this case similar to
the first case, MZDC transformation raises the soft error flag.

If we pass the first two checks in the diagnosis routine, it
means that store instructions registers are fault free and no
wrong memory location has been updated by the store instruc-
tion. Therefore, we conclude that the reason of discrepancy
which was captured by the CI inserted after the store is one
of the following: 1) soft errors affecting the store value during
the execution of store instructions, or 2) an intervening store
has modified the state of memory. In either case, diagnosis rou-
tine redirects the control of the program to before original store
instructions and the program re-executes the store. Note that
re-execution of the store instruction may cause a missing up-
date on the shared variable from the other threads. However,
as explained before, this is a risk which has been accepted by
the program by allowing race conditions on the shared variables
update operations.

Finally, to prevent a program from going to the infinite loop
in the case that always intervening store(s) updates the memory
state between store and the checking load instruction, we use a
saturation counter policy. If the counter reaches its limit, MZDC
just performs store and redirects the execution of the program
to after store instruction.

D. Control Flow Instruction Transformation

To protect the execution of programs compare and branch
instructions, MZDC adopts nZDC control flow transformation
because such technique detects both unexpected jumps as well as
wrong direction branches. Single-threaded control flow trans-
formations are generally safe to be applied on multithreaded
applications because control flow instructions do not directly
deal with the (shared) memory accesses. However, since MZDC
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transformation increases the number of basic blocks of a pro-
gram which most of them are load/store diagnosis blocks, it
demands some modifications in nZDC single-threaded control-
flow mechanism. In this section, we first explain the nZDC
control flow checking mechanism and then address the issues
that are imposed by MZDC transformation.

The nZDC control flow mechanism (shown in Fig. 6) de-
mands two general purpose registers, called compare destination
register (CDR) and compare check register (CCR). The nZDC
control flow checking mechanism works based on three main
insides

1) compare and branch instruction replication,

2) protect NVZC flag register by conditionally inverting the
value of CDR register based on the direction of the fol-
lowing conditional branch, and

3) use static signatures for source-encoding/destination-
decoding to make sure that the control flow of the program
is traversed correctly.

The nZDC control flow mechanism consists of five main steps

1) Duplicating CMP Instruction: Generally, in ARM and
X86 ISAs, a compare (CMP) instruction is implemented by a
subtraction (SUB) instruction which disregards the results of
the subtraction operation and updates the program status flags
(NVZO). Leveraging this fact, nZDC control flow transforma-
tion converts all program compare instructions to their equiva-
lent subtraction operations and duplicates them. However, rather
than disregarding the results, nZDC control flow transformation
saves the results of the subtraction operation into CDR and CCR
registers. In Fig. 6, instructions (zc1) and (zc4) are for duplicated
versions of the original CMP instruction (cl).

2) Conditionally Inverting the CDR: Since the NVZC regis-
ter is not duplicable, nZDC uses time redundancy to protect that
register against soft errors. For instance, as Fig. 6 shows, at time
t, the first CMP instruction (zcl) sets the NVZC flag, which is
going to be read by the following conditional invert instruction
(zc2) at the next cycle (assuming one cycle per instruction). The
second CMP instruction (zc4) will be set to the NVZC flag at
time #+3, and the flag register will be read by conditional branch
instruction (zc5) at time ¢+4. If the first CMP instruction (zc1)
sets the NVZC flag in such way that the condition of the fol-
lowing conditional branch (zc5) is true, the CDR register gets
inverted right after the first SUBS instruction (zc1). On the other
hand, if the condition is not true and branch is supposed to be
not taken, the CDR gets inverted after the branch (zc7). In a
fault-free run of the program for each conditional branch, the
CDR inverts just one time. Although these conditional instruc-
tions is ISA dependent, it can be replaced with a micro if the
ISA does not support such instructions.

3) Duplicating Branches: nZDC duplicates all programs
conditional branch instructions. However, the branch target ad-
dresses for the copy branch (zc6) is error handler basic block.
The purpose of branch duplication is to protect the soft errors on
the branch opcode. The main idea is if the condition is true, the
main branch (instruction I5) will change the control flow of the
program and the redundant one does not execute. If the condi-
tion is not true neither of the branches changes the control flow.
But if errors happen on the original branch opcode, e.g., branch
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BB1
//body of BB1
(c1)cmp  opl, op2

(c2) b.condition .BB3

zcl)subs  CDR € opl - op2

zc2) if (condition) CDR € invert (CDR)
zc3) XOR  CDR, CDR, #sig-BB2
zc4)subs  CCR € opl* - op2*

zc5) b.condition .BB3

zc6) b.condition .error

zc7) if (! condition) CDR < invert (CDR)
2c8) XOR  CDR, CDR, diff(isig-BB1, #sig-BB2

—~ e~ o~~~ —~ —

BB3

(zc10) XNOR CCR, CCR, CDR
//body of BB2
check CCR, #0, .error(MemUnSafe

BB2 2c11) XOR CDR, CDR, #sig-BB3
: (zc12) XNOR  CCR, CCR, CDR
(zc9) XOR  CDR, CDR, #sig-BB2 //body of BB3

heck CCR, #0, .error(MemUnSafe

Fig. 6.
to the memory).

changes from branch less than (blt) to branch greater than (bgt)
and if it changes from taken to not-taken, the redundant branch
detects the error. On the other hand, if soft error alters the di-
rection of a conditional branch from not-taken to taken, nZDC
control-flow CI detect that in the wrong target basic block.

4) Adding Destination Signature: Based on the possible des-
tination, the CDR register gets XORed with a unique and basic
block signature assigned to all program basic block statically.
Instruction (zc3) shows the destination related signature cod-
ing if branch is taken, otherwise, instruction (zc8) performs the
signature coding for the next basic block.

5) Inserting Control-Flow CI: In order to check if the di-
rection of a branch has been taken correctly, nZDC inserts two
instructions at the beginning of the all program’s basic blocks.
The first instruction XORs the CDR register with the current
basic block signature (zc10 in BB2 and zc9 in BB3) and saves
the result back to the CDR register. The next instruction XNORs
the CDR and CCR registers (zc12 in BB2 and zc10 in BB3) and
stores the result in CCR. In a fault-free run of the program ex-
ecution, before XNOR instruction, the value of CDR should be
equal to the inverted value of CCR. Therefore, after the XNOR
instruction, the CCR register value should be always zero be-
cause the inputs for the XNOR instruction are each other inverse
(one’s complement). Finally, the nZDC control flow error de-
tecting instructions will be inserted into two points of execution:
1) before each write to the CCR (between inst zc3 and zc4), and
2) before all function calls and direct branches.

Since MZDC transformation increases the number of basic
blocks of a program (proportional to the number of memory in-
structions), a naive combination of MZDC transformation and
nZDC control-flow checking mechanism will result to huge per-
formance degradation. To overcome this challenge, we thread
original program basic blocks differently from the MZDC diag-
nosis blocks. Basically, we do not apply control-flow protection
for the branches to/from the MZDC diagnosis blocks. However,

(b)

MZDC control flow checking mechanism. All errors detected by control-flow checking mechanism are considered as global errors (error is propagated

in the beginning of each diagnosis block, we extract the value
of CCR register and check it against zero. If the checks fail,
MZDC transformation detects a control-flow error and raises
the error flag. For error propagation hint, if the error is detected
in a load-diagnosis block, it will be announced as thread local,
otherwise as global. On the other hand, if the value of CCR is
zero, the diagnosis routine restores the CCR and CDR values
to their previous values before resuming the execution of the
program. Note that since the MZDC diagnosis blocks execute
just in some race conditions, the performance overhead of their
execution is negligible.

VI. PERFORMANCE OPTIMIZATION

In this section, we introduce two types of performance opti-
mization for MZDC transformation—the first one aims to reduce
the number of diagnosis blocks and the second one reduces the
overhead of MZDC store checking operation.

A. Reducing Number of Diagnosis Blocks

As explained before, the problem of false alarm in apply-
ing single-threaded nZDC raises just when there are potential
data races in a multithreaded program. This implies that sim-
ply applying single-threaded load and store transformations to
data race free memory access will case no false alarm. There-
fore, the multithreaded-related soft error detection instructions
(i.e., error checks after memory read operations, diagnosis-loads
inserted before store instructions and corresponding diagnosis
basic blocks) are unnecessarily for data race free memory ac-
cesses. Examples of such cases are

Memory accesses in a critical section of program: In a crit-
ical section of code that mutual exclusion is guaranteed by ex-
plicit memory synchronization objects like “lock™ or “mutex,”
memory accesses can be protected against soft errors similar to
single-threaded ZDC transformation.
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Accesses to thread-local storage: Memory accesses (read
and writes) to thread-local storages (i.e., variables identified
by thread-local keyword in c++11) are guaranteed to be race-
free. Therefore, they can be safely protected by single-thread
nZDC load/store transformations.

Address-untaken local variables: Accesses to variables that
reside in a thread stack storage can be considered as race-free
if their addresses are never taken (i.e., the address-of operator
is not used for them). For memory accesses to such variables
multithreaded transformation is not required.

Read-only variables: A necessary condition for race condi-
tion is the presence of write operations. Access to read-only
variables, i.e., immutable and constant objects, are always race
free and can simply protect by single-threaded transformation.

In the above-mentioned cases, the overhead of MZDC trans-
formation can be reduced by applying single-threaded ZDC
transformation for memory operations. However, this approach
is still conservative and many practically race-free memory op-
erations will be protected by multithreaded ZDC transformation.
To further reduce the overhead, memory profiling techniques can
be used to determine more race-free memory operations.

B. Reducing the Overhead of Store Checking

For memory write operations that the compiler cannot guar-
antee their race-free execution, ZDC multithreaded store trans-
formation should be applied (described in Section V-C). One
way to reduce the overhead of store transformation is to fuse
the diagnosis-load instruction with the main memory write in-
struction. Memory operation fusion can accomplished by uti-
lizing ISA provided atomic operations, i.e., “SWAP” operation
in ARM ISA or “XCHG” in X86 ISA. As mentioned by [61]
memory instruction fusion can reduce instruction traffic through
the pipeline for performance and energy efficiency.

C. Control Flow Checking Optimization

MZDC control-flow transformation uses static signatures [in-
structions (zc3), (zc8), (zc9), and (zcll) in the Fig. 6(b)] to
detect control flow errors that lead to unwanted jumps in a pro-
gram. An alternative for these signature-based unwanted jump
detection is to schedule redundant and main instructions in an
interleaved fashion that any unwanted jump causes a mismatch
between redundant streams [12]. By applying such compile time
instruction scheduling, the signature encoding/decoding part of
MZDC transformation can be eliminated and the overhead of
control flow checking can reduced significantly.

VII. EXPERIMENTAL METHODOLOGY

1) Compilation Environment and Benchmarks: Mixed ap-
plications from different category of ParMibench [27] and
SPLASH-2 [26] test suits are used as representative work-
loads in our experiments. The detail of the selected workload
is shown in Table II. The workloads are compiled with -O3
optimization level by LLVM-3.7 [25] compiler infrastructure.
The MZDC and SWIFT transformations are implemented as
late back-end passes, after register allocation and instruction
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TABLE II
WORKLOADS
Application Description Input
Dijsktra(mqueue) Single-source shortest input_small.dat
(ParMibench) path in a graph
Dijsktra(All) All pairs shortest path in input_small.dat
(ParMibench) a graph
Stringsearch Search specific words in SearchString32.txt
(ParMibench) given phrases testpattern10.txt
Susan(corners) MRI image recognition input_small.pgm
(ParMibench) application (corners)
Susan(edges) MRI image recognition input_small.pgm
(ParMibench) application (edges)
FFT (Splash-2) 1-D Fast Fourier 1K points
Transformation
Radix (Splash-2) Iterative integer 1k integers
radix sort radix 1024
Cholesky Matrix Factorization tk15.0
(Splash-2)
TABLE III
SIMULATOR CONFIGURATION
Parameter Value
CPU Model ARM 32-bit dual-core in-order processor
Pipeline Two way/4-stage
# of FUs 2Int, 1Mul, 1Div, 1Float, IMem, 1Misc
L1 D/I-Cache 64 KB (2-way)/32 KB (2-way)

# of integer regs
Operating System

16 registers (32-bit width)
Linux Kernel version 2.6.22.9

scheduler. This implementation enables us to take advantage of
all advanced compiler optimizations, including common subex-
pression elimination (CSE) and dead code elimination (DCE).
In fact, we believe by disabling these optimizations and imple-
menting instruction duplication techniques in LLVM IR-level,
such as [18] and [20], the probability of faults masking increases
due to redundant instructions, and ultimately leads to a wrong
conclusion.

2) Simulated Processor: The ideal evaluation strategy for fault
injection experiments is to perform them on a gate-level RTL
description of a modern microprocessor while it is running mul-
tithreaded programs. However, since we do not have access to
such low-level description of a modern processor, we have used
gem5 [28], a cycle-accurate simulator. We have configured gemS5
simulator in full system mode. The programs were compiled for
ARMv7-a profile and simulated on a dual-core two-way in-
order ARM architecture with the configuration details shown
in Table III. The simulated CPU model is close to the modern
high-performance low-power embedded microprocessors, such
as ARM Cortex-AS53 processor. It is worth mentioning that the
memory subsystem and the TLBs in protected version of ARM
Cortex-A53 are protected with Parity/ECC, and our presump-
tion about protected memory is consistent with the simulated
CPU. We inject faults into register file and pipeline registers of
an in-order CPU, however, since these structures also exist in the
modern out-of-order processors, we expect that an out-of-order
model would not affect our conclusions.
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A. Fault Injection Strategy and Output Classification

1) Fault Model and Fault Injection Sites: The fault model
used in this work is a single bit-flip model. This model has
been widely used in experimental evaluation of the previously
proposed solutions [8], [12], [13], [15], [18], [45].

The experimental results shown in this paper are produced
with fault injection trials per each fault site (register file and
pipeline registers). For each fault injection simulation, a random
bit and a random cycle is selected statically. Then, we start the
simulation normally, and pause it once it reaches to the target
fault injection cycle. Then, we invert the logical value stored
in the target bit (chosen from register file or pipeline registers)
and resumes the simulation. The simulation run continues its
execution till the program execution terminates permanently, or
the allowable execution time (2x more than fault-free run) is
over. In addition, to show the effectiveness of the MZDC control-
flow checking, we specifically performed fault injection on the
branch and compare instructions while they utilize processor
pipeline registers.

For each version of a program, we inject 900 faults (300
faults in register file, 300 faults in pipeline registers, and
300 in the control flow instructions). We produced three ver-
sions of each benchmark: ORG, SWIFT-protected, and MZDC-
protected. Overall, we performed 21 600 (900 x 3 x 8) fault
injection experiments in different hardware component running
different versions of the benchmarks.

The result of each trial is classified into one of the following:

1) SDC: The simulation runs that permanently terminated

with a user-visible data corruptions without any detection
alert.

2) Others: All other scenarios, i.e., masked faults, detected

fault and segmentation faults fall into this category.

B. Comparison Metric

The common practice to evaluate the efficacy of software
fault tolerant techniques is by comparing percentage of fail-
ures/SDCs extracted from statistical fault injection with per-
forming the same number of fault injection experiments for
original and protected versions of the programs [8], [12], [15],
[18], [19], [21]-[23], [33], [38], [42]-[48]. However, since usu-
ally software fault tolerant methods prolong the execution time
of the program, they can decrease the percentage of SDCs just
by increasing the amount of masked or detected errors caused by
the faults that influenced the program-irrelevant parts of execu-
tion [59]. Program-irrelevant parts of execution is the segment
of the execution time that is not part of the original program,
but is needed to protect the original program, such as the dura-
tion of time that the processor spends to execute the redundant
and control flow checking related instructions in SWIFT/MZDC
protected programs. To clearly express the main idea of this sec-
tion, we use a simplified example of running original and FT
versions of a program on a simple in-order CPU. The execution
time trace is shown in Fig. 7.

As the figure shows the original program, marked as ORG,
starts its execution at time O and finishes at time 10. During
the execution of this program, we assume some intervals as
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Fig. 7. Vulnerable and nonvulnerable intervals for original and FT version of

hypothetical program.

Vulnerable (V) and some as nonvulnerable (NV), which means if
soft error happens on V interval, it leads to program failure, and,
if fault occurs on NV interval, it will get masked. This program
spends 4 units of time in V intervals and 6 in NV intervals. Now,
assume that ten random fault injections have been performed on
this program. In an ideal random fault injection, one fault would
happen on each unit of time, and since 6 units of execution time
is NV and 4 is V, the amount of failures should be 4, or 40%.
Now, consider a hypothetically FT version of the program. FT
version of the program has two parts; the first part is exactly
similar to the original ones, and the second part is just no-
operations (NOP). The execution time of the FT version is as
twice as the original one, which makes the execution time of the
FT version 20 units of time. Now, assume we perform the same
random fault injection experiments that we did on the original
version of the program (ten fault injection). If we randomly
select ten cycles to perform fault injection, statistically speaking,
most likely five of them would occur on the second part of the
program (the NOP execution part) which is NV interval, and
therefore, will not result in failure. From the five remaining
faults, happening on the first part of the FT program, two will
happen on V intervals and three should happen on NV intervals.
Therefore, the number of failures, in this case, is 2, or 20% of
total injected faults. Although the ideal statistical fault injection
results show significant (from 40% to 20%) reduction in failure
rate, the question, however, is whether this reduction is real or
just a false conclusion.

Intuitively, it is clear that the correct interpretation of SFI
results should demonstrate exactly the same amount of failures
for both original and FT version of the program. In this paper,
we introduce effective failure rate (EFR) as a comparison metric
that can be calculated by involving the execution time overhead
of the FT version in two ways. 1) Adjusting the number of fault
injection experiments according to the execution time overhead
and just comparing the absolute number of failures, not per-
centage. For example, injecting 20 random faults instead of 10
random faults of the FT version of the program in the above-
mentioned example should get us 4 failures, which is exactly
equal to the number of failures of the original program. 2) Mul-
tiplying the number/percentage of failures into the execution
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time overhead. For example, for FT version of the program in
the example above, we can use 20% x 2 = 40%, which is equal
to the original program failure rate.

In addition, as mentioned in [59], showing the num-
ber/percentage of detected or masked fault is also misleading.
For instance, in our simple example, injecting ten faults in FT
version of the program would lead to 80% masked faults, which
in comparison with the original program fault injection is 20%
more. However, this fault masking improvement is the result
of faults which are injected into the program-irrelevant parts of
the execution of the program. Similar to NOPs, in the imagi-
nary FT version of the above example, redundant instructions in
the in-thread duplication FT schemes are also irrelevant to the
main program. Faults that affect these original program irrele-
vant parts will result in either masked or detected/SegFault and
should not be considered as the fault detection ability of the FT
method.

In conclusion, since comparing the absolute or percentage
of SDCs of original and protected versions of the program can
result in an overestimation of the effectiveness of the software
fault tolerance techniques, in this paper, we use the EFR metric
which was calculated as follows:

EFR = Percentage of SDCs x execution time overhead. (1)

For the original version of the programs, the execution time
overhead is considered as 1; therefore, the EFR is equal to the
percentage of SDCs. For protected versions of the program, the
execution time overhead is calculated as the protected program
execution time divided by the original program execution time.

VIII. EXPERIMENTAL RESULTS

In this section, we present an analysis of the effectiveness of
data-flow and control-flow fault coverage of MZDC and SWIFT
schemes. Then, we show the performance overhead results and
analysis for these transformations.

A. Fault Injection Results

Fig. 8 presents the results of our fault injection experiments.
The y-axis plots the EFR and x-axis represents benchmarks.
Fig. 8(a) illustrates the overall processor wide results. It shows
that the EFR of the unprotected versions of applications is on
an average around 16%. While MZDC can reduce the EFR by
around 100x, SWIFT transformation just improves the EFR
by 2.7x. The main reason is that unlike SWIFT transforma-
tion which only protects the execution of computational/logical
instructions, MZDC protects the execution of memory and
control-flow instructions as well as computational/logical in-
structions. In fact, SWIFT transformation increases the number
of memory operations (spill code inserted by compiler due to
assigning registers to redundant instructions) and leave them un-
protected. Similarly, MZDC transformation also increases the
number of memory operations, however, it verifies the correct
execution of such operations by checking their result.

1) Pipeline Registers: Fig. 8(b) presents the percentage of
EFR extracted from fault injection trails on pipeline registers,
particularly registers between fetch and decode stage of the
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Fig. 8.  Component wise EFR distribution for original, SWIFT and MZDC
protected programs.

pipeline. Single bit-flip errors in these pipeline registers can
alter the source/destination register pointers, immediate value,
or the opcode of the fetched instruction. As the figure shows
MZDC reduces the percentage of EFR from around 13.48% to
fairly close to zero (0.004%), while SWIFT-protected programs
suffer from 1.13% EFR. We expect that MZDC transformation
detects all errors, however, we found out in a few cases the
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injected errors remain undetected. We examined MZDC failed
cases and realized in all of them the injected fault directly affects
the address part (register pointers or immediate value) of a silent
memory write operation. A silent memory operation is defined
as a store instruction which writes a value into a memory which
is already there. Now, if an error happens on the address part of
a silent store, the memory write operation may modify the state
of a useful memory location in an arbitrary manner. However,
checking-load strategy adopted in MZDC does not detect such
errors because since the store was silent, the loaded-value is
equal to the redundantly computed version of the store value
register.

2) Register Files: Fig. 8(c) demonstrates fault injection re-
sults on register file. On an average, register file EFR for orig-
inal, SWIFT, and MZDC versions of the programs is about
17%, 0.4%, and 0.0%, respectively. MZDC transformation can
completely protect register file against soft errors because it in-
serts CI after memory instructions rather than before. Therefore,
there is no register file software vulnerable interval in MZDC
protected programs. However, as described in Section III, there
is always a chance that error occurs after SWIFT CI and before
the execution of critical instruction and cause failure. In fact, the
register file failure rate in SWIFT-protected programs is remark-
ably less than register file vulnerability window. The reason is
that although faults on SWIFT register file vulnerability window
will propagate to the memory, they do not necessarily lead to a
failure. This is because in many cases even after that an error
propagates to the memory, the discrepancy between redundant
registers remains in the program state and will get detected by
following CI.

3) Control-Flow Instructions: Fig. 8(d) demonstrates fault
injection results on the programs control flow instructions. In
these experiments, we randomly inject faults on the original
compare and branch instructions (excluding CI) while they are
in pipeline register. For a compare instruction, an injected fault
can change the opcode, register pointers, or immediate value.
For, conditional branch instructions the error may change the
direction or the target address of the branch. Note that since the

target of fault injection has been selected from program-related
instructions, in this case, the EFR is equal to the percentage of
SDCs. As the figure demonstrates, the percentage of SDC for
original and SWIFT-protected programs is on average around
18% and 16%, respectively. This means that SWIFT control-
flow protection scheme cannot detect most of the errors that di-
rectly affect the program control-flow instructions. For instance,
if error alters the direction of a conditional branch, SWIFT con-
trol flow cannot detect the error, because the static signature
should be set for all possible successor basic blocks. SWIFT
CFC detects some of injected faults, however, since the amount
of segmentation faults (detected by OS) in the original program
is more than SWIFT, the failure rate remains almost same for
SWIFT and original programs. In other word, errors which were
detected by SWIFT control flow checking mechanism are also
covered by OS. MZDC control flow mechanism, on the other
hand, detects majority of control-flow injected faults (around
65%), alarge portion of control-flow errors lead to segmentation
faults (around 15%) and from the remaining faults almost all of
the get masked. The amount of undetected control-flow errors in
MZDC transformation is around 0.5%. We explored the reason
and found out that in cases that the injected error modifies the
target address of a taken branch in a way that the program con-
trol jumps to a standard library functions. And since we do not
apply MZDC transformation to the standard library functions,
the error remains undetected. We believe by applying MZDC
transformation to all program code (user and library functions)
all control flow error will be detected by MZDC transformation.

B. Performance Evaluation

Fig. 9 presents normalized execution time overhead of dif-
ferent versions of programs protected by SWIFT, MZDC (Un-
optimized), and MZDC (Optimized) transformations. The per-
formance overhead of unoptimized MZDC transformation is
on an average around 22% more that SWIFT transformation—
performance overhead of SWIFT is 2.4x while for MZDC it
is around 2.6x. After applying all memory and control-flow
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optimization described in Section VI, the performance over-
head of MZDC transformation reduces to 2x which is around
30% faster than SWIFT transformation. The performance over-
head of SWIFT and MZDC transformations can be break down
to three sources: first, overhead imposed by saving registers
for shadow instructions and control flow checking algorithm,
second, the performance imposed by duplicating instructions,
and third, performance overhead of checking operations. The
first two sources of performance overhead are almost similar for
SWIFT and MZDC. That is because both schemes reserve more
than half of the programmer available registers and duplicate all
computational and logical instructions. The checking operations
overhead is where that SWIFT and MZDC behave differently.
Basically, for each memory read operation, SWIFT inserts three
extra instructions (two for address checking and one for copy-
ing the loaded value to the redundant register). Unoptimized
MZDC transformation also inserts three extra instructions (one
replicated load and two for consistency check). Note that the
replicated load instruction does not impose any new cache miss
to the system. In optimized version of MZDC, in most of the
times only one extra instruction is inserted for each memory
read operation. For instance, in Cholesky program most of the
memory read access are not from the shared memory and do
not require checking operation. Therefore, MZDC optimiza-
tion reduces the performance overhead of unoptimized MZDC
by around 40%. In benchmarks, such as FFT and stringsearch
where the memory access are mostly from the shared memory,
the MZDC memory optimization is not effective. For memory
write accesses, SWIFT and MZDC transformations insert four
more instructions to detect the effect of soft errors. Unlike the
SWIFT, MZDC inserts two extra memory read instructions for
store protection, however, similar to the memory read case, these
instructions do not cause a new memory access miss. The reason
is these accesses are all from the same memory location that is
required by the application. So, if the required memory word is
not in the cache, the program face a cache miss to get access
to the desirable memory location. The number of inserted in-
structions for control-flow checking mechanism in SWIFT and
MZDC is also equal—both transformations execute six instruc-
tions to protect each program original conditional control flow
instructions.

IX. CONCLUSION

We presented MZDC, a compiler-only error detection tech-
nique that closes all vulnerable windows in state-of-the-art in-
thread instruction duplication techniques. MZDC is based on
the idea that nonduplicated instructions open doors for program
failures and by duplicating all instructions, complete error detec-
tion is achievable in software. However, since duplicating store
and branch instructions is problematic, the proposed scheme
uses checking-load instruction and a new control flow checking
mechanism to verify the correct execution of such instructions.
Our comprehensive evaluation based on random fault injection
on various microprocessor components shows significant failure
rate reduction compared to state-of-the-art software instruction
duplication techniques.
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