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ABSTRACT
Soft errors are considered as the main reliability chal-
lenge for sub-nanoscale microprocessors. Software-level
soft error resilience schemes are desirable because they
are applicable on the existing processor, and their pro-
tection can be tuned based on the application require-
ments. However, existing software-level error tolerant
schemes do not provide high-level of protection. In this
work, we present NEMESIS – a compiler-level fine-grain
soft error detection, diagnosis and recovery technique
that can provide high degree of error-resiliency. NEME-
SIS runs three versions of computations and detects soft
errors by checking the results of all memory write and
branch operations. In the case of mismatch, NEME-
SIS diagnosis routine decides if the error is recoverable.
If yes, NEMESIS recovery routine reverts the effect of
error from the architectural state of the program and
program resumes its normal execution. Our extensive
µ-architectural-level fault injection experiments results
show that NEMESIS transformation is able to detect
all soft errors and recover from 97% of detected errors.

1. INTRODUCTION
The ever-increasing use of digital systems in every-

day life has made reliability as a key factor in modern
microprocessors. Soft errors – caused by high-energy
particles, power supply noises, transistor variability and
etc.– can modify the logic value stored in microproces-
sor memory element(s) and cause a timing or functional
failure. Historically, soft errors were considered as a
challenge for high-attitude applications because most
of the high-energy particles get cascaded by the earth‘s
atmosphere before they reach at ground level.However,
as ITRS 2015 [14] predicts, soon even terrestrial-level
muon-induced particles can causes soft errors in the mi-
croprocessors.

Hardware-level techniques are quite popular enter-
prise servers and high-critical applications to mitigate
the effect of soft errors [3, 9]. While hardware solutions
can be effective, they require the building of special-
purpose hardware, that will be expensive until they be-
come mainstream. Software solutions to protect from
soft errors on the other hand, can be applied on com-
mercial off-the-shelf processors. They will be applicable
to all past and future processors. Plus software pro-
tection approaches can be applied selectively – either
to only the safety/mission critical applications, or only

to the critical parts of an application. Software solu-
tions are especially attractive for mixed-criticality sys-
tems like automobiles where the high-critical tasks (e.g.
anti-lock braking and air-back control tasks) and less-
critical ones (e.g. entertainment tasks) share the same
underlying processor [27].

Redundancy-based techniques [11, 22, 10, 13, 16, 6,
15] have been considered as the most effective soft error
protection schemes. Depending on the recovery strat-
egy, existing software fault tolerant schemes can be cat-
egorized into backward and forward recovery schemes.
Many schemes [7, 10, 30, 31, 21, 20] have developed only
for error detection. We reckon that all these techniques
assume some kind of backward recovery. There are
2 main kinds of backward-recovery techniques, one is
restart, and second is checkpointing and rollback. While
restart-based recovery techniques can be useful for some
small applications, but they are not useful in many
cases, including for hard real-time, long-running and
interactive applications. Checkpointing can solve the
problems of global restarting by periodically saving a
snapshot of the programs architectural state – memory
and register state(checkpoint). In case of error, program
rolls back to the last saved checkpoint and re-executes
the instructions from the checkpoint. However, due to
their significant overhead the usage of full checkpoint-
based recovery techniques is limited to HPC (high per-
formance computing) applications [8, 1, 11]. Some re-
searchers [11, 19] have proposed light weight checkpoint-
ing techniques. Unfortunately, such techniques offer a
limited error recovery. For instance, EnCore[11] scheme
can not provide recovery for the errors which affect the
address of memory write instructions or modify the con-
trol flow of the program.

In contrast to the backward recovery, forward recov-
ery schemes do not implicitly detect errors; they mask
errors by applying majority-voting between redundantly-
computed results. Coarse-grain techniques like PLR
[26], which perform infrequent voting on the arguments
of system-call arguments cannot provide protection in
cases that a pointer is in the list of system call argu-
ments. This is because PLR verifies the correctness
of redundant computed pointers, but not of the data
that is actually stored into the memory. On the other
hand, fine-grain forward recovery schemes perform vot-
ing operations on specific point of execution and can
get the best from ECC-protected components like cache
and memory subsystem. For instance, Swift-R [22, 5]



triplicates the arithmetic/logical instructions in a pro-
gram and performs 2-of-3 majority-voting for register
operands of critical instructions, i.e., memory and con-
trol flow instructions. Swift-R is the-state-of-the-art
fine-grain error tolerant scheme in terms of error cov-
erage. Works after Swift-R, only try to improve the
performance overhead of Swift-R, while assuming that
Swift-R error coverage is enough. For instance, ELZAR
[15] utilized SIMD instructions for fast execution of trip-
licated instructions. Selective Swift-R [23] trades off the
coverage of Swift-R for performance by applying Swift-
R transformation to some parts of program.

However, our detailed analysis of Swift-R based tech-
niques reveals that such schemes have quite restricted
error coverage. The main reason is that SWIFT has
always-on voting – meaning that it performs voting of
the operands before all critical instructions. This causes
two main problems: i) the critical instructions them-
selves are executed only one, and therefore are not pro-
tected. If any error occurs during the execution of criti-
cal instructions (on average 45% of instructions in Swift-
R protected programs) it remains undetected (and of
course unrecovered-from). ii) frequent voting opera-
tions introduces vulnerable intervals for the operands
of critical instructions and imposes significant perfor-
mance overhead.

Motivated by these limitations, we propose NEME-
SIS: a fine-grain software approach that achieves a high
degree of reliability by performing active error detec-
tion and handling. Instead of always-on voting, before
the execution of critical instructions, NEMESIS per-
forms error detection after the execution of the critical
instructions. As a result, NEMESIS protects the execu-
tion of critical instructions. Also, since there is no vot-
ing, the vulnerable intervals created due to voting are
also eliminated. Finally, the overhead associated will
voting is reduced to the overhead of detection. Once
NEMESIS detects an error, it analyzes the extend of
error propagation. Contingent upon the scope of er-
ror propagation, NEMESIS decides whether the error
is recoverable. If yes, NEMESIS recovery routine re-
verses the effect of error from memory (by writing back
the memory backup into the memory) and architectural
registers (by performing majority voting between re-
dundant registers).

To evaluate the effectiveness of our proposed scheme,
we performed about 15 million µarchitectural-level sin-
gle bit-flip fault injection experiments on different hard-
ware resources of a ARM-cortex A53-like simulated mi-
croprocessor. The results demonstrate that no injected
fault lead to SDC (Silent Data Corruption or wrong
output) in NEMESIS-protected programs, while about
237k and 120k of faults cause SDCs in original and
Swift-R protected versions of the programs, respectively.
Additionally, NEMESIS-protected programs, on an av-
erage execute 25% faster than Swift-R protected ones.

2. LIMITATIONS OF SWIFT-R
Swift-R [22, 5] is the state-of-the-art fine-grain for-

ward error recovery technique in terms of coverage. It

if ( (x4* == x4**) && (x4* != x4) )
x4 = x4*;

if ( (x4 == x4*) && (x4!= x4**) )
x4** = x4;

if ( (x4 == x4**) && (x4!= x4*) )
x4* = x4;

load  x2 [x4] 
mov x2*, x2
mov x2**, x2

if ( (x1* == x1**) && (x1* != x1) )
x1 = x1*;

if ( (x1 == x1*) && (x1 != x1**) )
x1** = x1;

if ( (x1 == x1**) && (x1 != x1*) )
x1* = x1;

if ( (x2* == x2**) && (x2* != x2) )
x2 = x2*;

if ( (x2 == x2*) && (x2 != x2**) )
x2** = x2;

if ( (x2 == x2**) && (x 2!= x2*) )
x2* = x2;

store x1  [x2]

load  x2 [x4] 

add   x1, x3, #4

store x1  [x2]  
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Swift-R protected Code
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add   x1**, x3**, #4

Figure 1: Swift-R transformation: Swift-R checks the regis-
ter operands of the critical (load/store/compare/branch) instruc-
tions, and triplicates the arithmetic instructions.

divides programmer-visible registers into three sets and
triplicates computational instructions. In an attempt
to prevent the propagation of soft errors to the mem-
ory subsystem, Swift-R performs 2-of-3 majority-voting
between redundant-computed values of source register
operands of memory and compare instructions, just be-
fore their execution. Figure 1 shows Swift-R trans-
formation for a simple piece of code. It shows that
majority-voting is performed between the redundant-
computed values of load address registers before its ex-
ecution (marked as x4-majority-voting). The loaded
value (x2) is then copied into the corresponding redun-
dant registers (x2* and x2**). The add instruction is
triplicated with redundant registers. Before the execu-
tion of store, two majority-voting operations, one for
the store value register(x1) (marked as x1-majority-
voting) and one for store address register (x2) (marked
as x2-majority-voting), are performed. Swift-R trans-
formation suffers from the following problems:
i) The execution of the critical instructions (∼
45% of program operations) is not protected:
Swift-R majority-voting operations eliminate the effects
of the errors which may incur during the execution of
computational instructions. However, if error occurs
during the execution of any memory and control-flow
instruction, it remains unprotected. For instance, if the
soft error happens on the pipeline registers during the
execution of load instruction, the effective address of
load may be modified to an arbitrary value and ulti-
mately a wrong value will be loaded into the x2 regis-
ter. Once this happens, Swift-R copies the erroneous
value into the corresponding redundant registers(x2*,
and x2**), making the state of all three streams consis-
tently wrong. These type of errors can lead to a failure
in Swift-R protected programs. The same problem can
happen during the execution of all critical instructions
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Figure 2: Swift-R transformation cannot protect the execution
of more than 45% of dynamic instructions.

that are executed only once, including store, compare
and branch instructions, and Swift-R scheme does not
verify their correct execution. To quantify the severity
of this problem, we collect the number of dynamic crit-
ical and triplicated instructions from Mibench bench-
mark programs (figure 2), after reserving registers for
Swift-R redundant instructions. The figure shows that
on an average, about 55% of dynamic instructions are
arithmetic instructions, and can be triplicated and pro-
tected by Swift-R. But, about 45% of total instructions
are critical which Swift-R transformation fails to pro-
tect. Note that Swift-R scheme significantly increases
the register pressure and causes more spill-code (load
and store to the stack).
ii) Voting operations introduces vulnerability:

Software implementation of majority Voting requires
several compare and branch instructions (see x1-majority-
voting and x2-majority-voting in figure 1) and base
on implementation may demand 4 to 10 machine in-
structions. Swift-R frequent voting operations intro-
duce unprotected intervals even for the operands of crit-
ical instructions. Particularly, if soft error happens on
registers that are carrying the operands of the critical
instructions, after the operands are checked, then it can
cause critical instructions to execute incorrectly. For ex-
ample, if an error happens on the register x1 after the
last access by x1-majority-voting operation and be-
fore it gets accessed by the store instruction, the wrong
value will be written into the correct memory location.
This vulnerable period is marked by x1_vul vertical line
in figure 1. This is significant, owing to the length of
the vulnerability window, and the frequency of voting
(one or two times before all load, store, compare and
function call instructions).

Overall, the Swift-R sphere of protection is restricted
to the execution of programs triplicated instructions.
All works after Swift-R mainly assume that Swift-R can
achieve high-level of protection and they try to reduce
Swift-R performance overhead. In this work, however,
our goal is to improve the error coverage of Swift-R and
improve its performance overhead at the same time.

3. NEMESIS: AN OVERVIEW
NEMESIS is a set of compiler transformations which

provide a soft error hardened code by adding redun-

M
-stre

am

R
-stre

am

D
-stre

am

store

Error
Detector Diagnosis

routine

Memory restoration
Majority-voting        

D
ete

cte
d

N
o

t-R
eco

verab
le

Restart is 
needed.

21

Off performance-critical-path 
error handling

store

Figure 3: NEMESIS data-flow error handling. After each store
instruction, Error Detector unit checks for errors, and if any ob-
served, the diagnosis routine will get involved and classifies the
error as either Recoverable or Detected/not-recoverable. If an er-
ror is recoverable, memory and register restoration will take place
and program continues with executing the store instruction. Oth-
erwise, the program stops the execution by raising an error flag.

dancy and reforming control flow of the original code.
NEMESIS partitions programmer-available machine reg-
isters into three sets, called M-regs (Master), D-regs
(Detection) and R-regs (Recovery), and runs three in-
dependent sequences of instructions, named M-stream,
D-stream, and R-stream. The M-stream has all instruc-
tions needed for functionally correct execution of a pro-
gram. D-stream is a redundant copy of M-stream which
does not include any memory write and functional call
instructions, however, it does include all arithmetic,
memory read, compare and branch instructions. R-
stream just contains arithmetic and memory read in-
structions. This is because that R-stream results only
will be used in majority-voting to mask the effect of
the errors from the general purpose register file. In ad-
dition to these three redundant streams, a NEMESIS-
protected program includes error detection, diagnosis
and recovery instructions. NEMESIS assumes ECC-
protected caches and memory, and its sphere-of-protection
includes the entire microprocessor core components (ex-
cluding memory subsystem). The objective of NEME-
SIS is to detect and correct the effect of all transient
faults and prevent a program from experiencing any
form of functional and timing failures. NEMESIS salient
features are:
i) NEMESIS sphere of protection includes all
program instructions: NEMESIS checks for the er-



rors in the outcome of branch and memory write in-
structions rather than their register operands. This en-
hances the coverage of SWIFT-R based schemes from
the triplicated instructions to the all program instruc-
tions including triplicated and critical instructions. If
the checking fails, NEMESIS calls the corresponding di-
agnosis routine and attempts to recover from the error.
Figure 3 shows the overview of NEMESIS error detec-
tion/handling on memory write instructions. For each
store instruction, corresponding error detector verifies if
the store operation has written the correct value into the
the right memory location by loading back the stored
data from the memory and check that against the D-
stream computed store value. For branch instructions,
direction check takes place by executing the correspond-
ing D-stream compare and branch instruction, and ver-
ifying the destination basic block. Nevertheless, if the
presence of any error is detected, a diagnosis routine will
get invoked and determines the scope of error propaga-
tion. If the error is diagnosed as recoverable (marked
as 1 in Figure 3), the effect of error from the register
file and memory will be eliminated, then the recovery
routine re-executes the corresponding critical instruc-
tion and the program execution resumes. Otherwise, if
the diagnosis routine declares the presence of an unre-
coverable error (marked as 2 in Figure 3), the program
execution will be terminated.
ii) NEMESIS transformations closes all known
software vulnerability windows: Software vulnera-
bility window, defined as the duration between checking
a value in software and the time to use the value, exist
in almost all existing software-level techniques. These
intervals can be a major source of failure especially in
voting-based techniques. Instead of voting, NEMESIS
checks for errors in the results of critical instructions.
Since this checking will take place after the execution of
store instructions, NEMESIS transformation preserves
the value inside each memory location before update,
for recovery purposes. This strategy completely elimi-
nates the software vulnerability window.

4. NEMESIS: DETAILS
NEMESIS error coverage encompasses the execution

of all program instructions because it verifies the results
of critical instructions rather than blind voting between
redundant versions of the register operands of such in-
structions. However, this makes error recovery challeng-
ing because once the error is detected the program has
already committed the wrong memory write operation
or the program execution control is in the wrong path.
In this section we explain how NEMESIS detects and
recovers from soft errors.

4.1 Error detection on Store Instructions
The core concept of NEMESIS error detection on

memory write instructions is to load back the written
value from the memory and check that against corre-
sponding D-stream computed value. This idea has been
employed in nZDC [7] and EDDI with store-readback
[18], however, in the load-back error detection strategy

there is a not-reported-before vulnerability window –
called silent store vulnerable window. We identify/define
it, show why it is tricky to eradicate and then present
our solution to fix that.

Silent store vulnerable window: A store is said
to be silent if it writes a value into a memory element
which is already holding the same value [2]. If an error
alters the effective address of a silent store, it can make
a random modification to the state of memory and the
error cannot be detected by load back strategy because
the loaded value from the memory is as same as the
stored value.

Figure 4 exemplifies an undetected error case in store-
loadback strategy. The store is silent because the value
in memory location addr, val, before executing store
instruction (upper part of fig.4) is equal to the values
which are computed by main and detection streams,
valM and valD, respectively. Therefore, the state of
memory should not get changed by the execution of
store instruction. Now, assume that the soft error hits
the base address register of the store, and alters the
store’s effective address from addr to f-addr. Conse-
quently, the store writes its data into the faulty memory
address f-addr rather than addr, and changes the state
of memory while it is not supposed to do so(lower part
of fig.4). This error remains undetectable, since the fol-
lowing checking-load instruction will load the value, val,
from the correct address (computed by the detection
stream), addrD, which is equal to valM and valD. Note
that simply inserting a check for the base address reg-
ister store wouldn’t solve the problem since the error
can alter the store address without affecting the address
register, i.e, errors affecting functional unit or pipeline
register while processing the store instruction. Since
silent stores can consist around 18% to 64% of total
program’s store instructions [2], fixing the silent store
vulnerability is important in critical applications.

First-cut solution for silent store vulnerable
window: Since silent stores do not alter the state of
microprocessor, not executing such useless instructions
will eliminate their vulnerability without harming the
correctness of program. Thus, an obvious solution could
be to jump over silent stores in the program. Figure 5-
(a) illustrates the first cut attempt for eliminating the
silent store problem from the store-loadback error de-
tection strategy. In the figure redundantly computed
values of M-/D- and R-streams are differentiated by a
superscript M, D or R letter. For instance, valM , valD

and valR denote redundantly-computed store’s value
by M, D and R streams, respectively. Initially in this
scheme, a silent-check load (inst. 1) reads back from
exactly the same address that store is going to write
into, and saves the loaded value in an specific regis-
ter, called Silent Check Register (SCR). Then, SCR is
compared against the M-stream computed store’s value,
valM (inst. 2), to determine if the store is silent. If
the condition is true, the program jumps over the store
instruction, otherwise, store (inst. 3) will get executed
and the following checking-load (inst. 4) instruction
reloads the store’s written value from the memory into



Store  valM [f-addrM]
load    reg [addrD]
Check reg, valD

[addr]

[f-addr]

val

Soft error alters the 
addr to f-addr on 
the main stream

val

valM

f-addrM

valD

addrD

Redundant 
streams

[addr]

[f-addr]

val

?

Memory state before the execution of store

Memory state after the execution of the store

val = valM = valD

?

Figure 4: Silent store undetected error scenario in checking load
mechanism. Since the store instruction is silent, errors which alter
store address remains undetected.

SCR register. In the end, regardless of the store being
silent or not, the SCR register should be checked against
the value produced by D-stream, valD (inst. 5), to make
sure if store’s value,valM , was computed correctly.

NEMESIS solution for silent store vulnerable
window: Although the first-cut method solves the prob-
lem of silent stores, it introduces yet another possibly
undetected error scenario as the silent-check instruc-
tions (inst. 1, 2 in Figure 5-(a)) themselves are un-
protected. Therefore, if any error alters the effective
address of a silent-check load instruction in such a way
that the wrongly loaded value is equal to the store value,
a non-silent store will be treated like a silent one, and
memory state would not get updated when it must. We
named this type of errors as missing-memory update er-
rors. These errors differ from silent store scenarios by a
fact that the former does not change the state of mem-
ory while it should, and the later updates the state of
memory while it should not.

NEMESIS error detection scheme eliminates the prob-
lem of silent-store vulnerability and missing-memory
update by redundant and intertwined execution of silent-
check operations. This is best explained with exam-
ple shown in figure 5-(b). Firstly, the value within the
store destination memory location is loaded back into
two specific registers, VCR (Value Check Register) and
SCR (Silent Check Register) by two redundant load
instructions (marked as inst 1 and 2 in part (b) of
figure 5) which use M- and D- stream’s redundantly-
computed registers as their address operands. Then in
order to find out whether the store is silent, the SCR
register gets compared against the store value register
computed by M-stream, valM . If the store is identi-
fied as silent, the VCR register gets compared against
the store value register computed by D-stream (inst.
8) for error detection. Since, the results of redundant
silent-check loads are compared with the two M- and
D- stream computed store’s values, the missing-memory
update error will get detected. Now assume that the
store is not silent, and store and checking-load (inst.
(5) and (6)) will get executed. Instruction (5) performs
the actual memory write operation and instruction (6)
reloads the written value back to the VCR register. The

cmp SCR, ValM

store ValM [AddrM]

load SCR  [AddrD]

cmp ValD , SCR

(a)

Recovery 
routine

cmp SCR, ValM

store ValM [AddrM]
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cmp ValD , VCR
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Figure 5: Memory write instruction checking mechanisms. (a)
The first-cut solution which suffers from missing-memory update
error and (b) NEMESIS memory write checking mechanism which
solves the problem of silent-store and missing-memory update.

VCR register then gets compared against valD, which
is the redundant copy of store value computed by D-
stream, for error detection purpose (inst. 8).

Since in NEMESIS transformation the effect of the
error is detected after memory write instructions, it is
necessary that a backup of about-to-be-written memory
location preserved before each store instruction. Fortu-
nately, the previous state of memory is already loaded to
VCR register (inst. (1)). However, since this value will
be overwritten by the checking load instruction (inst.
(6)) in the case of not-silent stores, a copy of VCR is
preserved in SCR register (inst. (4) and (7)).
4.2 Diagnosis/Recovery on Store Instructions

NEMESIS diagnosis routine is responsible to decide
whether a detected error is recoverable. An on-store de-
tected error is recoverable if the state of the register file
and memory can be reverted to an error-free state before
the execution of store instruction. Generally, the effect
of error from registers can be masked by performing 2-
of-3 majority-voting between corresponding M-, D- and
R- registers. And, the memory state can be rolled-back
to an error-free sate by writing back the backed-up data
into the memory. However, there are two rare cases in
which NEMESIS diagnosis routine declares a detected
error as not recoverable:
Case 1: Inter-stream error propagation. If the
effect of error has crossed the boundary of redundant
streams, it is possible that all three redundant-computed
registers contain different values, and, therefore, per-
forming majority-voting cannot mask the effect of the
error. For example, consider an error on the decode
stage of the processor pipeline that alters the destina-
tion register pointer of an M-stream instruction to a D-
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Figure 6: Control flow protection in NEMESIS. (a) unprotected program. (b) NEMESIS Control flow checking mechanism.

stream register which is going to be used as the operand
for the corresponding redundant D-stream instruction.
In this case, the three corresponding redundant regis-
ters will be holding different values, and, such an error
can be detected but is unrecoverable.
Case 2: Unavailable memory backup. If the mem-
ory write instruction modifies a different memory lo-
cation from the preserved one, the error is unrecover-
able. Errors affecting store address register after the
first silent-check load and before the store instruction
(between inst. (1) and inst. (5) of part (b) of figure 5),
or error altering the effective address of store instruc-
tion while it is processing in the processor are deemed
to be detected but unrecoverable errors.

If none of the above cases are encountered, the di-
agnosis routine provokes the recovery block in which
memory restoration takes place by writing the backup
data into the faulty written memory address. Then
majority-voting between registers eliminates the effect
of error from register file and the normal program exe-
cution continues by retrying store instruction.

4.3 Control Flow Error Handling
Soft errors can alter the control flow (CF) of a pro-

gram by producing unexpected jumps or wrong-direction
branches in a program. An unexpected jumps arises
when the program CF alters in a way which is not per-
mitted in its control flow graph (CFG). Errors which di-
rectely modify PC register are examples of unexpected
jumps. Such CF errors can be detected or even re-
covered with signature-based CF checking techniques
[28, 29]. A wrong-direction CF occurs when a branch
direction changes from taken to not-taken or vice-versa,
which can be caused by errors affecting the computation

of compare instruction register operands, execution and
the opcode of compare and branch instructions, or even
program status flag registers. The wrong-direction CF
errors are more frequent than wrong-target errors and
cannot be detected with most of the existing signature-
based CF checking techniques [25]. Hence, the focus of
NEMESIS transformation is to detect and recover from
wrong direction control flow errors while a signature-
based CF checking technique can be employed for han-
dling unexpected jumps errors.

In order to detect wrong-direction CF errors, NEME-
SIS double checks the direction of a conditional branch
by placing an intermediate block, called direction-check
block, between each source and destination BBs (Basic
Blocks) in the original program CFG. These direction-
check blocks are necessary because they make direction
double checking possible even for multiple-entry desti-
nation BBs. In each direction-check block, NEMESIS
inserts a redundant (D-stream) compare instruction and
announces the presence of error only if the redundant
compare determines a different path from the original
(M-stream) compare instruction. However, if no error
is detected, the program control goes to the destination
BB by a direct branch which is positioned at the end
of direction-check block. NEMESIS CFC mechanism
provides complete wrong-direction error detection and
maximizes the masking effect of compare instruction.

Figure 6 demonstrates NEMESIS CF transformation
for a simple program which has both, single-entry (BB3
and BB5) and multiple-entry destination (BB4) basic blocks.
In the figure, NEMESIS direction-check blocks are marked
as BB1-3, BB1-4, BB2-4, and BB2-5. A direction-check
block contains four instructions, a D-stream copy of the
source BB compare instruction, a conditional branch



instruction to the diagnosis/recovery block, and two
redundant direct branches to the destination BB. The
condition of the conditional branch instruction in a direction-
check block is specified in such way that it will not
change the CF of the program if there is no fault. More
specifically, if the control flow changes when the branch
is not-taken (from BB1 to BB3 or from BB2 to BB5), the
condition of the redundant conditional branch instruc-
tion in the direction-check block is as same as the con-
dition of branch in the source BB. On the other hand,
if the CF changes from source to the destination BB
when a branch is taken (from BB1 or BB2 to the BB4),
the condition of the conditional branch instruction in
the direction-check block will be opposite to the con-
dition of the branch in the source BB. For instance, if
the branch in source BB is ”b.eq (branch equal)“, the
conditional branch in the direction-check block will be
”b.ne (branch not equal)“.

In a fault-free run of a program, the conditional of
the conditional branch in direction-check block is al-
ways false, and the control flow goes to the destination
BB with the first direct branch instruction. However, if
soft error alters the direction of the source BB branch,
the conditional branch in the direction-check block will
change the control flow of the program to the corre-
sponding recovery block. Note that, the second direct
branch in the direction-check block (the last instruc-
tion) just gets execute if an error affects the execution
of first directed branch in a way that it cannot change
the control flow of the program.
Control Flow Error Diagnosis/Recovery: The con-
trol flow error diagnosis routine is simple because it just
needs to check for inter-stream error propagation, and,
if that is the case, the error is consider as detectable/not-
recoverable. Otherwise, diagnosis routine transfers the
control of the execution to the recovery block, where,
majority-voting takes place between compare register
operands, and the program resumes its error-free exe-
cution from the M-stream compare instruction.

4.4 Exceptions and Segmentations Faults
NEMESIS transformation detects/recovers from the

manifestation of errors after memory write and branch
instructions. However, if a soft error causes an hardware
defined exception (i.e., divided-by-zero, illegal instruc-
tion opcode, accessing an inaccessible memory location)
a fatal hardware trap will raise and program execution
never reaches to the NEMESIS detection checks. To
recover from such errors, NEMESIS error handling rou-
tines should be initiated at the beginning of the excep-
tion handling routines with some small modifications.
For error detection, all architectural registers should
get compared against their shadows. If there is any
inconsistency between the state of the redundant reg-
isters, it can be presumed that soft error is the reason
of the exception. Then NEMESIS performs majority-
voting between redundant registers and re-executes the
exception-raising instruction. If the exception raises
again the normal exception handling mechanism responses
to the occurrence of exception. .

Table 1: Simulator (Gem5 SE emulation mode) parameters.

Parameter Value

CPU Model ARM64 bit in-order processor
Pipeline Two issue/4-stage
Number of FUs 2Int, 1Mul, 1Div, 1Float, 1Mem
L1 D/I-Cache 64KB (2-way) / 32KB (2-way)
Integer registerfile 32 registers (64-bit width)
Store buffer size 5 entries
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Figure 7: Out of 15 million fault injection experiments (evenly
distributed between original, Swift-R and NEMESIS versions of
programs), 237K result in SDCs in the ORG program, 120K in
the Swift-R program, and 0 in the NEMESIS program.

5. EXPERIMENTAL METHODOLOGY
We implemented NEMESIS and Swift-R techniques

as late back-end passes in LLVM 3.7 compiler infras-
tructure [17] for an ARMv8-a ISA. We compiled twelve
benchmarks from MiBench benchmark suite [12] with
-O3 compiler optimization flag. For each program we
produced three versions, Original, Swift-R and NEME-
SIS. We did not modify the standard library functions
and we exclude them from all of fault injection and per-
formance overhead evaluation results. We performed
extensive fault injection experiments on a ARM cortex-
A53 like simulated microprocessor. We used gem5[4] a
cycle accurate simulator with configuration detail shown
in table 1.
Fault model and fault sites: We inject single bit-flip
per execution as our fault model. We injected faults on
different bits of various hardware components including
general purpose integer register file, pipeline decoder
and instruction queue registers, integer functional units
and load-store unit buffers.
In an attempt to cover all cases, we randomly inject
100,000 faults for each version of a program per fault
site. For each version of a program, we injected 400,000
(4 * 100,000) faults in four hardware components. Over-
all, we inject 14,400,000 (400,000 * 3 * 12) fault injec-
tion experiments. These extensive fault injection ex-
periments provide us more the 95% confidence interval
with less than 0.1% error rate, which is 10x less error
rate than previous works [7, 10, 22].
For each fault injection experiment, a target compo-
nent and a (bit, cycle) are randomly selected. Once the
simulator reaches the target fault injection cycle, sim-
ulation is paused and the selected bit is flipped, then,
the simulation run resumes its execution till simulation
terminates or the allowable simulation time gets over.
The result of each simulation run is classified into one
of the following category:
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Figure 8: NEMESIS protected code increases the percentage of
masked faults by 22.5%, and completely eliminates SDCs.

Masked: The final output of the program is correct.
Note that faults, which are successfully recovered by
Swift-R and NEMESIS techniques, also count as masked
faults. Failed: Program terminates normally, but, the
output is incorrect. This is the case of Silent Data Cor-
ruptions or SDCs. SegFault: Program terminates by
generating some symptoms such as segmentation fault
or simulation time is over. Detected/Not-Recoverable:
In this case, program terminates by announcing the
presence of a unrecoverable error. This type of out-
come can only happen while the fault is injected during
the execution of an NEMESIS-protected program.

6. EVALUATION AND ANALYSIS
6.1 NEMESIS transformation is effective

Figure 7 shows the number of fault injection runs that
resulted in SDCs for unprotected (ORG), Swift-R and
NEMESIS versions of the programs. The figure shows
that of the 5 million runs, the original program results
in SDC ∼237K times. The Swift-R version ends up
with ∼120K times occurrence of SDCs. As compared
to these, NEMESIS protected programs do not cause
any SDCs. 1. Note that the Y-axis of the graph, or
Number of SDCs is in exponential scale and that the
last bar in each graph shows the total number of exper-
iments that resulted in SDC. We can see that fault in-
jection in NEMESIS-protected programs never resulted
in SDCs. This implies that NEMESIS error detection is
able to detect all injected faults. The NEMESIS diag-
nosis routine always correctly distinguished recoverable
errors from unrecoverable ones, and the recovery rou-
tine always eliminated the effect of error completely.
NEMESIS error detection is able to detect all errors
because it checks for the results of critical instructions
rather than their operands, and it covers infrequent cor-
ner cases (described in section 4.1).

In comparison with original versions of programs, Swift-
R protected programs, on average, produced 35%, 73%.
86% and 89% less failures for faults injected in load-
store unit, register file, pipeline registers and functional
units, respectively. Surprisingly, in some cases such as

1We show the absolute number of failures rather than fault
coverage or the percentage of masked faults because as [24]
reveals such metrics may cause protection overestimation
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Figure 9: Nemesis-protected programs, on an average run 25%
faster than Swift-R protected ones.

fault injection in the load-store unit for programs like
basicmath and rijndeal, Swift-R transformation actu-
ally increases the number of failures! The reason is that
in comparison with original codes, Swift-R transforma-
tion dramatically increases the number of memory op-
erations for register-hungry programs and leaves them
unprotected. NEMESIS transformation also increases
the number of memory operations, but NEMESIS pro-
tects them either by triplication (read operations) or
checking their results (write operations).

Figure 8 shows the fault injection experimental re-
sult distribution for original and NEMESIS-protected
versions of the programs. It can be seen that very sig-
nificant percentage of faults are masked, even in original
programs (on average ∼77%), and NEMESIS recovery
scheme increases the number of masked faults, on av-
erage, by about 22.5%. Almost half of these additional
masked faults were generated exceptions and were cov-
ered by initiating NEMESIS recovery routine in the be-
ginning of the exception handling routines. However,
a very limited number of injected faults, on average
∼0.42% of total fault injection experiments (∼3% of
the detected faults), lead to unrecoverable errors.

6.2 Performance overhead
Figure 9 shows the execution time overhead for Swift-

R and NEMESIS versions of the programs. Compared
to the original code, Swift-R and NEMESIS transfor-
mations, on average, increase the execution time of the
program by about 4X and 2.9X, respectively.
The NEMESIS-protected programs run, on average, 25%
faster than Swift-R protected ones, because they exe-
cute less number of instructions. For instance, for each
load operation, NEMESIS transformation adds two ex-
tra redundant instructions while Swift-R transforma-
tion requires a majority-voting, which needs 4 machine
instructions in our implementation, and two extra move
instructions. The number of extra instructions added
for memory write operation protection, for both NEME-
SIS and Swift-R transformations is 8 machine instruc-
tion. However, since NEMESIS transformation skips
over silent stores instructions, the total number of dy-
namic memory write instructions in NEMESIS-protected
programs is on average 18% less than Swift-R ones. For
each compare instruction, Swift-R transformation re-
quires two voting operations (so a total of 8 instruc-



tions) while NEMESIS transformation requires just 3
extra instructions, as described in section 4.3. Note
that the Swift-R and NEMESIS register reservation for
redundant instructions, impose significantly high over-
head in some register-hungry applications like rijndeal.

The performance overhead results reported for SWIFT-
R transformation are higher than previous works. The
reason is that we exclude the number of cycles that a
program spends in standard library calls from our exe-
cution time estimation, because we didn’t modify such
functions. However, similar works like [10] assumes that
library calls are protected but they do not consider the
overhead of library calls protection which causes signif-
icant runtime overhead underestimation.

7. CONCLUSIONS
We present NEMESIS a software level redundancy-

based technique which checks the results of memory
write operations and the direction of branch instruc-
tions in a program. If any violation is detected, NEME-
SIS diagnosis and recovery schemes undo the effect of
error from processor and memory state, and the pro-
gram can continue its execution. Fault injection results
show that NEMESIS-protected programs do not incur
any SDC and run 25% faster than Swift-R protected
programs.
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