
nZDC: A Compiler technique for near Zero Silent data
Corruption

Moslem Didehban
Compiler-Microarchitecture Lab

Arizona State University
Moslem.Didehban@asu.edu

Aviral Shrivastava
Compiler-Microarchitecture Lab

Arizona State University
Aviral.Shrivastava@asu.edu

ABSTRACT
Exponentially growing rate of soft errors makes reliability a
major concern in modern processor design. Since software-
oriented approaches offer flexible protection even in off-the-
shelf processes, they are attractive solutions in protecting
against soft errors. Among such approaches, in-application
instruction duplication based approaches have been widely
used and are deemed to be the most effective. Such tech-
niques duplicate the program assembly instructions and pe-
riodically check the results to identify possible errors. Even
though early reports suggest that such techniques achieve
close to 100% protection from soft errors, we find several
gaps in the protection. Existing techniques are unable to
protect several important microarchitectural components,
as well as a significant fraction of instructions, resulting in
Silent Data Corruptions (SDCs). This paper presents nZDC
or near Zero silent Data Corruption – an effective instruc-
tion duplication based approach to protect programs from
soft errors. Extensive fault injection experiments on almost
all the unprotected microarchitectural components in simu-
lated ARM Cortex A53, while executing benchmarks from
MiBench suite, demonstrate that nZDC is extremely effec-
tive, without incurring any more performance penalty than
the state-of-the-art.

1. INTRODUCTION
Rapid technology scaling, the main driver of the power

and performance improvements of computing solutions, has
also rendered our computing systems extremely susceptible
to transient errors called soft errors [1, 2]. Among the many
sources of transient faults in the system (e.g., electrical noise,
external interference, cross-talk, etc.) sub-atomic particles
(low and high energy neutrons) that strike on sensitive areas
of a transistor cause majority of soft errors in electronic
devices [3]. Soft errors have already been attributed to cause
large fiscal damages [4]. At the current technology node, soft
errors may occur in a high-end server once every 170 hours,
but they increase exponentially, and are expected to reach
alarming levels of once-per-day[5]!.

While most previous works propose protection from soft
errors by altering the hardware of the processor [6], software
approaches are attractive since they can be applied to any
existing processor; plus, they can be applied more prudently.
For example, protection can be turned “on”, only for criti-
cal applications, or just the critical parts of the application.
Among software approaches, in-application instruction du-
plication is one of the most popular and seemingly effective

approaches. In these techniques computational and logical
instructions are duplicated with different registers, and at
some synchronization points, such as memory operations,
compares, branches and function calls, the redundant regis-
ters get checked against their original ones. These methods
have been shown to be quite effective. The state-of-the-art
approach SWIFT[7] claims that they can completely elim-
inate Silent Data Corruptions (SDCs). In fact, following
works [8, 9] argued that SWIFT provides protection, and
try to improve performance by applying instruction dupli-
cation only for parts of the application.

However, our investigation reveals that the above con-
clusion is not accurate, and existing techniques are not as
effective as advertized. The existing instruction duplication
schemes cannot completely protect against: i) faults in the
micraoarchitectural resources used by the non-duplicated in-
structions1, like loads, stores, compares, branches and func-
tion calls. The microarchitectural resources include most
components in the processor pipeline, like pipeline registers,
fetch queue, functional units, commit queue, reorder buffer
etc., ii) faults (or soft errors) in the load store queue, iii)
faults in the condition code register, iv) faults in the regis-
ter file, v) and control flow (CF) errors. The first effect is
most significant, since the unprotected non-duplicatable in-
structions can constitute 20-40% of the program instructions
[10]. Also, the unprotected pipeline components constitute a
pretty significant fraction of the bits of the core – given that
most caches-like structures are already protected in most
processors.

In this paper, we propose nZDC or near Zero silent Data
Corruption – a software approach to protect applications
from soft errors. nZDC is extremely effective because it com-
prehensively protects: i) the store instructions by reloading
the stored value and checking it, ii) the load instructions by
duplicating the loads, iii) the compare and branch instruc-
tions by duplicating them, iv) detects branches in the wrong
direction by using direction check in addition to signature
checking, and v) the register file by checking the duplicate
registers after a non-duplicated instructions instead of be-
fore it.

We implement SWIFT and nZDC in the LLVM com-
piler for ARM V8-a ISA. We compile the applications from
MiBench benchmark suite, and run them on gem5 simulator
modeling ARM cortex-53. We perform extensive fault injec-
tion experiments in all the major microarchitectural compo-
nents with state-bits in the gem5 simulator to achieve 95%

1Although the name suggests otherwise, existing instruction
duplication schemes do not duplicate all instructions.

confidence in our results. We found that unlike SWIFT,
nZDC is extremely effective. In fact, compared to origi-
nal version of the programs, for faults in load store queue,
SWIFT increases the average percentage of failure from 3.4%
to 3.9%, and reduces the average percentage of failure for
functional units, pipeline registers and register file from 9.8%,
16.3% and 10.3% to 1.7%, 1.4% and 0.1%, respectively.
However, nZDC eliminates failure due to faults in load-store
queue, functional units and register file. And brings down
the percentage of failure to 0.3% in pipeline registers. To
evaluate the ability of SWIFT and nZDC in detecting con-
trol flow errors, we specifically performed fault injections on
pipeline registers while carrying control flow (CF) instruc-
tion - Branch and Compare instructions. In both SWIFT
and the original versions of the programs, on average, 18% of
faults on CF instructions result in SDC. On the other hand,
only 0.4% of faults on CF instructions lead to SDC in nZDC
version of the programs. nZDC achieves this high-level of
protection while incurring 10% less performance overhead
than SWIFT.

2. BACKGROUND
Software approaches to protect from soft errors have use

redundancy at several levels. Replication has been imple-
mented at process-level [11, 12], where the system calls be-
come the checking points. [13, 14, 15] duplicate high-level
program statements and insert frequent checking of the re-
sults. Compiler-level redundant multi-threading approaches
[16, 17] generate two copies of each thread at compilation
time, called leader and trailer threads. The leader thread
sends the critical values to the trailer thread for checking
purpose. The trailer thread compares the values received by
leader thread against its own values to detect errors. Instruc-
tion duplication can also be applied at the assembly level.
ED4I [18] was the first in-application instruction duplica-
tion scheme that duplicates all instructions except branches
and compares. In ED4I, checking instructions are inserted
before stores and branches. Although effective, yet an error
in the branch or compare instruction can still corrupt the
program’s output. In addition, since ED4I requires mem-
ory duplication, its performance overhead can be very high,
especially for memory-intensive applications.

SWIFT [7] was proposed to improve the performance and
fault coverage of ED4I. In SWIFT, all computational in-
structions get duplicated with different registers and check-
ing instructions being added before memory operations, com-
pare instructions and function calls. In order to reduce
the performance overhead and memory pressure, SWIFT re-
places the duplicate load by a move from the first load, and
assuming that memory is protected by other means, e.g.,
ECC. SWIFT also proposes a control flow checking (CFC)
mechanism to detect control flow errors.
Although there are many following works [8, 9, 19, 20] to
SWIFT, it is still considered as the state-of-the-art in terms
of protection capabilities of instruction duplication techniques.
This is because all the following works concur with the fault
detection capabilities of SWIFT, and concentrate on reduc-
ing the performance overhead of SWIFT. For example, au-
thors of [8] claim,“SWIFT has the advantage of being purely
software-based, requiring no specialized hardware, and can
achieve nearly 100% coverage,” and then attempt to find
out regions of code where symptoms may be used to detect
faults, and therefore instruction duplication can be avoided.

Figure 1: SWIFT transformations. SWIFT duplicates
the arithmetic and logical instructions, but does not du-
plicate loads, stores, compares and branches. The exe-
cution of non-duplicated instructions is vulnerable.

Techniques in DRIFT [19] and ESoftCheck [20] also try to
improve SWIFT performance without jeopardizing its fault
coverage.

3. LIMITATIONS OF SWIFT
We look at protection from a mixed hardware-software

perspective. An ideal fault tolerant scheme should be able
to completely protect all the microarchitectural components
during the execution of all instructions of the program. We
analyze the protection offered by SWIFT on various microar-
chitectural components during the execution of various in-
structions.
i) The execution of non-duplicated instructions is
not protected: Figure 1 shows the basic transformations
of SWIFT. SWIFT duplicates the arithmetic and logical in-
structions. The original sub instruction (O1) is duplicated
into two (S1 and S2). However, all other instructions, e.g.,
loads, stores, compares, branches and even function calls
are not duplicated. Figure 1 shows that the load instruc-
tion (O2) is not duplicated. The address register of load is
checked (against it’s duplicate) before the execution of the
load (S3), and error if any is reported (S4) and the loaded
value is moved to the duplicate register (S6). The store in-
struction (O3) is also not duplicated (only one store, S11).
It’s operands are checked (against their duplicates) before
the store (S7, S9) and error if any is reported (S8, S10),
and then the store (S11) is performed. The compare in-
struction (O4) is also is not duplicated. The operands of
the compare are checked (S12, S14), error if any is reported
(S13, S15), and then the comparison is performed (S16).
While the execution of duplicated instructions is protected,
but the execution of non-duplicated instructions is not com-
pletely protected. This means, that if there is a soft error in
the microarchitectural resources that these instructions use,
then the error may go undetected. For example, if there is
a soft error in the pipeline register during the execution of
the compare instruction (S16), then that error may not be
detected, and only cause an SDC. Also note that the branch
instruction is also not duplicated. To gauge the magnitude
of this unprotected instructions, we calculated the fraction of
the non-duplicated instructions in all the committed instruc-
tions in MiBench benchmarks for a ARM-V8 architecture,
and found that to be about 18%, even when we compile them

Figure 2: SWIFT CFC: SWIFT uses statically generated
signatures for CF checking. By definition, the checking
has to allow for error-free execution in either direction
of a branch. As a result, SWIFT cannot detect wrong
directed branches.

using the -O3 optimization flag. Moreover, to apply SWIFT
the program has to be compiled with only half of the regis-
ters, since the other half are needed for duplicate registers.
This causes register spilling, and increases the number of
loads and stores in the program. Furthermore, the microar-
chitectural components used by these instructions include
the pipeline registers, fetch queue, reorder buffer, commit
queue, Functional Units(FUs) etc. These comprise a major
portion of the processor state, given that the bigger cache-
like components, including branch predictors and TLBs are
routinely protected in modern processors [21].
ii) The load store queue in the processor is not pro-
tected: Since only load store instructions use the load store
queue, and their execution is not protected, it follows that
errors in load store queue may go undetected.
iii) Wrong direction branches cannot be detected: A
wrong direction branch occurs, if the control flow (CF) of a
program alters in a way that a taken branch changes to a
non-taken or vise versa. A wrong direction branch may be
caused by soft error on four components: (a) registers which
hold the operands of a compare instruction,(b) pipeline reg-
isters while executing a compare instruction, (c) conditional
code register and (d) pipeline registers while holding the op-
code of a branch instruction. However, SWIFT CFC mech-
anism can just partially protect the first component and
the reset remains undetected. Figure 2(b) shows the CFC
scheme in SWIFT. SWIFT uses basic block signatures to
detect CF errors. These signatures are assigned to the basic
blocks statically. In the figure, the basic blocks BB1, BB2
and BB3 are assigned signatures sig1, sig2, and sign3 re-
spectively. By definition, the signature checking has to allow
CF changes from BB1 to either BB2 or BB3. As a result,
if soft error causes a wrong direction branch, then SWIFT
CFC cannot detect that; and it may end up as a SDC.
iv) Wrong target branches may not be detected: If an
error affects the target address of a branch, a wrong target
branch happens. For example, if error happens on func-
tional unit registers while computing the effective address
of branch or occurs on branch target address buffer, CF
of a program transfers to a wrong address. The ability of
SWIFT CFC on detecting these type of errors is extremely
restricted. In fact, just wrong target branches whose desti-

Figure 3: nZDC store checking mechanism

nation is the beginning of a basic block can be detected by
SWIFT CFC. It cannot detect branching to the middle of
any basic block, because the signature checking, which takes
place at the beginning of the basic block, is already passed.
v) Register file is not completely protected: Although
SWIFT checks the duplicates before every non-duplicatable
instruction, these registers may be vulnerable from the check
to the actual non-duplicatable instructions. Lets take the ex-
ample of the transformation for the store instruction (O3).
First the duplicates are compared (S7, S9), and error if any
is reported (S8, S10), before executing the store instruction
(S11). However, the register X1 is vulnerable from after the
comparison (S7) to the execution of the store instruction
(S11), i.e., from S7 – S11(pointed to by the vertical line seg-
ment VX1 in figure 1), and register X3 is vulnerable from
S10 – S11. Authors of SWIFT themselves have acknowl-
edged this vulnerability of register file [22, 23].

4. OUR APPROACH - NZDC
In this section, we present nZDC, a compiler approach

to almost eliminate SDCs. In-line with previous works, we
assume that soft errors can modify the data within the CPU
but memory and caches are protected by other orthogonal
techniques such as ECC. The salient features of nZDC are:
i) Protect stores by reloading and checking: nZDC in-
troduces the concept of “checking load instruction” to make
sure that the store instruction has executed fault free. The
main idea here is to load back the stored value from the
memory and check that against the stored value, if they
match there is no error otherwise error handler routine get
involved. Figure 3(b) shows the first-cut of our approach to
insert checking load instruction. Although it can detect er-
rors which affect the address part of the store instruction, yet
errors on value part can simply propagate from the store’s
value register to checking load value registers, and remain
undetected. For instance, if soft error alters the value of X1,
store instructions writes this corrupted value into memory.
The checking load instruction, loads the corrupted value in
X1*. Now, both X1 and X1* have same wrong values, and
comparing them can not catch the error. This happens be-
cause the value register of checking load instruction is the
shadow of the value register of store instruction. nZDC pro-
tects stores by using the same value register for both store
and checking load instructions and later check that regis-
ter against its shadow for soft error (Part (c) of figure 3).
By this method, in addition to the producer chains of store
value and address registers, the execution of store instruc-
tion itself is also protected.

The performance overhead of nZDC solution for store in-
struction may seem high at first, but thanks to store-to-load
forwarding mechanism in LSQ of modern microprocessor,
the checking load instructions normally take their values
from the store buffer and execute very fast. The only prob-
lem here is, if error happens on store buffer after that the
store forwarded its data to the checking load instruction,

Figure 4: nZDC CFC transformation

the error may remain undetected. This unprotected interval
can be completely removed in two ways; i) flush store buffer
after each store, or ii) use ECC in store buffer. The former
comes with significant performance degradation; it is similar
to the case that there is no store buffer at all. The second
approach may not have performance overhead and it does
not require any extra hardware, but the ECC code should
be generated before the stores arrive at the store buffer.
ii) Protect loads by duplicating them: Memory read
instructions are the most frequent unprotected instruction
in SWIFT and many other software redundancy based tech-
niques [9, 20, 17]. These instructions behave such as the
input of duplicated instructions chain, and if a memory
read instruction gets faulty, the execution can go wrong and
checking instructions are unable to detect such an error.
Our solution for memory read instructions is simple, we use
”load” duplication, which in memory read instructions get
duplicated as well as logical and computational instructions.
The load instruction duplication has two advantages; 1) it
protects load instructions completely during their execution
in pipeline, LSQ and removes load-related register file vul-
nerable intervals (Marked as VX3 in figure 1), and 2) it saves
performance overhead by reducing the number of checking
instructions. The load instruction duplication does not in-
troduce any problem in single-threaded applications running
on single or multiprocessor machines, which are the target
of this work. However, it can slightly increase the risk of
false alarm in a multithreaded environment, if an interven-
ing store changes the state of the memory. A solution for
this can be putting redundant loads in the critical section.
iii) nZDC control flow checking mechanism detects
wrong direction branches: An effective CFC mechanism
should be able to protect all of the CF determining parts of
the execution; which are a) Operands of compare instruc-
tions, b) pipeline registers while executing compare instruc-
tion, c) conditional registers (NVCZ flags) and d) branch
instructions. Against the existing CFC mechanism which
can partially protect some of these parts, nZDC CFC mech-
anism can effectively protect all CF determining compo-
nents. nZDC CFC mechanism needs two general purpose
registers, called CDR (Compare Destination Register) and
CCR (Compare Check Register) and it works based on three
main insights: a) duplicate compare instructions and save
the results in CDR and CCR, b) conditionally inverse the

value of CDR register based on the direction of the follow-
ing conditional branch and branch duplication, and c) using
static signatures to make sure that the destination block is
legal.
Figure 4 shows nZDC CFC transformation for a loop. The
original compare instruction (O1) is in fact a subtraction
operation which updates the NVZC flags and disregards the
output. First, nZDC CFC transformation saves the result of
subtraction (compare) operation in CDR register (Z3), and
replicates the compare instruction (Z6). In a fault free run
of a program, the results of duplicated compare instructions
are always equal. If error happens on registers which hold
the operands of a compare instruction or pipeline registers
while executing a compare instruction, the CDR and CCR
would be differ and the error will get detected by nZDC
CFC.

In the second step, nZDC CFC transformation takes ad-
vantage of ISA provided conditional instruction, and condi-
tionally inverts the value of CDR register before the branch
(Z4), if it is taken, and after the branch(Z9), if it is not
taken. Note that the condition of these two conditional in-
structions are always opposite. Therefore, the values of CDR
and CCR registers should be always inverse of each other at
the beginning of the next basic block (BB1 or BB2), regard-
less of the direction of branch. Since the conditional invert
instruction (Z4) and conditional branch (Z8) read condition
resister value in two different instants of time, which is set
by two different instructions (main and redundant compare
instructions), error on condition register results zero or two
inversions on CDR register. Therefore, at the beginning of
next basic block the values are CDR and CCR registers are
not inverse, and nZDC CF checking instructions can detect
the error. Errors which happens on the opcode of a condi-
tional branch and alters the branch from not-taken to taken,
will end up with no inversion on CDR register, which will
get detected by nZDC CF checking instructions. nZDC CFC
introduces the redundant branch instruction (Z9) to detects
errors which change the direction of branch from taken to
non-taken. The idea behind the nZDC redundant branch
is that it should not changes the CF of the program in a
fault-free run. If main branch is taken, the control never
reaches the redundant branch, and if main branch is not-
taken, the redundant branch should also be non-taken. But,
if error happens on the opcode of main branch and changes
the branch from taken to not-taken, the redundant branch
involves error handler routine.
iv) nZDC control flow checking mechanism detects
wrong target branches: nZDC CFC instructions is in-
serted at the beginning and near to the end of each basic
block in the third step of nZDC CFC transformation. Hav-
ing this that the result of an XNOR (exclusive NOR) oper-
ation of two invert values is always Zero, at the beginning
of each basic block, nZDC CFC XNORs the CCR and CDR
registers together and put the results on CCR (Z2 and Z13).
In a fault free run the value of CCR should be zero at this
point. Right before the next write to the CCR register,
nZDC CFC checks if its value is Zero (Z5 and Z14), if not,
error handler routine gets involved. The distance between
setting CCR value and checking that, enables nZDC CFC to
detect errors that change the branch target to the body of a
basic block. Also, nZDC CFC uses static signature to check
if the next basic block is legitimate (Z1, Z7, Z11, Z12).
v) nZDC eliminates all register file vulnerable inter-

Table 1: Simulator parameters

Parameter Value
CPU Model ARM64 bit in-order processor

Pipeline Two way/4-stage
of FUs 2Int, 1Mul, 1Div, 1Float, 1Mem

L1 D/I-Cache 64KB (2-way) / 32KB (2-way)
TLB size 512 entries

Integer register file 32 registers (64-bit width)
Store buffer size 5 entries

vals: Since nZDC checks master registers against the redun-
dant ones after the store instruction, rather than before; it
eliminates the register file vulnerability intervals caused by
store operation. In the case of function calls, nZDC checks
all master registers against the redundant ones in the begin-
ning of the callee function rather than before the function
call.

5. EXPERIMENTAL METHODOLOGY
We have performed extensive fault injection testing to

evaluate the effectiveness of nZDC and SWIFT in reduc-
ing Silent Data Corruption. Compilation framework:
We have implemented nZDC and SWIFT transformations as
late backend passes in LLVM3.7 compiler infrastructure af-
ter register allocation and instruction scheduler. This imple-
mentation enables us to take advantage of all of the advanced
compiler optimizations including Common Sub-expression
Elimination (CSE) and Dead Code Elimination (DCE). We
test the effectiveness of SWIFT and nZDC on applications
from the Mibench benchmark suite. Simulation environ-
ment: We have used the GEM5 [24] - a popular cycle-
accurate microarchitectural simulator. The simulator was
run in ARM syscall emulation mode and modeled the ARMv8-
a profile of the ARM64 bit architecture. We have used a
two-way in-order ARM architecture for fault injection ex-
periments and the details of the processor configuration can
found in Table 1. The simulated CPU model is very close
to “cache protection configuration” of ARM Cortex-A53, a
popular modern high performance low power embedded mi-
croprocessor. In the this configuration of ARM cortex-A53
the memory subsystem including TLB, instruction and data
L1 caches, and L2 data cache are protected with error detec-
tion and correction codes. Fault sites: Instead of injecting
faults just on processor’s register file, we inject faults on all
the major sequential component of the processor. For the in-
order ARM, this includes the pipeline registers, load-store
queue, functional units and the scoreboard. All the other
components are either not vulnerable (e.g., the branch pre-
dictor), or are already assumed protected (e.g., the caches
and the TLBs). In addition, to show the effectiveness of the
nZDC control-flow checking, we specifically perform fault in-
jection on the branch and compare instructions while there
are in the processor’s pipeline. Fault injection experi-
ments: For each fault site, a random bit in a random time
is selected and is inverted. For example in the case of regis-
ter file, at the start of each experiment a physical register,
a bit and a cycle is selected randomly for fault injection.
Simulation runs the program normally till the selected cy-
cle. Then the value inside the selected bit gets inverted,
and the program runs until completion or allowable simu-
lation time (which is 10 times the nominal execution time)
gets over. For each fault site, 400 faults are injected which
gives us a 5% margin of error and 95% confidence interval

[25]. This means, that for each version of the program (orig-
inal, SWIFT and nZDC), 2400 fault injection experiments
are performed. Among them 2000 faults are injected into
register file, pipeline registers, load store queue, functional
units and scoreboard, and the rest, 400 faults, are specif-
ically injected into the main branch and compare instruc-
tions. Overall, we inject 72,000 faults in various components
of the processors. Output classification: Since the main
goal of this work is to prevent a program from producing the
wrong output because of soft errors, the result of each fault
injection trial is classified into only two categories: 1. SDC:
Those simulation runs which terminated without generat-
ing any detection alert, segmentation faults or crash, and
2. Others: All other scenarios i.e, masked faults, detected
fault, segmentation fault and crash fall into this category.

6. EXPERIMENTAL RESULTS

6.1 nZDC is extremely effective
The graphs in figure 5 present the Failure Percentage (FP)

for each hardware component. In each graph, the FP is plot-
ted on the Y-axis for each benchmark on the X-axis. We
study the FP for original, SWIFT and nZDC versions of the
benchmarks for the following components:
Load Store Queue(LSQ): Figure 5(a) presents the FP
extracted from fault injection experiments on LSQ. For the
LSQ, although the FP is 3.4% for the original program, but
it actually increases to 3.9% for SWIFT. As mentioned in
section 4, SWIFT does not protect the loads and stores -
they are executed only once. Therefore the LSQ is vulnera-
ble. However, we observe that it is actually more vulnerable
than the original program. This is because to implement
SWIFT, we need to reserve half of the registers in the pro-
cessor, and that increases the register pressure and increases
the spill code - causing a spike in the number of load and
store instructions. This leads to an increase in the number
of entires in the LSQ, and therefore the probability that a
fault will cause an error/failure.
nZDC has 0% failure. nZDC is effective, since it protects
loads by duplicating them, and protects the stores by read-
ing the stored value again and checking it against the dupli-
cate.
Functional Units (FUs): The result of fault injection on
FUs is shown in graph (b) of the figure 5. For FUs, the aver-
age FP for original and SWIFT versions of the programs are
9.8% and 1.7%, respectively. We explored the failure exper-
iments in SWIFT, and discovered almost all of them are the
result of faults affecting the FU while computing effective
address of memory instructions. As expected, Zero SDC for
programs protected with nZDC mechanism is observed.
Pipeline Registers: Figure 5(c) presents the FP extracted
from fault injection trails on pipeline registers. As it shows,
nZDC reduces the FP of the original program by about 55X
to fairly close to zero, and SWIFT reduces pipeline registers
FP by about 11X. In contrary with what we expect, the FP
for nZDC in not absolutely zero. This discrepancy is not a
deficiency of our technique, but has its roots in our evalua-
tion methodology. We analyzed the failures, and found that
the reason is because of working with unmodified library
calls. The soft error happens on the destination register
pointer part of a checking instruction before a library call,
and the fault changed the destination register from regis-

Figure 5: Component wise Failure Percentage (FP)

Figure 6: Fault injection results on CF instruction

ter Zero to the register X1, which was already checked. As
a result the argument value of the library function call was
wrong and it produces a SDCs. These errors would not hap-
pen when all code, including libraries is treated by nZDC.
Register File: Fig 5 part (d) displays the FP for regis-
ter file, which on average for Original, SWIFT and nZDC
is about 10.3%, 0.1% and 0.0%, respectively. Our fault in-
jection results on register file is in accordance with previ-
ous works [7, 8, 19] which show almost near zero SDC for
SWIFT. However, because of the register file vulnerable pe-
riods (marked by vertical lines in figure 1), there is always a
chance of SDC caused by soft error in the register file. On
the other hand, since nZDC can completely close the register
file vulnerable intervals by performing checking instructions
after memory write instructions instead of before them, the
PoF is Zero.
We also inject faults on various field of the Scoreboard, but
since all of our injected faults get masked, we conclude that
the Scoreboard has a very low sensitivity to transient faults.

6.2 The efficacy of nZDC CF mechanism
Figure 6 shows the results of fault injection on the branch

address and compare instructions of the programs to exam-
ine the efficacy of the nZDC control flow mechanism. In
these experiments we randomly inject faults on the orig-

inal compare and branch instructions (excluding checking
instructions) while they are in pipeline register, and condi-
tional registers. Since the target of fault injection has been
selected among the program original instructions, in figure
6 we show the amount of Masked, Detected/SegFault and
SDCs. The Detected/SegFault portion of the stacked bars
demonstrate the percentage of injected faults which either
detected by SWIFT/nZDC or detected by OS as segmenta-
tion fault.
As figure 6 demonstrates original and SWIFT are almost
identical in failure rate, about 18% SDCs! This is because,
SWIFT CFC can just only detect wrong direct branches to
the beginning of a basic block not to the middle. Overall,
the SWIFT CF mechanism is not effective, however, nZDC
CF mechanism detects about 55% of faults and just 0.4% of
faults lead to SCDs.

6.3 Performance evaluation
Figure 7 presents the results of performance overhead of

nZDC and SWIFT for an in-order ARM processor with the
configuration shown in table 1. On average, the execution
time overhead for nZDC and SWIFT is about 224% and
213%. Performance overhead is higher than similar works,
and it happened because of an inaccuracy that some of pre-
vious works have in their performance measurement. For
instance, research [8] assumed that library functions are pro-
tected by other means, but they do not consider the perfor-
mance overhead of the library function protection, and, since
a program can spend a considerably large amount of its ex-
ecution time in the library calls, this leads to performance
overhead underestimation. However, in this work, for per-
formance overhead evaluation, we just consider the cycles
that a program spends in user functions.

7. CONCLUSIONS
We presented nZDC, a compiler-only instruction duplica-

tion fault tolerant technique that completely protects the ex-
ecution of programs against soft errors on various hardware
components. nZDC is based on this idea that non-duplicated

Figure 7: Execution time overhead for SWIFT and
nZDC

instructions open doors for program failures and by duplicat-
ing all instructions near zero failure rate is achievable in soft-
ware. However, since duplicating store and branch instruc-
tions is problematic, nZDC introduces checking load instruc-
tion and a new control flow checking mechanism. Checking
load instructions are inserted after stores, and check the
stored value against its shadow. By duplicating compare
and branch instructions, nZDC control flow checking is able
to detect almost all control flow errors. Our comprehen-
sive evaluation based on random fault injection on various
microprocessor components shows significant failure rate re-
duction compared to the state-of-the-art software instruc-
tion duplication technique.
In this work, we inject faults into major microarchitectural
structures of an in-order CPU model, but since these struc-
tures also exist in modern Out-of-Order(OoO) processors,
we expect that an OoO model wouldn’t affect our conclu-
sions significantly. In fact, unprotected instructions are also
vulnerable in OoO microprocessor structures such as Re-
order Buffer and Rename table in existing instruction du-
plication techniques, but nZDC can protect them. Fault
injection on an OoO processor is our future work.

References
[1] P. Shivakumar et al., “Modeling the effect of technology

trends on the soft error rate of combinational logic,” in De-
pendable Systems and Networks, 2002. Proceedings. Inter-
national Conference on, IEEE.

[2] T. Karnik et al., “Characterization of soft errors caused by
single event upsets in cmos processes,” Dependable and Se-
cure Computing, IEEE Transactions on, vol. 1, no. 2, 2004.

[3] R. Baumann, “Soft errors in advanced computer systems,”
Design & Test of Computers, IEEE, vol. 22, no. 3, 2005.

[4] D. Lyons, “Sun screen: Soft error issue in sun enterprise
servers,” 2000.

[5] S. Kayali et al., “Reliability considerations for advanced mi-
croelectronics,” in prdc, IEEE, 2000.

[6] S. Mukherjee, Architecture design for soft errors. Morgan
Kaufmann, 2011.

[7] G. A. Reis et al., “Swift: Software implemented fault tol-
erance,” in Proceedings of the international symposium on
Code generation and optimization, IEEE, 2005.

[8] S. Feng et al., “Shoestring: probabilistic soft error reliability
on the cheap,” in ACM SIGARCH Computer Architecture
News, vol. 38, ACM, 2010.

[9] D. S. Khudia et al., “Efficient soft error protection for
commodity embedded microprocessors using profile informa-
tion,” in ACM SIGPLAN Notices, vol. 47, ACM, 2012.

[10] E. Blem et al., “Power struggles: Revisiting the risc vs.
cisc debate on contemporary arm and x86 architectures,”
in High Performance Computer Architecture (HPCA2013),
2013 IEEE 19th International Symposium on, IEEE.

[11] A. Shye et al., “Plr: A software approach to transient fault
tolerance for multicore architectures,” Dependable and Se-
cure Computing, IEEE Transactions on, vol. 6, no. 2, 2009.

[12] Y. Zhang et al., “Runtime asynchronous fault tolerance via
speculation,” in Proceedings of the Tenth International Sym-
posium on Code Generation and Optimization, ACM, 2012.

[13] M. Rebaudengo et al., “Soft-error detection through software
fault-tolerance techniques,” in Defect and Fault Tolerance in
VLSI Systems, 1999. International Symposium on, IEEE.

[14] M. Rebaudengo et al., “A source-to-source compiler for gen-
erating dependable software,” in Source Code Analysis and
Manipulation, 2001. Proceedings. First IEEE International
Workshop on, IEEE.

[15] J. Lidman et al., “Rose:: Fttransform-a source-to-source
translation framework for exascale fault-tolerance research,”
in Dependable Systems and Networks Workshops, 2012
IEEE/IFIP 42nd International Conference on, IEEE.

[16] C. Wang et al., “Compiler-managed software-based redun-
dant multi-threading for transient fault detection,” in Pro-
ceedings of the International Symposium on Code Genera-
tion and Optimization, IEEE, 2007.

[17] Y. Zhang et al., “Daft: decoupled acyclic fault tolerance,” in
Proceedings of the 19th international conference on Parallel
architectures and compilation techniques, ACM, 2010.

[18] N. Oh et al., “Ed 4 i: error detection by diverse data and
duplicated instructions,”Computers, IEEE Transactions on,
vol. 51, no. 2, 2002.

[19] K. Mitropoulou et al., “Drift: Decoupled compiler-based
instruction-level fault-tolerance,” in Languages and Compil-
ers for Parallel Computing, Springer, 2014.

[20] J. Yu et al., “Esoftcheck: Removal of non-vital checks
for fault tolerance,” in Proceedings of the 7th annual
IEEE/ACM International Symposium on Code Generation
and Optimization, IEEE, 2009.

[21] http://infocenter.arm.com/help/topic/com.arm.doc.
ddi0500d/DDI0500D_cortex_a53_r0p2_trm.pdf/. [Online].

[22] G. A. Reis et al., “Software-controlled fault tolerance,”
ACM Transactions on Architecture and Code Optimization
(TACO), vol. 2, no. 4, 2005.

[23] G. A. Reis et al., “Design and evaluation of hybrid fault-
detection systems,” in ISCA, 2005, IEEE.

[24] N. Binkert et al., “The gem5 simulator,” ACM SIGARCH
Computer Architecture News, vol. 39, no. 2, 2011.

[25] R. Leveugle et al., “Statistical fault injection: quantified er-
ror and confidence,” in Design, Automation & Test in Europe
Conference & Exhibition, 2009., IEEE.

