
An Integrated Safe and Fast Recovery Scheme from Soft
Errors

Moslem Didehban Sai Ram Dheeraj Lokam Aviral Shrivastava
Compiler-Microarchitecture Lab, Arizona State University

Moslem.Didehban@asu.edu, Dlokam@asu.edu, Aviral.Shrivastava@asu.edu

ABSTRACT
An ideal soft error tolerance solution should hide the ef-
fect of soft errors from user and provide correct results at
expected time. Software solutions are attractive because
they can provide flexible reliability without imposing any
hardware modifications. Our investigation of state-of-the-
art error recovery techniques reveals that they suffer from
poor coverage (ability to detect and correctly recover from
soft errors). This paper presents InCheck (In-application
Checkpointing and Recovery) as an effective, safe and timely
software technique for complete error coverage. The key
features of InCheck are: verified register preservation, sin-
gle memory location checkpoints, and safe & timely recov-
ery. To evaluate the effectiveness of InCheck, we performed
more than 210,000 fault injection experiments on different
hardware components of an ARM cortex53-like processor
running MiBench applications. The original and SWIFT-
R (state-of-the-art) protected programs suffered from 8000
and 1800 instances of wrong outputs respectively, but when
protected by InCheck, there was no failure.

1. INTRODUCTION
Soft errors or transient faults – caused by high energy

particles that lead to an unexpected change in the transis-
tor logic – have long been considered as the main reliability
challenge for mission-critical aviation applications[25]. How-
ever aggressive sub-nano transistor scaling (10nm-7nm) and
near-threshold supply voltage is making modern digital cir-
cuits that we use in our everyday lives ever more susceptible
to external noises. Now even low-energy terrestrial particles
[1, 9] like muons’ can cause soft errors[23, 24]. In fact, the
ITRS 2015 [34] report lists Muon-induced soft errors as a
major reliability challenge in both near-term and long-term
microprocessor designs. Therefore soft error resilience will
soon become a must – even for safety-critical terrestrial ap-
plications.

Conventionally, hardware level soft-error resilience tech-
niques have been employed in mission- and safety-critical
systems, like spacecrafts and enterprise system [35]. How-
ever, hardware solutions come with high costs owing to the
need to redesign the system. Software approaches are at-
tractive, as they can provide a flexible, and affordable solu-
tion. They are especially useful for mixed-critical systems
[?], where flexible software techniques can provide relia-
bility based on task requirements. For instance, in auto-
mobile applications where the safety-critical tasks (braking)
and non-critical tasks (entertainment systems) share the un-
derlying microprocessor, software techniques are preferable
as they can meet high-reliability requirements for critical
tasks, while non-critical tasks get the best performance from
underlying microprocessor. Although existing software tech-
niques can meet the reliability requirements for medium- and
less-critical tasks, they do not provide high error resiliency
(detection+recovery) demanded by high-critical tasks [5].

An ideal error resilient scheme should provide complete,

effective and timely recovery from soft errors. Many of the
software-level fault tolerance techniques are incomplete, be-
cause they provide error detection and assume some sort
of checkpoint/roll-back [7, 27, 33, 31, 16, 14, 9] for recov-
ery. Restarting a program from beginning is the simplest
rollback recovery strategy. However, re-starting is not ap-
plicable in many cases, i.e, long running, real-time and inter-
active applications [32], and is accompanied by a high error
recovery latency – expected recovery latency can be half of
the program execution time. These problems can be alle-
viated by building full-system checkpoints (preserving the
whole memory and register stats) during the execution of a
program [2, 12]. However, to solve the problem of latent er-
rors (errors which may happen before checkpointing and will
be detected after checkpointing) frequent checkpoints are re-
quired, which imposes unacceptable performance overhead
to the system [8, 19, 3].

Software forward-recovery techniques [15, 22, 17] which
execute three versions of computations and perform majority-
voting between the results can potentially solve the problem
of latent errors in a more efficient way than frequent full
system checkpointing. The recovery-latency of voting-based
techniques is small (around 10 machine instructions), but
they cannot provide reliability demanded by high-critical ap-
plications mainly due to considerable single-points-of-failure
introduced by voting [26, 29]. Moreover, coarse-grained forward-
recovery schemes [15, 22] demand more than 3x memory
overhead. However, since the memory subsystems are usu-
ally ECC-protected in many modern microprocessor, apply-
ing redundancy on memory is a waste.

In-application fault tolerant techniques can potentially elim-
inate the need for full-system checkpointing and memory
replication, while providing efficient and timely error han-
dling by combining both error detection and recovery within
the application itself. Unfortunately, the existing in-application
error tolerant schemes are significantly weaker than their un-
derlying detection schemes, due to the vulnerability added
by their complex error recovery routines. For instance, SWIFT-
R [17] was proposed to provide recoverability to SWIFT (an
error-detection only technique) [16] by adopting forward re-
covery strategy. SWIFT-R divides the program registers
into 3 redundant sets, executes 3 versions of each compu-
tational instruction and performs majority-voting amongst
register operands of memory and control-flow instructions
before their execution. Surprisingly, our analysis of SWIFT-
R reveals that it has about 16x more vulnerability than
SWIFT! This is because: i) SWIFT-R transformation re-
quires considerably more unprotected (memory) instructions
than SWIFT due to its high register pressure, ii) SWIFT-R
has software vulnerable windows larger than SWIFT, as it
replaces light (in terms of machine instructions) error detec-
tion checks of SWIFT with heavier voting operations, and
(iii) SWIFT-R provides unsafe recovery by blindly mask-
ing the effect of certain errors on registers that may have
already propagated into memory or may even have altered
the program control-flow.

Realizing these problems, we propose InCheck (INtegrated
safe CHECKpointing and Recovery) – a software-only com-
plete, safe & timely recovery scheme from soft errors. InCheck
makes light-weight error-free checkpoints at basic block gran-
ularity, and safely reverts the program execution to the be-
ginning of last executed basic block using preserved check-
points. The main features of InCheck are:

i) Verified Register File Preservation. InCheck trans-
formation not only preserves registers’ value into memory
(no latent error), but also makes sure that the preserving
process happened correctly.

ii) Single Memory-location Checkpointing. Rather
than checkpointing the whole memory state, InCheck just
preserves the state of each memory location temporarily be-
fore of each write.

iii) Safe & Timely recovery. Instead of performing
recovery regardless of the error propagation scope, InCheck
invokes a diagnosis routine which allows recovery only when
its safe. The recovery latency of InCheck is negligible as it
involves re-execution of just one basic-block’s instructions
apart from diagnosis and recovery routines.

In order to evaluate the effectiveness of InCheck, we per-
formed about 216,000 micro-architectural single bit-flip fault
injection experiments on an ARM Cortex-A53 like simulated
processor while running Mibench [10] programs. The results
demonstrate that InCheck protected programs never gen-
erated a wrong output and in more than 96% of detected
faults, it also provides a safe & timely recovery. Though
SWIFT-R reduced the overall SDC (Silent-Data Corrup-
tions) count in Original Programs by about 4.3x, it still
accounted for about 1800 SDCs in the total injected faults
on SWIFT-R protected programs.

2. LIMITATIONS OF PREVIOUS WORKS
2.1 Checkpoint/Rollback Recovery

Traditionally Checkpointing/rollback has been used a re-
covery strategy in High Performance Computing (HPC) sys-
tems. The program execution in such systems is periodically
paused to make checkpoints (snapshots of the entire program
state including memory footprint and register values) into
a safe storage. In case of an error, last checkpoint will be
considered as safe process state and the program resumes its
execution [2].

Applying full system checkpointing/rollback as error re-
covery in embedded critical applications in not efficient be-
cause: i) Significant recovery latency (millions or billion of
instructions depends on the checkpointing interval), ii) Un-
acceptable performance overhead (Frequent checkpointing
is required for latent error recovery[3]) and iii) Need of ex-
tra safe storage (around 0.5-1 Giga bytes per checkpoint).
In fact, this huge overhead of frequent and multiple check-
points (required for successful and fast recovery from silent
errors) has restricted the usage of such recovery techniques
to HPC systems alone [8, 19].

To overcome the limitations of full checkpointing, tech-
niques like Encore[21], Clover[11] and FASER[28] have in-
troduced fast and low-overhead recovery schemes by tak-
ing advantage of the idempotent regions of the program
codes. Idempotent segments of a code do not have any
Write after Read (WAR) dependencies. Therefore, multi-
ple re-executions of such region always produces same result
after execution. Nevertheless, Idempotency-based recovery
techniques have been designed for non-critical applications
and have narrow fault coverage (recovery just from some
specific soft errors which affect idempotent-regions of code).
For instance, faults which cause a write into the wrong mem-
ory address or control flow errors (a fairly large amount of
errors) cannot be recovered by these techniques, even if they
occur in idempotent region of code. The authors of Encore

if (r1 != r1
*) error

store r1  [r2]

if ((r1 != r1
*) || (r1 != r1

**) || (r1
* != r1

**))
if (r1 == r1

*) r1
** = r1

else if (r1
* == r1

**) r1 = r1
*

else if (r1 == r1
**) r1

* = r1

store r1  [r2]

if ((r2 != r2
*) || (r2 != r2

**) || (r2
* != r2

**))
if (r2 == r2

*) r2
** = r2

else if (r2
* == r2

**) r2 = r2
*

else if (r2 == r2
**) r2

* = r2

if (r2 != r2
*) error

r
1
 v

u
ln

e
r
a
b

ility

r
1
 v

u
ln

e
r
a
b

ility

(b)(a)
r

1
v
o
tin

g
r

2
v
o
tin

g
Figure 1: SWIFT-R (part b) software vulnerability interval is
considerably more than SWIFT (part a)

themselves acknowledged to these limitations. Hence, the
ineffectiveness of idempotency-based recovery schemes ren-
ders them unsuitable for high-critical applications.

2.2 Coarse-Grain Forward Recovery
Forward recovery schemes which work based on the trip-

lication and voting strategy, eliminate the need for check-
pointing and can provide timely recovery. Forward-recovery
can take place at coarse-grain (like process/task/thread repli-
cation) or fine-grain (assembly-level instruction replication)
modular redundancy. State-of-the-art coarse-grain techniques
like PLR (Process-level Redundancy [22]) apply redundancy
at process-level, and perform voting between the redundantly-
computed system call arguments at system-call boundaries.
However, since the errors can affect a program without man-
ifesting into the system call arguments, PLR approach is not
effective for critical applications. For instance, if a system
call (like fwrite) takes a memory pointer and size as argu-
ments, there can be errors in the actual data referenced by
the pointer even if the arguments (redundantly computed
pointers and size) are equal. In addition, software voting
operations and the execution of system call themselves are
the single-points-of-failures in such techniques.

2.3 Fine-Grain Recovery
Fine-grained assembly-level techniques [17, 16, 9, 14, 7,

13, 28, 30, 27] are the most related techniques to the work
presented in this paper. They are very popular as they can
provide potentially high-level of reliability. This is because
such techniques are implemented as machine-level instruc-
tions, and have the ability to effectively check for the er-
rors which may cause a failure, i.e, in memory operations
and control-flow direction. Unfortunately, the existing com-
plete fine-grained techniques, SWIFT-R [17] and FASER
[28], provide recovery from some errors with a significantly
higher failure rate that the error detection schemes.

2.3.1 SWIFT-R: Unsafe Recovery
The idea of providing the error detection and recovery at

assembly-level was introduced in SWIFT-R [17] research pa-
per. SWIFT-R (SWIFT+Recovery) is developed based on
the well-known SWIFT[16] technique. It executes three ver-
sions of program’s computational instructions with different
sets of registers and performs 2-of-3 majority-voting between
redundant registers’ values before memory and control-flow
instructions to mask the effect of error from computations.
However, SWIFT-R not only imposes significant performance
overhead to SWIFT, but also increases SWIFT’s failure rate
because of three main reasons:
1) SWIFT-R transformation demands considerably

2,022

744

1 1

44

 1

 10

 100

 1,000

 10,000
N

u
m

b
er

 o
f

SD
C

s
ORG SWIFT SWIFT-R

Figure 2: SWIFT-R protected programs experienced more than
16x failure than SWIFT-protected ones!

more unprotected instructions than SWIFT. SWIFT-
R requires about two-thirds of programmer available regis-
ters for error recovery, while SWIFT reserves about half of
registers for error detection. This extra register reservation
forces compiler to generate more memory instructions which
cannot get protected by SWIFT and SWIFT-R transforma-
tions [7]. To quantify the effect of register reservation on
programs, we compiled Mibench[10] programs with LLVM
3.7[6] infrastructure for ARMv8-A Architecture which has
32 general purpose integer registers1. We found out that
SWIFT-R imposes more than 4x memory operation than
SWIFT. Note that, FASER [28], a SWIFT-based backward-
recovery, also share this problem with SWIFT-R.
2) SWIFT-R suffers from considerably larger soft-
ware vulnerability window than SWIFT. SWIFT-R
increases software vulnerability window (interval between
value checking and actual usage of that value) of SWIFT, be-
cause it replaces light error-detectors (1-2 machine instruc-
tions), with expensive majority-voting operations (8-10 ma-
chine instructions). Figure 1 illustrates the software vulner-
able window of SWIFT and SWIFT-R for a simple memory
write operation. SWIFT just checks the store’s value(r1)
and address(r2) registers, against their shadows (r1* and
r2*) before the actual memory write instructions. There-
fore, there is a small interval between the checking and using
register values, which if error hits the registers in this inter-
val, error may remain undetected. SWIFT-R, on the other
hand, requires majority-voting between three redundant reg-
isters values computed for stores value (r1, r1* and r1**)
and address(r2, r2* and r2**) registers. Clearly, since the
software implementation of the 2-of-3 majority-voting needs
more machine instructions than just error checking, software
vulnerable interval of SWIFT-R is larger than SWIFT. Be-
sides of the longer duration of each software vulnerable win-
dow, the number of such intervals in SWIFT-R is also con-
siderably bigger than SWIFT, because SWIFT-R demands
more memory (therefore voting) operations. Note that these
software vulnerable intervals are considerable, because they
exist before all memory, control-flow and function calls in-
structions.
3) SWIFT-R unsafe recovery eliminates the effect of
error from registers even though memory or control
flow is faulty. If an error happens during SWIFT vul-
nerability window, it probably corrupts the memory state
and/or alters the program control-flow. SWIFT can still
detect such errors, if the mismatch between redundant regis-
ters reaches to the successive error detectors. However, since
SWIFT-R and FASER recovery schemes, try to blindly re-

1Implementation of SWIFT-R and FASER on an ARMv7
microprocessor is problematic because only 16 user visible
registers are available.

Verified Register Preservation

Memory Checkpointing

Store

Error Detection? Is recovery Safe?

Unrecoverable
Error

NO

YES

Memory Restoration
Registers Restoration
Rollback to .BB

Recovery

Diagnosis

R
ed

u
n

d
an

t
C

o
m

p
u

tatio
n

s

Y
ES

.BB
1

2

3

4

Figure 3: InCheck data-flow error recovery Overview

cover from any discrepancy (without determining the scope
of error propagation), they can mask the effect of error in
registers while the memory state or the program execution
path is still erroneous.

In order to quantify SWIFT-R’s negative impact on the
failure rate, we performed 54k fault injection experiments on
Register File of a simulated processor while running SWIFT
and SWIFT-R protected programs. The details of the sim-
ulator configuration and fault injection set-up are presented
in section 4. As figure 2 demonstrates, SWIFT-R transfor-
mation caused around 16x more failure (SDC) than SWIFT!
Therefore, recovery from errors is a delicate process which
if not performed correctly, will worsen system reliability and
execution time.

3. OUR APPROACH: INCHECK

3.1 InCheck Overview
In this paper, we propose a safe and timely recovery scheme

which in combination with nZDC (near Zero silent Data
Corruption[7]) as the underlying error detection scheme, will
serve as a complete, safe and timely error handling strategy.
InCheck’s error handling process can be divided into two
main parts: DF (Data-Flow) and CF (Control-Flow) error
recovery. DF error recovery (shown in figure 3) consists of
four main steps: 1) Verified Register Preservation. It takes
place at the beginning of each basic block and stores the
value of live registers into the checkpointing area of mem-
ory. InCheck makes sure that no error can cross the preser-
vation phase by checking the the process of preservation it-
self in-addition to checking the reserved registers’ values. 2)
Single Memory-location checkpointing. Right before each
store instruction, InCheck preserves the data of about-to-
be-updated memory location into a specific register. This
register will further be used for memory restoration in the
case of errors. 3) Checks for Safe Recovery. InCheck di-
agnosis routine checks if the error is recoverable. This is
necessary because state recovery is not always possible. For
instance, errors which cause a write into a memory location
that is different from the one that the back-up load reads
from, cannot be recovered because the backup itself is not
valid. 4) Timely Recovery. The program execution is re-
sumed from the beginning of basic block after the Memory
and Register file state are restored to fault-free state that
was present at the beginning of that basic block. Timely
recovery was possible as overall operations needed for diag-
nosis and recovery are implemented within 100 instructions.

Control-flow error recovery is similar to DF error recovery,

however, the challenge is to determine from where the pro-
gram re-execution should be restarted. InCheck CF diagno-
sis routine separates wrong-direction (errors which alter the
direction of branch) CF errors from wrong-target ones(errors
which cause an illegal jump), and provides recovery for the
former and safe-stop for latter.

3.2 Verified Register File Preservation
InCheck saves the value of live registers into a designated

memory locations, called register preservation area, at en-
trance of each basic block. Just error-free registers should
be preserved and the preservation process should be error-
free, otherwise, a failure may be observed. InCheck val-
idates the correctness of preservation process by applying
checking-load strategy [7] – It loads back the saved register
value from the register preservation area and checks that
against the shadow register. Note that the program counter
register (PC) always considered as live and get preserved.
The PC preservation is crucial for control-flow errors (de-
scribed in section 3.6) detected in fan-in basic blocks where
potentially multiple re-execution points exists.

3.3 Single Memory-Location Checkpointing
InChecks introduces a novel and efficient method for mem-

ory checkpointing, and rather than saving the whole memory
sate or be rely on idempotent region of codes[21, 11, 28],
it just makes a back-up from the memory location which
is going to be overwritten. The main intuition behind this
strategy is that since memory subsystem can be protected by
ECC, there is no need to save whole memory state. However,
ECC is ineffective if erroneous data or address is sent along
write command. Therefore, the previous value of about-to-
update memory location is needed for memory restoration.

InCheck provides memory checkpointing by inserting a
load instruction (back-up load) from the exact address as the
following memory write instruction into an specific register,
named MBR (Memory Back-up Register). InCheck transfor-
mation forces compiler to break down basic blocks with po-
tentially conflicting memory operations (multiple write and
read operations from the same memory location) into sub
basic blocks without such memory dependencies. This basic
block purification is required for recovery from basic blocks
with conflicting memory operations, because InCheck on-
the-fly single memory location checkpointing strategy just
provide backup for one memory location.

3.4 Checks for Safe Recovery
One of the feature of InCheck which distinguish it from re-

lated techniques is its diagnosis routine, which is the essence
of safe recovery. Basically, if error affects the execution
of redundant computations or error detection instructions
(shown is figure 3) the error is always recoverable. However,
if error impacts the execution of store instruction in such
way that the effective memory address get modified, the er-
ror should be considered as unrecoverable, since the data
will be written into an unknown (unbacked-up) memory lo-
cation.

Figure 4 shows an example of InCheck data-flow error
detection and diagnosis. The first load(left side of the fig-
ure, before store) is the ”back-up load” which performs on-
demand memory checkpointing. The error detection takes
place after the store instruction, and program control goes
to diagnosis routine in the case of mismatch. First, diag-
nosis routine checks for errors on the computation of store
value register (r1). If a mismatch is observed the error gets
marked as recoverable, and the program jumps to the recov-
ery routine (not shown in figure). Second, diagnosis routine
checks for mismatch on the store address register, which
depends on error occurrence-time may or may not be re-
coverable. If error occurs on address register r2 before the

load MBR [r2]

store r1 [r2]
load temp  [r2

*]
if (r1

* != temp)
Go to Diagnosis

If (r1 != r1*)
Recoverable; // faulty value reg.

Data Flow Diagnosis Steps

load temp [r2
*]

If (r1
* == temp)

Recoverable; // false alarm

load temp [r2]
If ((r1 == temp) && (r2 != r2

*))
Recoverable; // faulty address reg.

If (MBR != temp)
Recoverable; // faulty written data

Detected/UnRecoverable Error

Figure 4: An example of InCheck data-flow diagnosis

back-up load, the error consider as recoverable. This is be-
cause the back-up for wrongly updated memory is available,
and therefore, memory restoration is possible. However, if
the error happens after the execution of back-up load, since
the value of MBR is not the previous value of the wrongly
updated memory, the recovery is not possible. To determine
the occurrence time of error, diagnosis routine loads the data
back from the memory location with the same address as
store into a temporary register (temp) and compares that
against store value register (r1). If same, it assumes that
error has modified the address of both back-up load and the
store in the same way (back-up is valid) and is recoverable.
Third, diagnosis routine compares the value of MBR to temp.
If different, it implies that the store has written incorrect
data into right memory location. This type of error is also
recoverable because memory back-up is valid. Fourth, diag-
nosis checks for errors on detection instructions which are
just false alarms and easily recoverable. False alarms can be
checked by repeating the error detection instructions. Ulti-
mately, if none of the above situation was true, the diagno-
sis routine declares the error as detected/Unrecoverable and
terminates the execution of program.

3.5 Timely Recovery
In the last phase of InCheck error handling, the actual

recovery takes place by performing memory and register file
restoration and re-executing the program from the beginning
of the basic block. First, the memory state will be restored
back into the same state as before memory write instruction
by writing the MBR register into the memory right target
location. Then the error-free live registers will loaded back
from the register preservation area to the corresponding reg-
isters, and ultimately the main program execution resumes.
Since the first two steps of InCheck (safe register preser-
vation and memory checkpointing) should be executed in
all (erroneous or error-free) cases, the recovery latency of
InCheck is equal to the execution time of diagnosis and re-
covery routines and replied instructions (instructions from
the beginning of basic-block till the error detection point).
Overall, since the diagnosis and recovery routines and the
average basic block size are small, the recovery latency is
always negligible (less than 300 instructions).

3.6 Control-Flow Error Recovery
InCheck employees nZDC control-flow(CF) checking mech-

anism, but in addition to nZDC CF error detection checks
(positioned close to the end of each basic block) it also per-
forms error detection checks an the beginning of each basic
block (before safe register preservation)2. If a CF error gets
detected by the first checks, InCheck invokes the correspond-
ing CF-specific diagnosis routine. These routines are differ-

2The reader is encouraged to examine [7] for a detailed de-
scription of the nZDC control-flow detection scheme.

1,613

230

1

10

100

1000

N
u

m
b

e
r

o
f

SD
C

s

Functional Units Original SWIFT-R InCheck

917

225

1

10

100

1000

N
u

m
b

e
r

o
f

SD
C

s

Load-Store Unit Original SWIFT-R InCheck

3,324

644

 1

 10

 100

 1,000

N
u

m
b

e
r

o
f

SD
C

s
Pipeline Registers Original SWIFT-R InCheck

0 0 0 0 0 0 0 0 0 0

2,190

744

 1

 10

 100

 1,000

N
u

m
b

e
r

o
f

SD
C

s

Register File Original SWIFT-R InCheck

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 5: SDCs Distribution in Component-wise Fault Injection Experiments

ent from DF diagnosis routine (described in section 3.4), and
their responsibility is to determine if the detected CF error
is a wrong-direction or a wrong-target error. A control-flow
error will be considered as wrong-direction error, if the last
preserved PC is in the list of legitimate predecessors of the
current basic block. If that is the case, error will be treated
as recoverable and recovery takes place by restoring memory
and register values to the initial state of the previously ex-
ecuted basic blocks. Otherwise, the error will be considered
as wrong-target CF error and as well as errors which are de-
tected by nZDC CF error detectors (positioned at the end of
basic block) will be considered as unrecoverable – diagnosis
routine terminates the execution of program. Fortunately,
as [20] demonstrated, most of control-flow errors are wrong-
direction errors, therefore are recoverable by InCheck error
handling scheme.

4. EXPERIMENTAL METHODOLOGY
To quantify the effectiveness of InCheck, we implemented

InCheck and SWIFT-R(as the the-state-of-the-art related
work) techniques as late back-end passes in LLVM 3.7 in-
frastructure [6] for an ARMv8-a ISA(64-bit architecture).
We compiled 9 programs from Mibench benchmark suite[10]
with -O3 compiler optimization flag. For each program
three versions, Original, InCheck and SWIFT-R was pro-
duced. It should be noted that all experiments and results
were performed on user functions (library functions were ex-
cluded).

We performed extensive fault injection experiments in all
major sequential hardware components of a modern ARM
cortex A-53 like simulated microprocessor. We performed
our experiments on gem5[4], a cycle accurate simulator which
the configuration shown in table 1. We performed single bit-
flip fault injection experiments on major core components
including, integer register file, decode and issue pipeline reg-
isters, functional units and load-store unit buffer registers.
For each component 2000 faults were injected per version
of program, which means 72,000 (4 * 2000 * 9) faults per
each program version – overall 216,000 (72k * 3) faults. For
each fault injection experiment, a target component and a
(bit, cycle) are randomly selected before the simulation run.
Once the simulator reaches the target fault injection cycle,
simulation is paused and the selected bit is inverted. Then,
simulation resumes with the faulty value until it gets termi-
nated or the allowed simulation time (3x of normal execution

Table 1: Simulator (Gem5 SE emulation mode) parameters.

Parameter Value

CPU Model ARM64 bit in-order processor
Pipeline Two issue/4-stage
Number of FUs 2Int, 1Mul, 1Div, 1Float, 1Mem
L1 D/I-Cache 64KB (2-way) / 32KB (2-way)
TLB size 512 entries
Integer registerfile 32 registers (64-bit width)
Store buffer size 5 entries

time) gets over. The result of each simulation run is classi-
fied as one of the following:
1) Masked: Program terminates normally and the output
is correct. 2) Failed/SDC: Program terminates, but the
output is incorrect. 3) Detected/Unrecoverable: This
outcome occur just in InCheck protected programs, and hap-
pens when an error is detected, but cannot be recovered
from. 4) Others: Program encounters a fatal error, such
as segmentation fault or simulation time reaches its limit.

5. EXPERIMENTAL RESULTS

5.1 InCheck: Effective & Safe Error Handling
Figure 5 depicts the absolute number (in logarithmic scale)

of failures (SDCs) per hardware component. We did not use
fault coverage metric, because it can be misleading [18]).
Regardless of the target fault injection component, InCheck-
protected programs never resulted in a failure! This implies
that 1) No error could skip InCheck+nZDC’s error detec-
tors, 2) The diagnosis routine always distinguishes recover-
able errors from unrecoverable ones accurately, and 3) If the
detected error was recognized as recoverable, the recovery
routine is always successful. InCheck is extremely effective
as it protects functionally-related instructions of the pro-
gram as well as error handling (preservation and checkpoint-
ing) operations. However, in comparison with the original
programs, SWIFT-R transformation reduces the number of
failures on total by 4.3x (5.2x, 2.9x, 8x and 4x for pipeline
registers, register file, functional units and load-store unit,
respectively). Our investigation from failed experiments re-
veals that unlike InCheck SWIFT-R provides safe recovery
only from the faults which affect the computational instruc-
tions, and the rest of the faults either get masked by the

467% 297%

0%

100%

200%

300%

400%

500%

600%

P
e

rf
o

rm
an

ce
 O

ve
rh

ea
d

 n
o

rm
al

iz
e

d
 t

o
 O

ri
gi

n
al

Original SWIFT-R InCheck

1127.34%

Figure 6: Execution Overhead of SWIFT-R & InCheck

programs or lead to failures or segmentation faults.
In-Check-protected programs can potentially recover from
Soft Errors which lead to segmentation faults if their diag-
nosis routines initialize at the beginning of signal handler
functions of applications. Since in gem5 system call emula-
tion mode, the simulator terminates the program execution
without forwarding segmentation fault signals to the appli-
cation, We could not fully demonstrate the InCheck Recov-
erability.
InCheck Diagnosis routine declared around 96% of detected
faults as recoverable. In less than 4% of times diagnosis
routine provided safe-stop and prevented from failure by
terminating the running program. If they were left untermi-
nated, these unrecoverable faults could have either directly
impacted the execution of a memory write operations or
caused an unexpected jump in the program. Restarting can
anyways be employed as recovery strategy in these scenarios.

5.2 InCheck: Efficient and Timely Recovery
Figure 6 shows the execution overheads of InCheck+nZDC

and SWIFT-R protected programs normalized to Original
Program. It can be seen that on an average, an InCheck
version of a program can run 36% faster than its SWIFT-R
equivalent. InCheck is faster because it pushes the uncom-
mon diagnosis and recovery routines off the critical-path of
execution. The performance overhead of frequent live reg-
ister preservation is acceptable, because the corresponding
memory preservation locations are usually presented in the
cache and therefore will execute fast. Furthermore, the per-
formance overhead of back-up loads (inserted right before
program store instructions) are also not significant, because
they do not cause any more memory miss – if the data is not
in the cache, miss is inevitable. If not happen by back-up
load it will be happen by store instruction itself.
To quantify the recovery-latency of InCheck, we counted
the average number of extra instructions which were exe-
cuted when an injected fault was detected and recovered.
The InCheck recovery-latency in terms of dynamic instruc-
tions is, on an average, around 180 instructions which is
unnoticeable in many cases.

6. CONCLUSIONS
We presented InCheck, as an in-application soft Error de-

tection, diagnosis and recovery scheme. Unlike existing tech-
niques, InCheck protects the execution of error handling rou-
tines like checkpointing operations in-addition to the main
program instructions. InCheck introduces verified register
file preservation and single-memory-location checkpointing.
It also performs diagnosis after error detection to provide
safe recovery.

Acknowledgement
This work was partially supported by funding from National
Science Foundation grants CCF 1055094 (CAREER).

References
[1] Shekhar Borkar. Designing reliable systems from unreli-

able components: the challenges of transistor variability and
degradation. MICRO, 2005.

[2] Jason Duell. The design and implementation of berkeley
lab’s linux checkpoint/restart. Lawrence Berkeley National
Laboratory, 2005.

[3] Aupy et.al. On the combination of silent error detection and
checkpointing. In PRDC-19. IEEE, 2013.

[4] Binkert et.al. The gem5 simulator. ACM SIGARCH Com-
puter Architecture News, 2011.

[5] Cheng et.al. CLEAR: Cross-Layer Exploration for Archi-
tecting Resilience-Combining Hardware and Software Tech-
niques to Tolerate Soft Errors in Processor Cores. arXiv
preprint arXiv:1604.03062, 2016.

[6] Chris et.al. LLVM: A compilation framework for lifelong
program analysis & transformation. In CGO, 2004.

[7] Didehban et.al. nZDC: A compiler technique for near Zero
silent Data Corruption. In DAC-53. ACM, 2016.

[8] Elnozahy et.al. Checkpointing for peta-scale systems: A look
into the future of practical rollback-recovery. TDSC, 2004.

[9] Feng et.al. Shoestring: probabilistic soft error reliability on
the cheap. In ASPLOS. ACM, 2010.

[10] Guthaus et.al. MiBench: A free, commercially representative
embedded benchmark suite. In WWC-4. IEEE, 2001.

[11] Liu et.al. Clover: Compiler directed lightweight soft error
resilience. In LCTES. ACM, 2015.

[12] Lu et.al. When is multi-version checkpointing needed? In
FTXS-3. ACM, 2013.

[13] Mitropoulou et.al. DRIFT: Decoupled CompileR-Based
Instruction-Level Fault-Tolerance. In LCPC. Springer, 2014.

[14] Oh et.al. ED4I: Error Detection by Diverse Data and Dupli-
cated Instructions. TC, 2002.

[15] Quinn et.al. Software resilience and the effectiveness of soft-
ware mitigation in microcontrollers. TNS, 2015.

[16] Reis et.al. SWIFT: Software implemented fault tolerance. In
CGO. IEEE, 2005.

[17] Reis et.al. Automatic instruction-level software-only recov-
ery. MICRO, 2007.

[18] Schirmeier et.al. Avoiding pitfalls in fault-injection based
comparison of program ... In DSN, 2015.

[19] Schroeder et.al. Understanding failures in petascale comput-
ers. In SciDAC. IOP Publishing, 2007.

[20] Shrivastava et.al. Quantitative analysis of control flow check-
ing mechanisms for soft errors. In DAC-51. IEEE, 2014.

[21] Shuguang et.al. Encore: low-cost, fine-grained transient fault
recovery. In MICRO-44. ACM, 2011.

[22] Shye et.al. PLR: A software approach to transient fault tol-
erance for multicore architectures. TDSC, 2009.

[23] Sierawski et.al. Effects of scaling on muon-induced soft er-
rors. In International Reliability Physics Symposium, 2011.

[24] Silberberg et.al. Neutron generated single-event upsets in
the atmosphere. TNS, 1984.

[25] Taber et.al. Single event upset in avionics. TNS, 1993.
[26] Ulbrich et.al. Eliminating single points of failure in software-

based redundancy. In EDCC-9. IEEE, 2012.
[27] Wang et.al. Compiler-managed software-based redundant

multi-threading for transient fault detection. In CGO, 2007.
[28] Xu et.al. An instruction-level fine-grained recovery approach

for soft errors. In SAC-28. ACM, 2013.
[29] Yim et.al. A fault-tolerant programmable voter for software-

based n-modular redundancy. In AeroConf. IEEE, 2012.
[30] Yu et.al. Esoftcheck: Removal of non-vital checks for fault

tolerance. In CGO-7. IEEE Computer Society, 2009.
[31] Yun et.al. DAFT: Decoupled Acyclic Fault Tolerance. In-

ternational Journal of Parallel Programming, 2012.
[32] Zhang et.al. Fault recovery based on checkpointing for hard

real-time embedded systems. In DFT-18. IEEE, 2003.
[33] Zhang et.al. Runtime asynchronous fault tolerance via spec-

ulation. In CGO-10. ACM, 2012.
[34] IRC. International Technology Roadmap For Semicon-

ductors 2.0-Executive Summary. http://www.itrs2.net/
itrs-reports.html, 2015. [accessed 19-November-2016].

[35] Spainhoweret.al. Ibm s/390 parallel enterprise server g5 fault
tolerance: A historical perspective. IBM J RES DEV, 1999.

