
Software Techniques For Dependable Execution

by

Moslem Didehban

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved November 2018 by the
Graduate Supervisory Committee:

Aviral Shrivastava, Chair
Carole-Jean Wu
Lawrence Clark
Scott Mahlke

ARIZONA STATE UNIVERSITY

December 2018

ABSTRACT

Advances in semiconductor technology have brought computer-based systems into

virtually all aspects of human life. This unprecedented integration of semiconductor-

based systems in our lives has significantly increased the domain and the number

of safety-critical applications – application with unacceptable consequences of fail-

ure. Software-level error resilience schemes are attractive because they can pro-

vide commercial-off-the-shelf microprocessors with adaptive and scalable reliability.

Among all software-level error resilience solutions, in-application instruction repli-

cation based approaches have been widely used and are deemed to be the most ef-

fective. However, existing instruction-based replication schemes only protect some

part of computations i.e. arithmetic and logical instructions and leave the rest as

unprotected.

To improve the efficacy of instruction-level redundancy-based approaches, we de-

veloped several error detection and error correction schemes. nZDC (near Zero silent

Data Corruption) is an instruction duplication scheme which protects the execution

of whole application. Rather than detecting errors on register operands of memory

and control flow operations, nZDC checks the results of such operations. nZDC en-

sures the correct execution of memory write instruction by reloading stored value and

checking it against redundantly computed value. nZDC also introduces a novel con-

trol flow checking mechanism which replicates compare and branch instructions and

detects both wrong direction branches as well as unwanted jumps. Fault injection

experiments show that nZDC can improve the error coverage of the state-of-the-art

schemes by more than 10x, without incurring any more performance penalty. Further-

more, we introduced two error recovery solutions. InCheck is our backward recovery

solution which makes light-weighted error-free checkpoints at the basic block granu-

larity. In the case of error, InCheck reverts the program execution to the beginning

i

of last executed basic block and resumes the execution by the aid of preserved in-

formation. NEMESIS is our forward recovery scheme which runs three versions of

computation and detects errors by checking the results of all memory write and branch

operations. In the case of a mismatch, NEMESIS diagnosis routine decides if the er-

ror is recoverable. If yes, NEMESIS recovery routine reverts the effect of error from

the program state and resumes program normal execution from the error detection

point.

ii

This dissertation is dedicated to my exceptional wife. Zohreh, your devotion and

support goes beyond the words I can put on this paper.

iii

ACKNOWLEDGMENTS

This dissertation was only made possible by the support and guidance of my advisor

Dr. Aviral Shrivastava who his guidance and dedication inspired me over the course

of my PhD. I would like to thank my committee members, Dr. Carole-Jean Wu, Dr.

Lawrence Clark and Dr. Scott Mahlke for their insights and feedback on my research.

I would like to sincerely thank all the researchers in the field of soft error resilience

from whom I received knowledge and inspiration.

I would like to thank all members of the Compiler Microarchitectural Lab, both

past and present, for providing support and great working environment. I am grateful

to all of my friends, especially Adel Dokhanchi, Yooseong Kim and Hwisoo So, for

their support and encouragement. Many thanks to you all.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

CHAPTER

1 INTRODUCTION . 1

1.1 Soft Error Mitigation Schemes . 3

1.2 Scope of This Research . 5

1.3 Contributions . 6

2 ERROR DETECTION BY INSTRUCTION DUPLICATION 8

2.1 Introduction . 8

2.2 Related Work . 9

2.3 Limitations of state-of-the-art schemes . 12

2.4 nZDC: Our Proposed Instruction Duplication Error Detection So-

lution . 18

2.5 Experimental methodology . 26

2.5.1 Experimental Results . 31

2.6 Summary . 35

3 BACKWARD RECOVERY . 36

3.1 Overview. 36

3.2 Limitations of Related Work . 38

3.2.1 Coarse-Grain Forward Recovery . 39

3.2.2 Fine-Grained Recovery . 40

3.3 InCheck: Our Proposed Fine-grained Backward Recovery Solution . 43

3.3.1 Verified Register File Preservation . 45

3.3.2 Single Memory-Location Checkpointing . 46

v

CHAPTER Page

3.3.3 Checks for Safe Recovery . 46

3.3.4 Timely Recovery . 48

3.3.5 Control-Flow Error Recovery . 49

3.4 Experimental Methodology . 49

3.5 Experimental Results . 51

3.5.1 Error Coverage . 51

3.5.2 Performance Overhead . 52

3.6 Summary . 53

4 FORWARD RECOVERY . 54

4.1 NEMESIS: Overview . 54

4.2 NEMESIS: Details . 56

4.2.1 Memory write operation error detectors . 56

4.2.2 Diagnosis/Recovery for Memory Write Errors 62

4.2.3 Fault Coverage Analysis for Store Instructions 64

4.2.4 Control Flow Error Detection . 66

4.2.5 Control Flow Error Diagnosis/Recovery 69

4.3 Experimental Methodology . 70

4.3.1 Compilation and Simulation Framework 70

4.3.2 Fault Model and Fault Injection Set-up . 70

4.4 Evaluation and Analysis . 72

4.4.1 Fault Injection Results . 72

4.4.2 Analysis of Injected Faults . 74

4.4.3 Analysis of Diagnosis Routine Outcomes 75

4.4.4 Execution Time Overhead . 77

vi

CHAPTER Page

4.5 Conclusions . 78

5 LOW LEVEL CRASH TESTING AND ADJUSTMENTS 79

5.1 gZDC Overview . 79

5.1.1 Wrong Direction Control Flow Errors . 79

5.1.2 Unexpected Jumps . 83

5.2 Experimental Methodology . 93

5.2.1 Microprocessor and Fault injection Environment 93

5.2.2 Compilation and Binary Generation . 96

5.2.3 Fault Injection Process and Output Classification 97

5.2.4 Number of scaled SDCs as Comparison Metric 98

5.2.5 Error Coverage Results and Analysis . 100

5.2.6 Performance Overhead . 104

5.3 Conclusions . 105

6 SUMMARY AND FUTURE WORK . 106

REFERENCES . 108

vii

LIST OF TABLES

Table Page

2.1 Software-hardware view of SWIFT Protection . 14

2.2 Simulator parameters . 25

5.1 Mor1kx microprocessor configuration . 94

5.2 Fault Injection Features . 95

viii

LIST OF FIGURES

Figure Page

2.1 SWIFT transformation: part (a) data flow protection and (b) control

flow protection. 9

2.2 Baseline processor. Note that Caches and branch predictor are ex-

cluded from our error coverage analysis. 13

2.3 nZDC store checking mechanism . 19

2.4 nZDC load instruction transformation for shared memory access in

multithreaded applications. 21

2.5 nZDC Control Flow Checking Mechanism. All errors detected by

control-flow checking mechanism are considered as global errors (er-

ror is propagated to the memory). 22

2.6 Vulnerable and Non-Vulnerable intervals for original and FT version

of hypothetical program . 29

2.7 Component wise probability of failure for Original, SWIFT-protected

and nZDC-protected programs . 32

2.8 Fault injection results on CF instruction . 33

2.9 Execution time overhead for SWIFT and nZDC . 34

3.1 SWIFTR (part b) software vulnerability interval is considerably more

than SWIFT (part a) . 42

3.2 SWIFTR protected programs experience more than 16x failure than

SWIFT-protected ones! . 43

3.3 InCheck data-flow error recovery Overview . 45

3.4 An example of InCheck data-flow diagnosis . 48

3.5 SDCs Distribution in Component-wise Fault Injection Experiments 51

3.6 Execution Overhead of SWIFT-R & InCheck . 53

ix

Figure Page

4.1 NEMESIS data-flow error handling strategy. After each store instruc-

tion, the Error detector unit checks for errors, and if any observed,

the diagnosis routine will get involved and classifies the error as either

Recoverable or Detected/not-recoverable. If an error is recoverable,

memory and register restoration will take place and program continues

with executing the store instruction. Otherwise, the program stops the

execution by raising an error flag. 57

4.2 Silent store undetected error scenario in checking load mechanism.

Since the store instruction is silent, writing into the wrong memory

location error could not get detected by checking load instruction. 60

4.3 Memory write instruction checking mechanisms. (a) The first-cut solu-

tion which suffers from missing-memory update error and (b) NEME-

SIS memory write checking mechanism which solves the problem of

silent-store and missing-memory update. 61

4.4 An example of NEMESIS memory write error detection, diagnosis, and

recovery. Part (a) shows the original code. Part (b) shows the Nemesis

transformation for error detection and recovery, the original instruc-

tions are distinguished from the error management operations by be-

ing underlined. Part (c) shows NEMESIS off performance-critical-path

post error diagnosis and recovery routines. 63

4.5 Control flow protection in NEMESIS. (a) shows unprotected program

control flow. (b) shows NEMESIS branch direction double checking

mechanism. 67

x

Figure Page

4.6 Out of 15 million fault injection experiments (evenly distributed be-

tween original, SWIFTR and NEMESIS versions of programs), 237K

result in SDCs in the ORG program, 120K in the SWIFTR program,

and 0 in the NEMESIS program. 72

4.7 Fault injections in different hardware component of simulated micro-

processor never lead to failure, while running NEMESIS-protected pro-

grams. 73

4.8 NEMESIS protected code increases the percentage of masked faults by

13%, and completely eliminates SDCs. 75

4.9 Nemesis transformation is able to successfully recover from more than

97% of detected faults, while 3% of detected fault remains unrecoverable 76

4.10 Nemesis-protected programs, on an average run 30% faster than SWIFTR

protected ones. 76

5.1 gZDC inserts a branch direction check basic block between all control

flow edges from a taken conditional branch to a merge basic block. The

inserted BB always composed of a branch direction-check instruction

followed by two direct jump instructions. 82

xi

Figure Page

5.2 The impact of fine-grained vs coarse-gained instruction scheduling on

intra-BB undetected unwanted jumps. Main and Redundant instruc-

tions are shown by M and R letters respectively and arrows repre-

sent undetected intra-BB forward unwanted jumps. Part (a) shows

fine-grained instruction scheduling which leaves many unwanted jumps

(dashed arrows) as undetected because such jumps cause no mismatch

between the state of redundant registers. Part (b) shows coarse-grained

scheduling policy which has a lesser chance of undetected unwanted

jumps errors. 83

5.3 Coarse-grained scheduling in the presence of store and checking oper-

ations. As part (a) shows scheduling store and corresponding checking

operations at the end of basic block introduces new possibilities for un-

detected unwanted jumps. Dashed arrows represent these undetected

jumps. Part (b) shows gZDC coarse-grained main-redundant instruc-

tion scheduling policy in presence of store and checking instructions. . . . 85

5.4 Coarse-grained scheduling in the presence of conditional branch op-

erations. (a) Naive scheduling by inserting conditional branch at the

end of basic block. (b) gZDC wrong direction control flow and coarse-

gained instruction scheduling. 87

xii

Figure Page

5.5 Complete gZDC data-flow and control-flow transformations for a sim-

ple loop. (a) shows control-flow for a simple loop, and (b) shows

corresponding gZDC code with static signature updating operations.

MICR-updating instructions are inserted into the main-instruction-

included-BB and RICR-updating instruction are inserted into succes-

sor BBs of a join BBs. The dashed arrow shows backward trace path

to compute the aggregated signature required for RICR-updating in-

struction in BB0 2. 92

5.6 Mor1kx architecture. Caches and Branch predictor are excluded from

fault injection analysis. 94

5.7 Compared to original code, gZDC transformation reduces the number

of scaled SDCs by more than 100x. 99

5.8 Component-wise scaled SDC analysis. While instruction duplication

error checking schemes can effectively improve the register file vulner-

ability but errors affecting fetch/decode stage of pipeline remain the

main source of SDCs after applying such schemes. 101

5.9 Error Distribution. 103

5.10 Execution time overhead . 105

xiii

Chapter 1

INTRODUCTION

Advances in semiconductor technology has made computer-based systems coupled

with virtually all aspects of human life – ranging from inside our body systems (e.g.,

cardiovascular defibrillators or “emergency room in the chest”) to close or body (e.g.,

wearable technology, cell phones and health monitoring devices) to commutation and

transportation systems (e.g., autonomous vehicles, autonomous flight Systems and

drones). This unprecedented growth of semiconductor-based systems has significantly

increased the domain and the number of safety/mission critical applications – appli-

cations with unacceptable consequences of failure.

The execution of safety critical applications should be protected against hardware

malfunctions specifically random transient faults (Avižienis et al., 2004). Among the

many sources of transient faults in the semiconductor devices (e.g., electrical noise,

external interference, cross-talk, etc.) sub-atomic energetic particles that strike on

sensitive areas of a chip cause majority of transient fault induced failures in electronic

devices (Baumann, 2005a). These transient faults or soft errors temporary alter the

logical value stored in one (or more) storage element of microprocessor and their

impact will usually disappear when the erroneous data is overwritten. In most cases

the impact of such temporarily permutations do not affect the system response due

to various micro-architectural and software level derating factors (Sanda et al., 2008;

Asadi and Tahoori, 2006). In some cases, however, the erroneous value can survive

all masking effects and lead to a system level failure – unexpected output or system

crash. System failure can have different level of risk based on application reliability

requirements. While occasional failures in video game console are trivial, failures

1

obstacle detection task in autonomous vehicles can lead to a tragedy. For instance,

a recent NVIDIA paper (Li et al., 2017), explain situations that soft errors hitting a

DNN (Deep Learning Neural Network) can cause crash in self-driving cars. Therefore,

soft error mitigation strategies should be adopted to eliminate or reduce the severity

of unaccepted failures in safety critical applications.

Traditionally, soft errors considered as a reliability issue for high altitude appli-

cations like spacecrafts, satellites and aircraft mainly because of the amount and

frequency of high-energy protons and heavy-ion rays in their working environment.

Fortunately, once such particles reaches to the earth’s atmosphere they cascades to

many secondary harmless low-energy particles. Yet, among these secondary particles,

neutrons occasionally cause soft error at ground-level applications (Ziegler et al., 1996;

May and Woods, 1978; Normand et al., 2010). Additionally, studies show that due to

aggressive sub-nano transistor scaling (10nm-7nm) and near-threshold supply volt-

age, nowadays even low-energy terrestrial particles like muons can cause soft errors

(Sierawski et al., 2011; Silberberg et al., 1984; Hubert et al., 2015). International

Technology Roadmap for Semiconductors (ITRS) (IRC, 2015) executive report lists

ground-level energetic (i.e., muon-induced) particles as a difficult reliability challenge

for future microprocessors.

Many researches have been performed to quantify and predict the impact of soft er-

rors on different microprocessor components including DRAM memory, SRAM mem-

ory, sequential and combinational logic circuits. While early studies predicts expo-

nential growth in transistor-level soft error rate by technology scaling (Cohen et al.,

1999; Shivakumar et al., 2002; Baumann, 2005b), recent explorations have concluded

constant or even decreasing soft error rate in advanced sub 60nm technologies (Can-

non et al., 2008; Mahatme et al., 2014). However, due to increased level of integration

(more transistors per core, more cores per chip and more chips per system) overall soft

2

error system-level failures is expected to be increased (Shafique et al., 2014; Henkel

et al., 2013).

Soft error reliability issues have influenced industry standards and productions.

Contemporary functional safety standards, e.g. (ISO26262, 2011), clearly mentioned

to transient fault model as a safety thread which should be addressed to achieve high

safety integration level (i.e. ASIL C or ASIL D) for autonomous cars. State-of-the-art

modern microprocessors have already adopted a variety range of soft error mitigation

schemes in their design. For example, Intel Xeon microprocessor E7 family micropro-

cessors is equipped with error detection and correction codes (ECC) in both on-chip

caches and CPU registers to alleviate the issue of transient faults (Xeon, 2011). ARM

cortex-R dual/triple core lock-step microprocessors (Iturbe et al., 2016; Lyons, 2010)

have adopted redundant execution strategy to detect/mask the manifestation of er-

rors in real time applications. Even for general high performance applications, ARM

provides protected configuration which is equipped with ECC-protected memory sub-

system i.e. private and shared caches as well as TLBs(ARM®, 2014). Overall, the

wide adoption of transient fault mitigation schemes in major microprocessor vendors

implies the importance of soft error resilience issue even for safety-critical terrestrial

applications.

1.1 Soft Error Mitigation Schemes

Historically, designers of aircraft and satellite applications utilize RHBP (radiation-

hardened-by-process) microprocessors to cope with space-level radiation rate. In

RHBP microprocessor fabrication process is modified to mitigate soft error concerns.

Generally, such microprocessors are orders of magnitudes slower that high perfor-

mance microprocessors. For instance, the second generation of RAD750 micropro-

cessor, state-of-the-art commercially available RHBP microprocessor, are built on

3

0.18 micron feature size with 200 clock frequency and computational power of 400

MIPS (Haddad et al., 2011). RHBP is the most extensive error protection strategy,

however, the expensive cost of such techniques have restricted their applicability to

cost-agnostic systems.

To achieve high-performance and affordable error resiliency, designers adopt RHBA

(radiation-harden-by-architecture) microprocessors which in error mitigation is ac-

complished mainly by µarchitectural-level modifications. Mianly, RHBA techniques

explore spatial redundancy and execute two redundant versions of computations on

different hardware components – different core or different execution path inside a

core, and compare the redundantly computed results. Examples are IBM Z-series

servers (Spainhower and Gregg, 1999), HP NonStop systems (Bernick et al., 2005),

and HERMES embedded microprocessor (Clark et al., 2014, 2016). These techniques

achieve high degree of fault coverage in the cost of more than 2x performance, power

and area overhead. Less aggressive hardware redundant multithreading solutions exe-

cute redundant threads on simultaneous multithreaded processors and specific results

(mainly store instruction’s value and address) for error detection purposes (Reinhardt

and Mukherjee, 2000; Mukherjee et al., 2002). These approaches suffer from remark-

ably less performance degradation than fully redundant lock-stepped designs, but

they still require hardware modifications (Mukherjee et al., 2002).

Software level schemes can also be employed for soft error protection through

applying redundancy at various level of abstractions. Fine-grained instruction repli-

cation schemes (Oh et al., 2002a; Reis et al., 2005), run two (or three) versions of

assembly instructions and check their results periodically for error detection (mask-

ing). Thread-level replication solutions (Wang et al., 2007; Zhang et al., 2012b;

Mitropoulou et al., 2016), execute two redundant threads of computations (possi-

bly of different cores of a multicore microprocessor) and detect the manifestation of

4

errors by comparing their results. Similarly, coarse-grained process-level redundancy

schemes (Shye et al., 2009; Zhang et al., 2012a), apply redundancy at process level

for error detection.

Software-level schemes are applicable on commercial microprocessors without any

hardware modification. Because of this feature they are preferable especially for

mixed-critical systems where different tasks have different level of resiliency require-

ments (Barhorst et al., 2010; Kang et al., 2014; Wells et al., 2009; Burns and Davis,

2017). For instance, consider an application which in safety-critical tasks and non-

critical tasks share underlying microprocessor. Software error mitigation techniques

(e.g. task replication) can be applied to the safety-critical tasks for error protection,

while normal tasks can be executed without any performance degradation.

1.2 Scope of This Research

In this research we focus on instruction level soft error mitigation schemes because

of their extreme fine-grained flexibility and fast error detection capability. These

solutions can selectively be applied on the most critical part of computations (in-

structions) even inside a task or function. In fact, recent studies (Feng et al., 2010;

Laguna et al., 2016), have shown that considerable error protection can be achieved

by selective instruction-level redundancy in the cost of low performance degradation.

Despite of these advantages, the existing instruction-level replication techniques can

only meet the reliability requirements for medium- and less-critical computations and

fail to achieve high error resiliency (detection+recovery) demanded by high-critical

tasks.

The main goal of this research is to advice compiler level soft error resilient schemes

which can provide complete, effective and timely recovery for general purpose applica-

tions. Particularly, we focus on protecting the execution of programs against against

5

soft errors affecting microprocessor on-core components excluding caches and TLBs.

That is because memory subsystem can be protected efficiently and effectively by er-

ror detection and correction codes. In fact, in many embedded processors like ARM

Cortex-A53 the costumer can select cache protection version of the processor which

in caches and TLB are protected by ECC (ARM®, 2015).

1.3 Contributions

This thesis makes the following contributions:

1. nZDC: A novel comprehensive in-thread instruction duplication approach that

detects the manifestation of soft errors in all microprocessor on-core compo-

nents. Against the state-of-the-art schemes which can only protect computa-

tional instructions, the proposed scheme protect the execution of all program

instructions against soft errors.

2. InCheck: An in-application error detection and backward recovery scheme

which achieves comprehensive, safe and timely soft error resiliency. The pro-

posed schemes make light-weight verified checkpoints at basic block granularity

and reverts the program execution to the beginning of last executed basic block

after error manifestation detection.

3. NEMESIS: A compiler-level error detection, diagnosis and forward recovery

scheme. The proposed scheme expands the sphere-of-protection of existing in-

struction replication techniques from the execution of computational instruc-

tions to the absolutely all program instructions. It replaces computationally

expensive software majority-voting routines with cheap error detectors. In the

case of error, diagnosis and recovery routines allow for quick recovery, and exe-

cution will be resumed error-free.

6

4. gZDC: A general soft error detection scheme which detects hard-to-detect

control-flow errors as well as data-flow errors. The proposed solution com-

bines the best aspects of the existing state-of-the-art data and flow schemes

and introduces coarse-grained main-redundant instruction scheduler and asym-

metric control-flow signatures. Fault injection experiments on different hard-

ware components of synthesizable Verilog description of an OpenRISC-based

microprocessor shows that the effectiveness of the proposed solution.

The rest of the dissertation is organized as follows. Chapter 2 reveals the vulner-

able windows in the existing instruction-level error detection schemes and describes

a novel instruction-replication soft error detection schemes. The proposed scheme

considerably increases the error detection coverage of the state-of-the-art schemes.

Chapter 3 explains the flaws in state-of-the-art in-application error recovery scheme

and introduces a safe and fast backward recovery solution. Chapter 4 discusses a

novel soft error forward recovery scheme. Chapter 5 explains a generic soft error

detection and shows RTL-level fault injection results. Finally, Chapter 6 concludes

this dissertation and proposes possible future extensions.

7

Chapter 2

ERROR DETECTION BY INSTRUCTION DUPLICATION1

2.1 Introduction

In order to achieve a low-cost and flexible fault tolerance mechanism, several

software-level techniques have been proposed. Among software-only fault tolerance

techniques, low-level instruction duplication based schemes (Oh et al., 2002a; Reis

et al., 2005, 2007; Feng et al., 2010; Khudia et al., 2012; Mitropoulou et al., 2013b;

Yu et al., 2009) are the most popular ones because they provide flexible protection

without imposing any inter-thread or inter-core communication overhead. The key

idea behind such methods is time redundancy and that error protection is possible by

redundant execution and result checking. Instruction-level error detection schemes

usually divide programmer available registers into two sets of registers and replicate

program instructions with different registers. Error detection is accomplished by

simply checking the results of redundant instructions. In this chapter, we review the

state-of-the-art instruction duplication error detection schemes. Then, We highlight

the limitations of existing schemes and propose our solution to enhance the error

detection ability of existing solutions. Finally, we evaluate the effectiveness of our

proposed scheme by processor-wide µarchitectural-level fault injection experiments.

1This chapter combines two published papers, Didehban, Moslem, and Aviral Shrivastava.
“nZDC: A compiler technique for near Zero Silent Data Corruption.” Proceedings of the 53rd
Annual Design Automation Conference. ACM, 2016 and Didehban, Moslem, and Aviral Shrivas-
tava.“A Compiler Technique for Processor-Wide Protection From Soft Errors in Multithreaded En-
vironments.”IEEE Transactions on Reliability 67.1 (2018): 249-263The publishers permit authors
to include partial or complete papers of their own in a dissertation.

8

(O1) mov x3, #0xff
(O2) load x1, [x3, #40]
(O3) add x3, x1, #4
(O4) store x3, [x2, #32]

(s1) mov x3, #0xff
(s2) mov x3*, #0xff

(s3) cmp x3, x3*
(s4) b.ne error
(s5) load x1, [x3, #40]
(s6) mov x1*, x1

(s7) add x3, x1, #4
(s8) add x3*, x1*, #4

(s9) cmp x3, x3*
(s10) b.ne error
(s11) cmp x2, x2*
(s12) b.ne error
(s13) store x3, [x2, #32]

.BB0:
(O1’) cmp x1, x2
(O2’) b.eq .BB1
.
.
.
.BB1:

…

(s1’) cmp x1, x1*
(s2’) b.ne error
(s3’) cmp x2, x2*
(s4’) b.ne error
(s5’) cmp x1, x2

(s6’) xor RTS, #sig-BB0, #sig-BB1

(s7’) b.eq .BB1
(s8’) xor RTS, #sig-BB0, #sig-BB2
.
.
.
.BB1:
(s9’) xor GSR, GSR, RTS
(s10’) cmp GSR, #sig-BB1

(s11’) b.ne error
….

(a) (b)

x 2
-V

u
l

x 3
-V

u
l

x 1
-V

u
l

x 2
-V

u
l

x 3
-V

u
l-

lo
ad

Figure 2.1: SWIFT transformation: part (a) data flow protection and (b) control
flow protection.

2.2 Related Work

Error Detection by Duplicated Instructions or EDDI (Oh et al., 2002a) scheme

is one of the pointers of instruction-replication based schemes. EDDI partitions pro-

grammer visible registers and program memory space into partitions. EDDI transfor-

mation replicates all program computational and memory instructions with different

set of registers. EDDI checks the results of redundant computations for error detec-

tion right before the execution of memory write and conditional branch instructions.

In an attempt to improve the performance and fault coverage of EDDI, SWIFT

(Reis et al., 2005) eliminates the need of memory duplication by assuming that the

memory subsystem is protected (by other means such as ECC). In SWIFT transfor-

mation, all computational/logical instructions are duplicated with different registers

and the checking instructions are inserted before three type of instructions: a) mem-

ory read operations, b) memory write operations, and c) control flow instructions,

i.e., compare, branch, and function calls. Figure 2.1(a) shows the SWIFT data flow

transformation and the corresponding original code. In the Figure, shadow registers

9

are differentiated from the master ones by an star (x1* is the shadow for x1). In

the snippet code presented in the Figure, original “mov”(inst. O1) and “add”(inst.

O2) instructions are duplicated by SWIFT transformation which are marked as DI

(Duplicatable Instruction) in the Figure. SWIFT transformation does not duplicate

the memory read instructions and it checks for errors in memory address register

of memory read operations before the execution of such instructions and copies the

loaded value into the corresponding shadow register right after the execution of load

instruction. SWIFT memory read instruction transformation is marked by read in

the Figure. For the “load” (inst. S5) instruction, the value of address register x3 is

checked against the redundant-computed value x3*, before the execution of “load”

instruction and the loaded value x1 is copied into the corresponding shadow register

x1* right after the “load” instruction. We named this extra “move” instructions (inst.

S6) as “copying-move” instruction. SWIFT transformation only executes one version

of memory write instructions and the checks the register operands of such instructions

before their execution for error detection. The memory write instruction transforma-

tion is marked as Write in the Figure. The “store” instruction register operands, x3

and x2 are checked against their shadows x3* and x2* before the execution of store

instruction.

To protect the execution of programs against control flow errors, SWIFT checks

register operands of “compare” instructions and uses statically-assigned signatures to

detect errors affecting the execution of “branch” instructions. Figure 2.1(b) shows

SWIFT control flow transformation. Before the execution of cmp (inst. s5’), its

register operands x1 and x2 are checked against their shadow registers x1* and x2*.

SWIFT transformation statistically assigns a specific number (called signature) to

each basic block and uses two specific registers (named RTS and GSR) to dynamically

recompute basic blocks signatures. It declares a control flow error, if dynamically cal-

10

culated signature does not match with the statistically assigned signature. Before each

“branch” instruction or at the end of each basic block, the RTS (Run-time-Signature)

register is computed from the current basic block signature and the branch destination

basic block signature (inst. S6’ and S8’). The control flow error detection takes place

in the beginning of each basic block by extracting the basic block signature from the

RTS and GSR (General Signature Register) registers and checking the dynamically

calculated signature against the statically-assigned ones (labeled as Sign-check in

the Figure).

For more than a decade, SWIFT has been considered as the most effective in-

thread instruction duplication technique in terms of fault coverage. Acknowledging

the near perfect fault detection ability of SWIFT, several works have tried to improve

the performance overhead of SWIFT transformation (Feng et al., 2010; Khudia et al.,

2012; Mitropoulou et al., 2013b; Yu et al., 2009; Mitropoulou et al., 2013b). For in-

stance, authors of Shoestring (Feng et al., 2010) paper express that “SWIFT has the

advantage of being purely software-based, thus requiring no specialized hardware, and

can achieve nearly 100% coverage”. Targeting non-critical applications, Shoestring

compromises between fault coverage and performance overhead of instruction dupli-

cation by taking advantage of low-level hardware symptom detectors and applying

instruction duplication to those instructions which error on them most likely cause

no symptom. Similarly, research IPAS (Laguna et al., 2016), also apply instruc-

tion duplication judiciously of most critical instructions of programs and trades off

coverage for effiency. On the other hand, DRIFT (Mitropoulou et al., 2013b) and

ESoftCheck (Yu et al., 2009) try to improve SWIFT performance overhead without

jeopardizing its fault coverage. A recent study explores the use of vector instruction

for instruction replication-based fault tolerant techniques and illustrates considerable

performance improvements (Chen et al., 2016).

11

2.3 Limitations of state-of-the-art schemes

Ideally, a perfect software fault detection scheme should be able to protect the

execution of a program against soft errors on various hardware components. How-

ever, the main error coverage limitation of existing instruction duplication techniques

is that they can only detect the impact of errors on the execution of some instruc-

tions (i.e., the ones that they replicate) and leave the rest unprotected. To provide

a detailed analysis of the protection offered by instruction duplication techniques,

in particular SWIFT (Reis et al., 2005), we investigate the impact of single bit flip

transient faults on different hardware components while executing a SWIFT-protected

program. We consider an in-order baseline processor (shown in Figure 2.2) and ex-

amine the impact of errors on different type of instructions in a SWIFT-protected

code. We limit our analysis to the microprocessor core components excluding branch

predictor and memory subsystem. We do not consider soft errors on branch predictor

structure because we assume that soft errors affecting branch predictor will affect the

performance of the processor not its functionality (Mukherjee et al., 2003). We as-

sume that memory subsystem including TLBs and caches ECC are protected by ECC

(Error detection and Correct Code) and the data is protected while it is in memory.

However, faults on cache controllers while decoding an address can still result to a

wrong access (read/write) to the memory (Borucki et al., 2008).

First, we classify the instructions in a SWIFT-protected code into 7 categories: i)

Duplicable Instructions (DIs): these are program computational/logical instructions

which are duplicated by SWIFT transformation, ii) Memory Read Instructions (Mem-

Read): These are load instructions that SWIFT checks their address register before

their execution, iii) Copying-move (CopMov) instructions: these are inserted after

MemRead instructions to provide consistent input replication for shadow and master

12

I-cache

Fetch

Decode Issue Queue

Functional
Units

Register
File

LSQ

D-cache
Commit Queue

B
ran

ch

P
re

d
icto

r

Figure 2.2: Baseline processor. Note that Caches and branch predictor are excluded
from our error coverage analysis.

instructions, iV) Memory Write instructions (MemWrite): wherein value and address

register operands are checked before their execution, v) Original Compare (OrgCMP)

instructions: wherein register operands are checked to prevent control flow errors, vi)

Original Branch (OrgBR) instructions, and vii) Checking Instructions (CIs), which

includes instruction responsible for updating the RTS and GSR registers, checking

for discrepancy in signatures or redundantly computed registers, and terminating the

program execution in case of error.

Table 2.1 summarizes the protection offered by SWIFT in the presence of sin-

gle bit-flip error in different hardware components. The rows in the Table represent

various type of instructions in a SWIFT-protected program and the columns show

various hardware components. If SWIFT transformation is able to detect the effect

of errors in component Comp., while it is utilized with instruction Inst., the letter

P (Protected) is placed in the corresponding location (Inst.,comp.) in the Table.

13

Table 2.1: Software-hardware view of SWIFT Protection

Inst. Type Fetch Decode IQ FUs Commit LSQ RF

DI P1 P P P P na P

MemRead NP2 NP NP NP NP NP NP

CopMov P P P P P na3 NP

MemWrite NP NP NP NP NP NP NP

OrgCMP NP NP NP NP NP na NP

OrgBr NP NP P P P na NP

CI NP NP P P P na P

1 Protected. 2 NotProtected. 3 not applicable.

Otherwise, it is filled by NP (NotProtected), which means SWIFT transformation

cannot protect the execution of instruction Inst. against faults in the hardware com-

ponent Comp.

Duplicable Instructions (DIs): The first row in the table says that SWIFT trans-

formation can detect errors affecting the execution of duplicated instruction, regard-

less of the location of fault. If error happens on any hardware component while pro-

cessing a DI instruction, the impact of error will get masked or detected by SWIFT

checking instructions. It is worth mentioning that if an error hits some specific bits

in the micro-architectural resources, e.g., the valid-bit of an entry holding two re-

dundant instants of a duplicated instruction, the error alters both instructions in the

same way and remains undetected.

Memory Read Instructions (MemRead): As the second row of table 2.1 shows,

SWIFT transformation leaves memory read instructions unprotected during their

14

execution. This is because there is no redundant version or execution check for load

instructions. Therefore, all errors which modify the address or the size of loaded value

can result to a failure. Examples of such errors are: errors that hit fetch, decode, or

issue stage registers while they are occupied by load instruction. Errors on functional

unit that is responsible for load effective address calculation. Errors on memory read

request address or target data size while the load request is processing in the load-

store queue. Even if an error hits the source register of a memory read instruction

(e.g., register x3 of load in Figure 2.1(a)) before getting directly2 accessed by the

memory read instruction, it will cause a wrong-memory-location access error. Note

that in this case, since the state of load address register is different from its shadow,

the error will remain undetected if the next access to the load source register is a

write.

Note that the execution of memory read instructions are unprotected in many

similar instruction-based replication techniques (Chen et al., 2016; Reis and August,

2006; Mitropoulou et al., 2013a; Martinez-Alvarez et al., 2012; Reis et al., 2006, 2007;

Wang et al., 2007; Zhang et al., 2012b; Yu et al., 2009; Khudia et al., 2012; Yu et al.,

2008, 2007).

Copying Mov Instructions (CopMov): Soft error on all microprocessor hardware

components, expect register file, while processing CopMov instructions is covered by

SWIFT transformation. If an error hits a CopMov instruction source registers (e.g.,

x1 of CopMov instruction (inst. s6) in the Figure 2.1(a)), the error will propagate

from master register (x1), to its corresponding shadow register (x1*) and remain

unnoticed.

All instruction replication based techniques that do not duplicate the memory read

2An instruction accesses a register directly, if that is the last access to the register so far.

15

instructions (Chen et al., 2016; Reis and August, 2006; Reis et al., 2006; Mitropoulou

et al., 2013a; Martinez-Alvarez et al., 2012; Reis et al., 2007; Wang et al., 2007; Zhang

et al., 2012b; Yu et al., 2009; Khudia et al., 2012; Yu et al., 2008, 2007), also suffer

from this vulnerable interval.

Memory Write Instructions (MemWrite): Similar to MemRead instructions,

memory write instructions are also vulnerable all through their execution. Errors

affecting opcode, data and address register pointers, immediate, shift, size and rotate

field while a memory write instruction is processing by pipeline registers are the ex-

amples of such undetected errors. Likewise, errors altering memory effective address

while the instruction is utilizing functional unit or load-store queues also remain un-

detected. Furthermore, the operands of store instructions are also susceptible to soft

errors that occur before the register gets accessed directly by such instructions. How-

ever, there is a chance that such errors in register file are detected by the upcoming

checking instructions, if the next access to faulty registers is a read. Memory write in-

structions are also single-point-of-failure in many fine-grained instruction replication

techniques (Xu et al., 2013; Chen et al., 2016; Reis and August, 2006; Mitropoulou

et al., 2013a; Martinez-Alvarez et al., 2012; Feng et al., 2010; Reis et al., 2007, 2006;

Wang et al., 2007; Zhang et al., 2012b; Yu et al., 2009, 2007, 2008; Mitropoulou et al.,

2013b; Liu et al., 2015; Xiong and Tan, 2013; Chen et al., 2016).

Original Compare Instructions (OrgCMP): As the Figure 2.1(b) shows, SWIFT

transformation adds checks to the operands of compare (inst. s5’) to avoid wrong-

direction control flow errors. However, since the compare instruction itself is not

duplicated, errors during the execution of compare instruction itself, can change the

control-flow of the program and remain undetected. Note that in this case, the

16

signature-based part of SWIFT control flow checking mechanism is also unable to de-

tect the error because the RTS register is set for both (taken or not-taken) directions

(inst. s6’ and s8’). There are many similar techniques (Xu et al., 2013; Chen et al.,

2016; Reis and August, 2006; Mitropoulou et al., 2013a; Martinez-Alvarez et al., 2012;

Feng et al., 2010; Reis et al., 2007, 2006; Yu et al., 2009, 2007, 2008; Mitropoulou

et al., 2013b; Liu et al., 2015; Xiong and Tan, 2013; Chen et al., 2016; Oh et al.,

2002a) that suffer from the same control-flow vulnerability.

Original Branch Instructions (OrgBr): The original branch instructions are vul-

nerable to soft errors when they are in the fetch and decode units. If an error changes

the branch opcode or condition field of a branch instruction, it can change the direct

of the branch from taken to not-taken or vice versa, and the error remains unnoticed.

Most of the errors that change the target address of a branch will get detected by the

signature-part of the SWIFT control flow checking mechanism. However, if an error

causes a jump back to the body of the source basic-block (after the signature-checking

instructions) it still remains undetected because the signature-checking part is already

passed. Furthermore, in table 2.1 it is noted that the branch instructions are not pro-

tected in the register file. This is because the source register for (direct or indirect)

branch instructions is the program status flag register, which holds Zero, Overflow,

Negative, and Carry bits, and if error happens on the flag register, the direction of

branch will be changed and the error is undetectable. For function calls, depending

on the implementation, if just one copy of registers is sent to the callee function,

the registers are unprotected between checking (in caller function) and duplicating

time (in callee function). Many of similar works (Xu et al., 2013; Chen et al., 2016;

Reis and August, 2006; Mitropoulou et al., 2013a; Martinez-Alvarez et al., 2012; Feng

et al., 2010; Reis et al., 2007, 2006; Yu et al., 2009, 2007, 2008; Mitropoulou et al.,

17

2013b; Liu et al., 2015; Xiong and Tan, 2013; Chen et al., 2016) also suffer suffer the

same problem.

Checking Instructions (CI): SWIFT transformation inserts a plenty of checking

instructions into the code to ensure the correct execution of the program. These

checking instructions are either redundant-register mismatch-checking instructions

(i.g. instructions s3, s4, s9, s10, s11, s12, s1’, s2’, s3’ and s4’ in the Figure 2.1) or

signature setting/checking instructions (i.g. instructions s’6, s8’, s9’, s10’ and s11’).

Generally, errors affecting these instructions just cause false alarms and not lead to a

failure. However, in some special cases (e.g., opcode of a CI instruction changes to a

store instruction), it is possible that the program experiences failure because of soft

error on a CI instruction.

Overall, the memory and control-flow instructions are the main single-point-of-

failures in many in-thread instruction replication-based techniques. In (Blem et al.,

2013; Patterson and Hennessy, 2013) the amount of MemRead, MemWrite, OrgCMP

and OrgBr instructions are reported as 50%, 55%, and 40% on average for X86, ARM,

and MIPS processors, respectively.

2.4 nZDC: Our Proposed Instruction Duplication Error Detection Solution

In this section, we present nZDC (a compiler technique for near Zero silent Data

Corruption), a compiler approach to almost eliminate SDCs. In line with previous

researches, we assume that soft errors can modify the data within the CPU but

memory and caches are protected by other orthogonal techniques such as ECC. The

salient features of nZDC are:

18

store X1, [X2]

load X1, [X2*]

cmp X1, X1*

b.ne error

store X1, [X2]
store X1, [X2]

load X1*, [X2*]

cmp X1, X1*

b.ne error

(a) Original (b) First-cut (c) nZDC

Figure 2.3: nZDC store checking mechanism

nZDC Protects Stores by Checking-load Strategy

nZDC introduces the concept of “checking load instruction” to make sure that the

store instruction has executed fault free. The main idea here is to load back the stored

value from the memory and check that against the stored value, if they match there

is no error otherwise error handler routine get involved. Figure 2.3(b) shows the first-

cut of our approach to insert checking load instruction. Although it can detect errors

which affect the address part of the store instruction, yet errors on value part can

simply propagate from the store’s value register to checking load value registers, and

remain undetected. For instance, if soft error alters the value of X1, store instruction

writes the erroneous value into memory. Later, the checking load instruction loads

the corrupted value to X1* register. Now, both X1 and X1* have same wrong values

and comparing them cannot catch the error. This happens because the value register

19

of checking load instruction is the shadow of the value register of store instruction.

nZDC protects stores by using the same value register for both store and checking

load instructions and later check that register against its shadow for soft error (Figure

2.3(c)). By this method, in addition to the producer chains of store value and address

registers, the execution of store instruction itself is also protected.

The performance overhead of nZDC solution for store instruction may seem high

at first, but thanks to store-to-load forwarding mechanism in LSQ of modern micro-

processor, the checking load instructions normally take their values from forwarding

path in load-store unit and executes very fast. The only problem here is, if error

happens on store buffer after that the store forwarded its data to the checking load

instruction, the error may remain undetected. This unprotected interval can be com-

pletely removed in two ways; i) flush store buffer after each store, or ii) use ECC in

store buffer. The former comes with significant performance degradation; it is similar

to the case that there is no store buffer at all. The second approach may not have

performance overhead, but the ECC code should be generated before the stores arrive

at the store buffer.

nZDC Protects Loads by Relax Duplication Strategy

Memory read instructions are the most frequent unprotected instruction in SWIFT

and many other software redundancy based techniques (Khudia et al., 2012; Yu et al.,

2009). These instructions behave such as the input of duplicated instructions chain,

and if a memory read instruction gets faulty, the execution can go wrong and checking

instructions are unable to detect such an error.

Our solution for memory read instructions is simple, we use ”load” duplication,

which in memory read instructions get duplicated as well as logical and computational

instructions. The load instruction duplication has two advantages; 1) it protects load

20

L1:
load x1  [x2];
load x1*  [x2*];
if (x1 != x1*)

jump .Diagnosis;
L2:

.Diagnosis
if (x2 != x2*)

jump .SoftError(Local);

counter++;

if (counter > THRESHOLD)
counter = 0;
load x1  [x2];
mov x1*, x1;
jump .L2;

jump .L1;

R
ed

u
n

d
an

t
co

m
p

u
ta

ti
o

n
s

x1, x2 x1*, x2*

Figure 2.4: nZDC load instruction transformation for shared memory access in
multithreaded applications.

instructions completely during their execution in pipeline, LSQ and removes load-

related register file vulnerable intervals (Marked as X3-vul-load in Figure 2.1), and 2) it

saves performance overhead by reducing the number of checking instructions.

The load instruction duplication may introduce false alarms for memory access to

the shared memory in multithreaded applications if an intervening store changes the

state of the memory between redundant load accesses. Figure 2.4 illustrates nZDC

memory read instruction transformation for shared memory access in multithreaded

applications. As it shows, nZDC transformation redirects the program control to a

diagnosis block if the results of redundant loads are different. In the diagnosis block,

it first checks for errors in loads address registers (x2 and x2* in the Figure 2.4). In

case of mismatch, the soft error detection flag will be raised. If there is no error in

replicated load address registers, there can be two possibilities for the inconsistency:

(1) soft error happens during the execution of one of the load instructions and for

instance, alters the effective address, or (2) intervening store from the other thread

has modified the state of the memory. Either way, by jumping back to right before

21

BB1

BB2

BB3

//body of BB1
(c1) cmp op1, op2
(c2) b.condition .BB3

Taken
Not-Taken

//body of BB3

//body of BB2

BB1

BB2

BB3

//body of BB1
(zc1) subs CDR  op1 - op2
(zc2) if (condition) CDR  invert (CDR)
(zc3) XOR CDR, CDR, #sig-BB2
(zc4) subs CCR  op1* - op2*
(zc5) b.condition .BB3
(zc6) b.condition .error
(zc7) if (! condition) CDR  invert (CDR)
(zc8) XOR CDR, CDR, diff(#sig-BB1, #sig-BB2)

Taken
Not-Taken

(zc11) XOR CDR, CDR, #sig-BB3

(zc12) XNOR CCR, CCR, CDR
//body of BB3

check CCR, #0, .error(MemUnSafe)

(zc9) XOR CDR, CDR, #sig-BB2

(zc10) XNOR CCR, CCR, CDR
//body of BB2

check CCR, #0, .error(MemUnSafe)

(a) (b)

Figure 2.5: nZDC Control Flow Checking Mechanism. All errors detected by
control-flow checking mechanism are considered as global errors (error is propagated
to the memory).

redundant-load instructions, the problem will be solved. If soft error was the reason

for the discrepancy (mismatch between x1 and x1* in Figure 2.4), simply re-execution

provides recovery. If the discrepancy comes from an intervening store instruction (like

race condition), the problem will be solved by repeating the execution of redundant

loads. However, to prevent a program from going to an infinite loop (due to frequent

memory update by other threads between the redundant loads instructions) nZDC

transformation uses a threshold-based mechanism. Basically, it counts the number

of iterations that a particular diagnosis routine has been involved (counter++ in

Figure 2.4). If the number of iterations exceeds a predefined value, the nZDC first

resets the counter. Then performs just one load and copies the loaded value to the

corresponding shadow register, and transfers the program execution to right after

the checking instructions in the original control flow of the program. Note that

since the execution of diagnosis block is rare, the performance overhead of nZDC

transformation is acceptable.

22

nZDC Control-Flow Checking Mechanism

An effective control flow checking mechanism should be able to protect all of the

control flow determining parts of the execution; which are a) Operands of compare

instructions, b) pipeline registers while executing compare instruction, c) conditional

registers (NVCZ flags) and d) branch instructions. Against the existing control flow

checking mechanism which can partially protect some of these parts, nZDC control

flow checking mechanism can effectively protect all control flow checking determining

components. The nZDC control flow mechanism (shown in Figure 2.5) demands

two general purpose registers, called CDR (Compare Destination Register) and CCR

(Compare Check Register). The nZDC control flow checking mechanism works based

on three main insides: a) compare and branch instruction replication, b) protect

NVZC flag register by conditionally inverting the value of CDR register based on the

direction of the following conditional branch, and c) use static signatures for source-

encoding/destination-decoding to make sure that the control flow of the program is

traversed correctly. The nZDC control flow mechanism consists of five main steps:

Duplicating CMP instruction: Generally, in ARM and X86 ISAs, a compare

(CMP) instruction is implemented by a subtraction (SUB) instruction which disre-

gards the results of the subtraction operation and updates the program status flags

(NVZC). Leveraging this fact, nZDC control flow transformation converts all pro-

gram compare instructions to their equivalent subtraction operations and duplicates

them. However, rather than disregarding the results, nZDC control flow transfor-

mation saves the results of the subtraction operation into CDR and CCR registers.

In Figure 2.5, instructions (zc1) and (zc4) are for duplicated versions of the original

CMP instruction (c1).

Conditionally inverting the CDR: Since the NVZC register is not duplicable,

23

nZDC uses time redundancy to protect that register against soft errors. For instance,

as Figure 2.5 shows, at time t, the first CMP instruction(zc1) sets the NVZC flag,

which is going to be read by the following conditional invert instruction(zc2) at the

next cycle (assuming 1 cycle per instruction). The second CMP instruction(zc4) will

be set to the NVZC flag at time t+3, and the flag register will be read by conditional

branch instruction(zc5) at time t+4. If the first CMP instruction(zc1) sets the NVZC

flag in such way that the condition of the following conditional branch(zc5) is true,

the CDR register gets inverted right after the first SUBS instruction (zc1). On the

other hand, if the condition is not true and branch is suppose to be not taken, the

CDR gets inverted after the branch (zc7). In a fault free run of the program for

each conditional branch, the CDR inverts just one time. Although this conditional

instructions is ISA dependent, it can be replaced with a micro if the ISA does not

support these instructions.

Duplicating branch Operations: nZDC duplicates all programs conditional

branch instructions. However, the branch target addresses for the copy branch (zc6)

is error handler basic block. The purpose of branch duplication is to protect the

soft errors on the branch opcode. The main idea is if the condition is true, the main

branch (instruction I5) will change the control flow of the program and the redundant

one does not execute. If the condition is not true neither of the branches changes

the control flow. But if errors happen on the original branch opcode, e.g., branch

changes from blt (branch less than) to bgt (branch greater than) and if it changes

from taken to not-taken, the redundant branch detects the error. On the other hand,

if soft error alters the direction of a conditional branch from not-taken to taken, nZDC

control-flow checking instructions detects that in the wrong target basic block.

Adding destination signature: Based on the possible destination, the CDR

register gets XORed with a unique and basic block signature assigned to all program

24

Table 2.2: Simulator parameters

Parameter Value

CPU Model ARM64 bit in-order processor

Pipeline Two issue/4-stage

of FUs 2Int, 1Mul, 1Div, 1Float, 1Mem

L1 D/I-Cache 64KB (2-way) / 32KB (2-way)

Integer register file 32 registers (64-bit width)

Store buffer size 5 entries

basic block statically. Instruction(zc3) shows the destination related signature coding

if branch is taken, otherwise instruction(zc8) performs the signature coding for the

next basic block.

Inserting control-flow checking instructions: In order to check if the di-

rection of a branch has been taken correctly, nZDC inserts two instructions at the

beginning of the all program’s basic blocks. The first instruction XORs the CDR reg-

ister with the current basic block signature (zc10 in BB2 and zc9 in BB3) and saves

the result back to the CDR register. The next instruction XNORs the CDR and CCR

registers (zc12 in BB2 and zc10 in BB3) and stores the result in CCR. In a fault free

run of the program execution, before XNOR instruction, the value of CDR should be

equal to the inverted value of CCR. Therefore, after the XNOR instruction the CCR

register value should be always Zero because the inputs for the xnor instruction are

each other inverse (one’s complement). Finally the nZDC control flow error detecting

instructions will be inserted into two points of execution: 1) before each write to the

CCR (between inst zc3 and zc4), and 2) before all function calls and direct branches.

25

2.5 Experimental methodology

We have performed extensive fault injection testing to evaluate the effectiveness

of nZDC and SWIFT in reducing SDCs.

Compilation framework: We have implemented nZDC and SWIFT transfor-

mations as late backend passes in LLVM3.7 compiler infrastructure (Lattner and

Adve, 2004) after register allocation and instruction scheduler. This implementation

enables us to take advantage of all of the advanced compiler optimizations includ-

ing Common Sub-expression Elimination (CSE) and Dead Code Elimination (DCE).

We test the effectiveness of SWIFT and nZDC on applications from the Mibench

benchmark suite.

Simulation environment: We have used the gem5 (Binkert et al., 2011) - a

popular cycle-accurate microarchitectural simulator. The simulator was run in ARM

syscall emulation mode and modeled the ARMv8-a profile of the ARM64 bit archi-

tecture. We have used a two-way in-order ARM architecture for fault injection ex-

periments with the details of the processor configuration in Table 2.2. The simulated

CPU model is very close to “cache protection configuration” of ARM Cortex-A53, a

popular modern high performance low power embedded microprocessor. In this con-

figuration of ARM cortex-A53 the memory subsystem including TLB, instruction and

data L1 caches, and L2 data cache are protected with error detection and correction

codes.

Fault sites: Instead of injecting faults just on processor’s register file, we inject

faults on all the major sequential component of the processor. For the in-order ARM,

this includes the pipeline registers, load-store queue and functional units. All the

other components are either not vulnerable (e.g., the branch predictor), or are al-

ready assumed protected (e.g., the caches and the TLBs). Additionally, to show the

26

effectiveness of the nZDC control-flow checking, we specifically perform fault injection

on the branch and compare instructions while they are in the processor’s pipeline.

Fault injection experiments: For each fault site, a random bit in a random

time is selected and inverted. For example in the case of register file, at the start of

each experiment a physical register, a bit and a cycle is selected randomly for fault

injection. Simulation runs the program normally till the selected cycle. Then the

value inside the selected bit gets inverted, and the program runs until completion or

allowable simulation time (which is 10 times the nominal execution time) gets over.

For each fault site, 400 faults are injected which gives us a 5% margin of error and

95% confidence interval (Leveugle et al., 2009). This means, that for each version

of the program (original, SWIFT and nZDC), 2400 fault injection experiments are

performed. Among them 2000 faults are injected into register file, pipeline registers,

load store queue, functional units, and the rest, 400 faults, are specifically injected

into the main branch and compare instructions. Overall, we inject 72,000 faults in

various components of the processors.

Output classification: Since the main goal of this work is to prevent a program

from producing the wrong output because of soft errors, the result of each fault

injection trial is classified into two categories: 1. SDC: The simulation runs which are

terminated normally, but produce wrong output, and 2. Others: All other scenarios

i.e, masked faults, detected fault, segmentation fault and crash fall into this category.

Comparison Metric

The common practice to evaluate the efficacy of software fault tolerant techniques is

by comparing percentage of failures/SDCs extracted from statistical fault injection

with performing the same number of fault injection experiments for original and

protected versions of the programs (Xu et al., 2013; Chen et al., 2016; Reis and

27

August, 2006; Mitropoulou et al., 2013a; Martinez-Alvarez et al., 2012; Feng et al.,

2010; Reis et al., 2007, 2006; Wang et al., 2007; Zhang et al., 2012b; Yu et al., 2009,

2007, 2008; Mitropoulou et al., 2013b; Liu et al., 2015; Xiong and Tan, 2013; Chen

et al., 2016; Oh et al., 2002a). However, since usually software fault tolerant methods

prolong the execution time of the program, they can decrease the percentage of SDCs

just by increasing the amount of masked or detected errors caused by the faults

that influenced the program-irrelevant parts of execution (Schirmeier et al., 2015).

Program-irrelevant parts of execution is the segment of the execution time that is not

part of the original program, but is needed to protect the original program, such as

the duration of time that the processor spends to execute the redundant and control

flow checking related instructions in SWIFT/nZDC protected programs. To clearly

express the main idea of this section, we use a simplified example of running original

and FT versions of a program on a simple in-order CPU. The execution time trace is

shown in Figure 2.6.

As the figure shows, the original program, marked as ORG, starts its execution at

time 0 and finishes at time 10. During the execution of this program, we assume some

intervals as Vulnerable (V) and some as Non-Vulnerable (NV), which means if soft

error happens on V interval, it leads to program failure, and, if fault occurs on NV

interval, it will get masked. This program spends 4 units of time in V intervals and 6

in NV intervals. Now, assume that 10 random fault injection have been performed on

this program. In an ideal random fault injection, one fault would happen on each unit

of time, and since 6 units of execution time is NV and 4 is V, the amount of failures

should be 4, or 40%. Now, consider a hypothetically FT version of the program.

FT version of the program has two parts; first part is exactly similar to the original

ones, and the second part is just No-operations (NOP). The execution time of the

FT version is as twice as the original one, which makes the execution time of the FT

28

Figure 2.6: Vulnerable and Non-Vulnerable intervals for original and FT version of
hypothetical program

version 20 units of time. Now, assume we perform the same random fault injection

experiments that we did on the original version of the program (10 fault injection). If

we randomly select 10 cycles to perform fault injection, statistically speaking, most

likely 5 of them would occur on the second part of the program (the NOP execution

part) which is NV interval, and therefore, will not result in failure. From the 5

remaining faults, happening on the first part of the FT program, 2 will happen on

V intervals and 3 should happen on NV intervals. Therefore, the number of failures

in this case is 2, or 20% of total injected faults. Although the ideal statistical fault

injection results show significant (from 40% to 20%) reduction in failure rate, the

question, however, is whether this reduction is real or just a false conclusion.

Intuitively, it is clear that the correct interpretation of SFI results should demon-

strate exactly the same amount of failures for both original and FT version of the

program. In this work, we use Pprobability of Filure (PoF) as a comparison metric

that can be calculated by involving the execution time overhead of the FT version

in two ways; a) adjusting the number of fault injection experiments according to the

execution time overhead and just comparing the absolute number of failures not per-

centage. For example, injecting 20 random faults instead of 10 random faults of the

29

FT version of the program in the above example should get us 4 failures, which is

exactly equal to the number of failures of the original program. b) Multiplying the

number/percentage of failures into the execution time overhead. For example, for FT

version of the program in the example above, we can use 20% * 2 = 40%, which is

equal to the original program failure rate.

In addition, as pinpointed by (Schirmeier et al., 2015), showing the number or

percentage of detected or masked fault is also misleading. For instance, in our simple

example, injecting 10 faults in FT version of the program would lead to 80% masked

faults, which in comparison with the original program fault injection is 20% more.

However, this fault masking improvement is the result of faults which are injected

into the program-irrelevant parts of the execution of the program. Similar to NOPs,

in the imaginary FT version of the above example, redundant instructions in the

in-thread duplication FT schemes are also irrelevant to the main program. Faults

that affect these original program irrelevant parts will result in either masked or de-

tected/SegFault and should not be considered as the fault detection ability of the FT

method.

In conclusion, since comparing the absolute or percentage of SDCs of original and

protected versions of the program can result in an overestimation of the effectiveness

of the software fault tolerance techniques, in this paper we use the PoF metric which

was calculated as follow:

PoF = Percentage of SDCs× execution time overhead (2.1)

For the original version of the programs, the execution time overhead is considered

as 1; therefore, the PoF is equal to the percentage of SDCs. For protected versions

of the program, the execution time overhead is calculated as the protected program

execution time divided by the original program execution time.

30

2.5.1 Experimental Results

Error Coverage

Graphs in Figure 2.7 present the PoF for each hardware component. In each graph,

the PoF is plotted on the Y-axis for each benchmark on the X-axis. We study the

PoF for original, SWIFT and nZDC versions of the benchmarks for the following

components:

Figure 2.7(a) presents the FP extracted from fault injection experiments on LSQ.

For the LSQ, although the FP is 3.4% for the original program, but it actually

increases to 3.9% for SWIFT. As mentioned in section 2.4, SWIFT does not protect

the loads and stores - they are executed only once. Therefore the LSQ is vulnerable.

However, we observe that it is actually more vulnerable than the original program.

This is because to implement SWIFT, we need to reserve half of the registers in

the processor, and that increases the register pressure and increases the spill code -

causing a spike in the number of load and store instructions. This leads to an increase

in the number of entires in the LSQ, and therefore the probability that a fault will

cause an error/failure. nZDC has 0% failure. nZDC is effective, since it protects loads

by duplicating them, and protects the stores by reading the stored value again and

checking it against the duplicate.

The result of fault injection on FUs is shown in Figure 2.7 (b). For FUs, the

average FP for original and SWIFT versions of the programs are 9.8% and 1.7%,

respectively. We explored the failure experiments in SWIFT, and discovered almost

all of them are the result of faults affecting the FU while computing effective address

of memory instructions. As expected, Zero SDC for programs protected with nZDC

mechanism is observed.

Figure 2.7(c) presents the FP extracted from fault injection trails on pipeline reg-

31

Figure 2.7: Component wise probability of failure for Original, SWIFT-protected
and nZDC-protected programs

isters. As it shows, nZDC reduces the FP of the original program by about 55X to

fairly close to zero, and SWIFT reduces pipeline registers FP by about 11X. In con-

trary with what we expect, the FP for nZDC in not absolutely zero. This discrepancy

is not a deficiency of our technique, but has its roots in our evaluation methodology.

We analyzed the failures, and found that the reason is because of working with un-

modified library calls. The soft error happens on the destination register pointer part

of a checking instruction before a library call, and the fault changed the destination

register from register Zero to the register X1, which was already checked. As a result

the argument value of the library function call was wrong and it produces a SDCs.

These errors would not happen when all code, including libraries is treated by nZDC.

Figure 2.7(d) displays the FP for register file, which on average for Original,

SWIFT and nZDC is about 10.3%, 0.1% and 0.0%, respectively. Our fault injection

results on register file is in accordance with previous works (Reis et al., 2005; Feng

et al., 2010; Mitropoulou et al., 2013b) which show almost near zero SDC for SWIFT.

32

Figure 2.8: Fault injection results on CF instruction

However, because of the register file vulnerable periods (marked by vertical lines in

figure 2.1), there is always a chance of SDC caused by soft error in the register file. On

the other hand, since nZDC can completely close the register file vulnerable intervals

by performing checking instructions after memory write instructions instead of before

them, the PoF is Zero.

Figure 2.8 shows the results of fault injection on the branch address and com-

pare instructions of the programs to examine the efficacy of the nZDC control flow

mechanism. In these experiments we randomly inject faults on the original com-

pare and branch instructions (excluding checking instructions) while in pipeline reg-

ister, and conditional registers. Since the target of fault injection has been se-

lected among the program original instructions, in Figure 2.8 we show the amount

of Masked, Detected/SegFault and SDCs. The Detected/SegFault portion of the

stacked bars demonstrate the percentage of injected faults which are either detected

by SWIFT/nZDC or by OS as segmentation fault.

As figure 2.8 demonstrates original and SWIFT are almost identical in failure rate,

about 18% SDCs! This is because, SWIFT CFC can just only detect wrong direct

33

Figure 2.9: Execution time overhead for SWIFT and nZDC

branches to the beginning of a basic block not to the middle. Overall, the SWIFT

CF mechanism is not effective, however, nZDC CF mechanism detects about 55% of

faults and just 0.4% of faults lead to SDCs.

Performance evaluation

Figure 2.9 presents the results of performance overhead of nZDC and SWIFT for an

in-order ARM processor with the configuration shown in table 2.2. On average, the

execution time overhead for nZDC and SWIFT is about 224% and 213%. Performance

overhead is higher than similar works, and it happened because of an inaccuracy that

some of previous works have in their performance measurement. For instance, research

(Feng et al., 2010) assumed that library functions are protected by other means, but

they do not consider the performance overhead of the library function protection,

and, since a program can spend a considerably large amount of its execution time

in the library calls (CRC benchmark spends more than 90% of its execution time

34

inside library calls), this leads to performance overhead underestimation. However,

in this work, for performance overhead evaluation, we just consider the cycles that a

program spends in user functions.

2.6 Summary

The significant amount of non-replicated operations in the existing software-level

soft error mitigation schemes significantly restricts their error coverage. This chapter

proposed nZDC error detection scheme which either duplicates program operations

or verifies their executions with advanced control-flow checking and store checking

mechanism. Statistical µarchitectural error injection experiments show significant

error detection improvements.

35

Chapter 3

BACKWARD RECOVERY1

“Organization of redundancy and fault-tolerance for ultra-high reliability is a chal-

lenging problem: redundancy management can account for half the software in a flight

control system and, if less than perfect can itself become the primary source of system

failure (Owre et al., 1995).”

3.1 Overview

An ideal solution for soft error resilience should mask the effect of soft errors

from user and provide correct results at expected time. Many of the software-level

fault tolerance techniques are incomplete, because they provide error detection and

assume some sort of checkpoint/roll-back for recovery. Restarting a program from

beginning is the simplest rollback recovery strategy. However, re-starting is not appli-

cable in many cases, i.e, long running, real-time and interactive applications (Zhang

and Chakrabarty, 2003), and even if possible it accompanies a high error recovery

latency – expected recovery latency is half of the program execution time. These

problems can be alleviated by building full-system checkpoints (preserving the whole

memory and register stats) during the execution of a program (Duell, 2005; Lu et al.,

2013). However, to solve the problem of latent errors (errors which may happen be-

fore checkpointing and will be detected after checkpointing) frequent checkpoints are

required, which impose unacceptable performance overhead to the system (Elnozahy

and Plank, 2004; Schroeder and Gibson, 2007; Aupy et al., 2013).

1This chapter is an enhancement of a published papers, Didehban, Moslem, Sai Ram Dheeraj
Lokam, and Aviral Shrivastava. “InCheck: An in-application recovery scheme for soft errors.”
Design Automation Conference (DAC), 2017 54th ACM/EDAC/IEEE, 2017. The publisher permits
authors to include partial or complete papers of their own in a dissertation.

36

In-application fault tolerant techniques can potentially eliminate the need for full-

system checkpointing and memory replication, while providing efficient and timely

error handling by combining both error detection and recovery within the application

itself. Unfortunately, the existing in-application error tolerant schemes are signifi-

cantly weaker (in terms of error coverage) than corresponding error detection only

schemes due to the vulnerabilities added by their complex (and unprotected) error

recovery routines. For instance, SWIFTR (Reis et al., 2007) was proposed to provide

error recovery to SWIFT (an error-detection only technique described in section 2.2)

(Reis et al., 2005) by adopting forward recovery strategy. SWIFT-R divides program-

mer available registers into 3 redundant sets, executes 3 versions of each computa-

tional instruction and performs majority-voting between register operands of mem-

ory and control-flow instructions before their execution. Surprisingly, our analysis of

SWIFTR-protected programs reveals that they suffer from ∼16x less error coverage

than SWIFT-protected programs! This is because: i) SWIFTR-protected programs

include considerably more unprotected memory instructions than SWIFT-protected

programs due to high register pressure imposed by register reserving required for re-

dundant computations, ii) SWIFT-R has software vulnerability windows larger than

SWIFT, as it replaces light (in terms of machine instructions) error detection checks

of SWIFT with heavier voting operations, and (iii) SWIFTR offers unsafe recovery

by blindly masking the effect of certain errors on registers that may have already

propagated to memory or may even have altered the program control-flow.

Realizing the above-mentioned limitations of SWIFTR, we build upon our pro-

posed nZDC error detection scheme (explained in Chapter 2) and introduce an ef-

fective error detection and recovery scheme. Our solution, named InCheck (In-

application Checkpointing and Recovery), is a software-only scheme for complete,

safe & timely recovery from soft errors. InCheck makes light-weight error-free check-

37

points at basic block granularity, and safely reverts the program execution to the

beginning of last executed basic block using preserved checkpoints. The main fea-

tures of InCheck are:

i) Verified Register File Preservation. InCheck transformation not only

preserves registers value into memory (no latent error), but also makes sure that the

preserving process is performed correctly.

ii) Single Memory-location Checkpointing. Rather than checkpointing the

whole memory state, InCheck temporarily preserves the state of each memory location

before the corresponding writes to those locations.

iii) Safe & Timely recovery. Instead of performing recovery regardless of the

error propagation scope, InCheck invokes a diagnosis routine which allows recovery

only when its safe. The recovery latency of InCheck is negligible as it involves re-

execution of just one basic-block’s instructions apart from diagnosis and recovery

routines.

3.2 Limitations of Related Work

Traditionally Checkpointing/rollback has been used a recovery strategy in High

Performance Computing (HPC) systems. The program execution in such systems

is periodically paused to save checkpoints (snapshots of the entire program state

including memory footprint and register values) into a safe storage. In case of an

error, program execution is resumed from the the latest checkpoint (Duell, 2005).

Applying full system checkpointing/rollback as error recovery in embedded criti-

cal applications in not efficient because of: i) Significant recovery latency (millions or

billion of instructions depends on the checkpointing interval), ii) Unacceptable perfor-

mance overhead (frequent checkpointing is required for latent error recovery (Aupy

et al., 2013)) and iii) Need of extra safe storage (∼ 0.5-1 Giga bytes per checkpoint).

38

In fact, this huge overhead of frequent and multiple checkpoints (required for suc-

cessful and fast recovery from silent errors) has restricted the usage of such recovery

techniques to HPC systems alone (Elnozahy and Plank, 2004; Schroeder and Gibson,

2007).

To overcome the limitations of full checkpointing, techniques like Encore (Feng

et al., 2011), Clover (Liu et al., 2015) and FASER (Xu et al., 2013) propose fast

and low-overhead recovery schemes by taking advantage of the idempotent regions

of the program codes. Idempotent segments of a code do not have any Write after

Read (WAR) dependencies. Therefore, multiple re-executions of such region always

produces same result after execution. Nevertheless, idempotent-based recovery tech-

niques have been designed for non-critical applications and have narrow fault cover-

age. For instance, as mentioned in Encore paper (Feng et al., 2011), faults which

cause a write into the wrong memory address or control flow errors (a fairly large

amount of errors) cannot be recovered even if they occur in idempotent region of

code. Hence, the ineffectiveness of idempotent-based recovery schemes makes such

solutions unsuitable for critical applications.

3.2.1 Coarse-Grain Forward Recovery

Forward recovery schemes which are based on the triplication and voting strat-

egy, eliminate the need for checkpointing and can provide timely recovery. Forward-

recovery can take place at coarse-grained (like process/task/thread replication) or

fine-grained (assembly-level instruction replication) modular redundancy. State-of-

the-art coarse-grained techniques like PLR (Process-level Redundancy (Shye et al.,

2009)) apply redundancy at process-level, and perform voting between the redundantly-

computed system call arguments at system-call boundaries. However, since errors

may affect a program without manifesting themselves in system call arguments, PLR

39

approach is not effective for critical applications. For instance, if a system call (like

fwrite) takes a memory pointer and size as arguments, there can be errors in the

actual data referenced by the pointer even if the arguments (redundantly computed

pointers and size) are equal. In addition, software voting operations and the execution

of system call themselves are the single-points-of-failures in such techniques.

3.2.2 Fine-Grained Recovery

Fine-grained assembly-level techniques (Reis et al., 2007, 2005; Oh et al., 2002a;

Didehban and Shrivastava, 2016; Mitropoulou et al., 2013b; Xu et al., 2013; Yu et al.,

2009; Wang et al., 2007) are the most related techniques to the work presented in this

chapter. They are very popular as they can potentially provide high degree of relia-

bility. This is because such techniques are implemented as machine-level instructions,

and have the ability to effectively check for the errors which may cause a failure, i.e, in

memory operations and control flow direction. Unfortunately, existing complete fine-

grained techniques, SWIFTR (Reis et al., 2007) and FASER (Xu et al., 2013), suffer

from significantly higher failure rate that the fined-grained error detection schemes.

SWIFTR: Unsafe Recovery

The idea of providing the error detection and recovery at assembly-level was intro-

duced in SWIFTR (Reis et al., 2007) research paper. SWIFTR (SWIFT+Recovery)

is developed based on the well-known SWIFT (Reis et al., 2005) error detection only

technique. It executes three versions of program’s computational instructions with

different sets of registers and performs 2-of-3 majority-voting between redundant reg-

isters values before memory and control-flow instructions to mask the effect of error

from computations. However, SWIFTR transformation not only imposes significant

performance overhead, it also increases SWIFT failure rate due to following reasons:

40

1) SWIFTR transformation results in considerably more unprotected

instructions than SWIFT. SWIFTR requires about two thirds (∼66%) of pro-

grammer available registers for error recovery, while SWIFT reserves about half of

registers for error detection. This extra register preservation forces compiler to gen-

erate more memory instructions which are single-point-of-failure in SWIFT-based

transformation (Didehban and Shrivastava, 2016). To quantify the effect of register

reservation on programs, we compiled Mibench (Guthaus et al., 2001) programs with

LLVM 3.7 (Lattner and Adve, 2004) infrastructure for ARMv8-A architecture which

has 32 general purpose integer registers. 2 We found out that SWIFTR imposes

more than 4x memory operations compared to SWIFT. Note that, FASER (Xu et al.,

2013), a SWIFT-based backward-recovery, also shares this problem with SWIFTR.

2) SWIFTR suffers from considerably larger software vulnerability win-

dow than SWIFT. SWIFTR increases software vulnerability window (interval be-

tween value checking and actual usage of that value) of SWIFT, because it replaces

light error-detectors (1-2 machine instructions), with expensive majority-voting op-

erations (8-10 machine instructions). Figure 3.1 illustrates the software vulnerable

window of SWIFT and SWIFTR transformations for a simple memory write oper-

ation. SWIFT just checks the stores value (r1) and address (r2) registers, against

their shadows (r1* and r2*) before the actual memory write instructions. Therefore,

there is a small interval between the checking and using of register values. If an error

happens in the register during this interval, error may remain undetected. SWIFTR

transformation, on the other hand, requires performing majority-voting operations

between redundant registers that are used for stores value (r1, r1* and r1**) and

address (r2, r2* and r2**) operands. Since the software implementation of the 2-of-3

2Implementation of SWIFTR and FASER on an ARMv7 microprocessor is problematic (if not
possible) because only 16 user visible registers are available.

41

if (r1 != r1
*) error

store r1  [r2]

if ((r1 != r1
*) || (r1 != r1

**) || (r1
* != r1

**))
if (r1 == r1

*) r1
** = r1

else if (r1
* == r1

**) r1 = r1
*

else if (r1 == r1
**) r1

* = r1

store r1  [r2]

if ((r2 != r2
*) || (r2 != r2

**) || (r2
* != r2

**))
if (r2 == r2

*) r2
** = r2

else if (r2
* == r2

**) r2 = r2
*

else if (r2 == r2
**) r2

* = r2

if (r2 != r2
*) error

r
1
 v

u
ln

e
r
a

b
ility

r
1
 v

u
ln

e
r
a

b
ility

(b)(a)
r

1
 v

o
tin

g
r

2
 v

o
tin

g

SW
IF

T
d

u
p

lic
at

ed

co
m

p
u

ta
ti

o
n

s

SW
IF

T-
R

 t
ri

p
lic

at
ed

co

m
p

u
ta

ti
o

n
s

Figure 3.1: SWIFTR (part b) software vulnerability interval is considerably more
than SWIFT (part a)

majority-voting needs more machine instructions than just error checking, software

vulnerable intervals of SWIFTR is longer than SWIFT. As SWIFTR demands more

memory (therefore voting) operations, the number of these software vulnerability

intervals are considerably more than those in SWIFT. Note that these software vul-

nerability intervals are considerable because they exist before all memory, control-flow

and function call instructions.

3) SWIFTR unsafe recovery eliminates the effect of error on registers

even though memory or control flow is faulty. If an error happens during

SWIFT vulnerability window, it probably corrupts the memory state and/or alters

the program control-flow. SWIFT can still detect such errors, if the mismatch between

redundant registers reaches to the successive error detectors. However, since SWIFTR

42

2,022

744

1 1

44

 1

 10

 100

 1,000

 10,000

N
u

m
b

er
 o

f
SD

C
s

ORG SWIFT SWIFT-R

Figure 3.2: SWIFTR protected programs experience more than 16x failure than
SWIFT-protected ones!

and FASER recovery schemes, try to blindly recover from any discrepancy (without

determining the scope of error propagation), they can mask the effect of error in

registers while the memory state or the program control flow is erroneous.

In order to quantify SWIFTR negative impacts on failure rate, we performed 54k

fault injection experiments on register file of a simulated microprocessor while running

SWIFT and SWIFTR protected programs. The details of the simulator configuration

and fault injection set up are presented in section 3.4. Figure 3.2 demonstrates the

results of fault injection experiments. As it can be seen, SWIFTR transformation

caused ∼16x more failure (SDC) than previous error detection version!

3.3 InCheck: Our Proposed Fine-grained Backward Recovery Solution

In this section, we propose a safe and timely recovery scheme which in combina-

tion with nZDC (explained in Section 2.4) as the underlying error detection scheme,

43

will serve as a complete, safe and timely error handling strategy. InCheck error han-

dling process can be divided into two main parts: DF (Data-Flow) and CF (Control-

Flow) error recovery. DF error recovery (shown in Figure 3.3) consists of four main

steps: 1) Verified Register Preservation. It takes place at the beginning of each basic

block and stores the value of live registers into the checkpointing area of memory.

InCheck makes sure that no error can cross the preservation phase by checking the

process of preservation itself in-addition to checking the reserved register values. 2)

Single Memory-location checkpointing. Right before each store instruction, InCheck

preserves the data presented in about-to-be-updated memory location to a specific

register. This register will further be used for memory restoration in the case of er-

rors. 3) Checks for Safe Recovery. InCheck diagnosis routine checks if the error is

recoverable. This is necessary because safe recovery is not possible in some cases. For

instance, errors which cause a write into a memory location different from the one

that the backup load reads from cannot be recovered because the backup itself is not

valid. 4) Timely Recovery. The program execution is resumed from the beginning of

basic block after the Memory and Register file state is restored to fault-free state that

was present at the beginning of that basic block. Timely recovery is possible since

the overall operations needed for diagnosis and recovery are implemented within 100

instructions.

Control-flow error recovery is similar to DF error recovery, however, the challenge

is to determine from where the program re-execution should be restarted. InCheck

CF diagnosis routine separates wrong-direction (errors which alter the direction of

branch) CF errors from wrong-target ones(errors which cause an illegal jump), and

provides recovery for the former and safe-stop for latter.

44

Verified Register Preservation

Memory Checkpointing

Store

Error Detection? Is recovery Safe?

Unrecoverable
Error

NO

YES

Memory Restoration
Registers Restoration
Rollback to .BB

Recovery

Diagnosis

R
ed

u
n

d
an

t
C

o
m

p
u

tatio
n

s
Y
ES

.BB
1

2

3

4

Figure 3.3: InCheck data-flow error recovery Overview

3.3.1 Verified Register File Preservation

InCheck saves the values of live registers into a designated memory location called

register preservation area at the entrance of each basic block. Error-free registers

should only be preserved and the preservation process itself should be error-free to

prevent failures. InCheck validates the correctness of preservation process by applying

checking-load strategy introduced in Chapter 2 Section 2.4 – It loads back the saved

register value from the register preservation area and checks that against its shadow

register. Note that the program counter register (PC) is always considered as live and

gets preserved. The PC preservation is crucial for recovery from control-flow errors

(described in section 3.3.5) detected in fan-in basic blocks that potentially contain

multiple re-execution points.

45

3.3.2 Single Memory-Location Checkpointing

InCheck introduces a novel and efficient method for memory checkpointing. Rather

than saving the entire memory state or being rely on idempotent regions of code (Feng

et al., 2011; Liu et al., 2015; Xu et al., 2013), it just backs-up the memory location

which is about to be updated to facilitate safe recovery. Since memory subsystem

can be protected by ECC, it is intuitive to avoid saving the whole memory state.

However, ECC is ineffective if memory write operation data or address is faulty.

Therefore, the previous value of about-to-be-updated memory location is needed for

memory restoration.

InCheck provides memory checkpointing by inserting a load instruction (back-up

load) from the exact address as the following memory write instruction into an specific

register, named MBR (Memory Back-up Register). InCheck transformation forces

compiler to break down basic blocks with potentially conflicting memory operations

(multiple write and read operations from the same memory location) into sub basic

blocks without such memory dependencies. This basic block purification is required

for recovery from basic blocks with conflicting memory operations, because InCheck

on-the-fly single memory location checkpointing strategy just provide backup for one

memory location.

3.3.3 Checks for Safe Recovery

One of the features of InCheck that distinguishes it from its related techniques is

its diagnosis routine that’s essential for safe recovery. Basically, if error affects the

execution of redundant computations or error detection instructions (shown is Figure

3.3) the error is always recoverable. Since the data will be written into an unknown

(unbacked-up) memory location, if error impacts the execution of store instruction

46

in such a way that the effective memory address gets modified, the error should be

considered as unrecoverable.

Figure 4.4 shows an example of InCheck data-flow error detection and diagnosis.

The first load (left side of the Figure, before store) is the “back-up load” which

performs on-demand memory checkpointing. The error detection takes place after

the store instruction, and program control goes to diagnosis routine in the case of

a mismatch. Firstly, diagnosis routine checks for errors in the computation of store

value register (r1). If a mismatch is observed, the error is flagged to be recoverable.

The program flow then jumps to the recovery routine (not shown in Figure). Secondly,

diagnosis routine checks for mismatch from the store address register. Depending

on the time of error occurrence, it may or may not be recoverable. If error occurs

on address register r2 before the back-up load, the error is flagged to be recoverable.

In this case, the back-up for wrongly updated memory is available and thus memory

restoration is possible. However, if the error happens after the execution of back-up

load, the recovery is not possible since the value of MBR is not the same as previously

updated wrong memory value. To determine the time of occurrence of error, diagnosis

routine loads the data back from the memory location with the same address as store

into a temporary register (temp) and compares that against store value register (r1).

If they match, it assumes that error has modified the address of both back-up load and

the store in the same way (back-up is valid) deems it recoverable. In the third step,

diagnosis routine compares the value of MBR to temp. If different, it implies that the

store has written incorrect data into right memory location. This type of error is

also recoverable because memory back-up is valid. In the fourth step, diagnosis checks

for errors on detection instructions which are just false alarms and easily recoverable.

False alarms can be checked by repeating the error detection instructions. Ultimately,

if none of the above situation were true, the diagnosis routine declares the error as

47

load MBR [r2]

store r1 [r2]
load temp  [r2

*]
if (r1

* != temp)
Go to Diagnosis

If (r1 != r1*)
Recoverable; // faulty value reg.

Data Flow Diagnosis Steps

load temp [r2
*]

If (r1
* == temp)

Recoverable; // false alarm

load temp [r2]
If ((r1 == temp) && (r2 != r2

*))
Recoverable; // faulty address reg.

If (MBR != temp)
Recoverable; // faulty written data

Detected/UnRecoverable Error

In
C

h
ec

k
d

u
p

lic
at

ed

co
m

p
u

ta
ti

o
n

s

Figure 3.4: An example of InCheck data-flow diagnosis

detected/Unrecoverable and terminates program execution.

3.3.4 Timely Recovery

In the last phase of InCheck error handling, the actual recovery takes place by

performing memory and register file restoration and re-executing the program from

the beginning of the basic block. First, the memory state will be restored to the

same state as before the write instruction. This is done by writing the MBR register

into the memory write target location. Error-free live registers will then be loaded

back from the register preservation area to the corresponding registers. Finally, the

main program execution is resumed. Since the first two steps of InCheck (safe register

preservation and memory checkpointing) should be executed in all (erroneous or error-

free) cases, the recovery latency of InCheck is equal to the execution time of diagnosis

and recovery routines and replicated instructions (instructions from the beginning of

basic-block till the error detection point). Since the diagnosis, recovery routines

48

and the average basic block size are small, the overall recovery latency is practically

negligible.

3.3.5 Control-Flow Error Recovery

InCheck employs nZDC control-flow (CF) checking mechanism (explained in Sec-

tion 2.4), but in addition to nZDC CF error detection checks (positioned close to

the end of each basic block) it also performs error detection checks at the beginning

of each basic block (before safe register preservation). If a CF error gets detected

by the first checks, InCheck invokes the corresponding CF-specific diagnosis routine.

These routines are different from DF diagnosis routine (described in section 3.3.3),

and their responsibility is to determine if the detected CF error is a wrong-direction or

a wrong-target error. A control-flow error will be considered as wrong-direction error,

if the last preserved PC is in the list of predecessors of the current basic block. If that

is the case, error will be treated as recoverable and recovery takes place by restoring

memory and register values to the initial state of the previously executed basic blocks.

Otherwise, the error will be considered as wrong-target CF error and errors which are

detected by nZDC CF error detectors (positioned at the end of basic block) will be

considered as unrecoverable – diagnosis routine terminates the execution of program.

Fortunately, as (Shrivastava et al., 2014) demonstrated, most of control-flow errors

are wrong-direction errors and are therefore recoverable by InCheck error handling

scheme.

3.4 Experimental Methodology

To quantify the effectiveness of InCheck, we implemented InCheck and SWIFTR

(as the the-state-of-the-art related work) techniques as late back-end passes in LLVM

3.7 infrastructure (Lattner and Adve, 2004) for an ARMv8-a ISA (64-bit architec-

49

ture). We compiled 9 programs from Mibench benchmark suite (Guthaus et al.,

2001) with -O3 compiler optimization flag. For each program three versions (Origi-

nal, InCheck and SWIFTR) were produced. It should be noted that all experiments

and results were performed on user functions (library functions and system calls were

excluded).

We performed extensive fault injection experiments on major sequential hardware

components of a modern ARM cortex A-53 like simulated microprocessor. Experi-

ments were performed on gem5 (Binkert et al., 2011), a cycle accurate µarchitectural-

level simulator with the configuration shown in Table 2.2. We performed single bit-flip

fault injection experiments on major core components including, integer register file,

issue and decode pipeline registers, functional units and load-store unit buffer reg-

isters. For each component 2000 faults were injected per version of program, which

means 72,000 (4 * 2000 * 9) faults per each program version – overall 216,000 (72k *

3) faults. For each fault injection experiment, a target component and a (bit, cycle)

were randomly selected before the simulation run. Once the simulator reaches the

target fault injection cycle, simulation is paused and the selected bit is inverted. The

simulation then resumes with the faulty value until it gets terminated or reaches the

allowed simulation time (3x of normal execution time). The result of each simulation

run is classified as one of the following:

1) Masked: Program terminates normally and the output is correct.

2) Failed/SDC: Program terminates, but the output is incorrect.

3) Detected/Unrecoverable: This outcome occur just in InCheck protected pro-

grams, and happens when an error is detected, but cannot be recovered from.

4) Others: Program encounters a fatal error, such as segmentation fault or simula-

tion time reaches its limit.

50

1,613

230

1

10

100

1000

N
u

m
b

e
r

o
f

SD
C

s

Functional Units Original SWIFT-R InCheck

917

225

1

10

100

1000

N
u

m
b

e
r

o
f

SD
C

s

Load-Store Unit Original SWIFT-R InCheck

3,324

644

 1

 10

 100

 1,000
N

u
m

b
e

r
o

f
SD

C
s

Pipeline Registers Original SWIFT-R InCheck

0 0 0 0 0 0 0 0 0 0

2,190

744

 1

 10

 100

 1,000

N
u

m
b

e
r

o
f

SD
C

s

Register File Original SWIFT-R InCheck

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 3.5: SDCs Distribution in Component-wise Fault Injection Experiments

3.5 Experimental Results

3.5.1 Error Coverage

Figure 4.7 depicts the absolute number (in logarithmic scale) of failures (SDCs)

per hardware component. We did not use fault coverage metric, because it can be

misleading (Schirmeier et al., 2015)). Regardless of the target fault injection com-

ponent, InCheck-protected programs never resulted in a failure! This implies that

1) No error could skip InCheck+nZDC error detectors, 2) The diagnosis routine al-

ways distinguishes recoverable errors from unrecoverable ones accurately, and 3) If

the detected error was recognized as recoverable, the recovery routine is always suc-

cessful. InCheck is extremely effective as it protects functionally-related instructions

of the program as well as error handling (preservation and checkpointing) operations.

However, in comparison to original programs, SWIFTR transformation reduces the

overall failure count by 4.3x (5.2x, 2.9x, 8x and 4x for pipeline registers, register file,

functional units and load-store unit, respectively). Our investigation from failed ex-

periments reveals that SWIFTR provides correct recovery only from the faults which

affect the computational instructions, and the rest of the faults either get masked by

51

the programs or lead to failures or segmentation faults.

InCheck-protected programs can potentially recover from Soft Errors which lead

to segmentation faults if their diagnosis routines initialize at the beginning of signal

handler functions of applications. Since in gem5 system call emulation mode, the

simulator terminates the program execution without forwarding segmentation fault

signals to the application, the results shown here do not fully demonstrate the InCheck

recoverability.

InCheck Diagnosis routine declared around 96% of detected faults as recoverable.

In less than 4% of the cases, diagnosis routine provided safe-stop and prevented failure

by terminating the program. If left unterminated, these unrecoverable faults could

have either directly impacted the execution of a memory write operation or caused an

unexpected jump in the program. Restarting can anyways be employed as recovery

strategy in these scenarios.

3.5.2 Performance Overhead

Figure 3.6 shows the execution overheads of InCheck+nZDC and SWIFT-R pro-

tected programs normalized to Original Program. It can be seen that on an average,

an InCheck version of a program can run 36% faster than its SWIFTR equivalent.

InCheck is faster because it pushes the uncommon diagnosis and recovery routines

off the critical-path of execution. The performance overhead of frequent live register

preservation is acceptable, because the corresponding memory preservation locations

are usually presented in the cache and will therefore execute fast. Furthermore, the

performance overhead of back-up loads (inserted right before program store instruc-

tions) are also not significant, because they do not cause any more memory misses

– if the data is not in the cache, miss is inevitable. If not by back-up load, it will

eventually happen by store instruction itself.

52

467% 297%

0%

100%

200%

300%

400%

500%

600%

P
e

rf
o

rm
an

ce
 O

ve
rh

ea
d

 n
o

rm
al

iz
ed

 t
o

 O
ri

gi
n

al
Original SWIFT-R InCheck

1127.34%

Figure 3.6: Execution Overhead of SWIFT-R & InCheck

To quantify the recovery-latency of InCheck, we counted the average number

of extra instructions which were executed when an injected fault was detected and

recovered. On an average, the InCheck recovery spans for 180 dynamic instructions.

This latency is unnoticeable in most cases.

3.6 Summary

In this chapter we present InCheck, as an in-application soft Error detection,

diagnosis and recovery scheme. InCheck protects the execution of resilince-related

routines like checkpointing operations as well as main program instructions. InCheck

uses verified register file preservation and single-memory-location checkpointing. We

also performed diagnosis after error detection to provide safe recovery. Fault injec-

tion experiments demonstrate that InCheck offers quicker and better error recovery

compared to the state-of-the-art approaches.

53

Chapter 4

FORWARD RECOVERY1

This chapter presents NEMESIS a compiler-level fine-grained soft error resilience

technique that enables computation even in the presence of soft errors by adopting

a forward error recovery scheme. It replaces computationally expensive software

majority-voting routines with cheap error detectors. On detecting an error, diagnosis

and recovery routines allow for quick recovery, and continued error-free execution

with a reasonable performance overhead.

4.1 NEMESIS: Overview

NEMESIS is a set of compiler transformations which provide a soft error hardened

code by adding redundancy and reforming control flow of the original code. NEME-

SIS partitions programmer-available machine registers into three sets, called M-regs

(Master Registers), D-regs (Detection Registers) and R-regs (Recovery Registers),

and runs three independent sequences of instructions, named M-stream, D-stream,

and R-stream. The M-stream has all instructions needed for functionally correct

execution of a program. D-stream is a redundant copy of M-stream which does not

include any memory write and functional call instructions, however, it does include all

arithmetic, memory read, compare and branch instructions. R-stream just contains

arithmetic and memory read instructions – register-modifying instructions. This is

because that R-stream results only will be used in majority-voting to mask the effect

of the errors from the general purpose register file. In addition to these three redun-

1This chapter is an enhancement of a published papers, Didehban, Moslem, Aviral Shrivastava,
and Sai Ram Dheeraj Lokam “NEMESIS: A software approach for computing in presence of soft
errors.” Computer-Aided Design (ICCAD), 2017 IEEE/ACM. Publisher permits authors to include
partial or complete papers of their own in a dissertation.

54

dant streams, a NEMESIS-protected program includes error detection, diagnosis and

recovery instructions. NEMESIS assumes ECC-protected caches and memory, and

its sphere-of-protection includes the entire microprocessor core (excluding memory

subsystem). The objective of NEMESIS is to detect and correct the effect of all tran-

sient faults which may lead to SDC or timing failures. These errors are the hardest

to detect and correct because they usually do not generate any visible symptoms like

exceptions, segmentation faults (Wang and Patel, 2006) and not easily detectable by

low-cost symptom-based error detection techniques. The salient points of NEMESIS,

and why it is effective are mentioned below:

i) NEMESIS protects the execution of all (critical and noncritical) instruc-

tions: This is the main philosophical difference between SWIFTR (most related work

explained in Section 3.2.2) and NEMESIS. SWIFTR tries to mask the impact of error

from register operands of critical instructions, but it does not check the execution of

critical instructions themselves. NEMESIS, on the other hand, verifies the execution

of all programs instructions by making sure than the program executes the right store

instructions, correctly. NEMESIS achieves that by checking the outcome of program

branch and memory write instructions. In the case of any discrepancy, NEMESIS

calls a diagnosis routine and then attempts to recover from the error. For store

instructions, error detector verifies if the stored value is correctly written into the

correct memory location by loading back the stored data and checking that against

the D-stream computed store value. For branch instructions, direction check takes

place by executing the corresponding D-stream compare and branch instruction, and

verifying the destination basic block. Nevertheless, if the presence of any error is

detected, a diagnosis routine will get invoked and determines the scope of error in

the program. If the error is diagnosed as recoverable (marked as 1 in Figure 4.1),

the effect of error from the register file and memory is eliminated, then the recovery

55

routine re-executes the corresponding critical instruction and the program execution

resumes. Otherwise, if the diagnosis routine declares the presence of an unrecoverable

error(marked as 2 in Figure 4.1), the program execution will be terminated.

ii) NEMESIS transformations leaves no software vulnerability window:

Software vulnerability window, defined as the duration between checking a value in

software and the time to use the value, exist in almost all existing software-level

techniques. This interval can be a major source of failure especially for Voting-

based techniques. Software voting, not only has vulnerable periods, but also imposes

considerable performance overhead. Instead of voting, NEMESIS just checks for

errors in the results of critical instructions. Since this checking will take place after

the execution of store instructions, NEMESIS needs to preserve the value inside each

memory location before write, for recovery purposes. This strategy eliminates the

software vulnerability window – no unprotected interval between value checking and

usage. If there is no error, then the execution proceeds. Otherwise, diagnosis routine

decides about the faith of program. If error considered as recoverable, the recovery

scheme uses a voting mechanism and memory preserved data to eliminate the impact

of errors from register file and memory. Note that since the execution of post-error

handling routines is rare (just in the case of error), they usually do not have much

impact on the performance.

4.2 NEMESIS: Details

4.2.1 Memory write operation error detectors

NEMESIS utilizes the load-backing data flow error detection strategy of nZDC-

based protection schemes (Didehban and Shrivastava, 2016; Didehban et al., 2017a).

It detects errors on memory write instructions by loading back the written value

56

M
-stre

am

R
-stre

am

D
-stre

am

store

Error
Detector Diagnosis

routine

Memory restoration
Majority-voting

D
etected

N
o

t-R
eco

verab
le

Restart is
needed.

21

Off performance-critical-path
error handling

store

Figure 4.1: NEMESIS data-flow error handling strategy. After each store instruc-
tion, the Error detector unit checks for errors, and if any observed, the diagnosis
routine will get involved and classifies the error as either Recoverable or Detected/not-
recoverable. If an error is recoverable, memory and register restoration will take place
and program continues with executing the store instruction. Otherwise, the program
stops the execution by raising an error flag.

57

from the memory and comparing it against corresponding D-stream computed value.

However, such post-store error detection strategy cannot detect errors affecting the

address of silent stores and in this section we present our solution for such undetected

errors.

Silent store vulnerable window. By definition, a store is said to be silent if it

writes a value into a memory element which is already holding the same value (Bell

et al., 2000; Lepak et al., 2001). If an error affects the execution of a silent store, i.e,

alters stores effective address, the write operation can make a random modification to

the state of memory and the error cannot be detected by load back strategy because

the loaded value from the memory is as same as the stored vale.

Figure 4.2 exemplifies an undetected error case in store-loadback strategy. As

it shows, the store is silent because the value in memory location addr, val, before

executing store instruction (upper part of fig.4.2) is equal to the values which are

computed by main and detection streams, valM and valD, respectively. Therefore,

the state of memory should not get changed by the execution of store instruction.

Now, assume that the soft error hits the base address register of the store, and alters

the store’s effective address from addr to f-addr. Consequently, the store writes its

data into the faulty memory address f-addr rather than addr, and changes the state

of memory while it is not supposed to do so(lower part of fig.4.2). This error remains

undetectable, since the following checking-load instruction will load the value, val,

from the correct address (computed by the detection stream), addrD, which is equal

to valM and valD. Note that simply inserting a check for the base address register

store wouldn’t solve the problem since the error can alter the store address without

affecting the address register, i.e, errors affecting functional unit or pipeline register

while processing the store instruction. Since silent stores can consist around 18% to

64% of total program’s store instructions (Bell et al., 2000), fixing the silent store

58

vulnerability is important in critical applications.

First-cut solution for silent store vulnerable window. Since silent stores

do not alter the state of microprocessor, not executing such useless instructions will

eliminate their vulnerability without harming the correctness of program. Thus, an

obvious solution could be to jump over silent stores in the program. Figure 4.3(a)

illustrates the first cut attempt for eliminating the silent store problem from the

store-loadback error detection strategy. In the Figure redundantly computed values

of M-/D- and R-streams are differentiated by a superscript M, D or R letter. For

instance, valM , valD and valR denote redundantly-computed store’s value by M, D

and R streams, respectively. Initially in this scheme, a silent-check load (inst. 1)

reads back from exactly the same address that store is going to write into, and saves

the loaded value in an specific register, called Silent Check Register (SCR). Then,

SCR is compared against the M-stream computed store’s value, valM (inst. 2), to

determine if the store is silent. If the condition is true, the program jumps over

the store instruction, otherwise, store (inst. 3) will get executed and the following

checking-load (inst. 4) instruction reloads the store’s written value from the memory

into SCR register. In the end, regardless of the store being silent or not, the SCR

register should get checked against the value produced by D-stream, valD (inst. 5),

to make sure if store’s value,valM , was computed correctly.

NEMESIS solution for silent store vulnerable window. Although the

first-cut method solves the problem of silent stores, it introduces yet another possibly

undetected error scenario as the silent-check instructions (inst. 1, 2 in Figure 4.3(a))

themselves are unprotected. Therefore, if any error alters the effective address of a

silent-check load instruction in such a way that the wrongly loaded value is equal to

the store value, a non-silent store will be treated like a silent one, and memory state

would not get updated when it must. We named this type of errors as missing-memory

59

Store valM [f-addrM]
load reg [addrD]
Check reg, valD

[addr]

[f-addr]

val

Soft error alters the
addr to f-addr on
the main stream

val

valM

f-addrM

valD

addrD

Redundant
streams

[addr]

[f-addr]

val

?

Memory state before the execution of store

Memory state after the execution of the store

val = valM = valD

?

Figure 4.2: Silent store undetected error scenario in checking load mechanism. Since
the store instruction is silent, writing into the wrong memory location error could not
get detected by checking load instruction.

update errors. These errors differ from Silent Store scenarios by a fact that the former

does not change the state of memory while it should, and the later updates the state

of memory while it should not. Note that similar to the silent-store problem, adding

one more checking instruction for the address register would not solve the problem,

since errors can alter the load address in data-path or load-store unite while the base

address register is error free.

NEMESIS error detection scheme counter-intuitively eliminates the problem of

silent-store vulnerability and missing-memory update by redundant and intertwined

execution of silent-check operations. This is best explained with pseudo code example

shown in Figure 4.3(b). Firstly, the value within the store destination memory

location is loaded back into two specific registers, VCR (Value Check Register) and

SCR (Silent Check Register) by two redundant load instructions (marked as inst 1

and 2 in part (b) of Figure 4.3) which use M- and D- stream’s redundantly-computed

registers as their address operands. Then in order to find out whether the store is

60

cmp
SCR, ValM

store
ValM [AddrM]

load
SCR  [AddrD]

cmp
ValD , SCR

(a)

Recovery
routine

load
SCR  [AddrD]

cmp
SCR, ValM

store
ValM [AddrM]

load
VCR  [AddrD]cmp

ValD , VCR

(b)

Recovery
routine

load
VCR  [AddrM]

(1)

(2)

(3)

(5)

(6)

(7)

M
-stream

R
-stream

D
-stream

V
al R

,A
d

d
r

R

M
-stream

R
-stream

D
-stream

V
al R

,A
d

d
r

R

mov
SCR, VCR

mov
SCR, VCR

(4)

(8)

load
SCR  [AddrM]

(1)

(3)

(4)

(5)

(2)

Figure 4.3: Memory write instruction checking mechanisms. (a) The first-cut so-
lution which suffers from missing-memory update error and (b) NEMESIS mem-
ory write checking mechanism which solves the problem of silent-store and missing-
memory update.

61

silent, the SCR register gets compared against the store value register computed by

M-stream, valM . If the store is identified as silent, the VCR register gets compared

against the store value register computed by D-stream (inst. 8) for error detection.

Since, the results of redundant silent-check loads are compared with the two M- and D-

stream computed store’s values, the missing-memory update error will get detected.

Now assume that the store is not silent, and store and checking-load (inst. (5) and

(6)) will get executed. Instruction (5) performs the actual memory write operation

and instruction (6) reloads the written value back to the VCR register. The VCR

register then gets compared against valD, which is the redundant copy of store value

computed by D-stream, for error detection purpose (inst. 8).

Since in NEMESIS transformation the effect of the error is detected after mem-

ory write instructions, it is necessary that a backup of about-to-be-written memory

location preserved before each store instruction. Fortunately, the previous state of

memory is already loaded to VCR register (inst. (1)). However, since this value will

be overwritten by the checking load instruction (inst. (6)) in the case of not-silent

stores, a copy of VCR is preserved in SCR register (inst. (4) and (7)).

4.2.2 Diagnosis/Recovery for Memory Write Errors

The main responsibility of NEMESIS diagnosis routine is to decide whether a

detected error is recoverable. A memory write detected error is considered as recov-

erable if the state of the register file and memory can revert to an error-free state

before the execution of store instruction. Generally, the effect of error from registers

can be masked by performing 2-of-3 majority-voting between corresponding M-, D-

and R- registers. And, the memory state can be rolled-back to an error-free sate by

writing back the backed-up data into the memory. However, there are two rare cases

in which NEMESIS diagnosis routine declares a detected error as not recoverable:

62

load x2
M, [x4

M]
load x2

D, [x4
D]

load x2
R, [x4

R]
add x1

M, x3
M, #4

add x1
D, x3

D, #4
add x1

R, x3
R, #4

load VCR, [x2
M]

load SCR, [x2
R]

cmp SCR, x1
M

mov SCR, VCR
b.eq .Aftr-str

.Bfor-str: store x1
M, [x2

M]
load VCR, [x2

D]
.Aftr-str: cmp VCR, x1

D

b.ne .Diagnosis

.Diagnosis:
load VCR, [x2M] // will be used for backup check
// Unrecoverable: inter-stream error check
if ((xM != xD) && (xM != xR) && (xD != xR)) Unrecoverable

// Recoverable: addr. register faulty and valid backup
if ((x2

M != x2
R) && (VCR != SCR)) Goto .Recovery

// Recoverable: Value register is faulty
if (x1

M != x1
R) Goto .Recovery

// Recoverable: just checking instructions are faulty
if (VSR == x1

M) Goto .Recovery

// Unrecoverable: unavailable backup
if (VCR == SCR) Unrecoverable

.Recovery:
(1) Restore the state of memory
(2) Masking the effect of error from registers
(3) Program resumes by store re-execution

Silent store
Check

Memory Backup
preservation

Checking
Load instruction

Error detection

load x2, [x4]

add x1, x3, #4

store x1, [x2]

Original Code

Nemesis-Protected Code Diagnosis/Recovery Routines

(a) (b) (c)

Figure 4.4: An example of NEMESIS memory write error detection, diagnosis, and
recovery. Part (a) shows the original code. Part (b) shows the Nemesis transformation
for error detection and recovery, the original instructions are distinguished from the
error management operations by being underlined. Part (c) shows NEMESIS off
performance-critical-path post error diagnosis and recovery routines.

Case 1: Inter-stream error propagation. If the effect of error has crossed

the boundary of redundant streams, it is possible that all three redundant-computed

registers contain different values, and, therefore, performing majority-voting cannot

mask the effect of the error. For example, consider an error on the decode stage

of the processor pipeline that alters the destination register pointer of an M-stream

instruction to a D-stream register which is going to be used as the operand for the

corresponding redundant D-stream instruction. In this case, the three corresponding

redundant registers will be holding different values, and, such an error can be detected

but is unrecoverable.

Case 2: Unavailable memory backup. If the memory write instruction mod-

ifies a different memory location from the preserved one, the error is unrecoverable.

Errors affecting store address register after the first silent-check load and before the

63

store instruction (between inst. (1) and inst. (5) of part (b) of Figure 4.3), or error

altering the effective address of store instruction while it is processing in the processor

are deemed to be detected but unrecoverable errors.

If none of the above-mentioned cases are encountered, the diagnosis routine pro-

vokes the recovery block in which memory restoration takes place by writing the

backup data into the faulty written memory address, and then, followed by majority-

voting between registers. Once the effect of error gets eliminated from the memory

and the registers, a program can continue its error-free execution by retrying store

instruction.

4.2.3 Fault Coverage Analysis for Store Instructions

In order to clarify how NEMESIS memory error detection, diagnosis and recov-

ery work, in this section we explore the effect of some different errors on a sample

NEMESIS-protected code, presented in Figure 4.4. Note that the order of checks and

the structure of diagnosis and recovery blocks remain the same for different memory

write instructions, but the register numbers and labels need to be customized per

store instruction.

1) Error affects computation of store value register during the execution

of redundant streams. Assume that error happens during the execution of the

M-stream add instruction and the value saved in xM1 register becomes erroneous.

Depending on the effect of the error on the data within the xM1 register, two different

cases can happen: 1) Wrong value written to the correct memory location, or 2)

skipping a memory update by considering non-silent store as silent.

In the first case, in order to error propagates to the memory the erroneous value

in register xM1 has to be different from the data within the about-to-update memory

64

location (saved in SCR), otherwise, the execution jumps over the store instruction.

In this case, the error will be discovered by NEMESIS error detection checks because

the loaded back value (saved in VCR register) will be different from the xD1 (the

D-stream computed version of xM1). In the diagnosis routine, we first load from

the store memory address into VCR register, which will be used for checking 1) the

(un)availability of memory backup and 2) the correctness of checking-load instruction.

Then, the diagnosis routine checks for inter-stream error propagation in store value

and address registers. Nevertheless, for this example, we assumed that the inter-

stream error propagation is not the case. In the next step of diagnosis, if the store

address register is faulty and the memory backup is valid, the error is considered as

recoverable and the program will go to the recovery block. However, in this case, the

memory write address register, xM2 , is not faulty and the diagnosis routine will proceed

to the next step. Now, it is time to check for errors in the store value register which

is positive, and the recovery block will be engaged. In the recovery block, first, the

effect of error from the memory will get eliminated by writing the memory backup data

(preserved in SCR register) into the store target address memory location. Then,

the effect of the error from the registers will be corrected by performing majority-

voting. And, finally, the error-free program execution continues from before memory

write instruction.

In the second case, error alters the data of xM1 register in a way that the erroneous

value became equal to the value loaded from an about-to-update memory location,

which is saved in SCR. In this case, the non-silent store will be treated as a silent one.

However, based on the facts that (1) the VCR value is equal to SCR (computed redun-

dantly with correct load instructions), (2) the SCR value is equal to xM1 -faulty value,

and, (3) xM1 value is different from xD1 because of the fault, the value of VCR register

will not be equal to the xD1 value, and the program goes to the diagnosis/recovery

65

routine. Diagnosis/recovery routine will behave exactly similar to the first case, and

recovery block gets engaged by the third check (mismatch in store value register).

2) Error alters the effective address of a store instruction during its

execution. If an error occurs on functional unit flip-flops during the calculation of

effective address or errors on load-store unit queues while processing a memory write

request, a correct value will be written into a wrong memory location.

Considering the fact that in an NEMESIS-protected program, only not-silent store

instructions will actually execute, these errors are easily detectable by the load-back

strategy, because the reloaded value is different from the D-stream computed version

of store value (xD1). However, recovery from these types of errors seems extremely

hard, because the wrongly-written memory location is unknown. In the diagnosis

block, a copy from the store memory target location will be saved in VCR register

initially. The next four checks, inter-stream error propagation, store address register,

store value register and checking-load instruction execution checks will take place

in order, and no discrepancy will be found. Ultimately, the diagnosis routine will

perform its last check which reveals that the store has not written its data into the

memory location that it is supposed to write into. It is concluded from the fact that

the value within the store target memory location has not changed by the execution

of the non-silent store. In this case, the presence of an unrecoverable error will be

announced by the diagnosis routine.

4.2.4 Control Flow Error Detection

Soft errors can alter the control-flow of a program by producing unexpected jumps

or wrong-direction branches in a program. An unexpected jumps arises when the

program control-flow alters in a way which is not permitted in its control flow graph

(CFG). Errors which directly modify to PC register or alter the target address of a

66

Branch BB4
condition1

Branch BB4
condition2

BB1 BB2

(a)

cmp
Val1, Val2

cmp
Val3, Val4

BB3

Branch BB1-4
condition1 Branch BB2-4

condition2

BB1 BB2

BB4

(b)

cmp
Val1, Val2

cmp
Val3, Val4

BB3 BB5

Branch recovery
condition1

cmp
Val3D, Val4D

Branch BB4

Branch BB4

Branch recovery
Opp-condition2

cmp
Val3D, Val4D

Branch BB5

Branch BB5

BB2-4

Branch recovery
Opp-condition1

cmp
Val1D, Val2D

Branch BB4

Branch BB4

BB1-4 BB2-5

Branch recovery
condition1

cmp
Val1D, Val2D

Branch BB3

Branch BB3

BB1-3

BB4 BB5

Figure 4.5: Control flow protection in NEMESIS. (a) shows unprotected program
control flow. (b) shows NEMESIS branch direction double checking mechanism.

taken branch instruction (if the branch is not taken the error will be masked) are

examples of unexpected jumps. Such control flow errors can be detected or even

recovered with signature-based control flow checking techniques (Oh et al., 2002b;

Vemu and Abraham, 2011; Vemu et al., 2007). A wrong-direction control flow occurs

when a branch direction changes from taken to not-taken or vice-versa, which can

be caused by errors affecting the compare instruction register operands, execution

and the opcode of compare and branch, or even program status flag registers. If

such error occurs, all three streams will steer to the wrong direction and will execute

the wrong sequence of memory write instructions. The wrong-direction control flow

errors are more frequent than wrong-target errors, and, cannot be detected with most

of the existing signature-based control flow checking techniques (Shrivastava et al.,

2014; Didehban and Shrivastava, 2016). Hence, the focus of NEMESIS transformation

is to detect and recover from wrong direction control flow errors while a signature-

based control flow checking technique can be employed for handling unexpected jumps

67

control flow errors.

In order to detect wrong-direction control flow errors, NEMESIS double checks the

direction of a conditional branch by placing an intermediate block, called direction-

check block, between each source and destination BBs (Basic Blocks) in the original

program control flow. These intermediate, direction-check blocks are necessary be-

cause they make direction double checking possible even for multiple-entry destination

BBs. In each direction-check block, NEMESIS inserts a redundant (D-stream) com-

pare instruction and announces the presence of error only if the redundant compare

changes the direction of the conditional branch in a different way from the original

(M-stream) compare instruction. However, if no error is detected, the program con-

trol goes to the destination BB by a direct branch which is positioned at the end

of direction-check block. These unique features of NEMESIS control flow checking

mechanism provide complete wrong-direction error detection and also maximize the

masking effect of compare instruction.

Figure 4.5 demonstrates NEMESIS control flow transformation for a simple pro-

gram which has both, single-entry (BB3 and BB5) and multiple-entry destination (BB4)

basic blocks. In the Figure, NEMESIS direction-check blocks are marked as BB1-3,

BB1-4, BB2-4, and BB2-5. A direction-check block contains four instructions, a D-

stream copy of the source BB compare instruction, a conditional branch instruction

to the diagnosis/recovery block, and two redundant direct branches to the destination

BB. The condition of the conditional branch instruction in a direction-check block is

specified in such way that it will not change the control flow of the program in a fault-

free run, and, the control flow will reach to the destination BB. For that purpose,

if the control flow changes when the branch is not-taken (from BB1 to BB3 or from

BB2 to BB5), the condition of the conditional branch instruction in the direction-check

block is as same as the condition of branch in the source BB. On the other hand, if

68

the control flow changes from source to the destination BB when a branch is taken

(from BB1 or BB2 to the BB4), the condition of the conditional branch instruction in

the direction-check block will be opposite to the condition of the branch in the source

BB. For instance, if the branch in source BB is ”b.eq (branch equal)“, the conditional

branch in the direction-check block will be ”b.ne (branch not equal)“.

In a fault-free run of a program, the conditional of the conditional branch in

direction-check block is always false, and the control flow goes to the destination BB

with the first direct branch instruction. However, if soft error alters the direction

of the source BB branch, the conditional branch in the direction-check block will

change the control flow of the program to the corresponding recovery block. Note

that, the second direct branch in the direction-check block (the last instruction) just

gets execute if an error affects the execution of first directed branch in a way that it

cannot change the control flow of the program.

4.2.5 Control Flow Error Diagnosis/Recovery

The control flow error diagnosis routine is simple because it just needs to check

for inter-stream error propagation, and, if that is the case, the error is consider as

detectable/not-recoverable. Otherwise, diagnosis routine transfers the control of the

execution to the recovery block, where, majority-voting takes place between compare

register operands, and the program resumes its error-free execution from the M-stream

compare instruction.

69

4.3 Experimental Methodology

4.3.1 Compilation and Simulation Framework

In order to evaluate the effectiveness of NEMESIS fault tolerant technique, we im-

plemented NEMESIS and SWIFTR techniques as late back-end passes in LLVM 3.7

infrastructure (Lattner and Adve, 2004) for an ARMv8-a ISA. This implementation

enabled us to take advantage of the all advanced compiler optimization. We compiled

twelve benchmarks from MiBench benchmark suite (Guthaus et al., 2001) with -O3

compiler optimization flag. For each program we produced three versions, Original,

SWIFTR and NEMESIS. Please note that we did not modify the standard library

functions and therefore we exclude them from all of fault injection and performance

overhead evaluation results shown in this work. We performed extensive fault injec-

tion experiments on different hardware components of a modern, high-performance

low-power, ARM cortex-A53 like microprocessor simulated in gem5 (Binkert et al.,

2011) a cycle accurate simulator. Table 2.2 shows the details of the processor config-

uration.

4.3.2 Fault Model and Fault Injection Set-up

Fault model and fault sites: We inject single bit-flip per execution as our fault

model in this work. We injected faults on different bits of various hardware compo-

nents including general purpose integer register file, pipeline decoder and instruction

queue registers, integer functional units and load-store unit buffers. Injecting faults

only in register file does not accurately capture the effect of soft errors that happen

in the entire system (Shrivastava et al., 2014). Very importantly, injecting faults in

register file will not cause inter-stream error propagation. However, they can hap-

pen for example, when errors happen on an instruction register and alters a register

70

number from one set of registers (M-/D- and R-regs) to another. Our fault injection

scheme – where we insert faults everywhere in the processor – allows for such errors.

Number of fault injections experiments and outcome classification: In an

attempt to cover all cases, we randomly inject 100,000 faults for each version of a

program per fault site. For each version of a program, we injected 400,000 (4 *

100,000) faults in four hardware components. Overall, we inject 14,400,000 (400,000

* 3 * 12) fault injection experiments. According to (Leveugle et al., 2009), these

extensive fault injection experiments provide us more the 95% confidence interval

with less than 0.1% error rate, which is 10x less error rate than previous works

(Didehban and Shrivastava, 2016; Mitropoulou et al., 2013b; Feng et al., 2010; Reis

et al., 2007).

For each fault injection experiment, a target component and a (bit, cycle) are

randomly selected statically. Once the simulator reaches the target fault injection

cycle, simulation is paused and the selected bit is flipped, then, the simulation run

resumes its execution till simulation terminates or the allowable simulation time gets

over. The result of each simulation run is classified into one of the following category:

Masked: Program terminates and the output is correct. Note that faults, which are

recovered by SWIFTR and NEMESIS techniques, also count as masked faults.

Failed: Program terminates normally, but, the output is incorrect. This is the case

of Silent Data Corruptions or SDCs.

SegFault: Program terminates by generating some symptoms such as segmentation

fault or simulation time is over. We consider segmentation faults as detected, and

focus our work on Silent Data Corruptions that go undetected, and are hardest to

catch, and therefore recover from.

Detected/Not-Recoverable: In this case, program terminates by announcing the

presence of a unrecoverable error. This type of outcome can only happen while the

71

237,059
120,664

1

10

100

1000

10000

100000

1000000

N
u

m
b

e
r

o
f

SD
C

s

Original SWIFTR Nemesis

0

Figure 4.6: Out of 15 million fault injection experiments (evenly distributed between
original, SWIFTR and NEMESIS versions of programs), 237K result in SDCs in the
ORG program, 120K in the SWIFTR program, and 0 in the NEMESIS program.

fault is injected during the execution of an NEMESIS-protected program.

4.4 Evaluation and Analysis

4.4.1 Fault Injection Results

Figure 4.6 shows the number of fault injection runs that resulted in SDCs for

unprotected (ORG), SWIFTR and NEMESIS versions of the programs. The Figure

shows that of the 5 million runs, the original program results in SDC about 237K

times. The SWIFTR version ends up with 120K times occurrence of SDCs. As

compared to these, NEMESIS protected programs do not cause any SDCs.

Figure 4.7 depicts the number of fault injection experiments that lead to SDCs per

hardware component. We show the actual number of failures because, commonly used

metrics such as fault coverage or even the percentage of masked faults may lead to

fault detection/correction overestimation in techniques like NEMESIS or SWIFTR

which expand the bit-cycle fault space of the original program (Schirmeier et al.,

2015). Note that the Y-axis of the graph, or Number of SDCs is in exponential scale

and that the last bar in each graph shows the total number of experiments that

72

169070
108,674

1

10

100

1000

10000

100000

1000000
N

u
m

b
e

r
o

f
SD

C
s

Original SWIFTR Nemesis

0

25,131
6,676

1

10

100

1000

10000

100000

N
u

m
b

er
 o

f
SD

C
s

Original SWIFTR Nemesis

0

25,360 3,452

1

10

100

1000

10000

100000

Original SWIFTR Nemesis

0

17,498 1,862

1

10

100

1000

10000

100000

N
u

m
b

er
 o

f
SD

C
s

Original SWIFTR Nemesis

0

Load-Store Unit Register file

Pipeline Registers Functional Units

Figure 4.7: Fault injections in different hardware component of simulated micro-
processor never lead to failure, while running NEMESIS-protected programs.

resulted in SDC. We can see from all the four plots that fault injection in NEMESIS-

protected programs never resulted in SDCs. This implies that NEMESIS error detec-

tion is able to detect all injected faults. The NEMESIS diagnosis routine always cor-

rectly distinguished recoverable errors from unrecoverable ones, and the recovery rou-

tine always eliminated the effect of error completely. NEMESIS error detection is able

to detect all errors because it checks for the results of critical instructions rather than

their operands, and it covers infrequent cases like silent-stores and missing-memory

updates. In comparison with original versions of programs, SWIFTR-protected pro-

grams, on average, produced 35%, 73%. 86% and 89% less failures for faults injected

in load-store unit, register file, pipeline registers and functional units, respectively.

Surprisingly, in some cases such as fault injection in the load-store unit for programs

like basicmath and rijndeal, SWIFTR transformation actually increases the number

73

of failures! The reason is that in comparison with original codes, SWIFTR transfor-

mation dramatically increases the number of memory operations for register-hungry

programs and leaves them unprotected. NEMESIS transformation also increases the

number of memory operations, but NEMESIS protects them either by triplication

(read operations) or loadback techniques (write operations). Voting time-to-check

to time-to-use is the cause of failures due to faults in the register file for SWIFTR-

protected programs. Faults that happen on pipeline registers or functional units,

while they are processing the execution of critical instructions, e.g., memory, com-

pare and branch instructions, may lead to a failure in SWIFTR-protected program.

For instance, faults which convert the opcode of a compare instruction to some other

instruction may change the control flow of a program, but will remain undetectable

in programs protected by SWIFTR.

4.4.2 Analysis of Injected Faults

Figure 4.8 shows the fault injection experimental result distribution for original

and NEMESIS-protected versions of the programs. It can be seen that very significant

percentage of faults are masked, even in original programs (on average about 77%),

and adding protection increases the number of masked faults, on average, by about

13%. NEMESIS-transformation also slightly decreases the number of SegFault, on

average, from 11.5% to 9.5%. We believe most of these segmentation faults can

be recovered by NEMESIS, if programs execute NEMESIS diagnosis and recovery

routines in the their signal handling functions. However, since that in our simulation

environment the simulator does not forward the segmentation faults signal (SIGSEGV

signal) to the program and directely terminates the simulation, we have segmentation

faults in our results. The graph also shows that just a negligible amount of faults

(about 0.42%, on average) lead to unrecoverable errors.

74

65%

70%

75%

80%

85%

90%

95%

100%

O
rg

N
em

.

O
rg

N
em

.

O
rg

N
em

.

O
rg

N
em

.

O
rg

N
em

.

O
rg

N
em

.

O
rg

N
em

.

O
rg

N
em

.

O
rg

N
em

.

O
rg

N
em

.

O
rg

N
em

.

O
rg

N
em

.

O
rg

N
em

.

%
 o

f
fa

u
lt

s

Masked SegFault SDC Detected/Not-Recoverable

Figure 4.8: NEMESIS protected code increases the percentage of masked faults by
13%, and completely eliminates SDCs.

4.4.3 Analysis of Diagnosis Routine Outcomes

Figure 4.9 shows the outcome distribution of diagnosis routine. The diagnosis

routine determines the scope of error propagation and decides if the detected error

is recoverable. The graph shows that more than 97% of the detected errors are

recoverable. 3% of the cases, where NEMESIS cannot recover are when the faults

cause an inter-steam error propagation, or when the fault causes an error in the

effective address of the store instruction during the execution of the store instruction.

In these cases, NEMESIS cannot find out the correct register value (because all are

different) or wrongly-written-into memory location, and therefore can detect but not

recover.

75

90%

92%

94%

96%

98%

100%

%
 o

f
d

e
te

ct
e

d
 f

au
lt

s

Recoverable Detected/Not-Recoverable

Figure 4.9: Nemesis transformation is able to successfully recover from more than
97% of detected faults, while 3% of detected fault remains unrecoverable

4.93

3.41

0

1

2

3

4

5

6

7

8

Ex
ec

u
ti

o
n

 t
im

e
o

ve
rh

ea
d

ORG SWIFT-R Nemesis

11.7

Figure 4.10: Nemesis-protected programs, on an average run 30% faster than
SWIFTR protected ones.

76

4.4.4 Execution Time Overhead

Figure 4.10 shows the execution time overhead for SWIFTR and NEMESIS ver-

sions of the programs. Compared to the original code, SWIFTR and NEMESIS

transformations, on average, increase the execution time of the program by about

5X and 3.4X, respectively. The NEMESIS-protected programs run, on average, 30%

faster than SWIFTR-protected ones, because they execute less number of instructions.

For instance, for each memory read operation, NEMESIS transformation just adds

two extra redundant instructions while SWIFTR transformation requires a majority-

voting, which needs 4 machine instructions in our implementation, and two extra

move instructions. The number of extra instructions added for memory write op-

eration protection, for both NEMESIS and SWIFTR transformations is 8 machine

instruction. However, since NEMESIS does not execute silent stores, it executes on

average 18% less memory write operations. For each compare instruction, SWIFTR

transformation requires two voting operations (so a total of 8 instructions), however,

NEMESIS transformation adds just 3 extra instructions. Note that the SWIFTR and

NEMESIS register reservation for redundant instructions, impose considerably high

overhead in some register-hungry applications like rijndeal.

The performance overhead reported in this work may seem higher than simi-

lar/previous works because for two main reasons: First, we exclude the number of

cycles that a program spends in standard library calls from our execution time estima-

tion, because we didn’t modify such functions, and second similar works usually select

a much wider and aggressively out-of-order processor, that can hide the performance

overhead due to the execution of the extra instructions. Nevertheless, considering

the fault coverage provided by NEMESIS, its performance overhead is reasonable

and even competitive with many coarse-grain software and hardware error detec-

77

tion/recovery technique. This is because such techniques usually demand two extra

cores for running redundant codes and some extra operations for majority-voting,

which overall can be considered as more than 3x overhead.

4.5 Conclusions

We present NEMESIS as a complete solution for protecting computing against

soft errors. NEMESIS is a software level redundancy-based technique which checks

the results of memory write operations and the direction of branch instructions. If

any violation is detected, NEMESIS diagnosis and recovery schemes undo the effect of

error from processor and memory state, and the program can continue its execution.

NEMESIS strategy provides near-immediate error recovery which is crucial for work-

loads like real-time and interactive applications. However, those applications which

do not require such rapid error recovery can still benefit from NEMESIS error detec-

tion technique as it can detect all faults that cause SDCs – a claim that most previous

techniques cannot make. We evaluated the effectiveness of NEMESIS against state-

of-the-art error recovery techniques by performing about 15 million processor-wide

single bit-flip fault injection experiments on original and protected versions of differ-

ent programs. Our experimental results show that NEMESIS protected programs do

not incur any SDC. On an average, NEMESIS protected programs run 30% faster

than SWIFTR protected programs.

78

Chapter 5

LOW LEVEL CRASH TESTING AND ADJUSTMENTS

The goal of this chapter is to quantify the error coverage capability of the proposed

software-level solutions through RTL-level fault injection experiments. To propose a

general (ISA-independent) solution, we first propose gZDC, a combination of nZDC

data-flow error detection and NEMESIS control-flow error protection. gZDC also uti-

lizes coarse-grained scheduling and asymmetric control-flow signatures to reduce the

chance of hard-to-detect control-flow errors. Statistical single bit-flip fault injection

experiments on different hardware components of a synthesizable Verilog description

of an OpenRISC-based microprocessor reveals that gZDC transformations can achieve

more than 99.9% error coverage.

5.1 gZDC Overview

An error may lead to failure by changing application data-flow or its control-flow.

To detect data-flow errors, gZDC utilizes nZDC load-backing strategy introduced in

Section 2.4. Control-flow errors can furthermore be divided into (1) Wrong direction

control flow errors i.e. errors alter the direction of a branch, and (2) Unexpected

jumps i.e. errors which cause a random jump to an arbitrary location. In following

subsections, we describe gZDC solution for each type of these control-flow errors.

5.1.1 Wrong Direction Control Flow Errors

To detect wrong-direction control-flow errors, gZDC adopts NEMESIS control-

flow detection scheme (Didehban et al. (2017b)) and performs redundant check on

the direction of each conditional branch. It raises error detection flag only if an error

79

has altered the direction of the branch. Note that simple branch duplication is inef-

fective because usually the result of a branch is a change in program control flow (i.e.

update on PC), not a value that can be simply duplicated and check later. Therefore,

since simple branch duplication is useless and we use branch checking instruction

to verify the direction of branches. Branch checking instructions use the redundant

registers and their destinations are always error detection routine. Contingent upon

the direction of the original branch instruction, the opcode of branch checking in-

structions (branch condition) can be either same or opposite to the original branch

condition. Basically, there are two possible paths after each conditional branch in-

structions: (1) Taken path – when branch condition is true and control of execution

should be changed, and (2) Fall through path – when branch condition is false and

there will be no change in program control flow. Based on the possible outcomes of a

conditional branch (taken or untaken) the opcode and the position of branch checking

instructions are determined as follow:

Direction checking for taken branches: Placing checking branch instructions

after taken conditional branches is useless simply because branch checking instruc-

tions would not even get a chance to be executed. A naive solution can be placing

branch checking instructions right in the beginning of the branch target basic block.

Unfortunately, such solution will lead to a false alarm in the cases that the branch

target basic block is a merge basic block – it has more than one predecessors. For

instance, consider program shown in Figure 5.1(a). In the code, control can reach to

.BB3 (target address of the conditional branch BNE R1, R2, .BB3) from either .BB0

or .BB1. When control reaches to the .BB3 from .BB0 the value of R1 register is

definitely “not equal(NE)” to the value of R2. However, that condition may or may

not be true if the control lands to .BB3 from .BB1 block.

80

To solve this problem, gZDC transformation first creates an intermediate blocks

(.BB-CH in Figure 5.1(b)), then verifies the direction of branch by executing branch

checking instruction (marked as 2○ in the Figure), and finally transfers the control

flow to the desirable block by inserting a direct jump instructions (marked as 3○ in

the Figure). The condition of branch checking instruction in the taken branch cases in

oppose to the original conditional branch instructions. For example, in this case the

opcode of branch checking instruction in intermediate block .BB-CH is “BEQ (Branch

Equal)” which is opposite to the “BNE (Branch Not Equal)” operation. The reason

is that if the original branch is taken, the condition is true (R1 is not equal to R2

in our example) and the opposite condition should be false. Therefore, the branch

checking instruction is always untaken and control will transfer to the destination

block by the next direct jump. However, if an error influences the direction of branch

and alters its direction from untaken to taken, the control flow will reach to the

intermediate block wrongly. In those cases, the program control flow will be directed

to the error handling block by checking branch instruction because their condition is

always opposite to the original error-free branch – the checking branch instruction is

taken because the original error-free branch was untaken.

Furthermore, to make sure that actual jump takes place (control redirects to the

destination BB), we insert a direct jump to error detection block, after each direct

jump instruction in the code (marked as 4○ in the Figure). This is required for the

cases which because of soft error (i.e., errors affecting the opcode of jump) a jump

instruction alters to another instruction (e.g., arithmetic or even memory operation).

Direction checking for untaken branches: For cases that original branch in

untaken and control flow goes to the basic block right after the branch, gZDC inserts

a branch checking instruction with the exact same opcode (condition) but shadow

81

BNE R1, R2, .BB3

.BB0

BNE R1, R2, .BB-CH

.BB0

.BB2 .BB3

BNE R1*, R2*, .Err

BEQ R1*, R2*, .Err
Jump .BB3
Jump .Err

.BB2

.BB3

.BB-CH

Jump .BB3

Jump .BB3

Jump .Err

.BB1

.BB1

(a) Original Control-Flow (b) gZDC wrong-direction control-flow error detection

1

3
2

4

4

Figure 5.1: gZDC inserts a branch direction check basic block between all control
flow edges from a taken conditional branch to a merge basic block. The inserted BB
always composed of a branch direction-check instruction followed by two direct jump
instructions.

register operands from the original branch immediately after the original branch. 1

Instruction marked as 1○ in the Figure is an example of branch checking instruction

for untaken branches. The key point here is that if the original branch in untaken,

the checking branch instruction is untaken as well and the program execution will

continue as expected. However, if an error alters the direction of the original branch

from taken to untaken, the checking branch instruction will direct the control flow

operation to the error handling block. Since all architectures provide conditional

branch operation, this solution is applicable on all targets. Note that all conditional

branches in 5.1 can be changed to separate compare and branch instructions (e.g. for

ARM ISA) without any affect on the protection.

82

…
M
R
M
R
M
R
M
R
…

…
M
M
M
M
R
R
R
R
…

(a) (b)

Figure 5.2: The impact of fine-grained vs coarse-gained instruction scheduling on
intra-BB undetected unwanted jumps. Main and Redundant instructions are shown
by M and R letters respectively and arrows represent undetected intra-BB forward
unwanted jumps. Part (a) shows fine-grained instruction scheduling which leaves
many unwanted jumps (dashed arrows) as undetected because such jumps cause no
mismatch between the state of redundant registers. Part (b) shows coarse-grained
scheduling policy which has a lesser chance of undetected unwanted jumps errors.

5.1.2 Unexpected Jumps

We define unexpected (or unwanted) jump error as causes that an error changes

program control flow in a way that is not allowed by program static control flow

graph. Examples are errors on PC, errors on target field of direct/indirect branch

instructions, errors altering the opcode of a non-branch instruction to a branch/jump

and errors on address field of branch target address buffer structure. We divide un-

wanted jump errors into intra-BB (unwanted jumps from one basic block to itself) and

inter-BB (unwanted jumps from one basic blocks to another) jumps. gZDC adopts

different solutions to address each of these cases:

1Technically, in this case a new basic block will be inserted between original basic block and the
fall-through basic block.

83

Intra-BB unwanted jump detection: To detect the manifestation of intra-BB un-

wanted jumps, we introduce a different static instruction scheduling than the one that

usually is used in the state-of-the-art error detection scheme. Figure 5.2(a) illustrates

widely-used scheduling policy for interleaving main and redundant instructions. Such

instruction scheduling (i.e. interleaving main and redundant operations one by one)

is extremely vulnerable to unexpected short jumps.

Basically, any unexpected jump from an equal-point-of-execution which skips (in

forward or backward direction) exactly same number of main and redundant instruc-

tions will remain undetected. We define equal-point-of-execution as program exe-

cution points2 which at that point the value of all main and redundant registers

pairs are equal. For instance, all program execution points before the execution of

main instructions (represented by M in Figure 5.2(a)) are equal-point-of-execution. 3

Dashed arrows in Figure represent forward unwanted jumps that basically cannot be

detected by instruction-duplication based schemes because they cause no mismatch

in the state of registers.

Note that in the Figure we just show forward undetected jumps, undetected back-

ward jumps can be easily pictured by reversing the direction of arrows. Figure 5.2(b)

shows an alternative scheduling policy (called coarse-grained scheduling of main and

redundant instructions) which significantly reduces the chance of undetected jump

errors. The main idea behind coarse-grained scheduling is that if an unexpected

jump leads to a discrepancy between the state of main and redundant registers, most

probably will be detected later on by further error checking operations.

Furthermore, the presence of gZDC data-flow and control-flow error checking op-

2Program execution points are points between two consecutive instructions in a program.

3Note that if redundant instructions are inserted into the code before instruction scheduler phase
in compilation pipeline, the scheduling of main and redundant instructions may be slightly different.
Nevertheless, our definition of equal-point-of-execution is independent on scheduling policy.

84

Store R1  [R2]
load R1 [R2*]
BNE R1, R1*, Err

(a)

Store R1  [R2]

load R1 [R2*]
BNE R1, R1*, Err

(b)

M
ai

n

C
o

m
p

u
ta

ti
o

n
s

R
ed

u
n

d
an

t
C

o
m

p
u

ta
ti

o
n

s

M
ai

n

C
o

m
p

u
ta

ti
o

n
s

R
ed

u
n

d
an

t
C

o
m

p
u

ta
ti

o
n

s

Figure 5.3: Coarse-grained scheduling in the presence of store and checking op-
erations. As part (a) shows scheduling store and corresponding checking opera-
tions at the end of basic block introduces new possibilities for undetected unwanted
jumps. Dashed arrows represent these undetected jumps. Part (b) shows gZDC
coarse-grained main-redundant instruction scheduling policy in presence of store and
checking instructions.

erations restricts the window of coarse-grained scheduling policy. For instance, Figure

5.3(a) shows a naive implementation of proposed scheduling strategy for a basic block

with a store instruction. As it shows compared to Figure 5.2(b), the number of pos-

sible undetected unwanted jumps actually increase from ’1’ to ’5’. Now, jumps from

the beginning of the basic block to the right before store or right before error checking

instruction (BNE R1, R1*, Err) is also undetectable. In addition, jumps from right

before store to the end of basic block or right before error checking instruction are

also remain undetected. gZDC solution to mitigate this problem is to consider store

instruction as a main and checking load operation as well as error checking instruc-

tion (BNE R1, R1*, Err) as redundant instructions. Figure 5.3(b) shows the gZDC

instruction scheduling policy. As the Figure shows, such scheduling can reduce the

number of undetected jumps from ’5’ to ’2’.

85

We did not count a short jump skipping over the last two instructions in Figure

5.3(b), because such unwanted jumps are benign and do not change the functionality

of the program. Note that if there is a dependency between store and prior load

operations inside a basic block (they access same memory location), the redundant

load should be inserted before the conflicting store. Similar to store case, placing

wrong direction control-flow checking operations at the end of basic blocks (Figure

5.4(a)) also introduces new vulnerable cases for unwanted-jump errors.

Figure 5.4b demonstrates gZDC wrong direction control-flow errors with coarse-

grained scheduling policy. As shown, gZDC transformation first schedules main

stream of instructions followed by the conditional branch instruction. Then it inserts

corresponding redundant stream of instructions and direction checking operations in

both taken and fall through paths.

Inter-BB unwanted jump detection: One of the main advantages of coarse-

grained main/redundant instruction scheduling is that not only such scheduling re-

duce the chance of intra-BB unwanted jumps, but also is effective in inter-BB un-

wanted jump error detection. The reason lies in the drastic reduction in the number of

equal-point-of-execution (i.e. the program points that live main and redundant regis-

ters have the same values). Generally, all unwanted (intra and inter basic block) jumps

from program point S to E remain undetected if both S and E are equal-point-of-

executions in instruction-replication schemes. That is because such unwanted jumps

cause no discrepancy in the state of main and redundant registers and therefore there

is no chance to be detected by error checking instructions. Coarse-grained scheduling

policy reduces the chance of undetected unwanted errors by simply reducing the num-

ber of equal-point-of-execution in a protected by an instruction-duplication scheme.

To further reduce the possibility of undetected jumps, similar to existing signature-

based control-flow checking schemes (Goloubeva et al., 2003; Abadi et al., 2005) gZDC

86

BEQ R1*, R2*, .Err
Jump .BB1
Jump .Err

BNE R1, R2, .BB-CH

.BB0

.BB-CH

.BB1

.BB2
Fall Through Path

(b)

BNE R1*, R2*, .Err

M
ai

n

C
o

m
p

u
ta

ti
o

n
s

R
ed

u
n

d
an

t
C

o
m

p
u

ta
ti

o
n

s

R
ed

u
n

d
an

t
C

o
m

p
u

ta
ti

o
n

s

BEQ R1*, R2*, .Err
Jump .BB1
Jump .Err

.BB0

.BB-CH

.BB1

.BB2
Fall Through Path

(a)

BNE R1*, R2*, .Err

M
ai

n

C
o

m
p

u
ta

ti
o

n
s

R
ed

u
n

d
an

t
C

o
m

p
u

ta
ti

o
n

s

BNE R1, R2, .BB-CH

Figure 5.4: Coarse-grained scheduling in the presence of conditional branch opera-
tions. (a) Naive scheduling by inserting conditional branch at the end of basic block.
(b) gZDC wrong direction control flow and coarse-gained instruction scheduling.

encodes static control-flow footprints (signatures) into the program and dynamically

checks their results at the critical point of execution i.e. before and after system calls.

Particularly, gZDC transformation designates two specific general purpose registers,

called MICR (Main Instruction Check Register) and RICR (Redundant Instruction

Check Register) to control-flow signature updating and checking. These two registers

get updated during the execution of program and their values are checked against each

other for error detection purposes only before and after system calls. Defining these

two redundant registers forces another condition to program equal-point-of-executions.

Now, for a point of execution to satisfy the condition of equal-point-of-executions apart

of equal value for all live main and redundant registers, MICR and RICR registers

should also have same exact values. The key point in gZDC unwanted-jump detection

87

strategy is asymmetrical updates for MICR and RICR registers which tries to keep

the values of MICR and RICR registers different as far as it is possible and therefore

removes the equal-point-of-executions.

Listing 1 shows gZDC asymmetric control flow registers updating algorithm. 4

Algorithm 1 consists of three phases: 1) updating MICR, 2) updating RICR regis-

ter, and 3) eliminating symmetric updates. First, the compiler assigns each main-

instruction-included-BB (BB with at least one main instruction) a unique number,

called basic block signature. Note that main instructions are arithmetic, logical or

memory operations that use only main registers as their operands. Then it inserts

instructions to update the value of MICR register by xoring the value of MICR regis-

ter with basic block signature right after the last main instruction in the basic blocks

(line 4-6). By the end of this step, each main-instruction-included BB should include

one MICR-updating instruction. In the second phase (line 9-16), RICR-updating

operations will be inserted only into BBs which are predecessors of all control-flow

merge or join BBs. 5 This lazy updates on RICR register lead to asymmetric (up-

dates with different immediate value) on MICR and RICR registers which minimizes

the number of equal-point-of-executions. To insert a RICR-updating instruction into

a basic block, we should first calculate the correct immediate value of xor operation

which is an aggregated xor between all basic block signatures in a backward path

from current BB to the first join BB (line 11).

Figure 5.5 shows gZDC asymmetric control-flow signature updating algorithm for

a simple case. As Figure 5.5(a) illustrates both BB0 and BB1 are join BBs. Applying

gZDC wrong direction control flow error detection transformation (Figure 5.5(b)) in-

4The redundant signature registers only carry the same value before system calls or end of the
function and error detection operations also will be inserted both before/after system calls and the
end of functions.

5Basic blocks with more than one predecessors are join basic blocks.

88

Algorithm 1 gZDC asymmetric CF signature updating

Input: gZDC coarse-grained scheduled program

Output: gZDC coarse-grained scheduled program with unwanted jump error detec-

tion

1: Initialization : MICR = RICR = 0;

2: Assign unique number Sigi to each main-instruction-included BBi in Input

3: /*First Phase: Updating MICR*/

4: /*Top-down control flow traversal*/

5: for each BBi in Input do

6: if (BBi is a main-instruction-included BB) then

7: lmInst = last main instruction in BBi

8: Create Instruction Inst: MICR = MICR ⊕ Sigi

9: Insert Inst after lmInst

10: end if

11: end for

12: /*Second Phase: Updating RICR*/

13: /*Top-down control flow traversal*/

14: for each BBi in Input do

15: if (BBi is a predecessor of a join BB) then

16: aggrSig = aggregated xor of BBi signature with its all consecutive prede-

cessors to the first join BB

17: frInst = first redundant instruction in BBi

18: Create Instruction Inst: RICR = RICR ⊕ aggrSig

19: insert operation Inst before frInst

20: end if

21: end for

89

22: /*Third Phase: eliminating symmetric updates*/

23: /* bottom-up control flow traversal*/

24: for each BBi in Input do

25: if (BBi includes MICR and RICR instructions) then

26: immMICR = immediate value of MICR updating instruction in BBi

27: immRICR = immediate value of RICR updating instruction in BBi

28: if immMICR == immRICR then

29: randomNum = a random number

30: immRICR = immRICR ⊕ randomNum

31: for each preBBi of BBi do

32: if preBBi includes a RICR updating instruction then

33: immRICR = immediate value of RICR updating instruction in

preBBi

34: immRICR = immRICR ⊕ randomNum

35: else

36: frInst = first redundant instruction in preBBi

37: Create Instruction Inst: RICR = RICR ⊕ randomNum

38: insert Inst before frInst

39: end if

40: end for

41: end if

42: end if

43: end for

90

creases the number of program BBs by three (BB0_1, BB0_2 and BB0_CH are added

by gZDC transformation). This transformed control flow graph includes two main-

instruction-included-BB (BB0 and BB0_1) and two BBs with join successor ((BB0_2

and BB0_CH)). According to phase one of the Algorithm 1, MICR-updating instruc-

tions are inserted into BB0 and BB0_1 right after the last main instruction. These

instructions are shown as MICR ⊕ sig_BB0 and MICR ⊕ sig_BB0_1 in the Figure.

Based on the second phase of the algorithm, RICR-updating operations are inserted

into BB0_2 and BB0_CH. To compute the offset of xor operation for BB0_2, we should

traverse control flow graph backward to the last join BB (Dashed arrows in the Figure

shows this path). Such path consists of BB0_2, BB0_1 and BB0. However, since BB0_2

is not a main-instruction-including-BB it does not have a signature and the aggregated

signature is calculated by xoring the signature of BB0_1 (Sig_BB0_1) and signature

of BB0 (Sig_BB0). The last instruction in BB0_2 shows inserted RICR-updating in-

struction. Similar to the BB0_2, a RICR-updating instruction is also inserted in the

BB0_CH.

The last phase of Algorithm 1 (line 17 to 36) deals with the problem of symmet-

ric updates on both MICR and RICR registers. The problem in symmetric updates

is that they introduce equal-point-of-executions which alleviates the chance of unde-

tected jumps. For instance, unwanted jumps from the beginning to the end of a BB

which consists of main instructions follow by symmetric updates on MICR and RICR

registers and redundant instructions remain undetected because such jumps do not

cause any mismatch in the state of pair main/redundant registers. To detect sym-

metric update cases, gZDC transformation goes over all program basic blocks starting

from the end of program (exit basic blocks) and first checks if a basic block contains

both MICR-updating and RICR-updating instructions (line 18). If yes, it extracts

the immediate field of signature updating instructions and checks if those values are

91

.BB0

M
ai

n

BNQ R1*, R2*, .Err
RICR Ꚛ = sig_BB0 Ꚛ sig_BB0_1
Jump .BB0
Jump .Err

.BB0_CH

R
ed

u
n

d
an

t
BEQ R1*, R2*, .Err
RICR Ꚛ = sig_BB0 Ꚛ sig_BB0_1

R
ed

u
n

d
an

t

Load R1  [R3*]
BNQ R1*, R1*, .Err

R
ed

u
n

d
an

t

Store R1 [R3]

.BB0

M
ai

n

BEQ R1, R2, . BB0_CH

BEQ R1, R2, .BB0

MICR Ꚛ= sig_BB0

MICR Ꚛ = sig_BB0_1

.BB0_1

.BB0_2

(a) Original Code (b) Generic-nZDC transformation with unwanted jump detection

.BB1

.BB1

Figure 5.5: Complete gZDC data-flow and control-flow transformations for a simple
loop. (a) shows control-flow for a simple loop, and (b) shows corresponding gZDC
code with static signature updating operations. MICR-updating instructions are
inserted into the main-instruction-included-BB and RICR-updating instruction are
inserted into successor BBs of a join BBs. The dashed arrow shows backward trace
path to compute the aggregated signature required for RICR-updating instruction in
BB0 2.

92

same (line 18-21). If a BB with symmetric updates is detected, then the algorithm

generates random number and updates the immediate field of RICR-updating instruc-

tion (line 2-23). This makes signature updating instructions asymmetric. However,

to maintain the consistency, signature modification for predecessor BBs of current

BB is also required (lines 24 to 33). Basically, same exact random number should

be xored with the RICR-updating instruction in the predecessor blocks as well. If

the predecessor block does not have such instruction, the algorithm creates one and

inserts it into the basic block before its first redundant instruction (line 29 and 31).

5.2 Experimental Methodology

In this section, we describe our experimental environment and evaluation strategy

to measure the re-evaluate the error coverage and performance overhead of SWIFT

and gZDC transformations. Note that we did not implement nZDC (explained in

Chapeter 2) because as we mentioned before nZDC is ISA-dependent (nZDC control-

flow is compatible with ARM V8-a ISA) and cannot be implemented on OpenRISC

ISA.

5.2.1 Microprocessor and Fault injection Environment

We used single-issue 5-stage pipeline Mor1kx cappuccino microprocessor (the lat-

est version of OpenRISC1000 processor family) which is capable of running Linux

operating system (Mor, 2013). The microprocessor configuration is shown in table

5.1. We simulated the synthesizable HDL Verilog codes of Mor1kx microprocessor by

Icarus Verilog simulator (Williams, 2006).

Figure 5.6 depicts high-level block diagram of mor1kx microprocessor. The micro-

processor core components includes instruction and memory caches, a simple branch

predictor, register file, processor data path and load-store unit. Note that for sim-

93

Table 5.1: Mor1kx microprocessor configuration

Parameter Value

ISA OpenRISC

CPU model In-order Single-issue Mor1kx

Pipeline 5 stage (cappuccino)

of General Purpose Registers 32

Branch prediction Backward taken, forward not taken

L1 D/I cache 8KB(2 way)/8KB(2 way)

Cache line size 32 bytes

RAM size 32 MB

Instr.
Cache

Data Cache

LSU

Branch predictor

Decode
execute

Execute CTRL

Register
File

W
B

Protected by ECC

Unprotected

P
C

M
u
x

Not Vulnerable

Dec
oder

Func.
Unit

Fetch/Decode Unit

Fetch

Figure 5.6: Mor1kx architecture. Caches and Branch predictor are excluded from
fault injection analysis.

94

Table 5.2: Fault Injection Features

Component Fault Model # of fault sites

Register File Single Event Upseta 1024

Fetch/Decode Unit Single Event Upset 200

Decode/Execute Unit Single Event Upset 216

Execute/Control Unit Single Event Upset 183

Write/Back Unit Single Event Upset 32

ALU Single-event transientb 36

LSU Single-event transient 101

a Errors are injected on flip-flops.

b Errors are injected on combinational circuits.

plicity, pipeline forwarding paths from ALU to Decode/Execute and from WriteBack

to Decode/Execute stage are not shown in the Figure. Inline with previous work

(Reis et al., 2005, 2007; Feng et al., 2010; Laguna et al., 2016; Chen et al., 2016), we

assume that instruction/Data caches are ECC-protected and we exclude them from

our fault injection sites (these components are highlighted as protected by ECC in

the Figure). We also exclude branch predictor because as pinpointed by mukher-

jee2003systematic, transient errors on such performance-enhancing structures does

not cause lead to a failure. We conducted fault injection experiments on the rest of

microprocessor hardware components including Fetch/Decode, Decode/Execute, Exe-

cute Control, Register File, ALU, LSU, WriteBack. Table 5.2 summarizes the number

of fault sites and the injected fault model in fault injection target components.

95

5.2.2 Compilation and Binary Generation

We utilize clang and LLVM-or1k (LLV, 2017) compiler infrastructures and com-

pile 8 programs from Mibench (Guthaus et al., 2001) test suite and 10x10 matrix

multiplication for mor1kx microprocessor with -O3 optimization level. Note that we

compile the whole application as appeared in Mibench test suite and did not reduce

programs to micro-benchmarks. We choose to implement error detection transfor-

mations as late back-end passes in LLVM-or1k to take advantage of all standard

compiler optimizations like dead code elimination and common-subexpression elimi-

nation. Note that since SWIFT control-flow transformation is highly dependent on

IA-64 X86 predicated instructions, we adopted an alternative implementation ex-

plained in (Reis et al., 2007) which is written by same authors as SWIFT original

paper. We only apply protection schemes to user-level functions and exclude standard

library functions from all evaluations including performance overhead and error cov-

erage estimation. However, to expand the domain of evaluation for the benchmarks

which spend most of their execution time in the library calls (e.g., qsort program

heavily uses library provided qsort function), we manually copy the source code of

the dominant library function call to the program source code from open source GNU

C (glibc) library and apply protection on them. To demonstrate the effectiveness of

the proposed technique, we generate four executable versions for each benchmark:

Original (ORG) version is the unprotected version of program without applying

any software-level protection scheme.

SWIFT version is protected by SWIFT data and control flow protection transfor-

mations. Note that we include SWIFT signature-based control-flow error detection

in this version.

gZDC-WithoutJumpDet version is protected by nZDC data-flow transformation

96

(Chapter 2) and generic wrong direction control-flow error detection (explained in

Subsection 5.1.1).

gZDC version is the proposed gZDC including coarse-grained main-redundant in-

struction scheduling policy and asymmetric execution control-flow footprints (Al-

gorithm 1) for detecting the manifestation of unexpected jumps. We develop and

evaluate gZDC and gZDC-WithoutJumpDet separately to show the effectiveness of

the coarse-gain scheduling and asymmetric control-flow signature techniques on error

detection and their implications on performance overhead.

5.2.3 Fault Injection Process and Output Classification

Since the fault models used in this work are random single event transient or upset

faults, for each fault injection experiment fault injection site, b, and fault injection

time, t are randomly selected respectively among all 1792 fault injection sites and

from all cycles that a program executes user-level functions. After selecting tuple

(b,t), we start simulation normally and once the execution hits cycle t, we invert

the logical value of b (by XORing it with ’1’) for one cycle and let the execution

continues till execution terminates permanently or the execution time exceeds from

allowable simulation time which is 2 times more than fault free run of program. We

classify the results of each fault injection trial into one of the following categories:

Masked: Fault injection simulation terminates normally and generate exactly same

output as fault free run.

SW Detected: Cases that protection scheme detects the manifestation of error and

raise error detection flag.

OS/HW Detected: Fault injection simulation runs that terminate permanently by

generating an exception (i.e. segmentation faults or unkown instruction exception)

or cause a time-out error.

97

Silent Data Corruption (SDCs): Cases that execution terminates normally, but

the results is different from the fault-free execution.

For each version of a program we conducted 10,600 random fault injection ex-

periments on hardware components listed in Table 5.2, which statistically provides

around 2.5% error margin for 99% confidence level (Leveugle et al., 2009). The

hardware (space) distribution of errors is corresponding to the area of hardware com-

ponents. For instance, since register file includes around 57% of targeted fault sites

(1024 of 1792), around 57% (around 6,000) of all injected errors also were injected in

register file. Since we have 9 benchmarks, we injected 95400 (10,600 * 9) faults for

each version of programs. Overall, for all versions of programs we injected 381,600 (4

* 95400) fault injection experiments.

Since all error detection schemes including SWIFT and gZDC transformations

presume some type of backward recovery (i.e. restarting or checkpoint/rollback) as

post error detection handling strategy, errors in Exceptions and Hangs category can

be considered as harmless. The main difference between Exceptions and Hangs and

Detected errors is that the former is identified by operating system or hardware

protection schemes and later is recognized by software-level error protection schemes.

Nevertheless, in both cases, the recovery routine should be invoked to remove the

manifestation of error from the system. Therefore, we consider SDC-induced faults

as failed cases because such errors remain unnoticed.

5.2.4 Number of scaled SDCs as Comparison Metric

To fairly quantify and compare the error detection capability of SWIFT, gZDC-

WithoutJumpDet and gZDC techniques, we use number of scaled SDCs (or scaled-

SDC for short) which is calculated based on an overhead-dependent correction factor

which originally proposed by (Schirmeier et al., 2015) and has been used in many

98

7301
(7.65%)

1893
(1.98%)

372
(0.39%)

70
(0.07%)

1

10

100

1000

10000

Sc
al
ed

-
SD

C
ORG SWIFT gZDC-WithoutJumpDet gZDC

Figure 5.7: Compared to original code, gZDC transformation reduces the number
of scaled SDCs by more than 100x.

recent techniques (So et al., 2018; Didehban and Shrivastava, 2018). Scaled-SDC cap-

tures the negative impact of runtime overhead (α) of protection schemes on execution

reliability and is estimated as below:

scaled− SDC = #ofSDCs× α (5.1)

Note that since there is no runtime overhead for original version of programs the

number of scaled SDCs is in fact equal to number of SDCs for original versions of

programs. As pinpointed by (Schirmeier et al., 2015) considering number of SDCs

(or percentage of SDCs) significantly overestimates the error coverage capability of

the protection schemes and will lead to wrong conclusion.

99

5.2.5 Error Coverage Results and Analysis

Processor-wide error coverage: Figure 5.7 shows number of scaled SDCs (calcu-

lated based on equation 5.1) for different benchmarks extracted from our microprocessor-

wide fault injection experiments. In the Figure, X-axis represents different bench-

marks and Y-axis represents number of scaled-SDCs in logarithmic scale. The right-

most set of bars (denoted as total) represents the aggregated number of scaled-SDCs

for each version of programs across all benchmarks. This aggregated sum can be seen

as a large application which consists of all the benchmarks. As shown in the Figure

from 95,400 fault injection experiments performed on different microprocessor hard-

ware components during the execution of original versions of programs around 7.65%

of them result to SDCs. SWIFT transformation can reduce the number of scaled-SDC

to 1.98%. gZDC-WithoutJumpDet scheme reduces the number of scaled-SDC down

to 0.39%. Finally, gZDC improves the scaled-SDC rate of gZDC-WithoutJumpDet by

around 5x (0.07% scaled-SDCs rate). To understand the reasons behind this trend,

we analysis the vulnerability of each hardware component before and after applying

error detection transformations.

Component-wise error coverage: Figure 5.8 shows the aggregated number of

scaled-SDCs per component for different versions of programs across all benchmarks.

We start by looking at register file since around 60% (4411 of 7301) of all SDCs in

original programs (Figure 5.8(a)) caused by fault injection experiments conducted on

register file. We can see that SWIFT transformation is very effective in protecting

register file and it reduces the scaled-SDCs to only 174 cases – more than 25x relia-

bility improvement for register file. Further examination (recreating the SDC cases

and tracing the trajectory of inserted faults to the final output) shows that almost in

all of SDCs cases of SWIFT-protected programs injected fault alters the value of a

100

3

55

3

5
3174

720

281

342

205

171

Register File Fetch/Decode Execute/Ctrl Decode/Execute WB ALU LSU

4,411

861

820

551

265266
127

12

304

13

37
6

(a) Original (b) SWIFT (c) gZDC-WithoutJumpDet (d) gZDC

Figure 5.8: Component-wise scaled SDC analysis. While instruction duplication
error checking schemes can effectively improve the register file vulnerability but errors
affecting fetch/decode stage of pipeline remain the main source of SDCs after applying
such schemes.

register operand of a memory or control flow instructions immediately before actual

use (read) of register by the critical instruction. Note that in these cases the fault

injection targeted register operand is either dead6 or impact of error gets masked

before the next error detection point.

As Figure 5.8(b) shows register file is no more the biggest vulnerable hardware

components after protecting programs by SWIFT transformation. Both nZDC-based

transformations (Figure 5.8(c) and 5.8(d)) considerably reduce the register file scaled-

SDCs rate. That is because they detect errors by checking registers after the execution

of critical instruction rather than prior to their execution. However, there is still some

SDCs cases for nZDC-based transformations and our tracking reveals that in all SDCs

scenarios error hit the address register of a silent stores. As we explained in Section

4.2.1, errors affecting the address part of silent stores are one of the single-point-of-

failures in nZDC-based protection schemes.

As Figure 5.8 reveals bits in fetch/decode stage of the pipeline are the most chal-

lenging parts of hardware to protect against errors by software-level redundancy

schemes as faults injected on them cause the majority of failed cases in all pro-

6A register operand is dead if the next access to that register is a write operation.

101

tected versions of programs. While the number of scaled-SDC due to error injection

on fetch/decode stage flip-flops for the original version of programs is around 861,

SWIFT transformation can just slightly improve it to 720 cases (around 16%). The

main reason for such ineffective protection is because that SWIFT transformation

cannot protect program execution against errors which alter unduplicated instruc-

tions i.e. load, store and compare operations. gZDC-WithoutJumpDet can reduce

the number of scaled-SDC to 304 (64% improvement), however, it is still vulnerable

to unwanted jump control flow errors. Examples are errors affecting immediate ad-

dress of branch/jump instructions or the ones converting a none branch instruction

to branch. gZDC, on the other hand, improves the reliability of execution against

fetch/decode errors by more than 15x (from 861 to 55). This improvement shows the

effectiveness of the coarse-grain scheduling and asymmetric execution control flow

footprints strategies.

Bits in Decode/Execute stage of pipeline show similar behavior to fetch/decode

stage in terms of effectiveness of protection scheme. We can see, while around 551

SDCs raised due to fault injection on Decode/Execute bits in the original version of

programs, SWIFT-transformation can only reduce the number of scaled-SDCs to 342

(only 40% improvement). gZDC-WithoutJumpDet is more effective than SWIFT and

can improve decode/execute scaled-SDC rate by 90% (from 551 to 37). However, there

is still some SDCs due to errors affecting branch immediate address (branches are

resolved at this stage). We can see that strategies proposed in this section for detecting

unexpected jumps are effective and none of the errors injected into decode/execute

remains undetected in gZDC protected version of programs.

Write back stage of the pipeline is responsible to select the source of register file

updates (functional unit in cases of arithmetic/logical instructions or memory in case

of load operations). Many of faults affecting this unit (around 14%) lead to SDC in

102

40%

50%

60%

70%

80%

90%

100%

SHA MM Dijkstra Bitcount CRC Stringsearch Qsort ADPCMC ADPCMD Total

Fa
u

lt
 D

is
tr

ib
u

ti
o

n

Masked OS/HW Detect SW Detect Scaled-SDC

Figure 5.9: Error Distribution.

the original version of programs. Although sensitive to errors, yet since the area of

writeback stage is small the chance of faults hitting its circuitry is low and therefore

its contribution in processor-wide vulnerability is small. While nZDC-based trans-

formations can completely remove the writeback stage vulnerability, SWIFT trans-

formation only improves its reliability by 22% (from 265 SDCs to 205). It can be

seen that all three versions of instruction duplications schemes can completely elim-

inate the vulnerability of ALU against single event transient faults injected on ALU

results. However, it is interesting to see the vulnerability of LSU actually increases

by a factor of 1.34x after applying SWIFT transformation. That is because SWIFT

transformation increases the number of memory instructions due to higher register

pressure and leave them unprotected. However, both gZDC-WithoutJumpDet and

gZDC transformations significantly improve the sensitivity of LSU (from 127 to 6 and

3 , respectively) because such schemes completely protect the execution of memory

operations unless address part of silent store operations.

Impact of protection schemes on fault distribution: Figure 5.9 shows the im-

103

pact of instruction duplication schemes on error propagation and distribution. In the

Figure, X-axis shows different versions of benchmarks and the Y-axis represents the

percentage of masked, OS/HW Detected, SW Detected and scaled-SDCs. Across all

benchmarks, both SWIFT and nZDC-based transformations (gZDC-WithoutJumpDet

and gZDC) considerably reduce the number of masked errors (the lowest segment of

each bar in Figure 5.9) by on an average around 20%. Similarly, the number of

OS/HW detected faults also reduce on an average by half (from 14% to 7% for

SWIFT and to around 9% for gZDC-WithoutJumpDet and gZDC). Since the main

goal of instruction duplication error protection schemes is to prevent a program from

producing wrong results, an ideal scheme should only detect faults which are going to

alter the final program output. However, frequent error checks of SWIFT and nZDC-

based schemes introduce some false alarms by detecting benign faults (faults which

are going to be masked) and overprotection by detecting errors which are covered

by OS/HW error protection schemes. To estimate false alarm and over protection of

applied error protection schemes, we can analyze the difference between SW detected

errors of protected versions of code and the percentage of SDCs for the original ver-

sion of programs. While only on an average 8% of injected faults lead to SDCs in

original versions of programs, error checks in SWIFT, gZDC-WithoutJumpDet and

gZDC raise the error detection flag on average around 31.1%, 30.2% and 34.17% of

times, respectively.

5.2.6 Performance Overhead

Figure 5.10 depicts the execution time overhead of SWIFT, gZDC-WithoutJumpDet

and gZDC transformations which is on an average around 2.71x, 2.77x and 2.91x, re-

spectively. This amount of performance degradation is expected because around 2x

overhead comes from duplication and executing frequent error detection/checking in-

104

2.71 2.77

2.91

0

1

2

3

4

5

Ex
e

cu
ti

o
n

 T
im

e
O

ve
rh

ea
d

ORG SWIFT gZDC-WithoutJumpDet gZDC

Figure 5.10: Execution time overhead

structions also impose some performance degradation. Almost across all programs

(except bitcount and Qsort) gZDC-WithoutJumpDet transformation overhead is slightly

more than SWIFT, however, it achieves more than 5x protection. As the rightmost

bar for each benchmark shows, the execution overhead of applying coarse-grained

master-shadow instruction scheduling and applying asymmetric control-flow foot-

prints is only 4%, but they boost the error coverage by more than 5.2x.

5.3 Conclusions

In this chapter we implement, tune and evaluate the effectiveness of a generalized

version of our base error detection solution, named gZDC, on a Verilog description of

a simple in-order microprocessor. gZDC transformation consists of three main parts:

i) nZDC post-store data-flow error detection (explained in Chapter 2), ii) NEME-

SIS wrong-direction control-flow error detection (explained in Section 4.2.4) and iii)

coarse-grained main-redundant instruction scheduling and asymmetric control-flow

signatures for unexpected jump error detection. Verilog-level fault injection experi-

ments show that gZDC can achieve more than 99.9% error coverage.

105

Chapter 6

SUMMARY AND FUTURE WORK

Unprecedented proliferation of microprocessor-based systems in our lives, on one

hand, and microprocessors reliability decreasing trend, on the other hand, have been

made resilience of computer-based systems against hardware transient faults such a

crucial concern. Software-level resilience solutions are promising because against their

hardware-based counterparts they can accomplish flexible and salable protection.

While software-level solutions can be applied in different granularity, in this dis-

sertation we focused on low-level instruction replication error detection and correction

schemes. Our detailed analysis of the best known schemes revealed that many of the

existing schemes suffer from multitude vulnerability windows. For instance, almost

all related schemes replicate program arithmetic and logical instructions and check

for errors before the execution of critical instructions i.e. memory write and control

flow operations. This pre-store (and pre-branch) error protection strategy leaves the

execution of memory write operations (and control flow instructions) unprotected.

To overcome to the limitations of existing instruction-level redundancy-based error

protection scheme we propose post-store (and post-branch) error protection. Chapter

2 of this dissertation introduces nZDC as an effective error detection scheme. Against

prior solutions, nZDC detects the manifestation of errors on the results of critical

instructions rather than their register operands. Furthermore, we built upon nZDC

and proposed two error detection and correction solutions. The first recovery solution

is called InCheck (Chapter 3) and works based on basic-block level in-application

checkpointing and rollback strategy. The second recovery solution (Chapter 4) is a

forward recovery technique named NEMESIS which is based on error detection and

106

on-demand correction rather than simple majority voting based error masking.

We evaluated the effectiveness of our proposed solutions by performing millions

microprocessor-wide random single bit-flip error injection at µ-architectural and Ver-

ilog level of abstractions (Chapter 5). Our results show that our proposed solutions

can accomplish several times higher error coverage than state-of-the-art schemes.

In this work, we have verified the effectiveness of our proposed solutions at µ-

architectural and Verilog level of abstractions. The last step in testing process is

radiation testing. One future work can be crash testing software solutions against

radiation bombardment.

Techniques presented in this dissertation are mainly concerned with single bit-flip

transient errors in microprocessor components excluding memory subsystem. How-

ever, in reality multiple transient and permanent errors can also occur and threat

the correctness of computations. More general (fault model independent) schemes

should be developed for systems which are susceptible to wide variety of hardware

malfunctions.

The main goal of this dissertation was to introduce highly effective error pro-

tection scheme and performance degradation was secondary concern. Adaptive and

selective usage of the proposed schemes can significantly improve the application-

level execution time. One of the challenge is to find the most critical computations

and only apply protection on them. Advanced compiler optimization can be used

for automatic critical region of code detection and protection. Similarly, the perfor-

mance overhead of proposed scheme can be improve significantly by shifting some

part of error resilience implementation to hardware. For instance, nZDC data flow

protection changes a program in a way that each store instruction has always loading-

back load instruction from the same memory location. Load-Store unit component

of microprocessor can be modified slightly to check for this property.

107

REFERENCES

“mor1kx - an OpenRISC Processor IP Core.”, https://github.com/openrisc/
mor1kx, [accessed 03-2018] (2013).

“llvm-or1k - Low Level Virtual Machine for Or1k.”, https://github.com/openrisc/
llvm-or1k, [accessed September-2018] (2017).

Abadi, M., M. Budiu, U. Erlingsson and J. Ligatti, “Control-flow integrity”, in “Pro-
ceedings of the 12th ACM conference on Computer and communications security”,
pp. 340–353 (ACM, 2005).

ARM®, “Arm cortex-a53 mpcore processor technical reference manual”, ARM Lim-
ited, Jun (2014).

ARM®, “ARM®: Cortex A-53 Processor”, http://www.arm.com/products/
processors/cortex-a/cortex-a53-processor.php (2015).

Asadi, H. and M. B. Tahoori, “Soft error derating computation in sequential circuits”,
in “Proceedings of the 2006 IEEE/ACM international conference on Computer-
aided design”, pp. 497–501 (ACM, 2006).

Aupy, G., A. Benoit, T. Hérault, Y. Robert, F. Vivien and D. Zaidouni, “On the com-
bination of silent error detection and checkpointing”, in “Dependable Computing
(PRDC), 19th Pacific Rim International Symposium on”, pp. 11–20 (IEEE, 2013).

Avižienis, A., J.-C. Laprie and B. Randell, “Dependability and its threats: a taxon-
omy”, Building the Information Society pp. 91–120 (2004).

Barhorst, J., T. Belote, P. Binns, J. Hoffman, J. Paunicka, P. Sarathy, J. Scoredos,
P. Stanfill, D. Stuart and R. Urzi, “A research agenda for mixed criticality systems,
2009”, White paper (2010).

Baumann, R., “Soft errors in advanced computer systems”, Design & Test of Com-
puters, IEEE 22, 3 (2005a).

Baumann, R. C., “Radiation-induced soft errors in advanced semiconductor technolo-
gies”, IEEE Transactions on Device and materials reliability 5, 3, 305–316 (2005b).

Bell, G. B., K. M. Lepak and M. H. Lipasti, “Characterization of silent stores”,
in “Parallel Architectures and Compilation Techniques. Proceedings. International
Conference on”, pp. 133–144 (IEEE, 2000).

Bernick, D., B. Bruckert, P. D. Vigna, D. Garcia, R. Jardine, J. Klecka and J. Smullen,
“Nonstop® advanced architecture”, in “2005 International Conference on Depend-
able Systems and Networks (DSN’05)”, pp. 12–21 (IEEE, 2005).

Binkert, N., B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hest-
ness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5 simulator”, ACM
SIGARCH Computer Architecture News 39, 2, 1–7 (2011).

108

https://github.com/openrisc/mor1kx
https://github.com/openrisc/mor1kx
https://github.com/openrisc/llvm-or1k
https://github.com/openrisc/llvm-or1k
http://www.arm.com/products/processors/cortex-a/cortex-a53-processor.php
http://www.arm.com/products/processors/cortex-a/cortex-a53-processor.php

Blem, E., J. Menon and K. Sankaralingam, “Power struggles: Revisiting the risc vs.
cisc debate on contemporary arm and x86 architectures”, in “High Performance
Computer Architecture (HPCA2013), 2013 IEEE 19th International Symposium
on”, pp. 1–12 (IEEE, 2013).

Borucki, L., G. Schindlbeck and C. Slayman, “Comparison of accelerated dram soft
error rates measured at component and system level”, in “Reliability Physics Sym-
posium, 2008. IRPS 2008. IEEE International”, pp. 482–487 (IEEE, 2008).

Burns, A. and R. Davis, “Mixed criticality systems-a review”, Department of Com-
puter Science, University of York, Tech. Rep (Ninth Edition) (2017).

Cannon, E. H., M. S. Gordon, D. F. Heidel, A. KleinOsowski, P. Oldiges, K. P.
Rodbell and H. H. Tang, “Multi-bit upsets in 65nm soi srams”, in “Reliability
Physics Symposium, 2008. IRPS 2008. IEEE International”, pp. 195–201 (IEEE,
2008).

Chen, Z., A. Nicolau and A. V. Veidenbaum, “Simd-based soft error detection”, in
“Proceedings of the ACM International Conference on Computing Frontiers”, pp.
45–54 (ACM, 2016).

Clark, L., D. Patterson, C. Ramamurthy and K. Holbert, “An embedded micropro-
cessor radiation hardened by microarchitecture and circuits”, (2014).

Clark, L. T., D. W. Patterson, C. Ramamurthy and K. E. Holbert, “An embed-
ded microprocessor radiation hardened by microarchitecture and circuits”, IEEE
Transactions on Computers 65, 2, 382–395 (2016).

Cohen, N., T. Sriram, N. Leland, D. Moyer, S. Butler and R. Flatley, “Soft error
considerations for deep-submicron cmos circuit applications”, in “Electron Devices
Meeting, 1999. IEDM’99. Technical Digest. International”, pp. 315–318 (IEEE,
1999).

Didehban, M., S. R. D. Lokam and A. Shrivastava, “Incheck: An in-application
recovery scheme for soft errors”, in “Design Automation Conference (DAC), 2017
54th ACM/EDAC/IEEE”, pp. 1–6 (IEEE, 2017a).

Didehban, M. and A. Shrivastava, “nZDC: a compiler technique for near Zero Silent
data Corruption”, in “Proceedings of the 53rd Annual Design Automation Confer-
ence”, p. 48 (ACM, 2016).

Didehban, M. and A. Shrivastava, “A compiler technique for processor-wide pro-
tection from soft errors in multithreaded environments”, IEEE Transactions on
Reliability 67, 1, 249–263 (2018).

Didehban, M., A. Shrivastava and S. R. D. Lokam, “Nemesis: A software approach
for computing in presence of soft errors”, in “Computer-Aided Design (ICCAD),
2017 IEEE/ACM International Conference on”, pp. 297–304 (IEEE, 2017b).

Duell, J., “The design and implementation of berkeley lab’s linux checkpoint/restart”,
Lawrence Berkeley National Laboratory (2005).

109

Elnozahy, E. N. and J. S. Plank, “Checkpointing for peta-scale systems: A look into
the future of practical rollback-recovery”, IEEE Transactions on Dependable and
Secure Computing 1, 2 (2004).

Feng, S., S. Gupta, A. Ansari and S. Mahlke, “Shoestring: probabilistic soft error reli-
ability on the cheap”, in “ACM SIGARCH Computer Architecture News”, vol. 38,
pp. 385–396 (ACM, 2010).

Feng, S., S. Gupta, A. Ansari, S. A. Mahlke and D. I. August, “Encore: low-cost, fine-
grained transient fault recovery”, in “Proceedings of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture”, pp. 398–409 (ACM, 2011).

Goloubeva, O., M. Rebaudengo, M. S. Reorda and M. Violante, “Soft-error detection
using control flow assertions”, in “Defect and Fault Tolerance in VLSI Systems,
2003. Proceedings. 18th IEEE International Symposium on”, pp. 581–588 (IEEE,
2003).

Guthaus, M. R., J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge and R. B. Brown,
“Mibench: A free, commercially representative embedded benchmark suite”, in
“Workload Characterization, 2001. WWC-4. 2001 IEEE International Workshop
on”, pp. 3–14 (IEEE, 2001).

Haddad, N. F., R. D. Brown, R. Ferguson, A. T. Kelly, R. K. Lawrence, D. M. Pirkl
and J. C. Rodgers, “Second generation (200mhz) rad750 microprocessor radiation
evaluation”, in “Radiation and Its Effects on Components and Systems (RADECS),
2011 12th European Conference on”, pp. 877–880 (IEEE, 2011).

Henkel, J., L. Bauer, N. Dutt, P. Gupta, S. Nassif, M. Shafique, M. Tahoori and
N. Wehn, “Reliable on-chip systems in the nano-era: Lessons learnt and future
trends”, in “Proceedings of the 50th Annual Design Automation Conference”, p. 99
(ACM, 2013).

Hubert, G., L. Artola and D. Regis, “Impact of scaling on the soft error sensitivity of
bulk, fdsoi and finfet technologies due to atmospheric radiation”, Integration, the
VLSI journal 50, 39–47 (2015).

IRC, “International Technology Roadmap For Semiconductors 2.0-Executive Sum-
mary”, http://www.itrs2.net/itrs-reports.html, [accessed 19-November-
2016] (2015).

ISO26262, “ISO26262: Road vehicles-Functional safety”, International Standard
ISO/FDIS (2011).

Iturbe, X., B. Venu, E. Ozer and S. Das, “A triple core lock-step (tcls) arm®
cortex®-r5 processor for safety-critical and ultra-reliable applications”, in “De-
pendable Systems and Networks Workshop, 2016 46th Annual IEEE/IFIP Inter-
national Conference on”, pp. 246–249 (IEEE, 2016).

Kang, S.-h., H. Yang, S. Kim, I. Bacivarov, S. Ha and L. Thiele, “Static mapping
of mixed-critical applications for fault-tolerant mpsocs”, in “Design Automation
Conference (DAC), 2014 51st ACM/EDAC/IEEE”, pp. 1–6 (IEEE, 2014).

110

http://www.itrs2.net/itrs-reports.html

Khudia, D. S., G. Wright and S. Mahlke, “Efficient soft error protection for commodity
embedded microprocessors using profile information”, ACM SIGPLAN Notices 47,
5, 99–108 (2012).

Laguna, I., M. Schulz, D. F. Richards, J. Calhoun and L. Olson, “Ipas: Intelligent
protection against silent output corruption in scientific applications”, in “Proceed-
ings of the 2016 International Symposium on Code Generation and Optimization”,
pp. 227–238 (ACM, 2016).

Lattner, C. and V. Adve, “Llvm: A compilation framework for lifelong program
analysis & transformation”, in “Proceedings of the international symposium on
Code generation and optimization: feedback-directed and runtime optimization”,
p. 75 (IEEE Computer Society, 2004).

Lepak, K. M., G. B. Bell and A. H. Lipasti, “Silent stores and store value locality”,
Computers, IEEE Transactions on 50, 11, 1174–1190 (2001).

Leveugle, R., A. Calvez, P. Maistri and P. Vanhauwaert, “Statistical fault injection:
quantified error and confidence”, in “2009 Design, Automation & Test in Europe
Conference & Exhibition”, pp. 502–506 (IEEE, 2009).

Li, G., S. K. S. Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer and S. W.
Keckler, “Understanding error propagation in deep learning neural network (dnn)
accelerators and applications”, in “Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis”, p. 8 (ACM,
2017).

Liu, Q., C. Jung, D. Lee and D. Tiwari, “CLOVER: Compiler directed lightweight
soft error resilience”, in “ACM SIGPLAN Notices”, vol. 50, p. 2 (ACM, 2015).

Lu, G., Z. Zheng and A. A. Chien, “When is multi-version checkpointing needed?”, in
“Proceedings of the 3rd Workshop on Fault-tolerance for HPC at extreme scale”,
pp. 49–56 (ACM, 2013).

Lyons, W., “Enabling increased safety with fault robustness in microcontroller appli-
cations”, ARM Corporation (2010).

Mahatme, N., N. Gaspard, T. Assis, S. Jagannathan, I. Chatterjee, T. Loveless,
B. Bhuva, L. W. Massengill, S. Wen and R. Wong, “Impact of technology scaling
on the combinational logic soft error rate”, in “Reliability Physics Symposium,
2014 IEEE International”, pp. 5F–2 (IEEE, 2014).

Martinez-Alvarez, A., S. Cuenca-Asensi, F. Restrepo-Calle, F. R. P. Pinto,
H. Guzman-Miranda and M. A. Aguirre, “Compiler-directed soft error mitigation
for embedded systems”, IEEE Transactions on Dependable and Secure Computing
9, 2, 159–172 (2012).

May, T. C. and M. H. Woods, “A new physical mechanism for soft errors in dynamic
memories”, in “Reliability Physics Symposium, 1978. 16th Annual”, pp. 33–40
(IEEE, 1978).

111

Mitropoulou, K., V. Porpodas and M. Cintra, “Casted: Core-adaptive software tran-
sient error detection for tightly coupled cores”, in “Parallel & Distributed Process-
ing (IPDPS), 2013 IEEE 27th International Symposium on”, pp. 513–524 (IEEE,
2013a).

Mitropoulou, K., V. Porpodas and M. Cintra, “DRIFT: Decoupled CompileR-based
Instruction-level Fault-Tolerance”, in “International Workshop on Languages and
Compilers for Parallel Computing”, pp. 217–233 (2013b).

Mitropoulou, K., V. Porpodas and T. M. Jones, “Comet: communication-optimised
multi-threaded error-detection technique”, in “Proceedings of the International
Conference on Compilers, Architectures and Synthesis for Embedded Systems”,
p. 7 (ACM, 2016).

Mukherjee, S. S., M. Kontz and S. K. Reinhardt, “Detailed design and evaluation
of redundant multi-threading alternatives”, in “Computer Architecture, 2002. Pro-
ceedings. 29th Annual International Symposium on”, pp. 99–110 (IEEE, 2002).

Mukherjee, S. S., C. Weaver, J. Emer, S. K. Reinhardt and T. Austin, “A system-
atic methodology to compute the architectural vulnerability factors for a high-
performance microprocessor”, in “Microarchitecture, 2003. MICRO-36. Proceed-
ings. 36th Annual IEEE/ACM International Symposium on”, pp. 29–40 (IEEE,
2003).

Normand, E., J. L. Wert, H. Quinn, T. D. Fairbanks, S. Michalak, G. Grider,
P. Iwanchuk, J. Morrison, S. Wender and S. Johnson, “First record of single-event
upset on ground, cray-1 computer at los alamos in 1976”, IEEE Transactions on
Nuclear Science 57, 6, 3114–3120 (2010).

Oh, N., S. Mitra and E. J. McCluskey, “ED4I: Error Detection by Diverse Data
and Duplicated Instructions”, IEEE Transactions on Computers 51, 2, 180–199
(2002a).

Oh, N., P. P. Shirvani and E. J. McCluskey, “Control-flow checking by software
signatures”, IEEE transactions on Reliability 51, 1, 111–122 (2002b).

Owre, S., J. Rushby, N. Shankar and F. Von Henke, “Formal verification for fault-
tolerant architectures: Prolegomena to the design of pvs”, IEEE Transactions on
Software Engineering 21, 2, 107–125 (1995).

Patterson, D. A. and J. L. Hennessy, Computer organization and design: the hard-
ware/software interface (Newnes, 2013).

Reinhardt, S. K. and S. S. Mukherjee, Transient fault detection via simultaneous
multithreading, vol. 28 (ACM, 2000).

Reis, G. A. and D. I. August, “Software fault detection using dynamic instrumenta-
tion”, in “In Proceedings of the Fourth Annual Boston Area Architecture Workshop
(BARC”, (Citeseer, 2006).

112

Reis, G. A., J. Chang and D. I. August, “Automatic instruction-level software-only
recovery”, IEEE micro 27, 1 (2007).

Reis, G. A., J. Chang, D. I. August, R. Cohn and S. S. Mukherjee, “Configurable
transient fault detection via dynamic binary translation”, in “IN: PROCEEDINGS
OF THE 2ND WORKSHOP ON ARCHITECTURAL RELIABILITY”, (Citeseer,
2006).

Reis, G. A., J. Chang, N. Vachharajani, R. Rangan and D. I. August, “SWIFT: Soft-
ware Implemented Fault Tolerance”, in “Proceedings of the international sympo-
sium on Code generation and optimization”, pp. 243–254 (IEEE Computer Society,
2005).

Sanda, P. N., J. W. Kellington, P. Kudva, R. Kalla, R. B. McBeth, J. Ackaret,
R. Lockwood, J. Schumann and C. R. Jones, “Soft-error resilience of the ibm power6
processor”, IBM Journal of Research and Development 52, 3, 275–284 (2008).

Schirmeier, H., C. Borchert and O. Spinczyk, “Avoiding pitfalls in fault-injection
based comparison of program susceptibility to soft errors”, in “Dependable Systems
and Networks (DSN), 2015 45th Annual IEEE/IFIP International Conference on”,
pp. 319–330 (IEEE, 2015).

Schroeder, B. and G. A. Gibson, “Understanding failures in petascale computers”, in
“Journal of Physics: Conference Series”, vol. 78, p. 012022 (IOP Publishing, 2007).

Shafique, M., S. Garg, J. Henkel and D. Marculescu, “The eda challenges in the dark
silicon era: Temperature, reliability, and variability perspectives”, in “Proceedings
of the 51st Annual Design Automation Conference”, pp. 1–6 (ACM, 2014).

Shivakumar, P., M. Kistler, S. W. Keckler, D. Burger and L. Alvisi, “Modeling the
effect of technology trends on the soft error rate of combinational logic”, in “De-
pendable Systems and Networks, 2002. DSN 2002. Proceedings. International Con-
ference on”, pp. 389–398 (IEEE, 2002).

Shrivastava, A., A. Rhisheekesan, R. Jeyapaul and C.-J. Wu, “Quantitative analy-
sis of control flow checking mechanisms for soft errors”, in “Design Automation
Conference (DAC), 2014 51st ACM/EDAC/IEEE”, pp. 1–6 (IEEE, 2014).

Shye, A. et al., “Plr: A software approach to transient fault tolerance for multicore
architectures”, Dependable and Secure Computing, IEEE Transactions on 6, 2
(2009).

Sierawski, B. D., R. A. Reed, M. H. Mendenhall, R. A. Weller, R. D. Schrimpf, S.-J.
Wen, R. Wong, N. Tam and R. C. Baumann, “Effects of scaling on muon-induced
soft errors”, in “Reliability Physics Symposium (IRPS), 2011 IEEE International”,
pp. 3C–3 (IEEE, 2011).

Silberberg, R., C. H. Tsao and J. R. Letaw, “Neutron generated single-event upsets in
the atmosphere”, IEEE Transactions on Nuclear Science 31, 6, 1183–1185 (1984).

113

So, H., M. Didehban, Y. Ko, A. Shrivastava and K. Lee, “Expert: Effective and
flexible error protection by redundant multithreading”, in “Design, Automation
& Test in Europe Conference & Exhibition (DATE), 2018”, pp. 533–538 (IEEE,
2018).

Spainhower, L. and T. A. Gregg, “Ibm s/390 parallel enterprise server g5 fault tol-
erance: A historical perspective”, IBM Journal of Research and Development 43,
5.6, 863–873 (1999).

Vemu, R. and J. Abraham, “CEDA: Control-Flow Error Detection using Assertions”,
IEEE Transactions on Computers 60, 9, 1233–1245 (2011).

Vemu, R., S. Gurumurthy and J. A. Abraham, “ACCE: Automatic Correction of
Control-flow Errors”, in “2007 IEEE International Test Conference”, pp. 1–10
(IEEE, 2007).

Wang, C., H.-s. Kim, Y. Wu and V. Ying, “Compiler-managed software-based re-
dundant multi-threading for transient fault detection”, in “Proceedings of the In-
ternational Symposium on Code Generation and Optimization”, (IEEE Computer
Society, 2007).

Wang, N. J. and S. J. Patel, “Restore: Symptom-based soft error detection in mi-
croprocessors”, IEEE Transactions on Dependable and Secure Computing 3, 3,
188–201 (2006).

Wells, P. M., K. Chakraborty and G. S. Sohi, “Mixed-mode multicore reliability”,
ACM SIGARCH Computer Architecture News 37, 1, 169–180 (2009).

Williams, S., “Icarus verilog”, On-line: http://iverilog.icarus.com (2006).

Xeon, I., “E7 family: Reliability”, Availability and Serviceability: Advanced data
integrity and resiliency support for mission-critical deployment (2011).

Xiong, L. and Q. Tan, “A dynamic approach to tolerate soft errors”, Cluster Com-
puting 16, 3, 359–366 (2013).

Xu, J., Q. Tan, L. Tan and H. Zhou, “An instruction-level fine-grained recovery
approach for soft errors”, in “Proceedings of the 28th Annual ACM Symposium on
Applied Computing”, pp. 1511–1516 (ACM, 2013).

Yu, J., M. J. Garzarán and M. Snir, “Techniques for efficient software checking”, in
“International Workshop on Languages and Compilers for Parallel Computing”,
pp. 16–31 (Springer, 2007).

Yu, J., M. J. Garzaran and M. Snir, “Efficient software checking for fault tolerance”,
in “Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE International
Symposium on”, pp. 1–5 (IEEE, 2008).

Yu, J., M. J. Garzaran and M. Snir, “Esoftcheck: Removal of non-vital checks for fault
tolerance”, in “Proceedings of the 7th annual IEEE/ACM International Symposium
on Code Generation and Optimization”, pp. 35–46 (IEEE Computer Society, 2009).

114

Zhang, Y. and K. Chakrabarty, “Fault recovery based on checkpointing for hard real-
time embedded systems”, in “Defect and Fault Tolerance in VLSI Systems, 2003.
Proceedings. 18th IEEE International Symposium on”, pp. 320–327 (IEEE, 2003).

Zhang, Y., S. Ghosh, J. Huang, J. W. Lee, S. A. Mahlke and D. I. August, “Runtime
asynchronous fault tolerance via speculation”, in “Proceedings of the Tenth Inter-
national Symposium on Code Generation and Optimization”, pp. 145–154 (ACM,
2012a).

Zhang, Y., J. W. Lee, N. P. Johnson and D. I. August, “Daft: decoupled acyclic fault
tolerance”, International Journal of Parallel Programming 40, 1, 118–140 (2012b).

Ziegler, J. F., H. W. Curtis, H. P. Muhlfeld, C. J. Montrose, B. Chin, M. Nicewicz,
C. Russell, W. Y. Wang, L. B. Freeman, P. Hosier et al., “Ibm experiments in soft
fails in computer electronics (1978–1994)”, IBM journal of research and develop-
ment 40, 1, 3–18 (1996).

115

	LIST OF TABLES
	LIST OF FIGURES
	
	Soft Error Mitigation Schemes
	Scope of This Research
	Contributions

	
	Introduction
	Related Work
	Limitations of state-of-the-art schemes
	nZDC: Our Proposed Instruction Duplication Error Detection Solution
	Experimental methodology
	Experimental Results

	Summary

	
	Overview
	Limitations of Related Work
	Coarse-Grain Forward Recovery
	Fine-Grained Recovery

	InCheck: Our Proposed Fine-grained Backward Recovery Solution
	Verified Register File Preservation
	Single Memory-Location Checkpointing
	Checks for Safe Recovery
	Timely Recovery
	Control-Flow Error Recovery

	Experimental Methodology
	Experimental Results
	Error Coverage
	Performance Overhead

	Summary

	
	NEMESIS: Overview
	NEMESIS: Details
	Memory write operation error detectors
	Diagnosis/Recovery for Memory Write Errors
	Fault Coverage Analysis for Store Instructions
	Control Flow Error Detection
	Control Flow Error Diagnosis/Recovery

	Experimental Methodology
	Compilation and Simulation Framework
	Fault Model and Fault Injection Set-up

	Evaluation and Analysis
	Fault Injection Results
	Analysis of Injected Faults
	Analysis of Diagnosis Routine Outcomes
	Execution Time Overhead

	Conclusions

	
	gZDC Overview
	Wrong Direction Control Flow Errors
	Unexpected Jumps

	Experimental Methodology
	Microprocessor and Fault injection Environment
	Compilation and Binary Generation
	Fault Injection Process and Output Classification
	Number of scaled SDCs as Comparison Metric
	Error Coverage Results and Analysis
	Performance Overhead

	Conclusions

	

	REFERENCES

