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ABSTRACT

Domain-specific architectures are designed increasingly for efficiently processing

compute- and data-intensive workloads, including machine learning. An effective design

methodology is required for these accelerators, as application executions impose strin-

gent constraints on architecture designs and execution costs. In a common approach,

experts design an architecture template and its dataflow (how accelerator processes

applications) and tools like power/performance/area cost models and simulators for

each architecture. Design hyperparameters are optimized by black-box explorations

that take thousands of trials or weeks. This methodology limits design’s efficiency,

designer productivity, and methodology’s applicability. Firstly, the lack of exploring

hardware/software configurations from a broad design space limits efficiency of ob-

tained solutions, and thereby, operational efficiency and end-user experience. Lacking

agility in design explorations can consume a lot more time and resources, degrade

sustainability, and restrict wide-scale resource management of emerging applications

that require dynamic explorations. Lack of agile design tools delays time-to-market

while also creating accessibility challenges. Lacking explainability of design costs

and decisions in exploration process can degrade designer productivity and design

sampling/tuning.

This dissertation introduces an effective design methodology towards designing

efficient next-generation accelerators in an agile, explainable manner. Firstly, it pro-

poses to formulate comprehensive hardware/software codesign space for architectures.

Holistic mapping space formulation for spatial and temporal execution enables de-

termining adaptive dataflows, and inclusion of a broad range of architectures allows

exploring efficient, constraints-meeting solutions. Second, bottleneck characterization

of obtained solutions and bottleneck model-guided design optimization brings explain-

ability in the design exploration process. It helps reason about the effectiveness of
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sampled solutions during the exploration process, systematically reducing execution

costs. Lastly, this dissertation proposes developing design and characterization tools

around an accelerator abstraction (flow graph) and a methodology towards such an

automated development. The effectiveness of the proposed methodology is shown

through hardware/software codesigns of edge ML accelerators for recent computer

vision and language models. Evaluations show that the proposed methodology can

find 6× efficient (low-latency) codesigns in minutes–hours, as compared to days–weeks

taken by previous design exploration approaches.
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Chapter 1

INTRODUCTION

1.1 Design Methodology for Domain-Specific Architectures

1.1.1 Domain-Specific Architectures

With increased computational and memory requirements of the applications and the

need for their efficient processing, domain-specific accelerators have been increasingly

designed, especially for machine learning (ML) [6–8]. ML models implement intelligence

in computing systems. Hence, different ML models are widely used in several important

domains, including computer vision (object classification [1, 9, 10] and detection

[11, 12]), natural language processing [13–15, 15], quantitative reasoning [16], media

generation [17], recommendation systems [18, 19], medical diagnosis [20, 21], large-

scale scientific computing [22], embedded systems [23], mobile and edge processing

[24, 25], and even for designing or optimizing hardware and software systems [26–28].

Domain-specific architectures (DSAs) can significantly speed up their execution in an

energy-efficient manner [4, 29–31].

1.1.2 Design Methodology Requirements

Domain-specific application execution scenarios impose stringent constraints on the

accelerator design and the execution costs while requiring the minimization of some

of these costs. Such design and execution costs include latency, energy, throughput,

storage, monetary costs, or error tolerance for functionality outputs (Fig. 1.1; MLPerf

[32], [33, 34]). Efficient design methodology and exploration are required, as the

accelerator resources and resultant constraints on costs vary dramatically based on
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various application execution scenarios (Table 1.1, adapted from [35]). For instance,

a cloud accelerator could have petabytes of memory and 100s of Watts of power

and thousands of dollars as the price point, whereas a mobile DSA can only afford

a few GB of memory, a few watts of power budget, and cost 100 dollars. Thus,

designing efficient domain-specific accelerators is essential not just for smooth end-user

experience (e.g., users of mobile phones, wearables, cloud instances) but also for low

design and operation costs, and thereby, from energy consumption and sustainability

1 perspective. In fact, recent research has shown that most of the carbon footprint of

processors stems from their design and manufacturing process. So, the time and energy

of humans and computing that are used to design efficient accelerators need to be

utilized effectively. Therefore, this dissertation advocates for the design methodology

1Sustainability, as referred to in this dissertation, can be improved through i) reusability of the

tools and methodology, 2) agility of the development, i.e., notably lowering the usage of computational

and human resources taken by the design development and exploration, and 3) efficiency of the

design, i.e., considerable reduction in the operation costs. Some studies like [36, 37] indicate that a

higher potential for increasing sustainability of the processors can be in lowering their development

costs, as compared to reducing the operating costs after deployment.
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Table 1.1: Constraints for accelerator design for CloudML, MobileML and TinyML.

Platform Memory Storage Power Price

CloudML 16-256 GB HBM TB ∼ PB SSD/Flash 100s of W several $1000s

MobileML 8-128 GB DRAM 128-512 GB Flash <10W a few $100s

TinyML 100s of KB few MBs of eFlash <0.5 W <10$

that not just results in an efficient accelerator but one that is ”agile” by itself, i.e., it

takes less time. The design and operation of accelerators need to be sustainable as well,

i.e., the design phase should be reusable in the longer term and take less time/resources

while producing the most efficient (e.g., high-throughput and low-energy) architecture

designs.

1.1.3 Design Methodology Components

The process for efficient accelerator design involves not just coming up with the

most efficient microarchitecture or hardware-level optimization (e.g., power-gating

[38], zero-skipping [4, 39]) but also requires the hardware/software co-design and

development of the corresponding tools. It involves 1) Defining the design space for

the application’s execution on the accelerator architecture, 2) Tools for quantifying

and characterizing the application’s execution efficacy, and 3) Techniques for effectively

navigating the (vast) design space for tuning the architecture design and workload

execution. The design space usually contains the hardware space – variations in

the hyperparameters of the accelerator design and mapping space – different ways

of processing application functionality onto the accelerator’s resources spatially and

temporally [40]. When co-designing the accelerator with the applications (e.g., ML

models), the design space can include the ”data space” or ”algorithmic space” as well,

corresponding to the variations in the data (storage format, bit-width, sparsity) or
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functionality that needs to be computed (e.g., number/organization of different ML

operators), respectively. Development of the design tools involves developing PPA

cost models that quantify power, performance (latency/throughput), and die area

of the accelerator and simulation to ensure functionality and cycle-level execution

estimates. Exploration techniques need to navigate (usually vast) design space in a

systematic manner, iteratively evaluate the effectiveness of processing applications on

a selected accelerator design (with chosen hardware/software configurations), and find

the (Pareto) optimal solution.

1.1.4 Current Approaches

A commonly used approach for designing the accelerators is template-constrained

development and black-box design optimization. Teams of expert designers define an

architecture template, e.g., systolic/spatial architecture as a standalone or near-data

processor. They also define how application functionality can be processed on it for

desired acceleration (aka ”dataflow”). For example, Fig. 1.2(a) shows a template
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Figure 1.2: Spatial architecture templates for designing domain-specific accelerators.

(a) Google TPU-like systolic array accelerator. (b) Eyeriss-like spatial architecture

with configurable interconnects and buffers.
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architecture for Google’s TPU-like accelerator using a systolic array [30, 41], and

Fig. 1.2(b) shows an Eyeriss-like spatial architecture [4], where processing elements

(PEs) share a unified buffer that is filled with the required data from off-chip memory

by direct memory access (DMA) transfers. Such accelerators have processed the

executions of ML model operators (e.g., CONV2D, GEMM) with fixed dataflows such

as weight stationary (in TPU [30], DLA [42]), output stationary (in [43], ShiDianNao

[44]), or row stationary (in Eyeriss [45]).

Execution costs (power, performance, area or PPA) for these accelerators are

obtained by either expert-maneuvered analytical models for the specific architecture

[31, 40] or synthesizing each design (which is time-consuming). In fact, some of

the commonly used analytical models (contemporary or posterior models of the one

discussed in this dissertation later) do not even consider non-computation latency, e.g.,

on-chip/off-chip data communication latency (in Scale-Sim [46]), implications of non-

contiguous data accesses (in Timeloop [47]), and stalls encountered by non-pipelined

computation and communication (e.g., in reduction of partial summation vectors,

which may not be pipelined with computation of multiplications or communication

of inputs/outputs of an ML model’s layer). In addition to manually developing

power/performance/area cost models, the experts need to also build other design or

evaluation tools like functionality/cycle-level simulators and mappers for the domain-

specific architecture manually.

The design space for a domain-specific architecture or an accelerator is usually

defined as the ranges of values corresponding to the hardware design hyperparameters.

Techniques for optimizing the accelerator design use non-feedback such as grid search

[48, 49] and random search [50] or use black-box optimizations like genetic algorithm [51–

57], simulated annealing [58–60], Bayesian optimization [2, 41, 61–64], or reinforcement

learning [65–68]. For narrowing down the search space, such techniques usually specify
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a limited number of parameter values, e.g., power-of-two-numbers or a discrete set

of values, e.g., in [41, 61, 65, 69]. Further, for exploring efficient and constraints-

meeting solutions in the vast design space (e.g., quadrillions of hardware configurations

[41]), most techniques (e.g., [61, 65–68, 70–74]) usually fix the dataflow, i.e., how

application functionality can be executed spatially and temporally on accelerator

resources. Further, among possible hardware hyperparameters, such techniques (e.g.,

[61, 65, 69] to list a few) explore only some hyperparameters, such as those for designing

the computational and memory units.

Such an template-constrained design and black-box optimization approach is

common. For example, such design methodology aspects have been used by NVIDIA

MAGNet [75] and NVDLA [42], Google full-stack TPU exploration [41], Intel SuSy

[76], Harvard SODA [77], ARM SCALE-Sim [46], and likely in designing even several

NPUs or Neural Processing Units for accelerating AI/ML models, e.g., [29, 30, 78–85].

1.1.5 Challenges and Limitations

While the current approach of expert-driven static design has led to reasonable

accelerator designs – some of which even empower many applications around us today

– it limits design’s efficiency 2 , designer productivity, methodology’s applicability, and

sustainability.

1) Not exploring efficient solutions from a broad design space: A major

challenge is in limiting the design space since it limits the hardware and/or software

configurations that can be explored at all and consequently, the efficiency of the overall

solution. For example, restricting the execution to a specific dataflow (e.g., input or

row stationary) limits the spatial parallelism that can be achieved for different ML

2Throughout the dissertation, the efficiency of the execution/design refers to the optimization

objectives such as achieving low latency or energy consumption. Whenever unspecified, assume

latency minimization as an example.
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operators, interleaving the communication latency with computations on an accelerator

with specific NoC (network on chip) bandwidth, the data reuse that can be effectively

exploited through buffers, and thereby the overall latency or energy consumption.

Similarly, limiting the hardware design space to exploring just some of the hardware

hyperparameters or specific architectures restricts the execution’s efficiency. Further,

not including the software/mapping configurations in the accelerator design space can

lead to accelerator designs that are inefficient or incompatible with the targeted software

configurations. Lastly, restricting the hardware space to design hyperparameters limits

the accelerator design to the expert-defined template architecture. As a result, a

vast space of architectures is left unexplored, even if some can be more effective. For

instance, the template architecture could contain a shared, unified buffer, even though

unexplored architectures with small, private buffers and unicast links could be much

more efficient for no-reuse, memory-bounded workloads. Thus, limiting the space of

hardware/software (co)designs impacts not just the quality of designs obtained in the

price budget, but also the operational efficiency and the end-user experience.

2) Lacking agility in the design flow: Current approach requires a lot more

time and resources for design explorations, degrading sustainability and increasing

operation costs and time-to-market. For example, when exploring vast design space

(e.g., millions to quadrillion hardware/software configurations [41, 86]), existing design

space explorations (DSEs) take thousands of trials or days/weeks [2, 41, 65, 69]. They

increase the time-to-design and operation costs. In fact, several applications requiring

dynamic DSE cannot be supported well, e.g., deploying an ML model dynamically

on a reconfigurable platform in the cloud or at the edge. Another example includes

runtime resource management of city-wide, reconfigurable, edge infrastructure for

processing smart-city applications like detection of traffic incidents [87] or haboobs.

Moreover, the need for template-specific design and characterization tools for every
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accelerator architecture requires months of development efforts [88]. It notably delays

the time-to-market.

3) Lack of explainability of design costs and decisions: Current approach

cannot explain costs obtained from the underlying system and design decisions in

the exploration flow, affecting the productivity of designers and development costs.

For example, when designers use an analytical cost model [46, 47, 89] or a simulator

[90, 91] to characterize an application’s execution on an accelerator design, they do

not reason about the inefficiencies that cause high costs. So, it becomes hard to

understand the implications of variations in the workloads, hardware configurations,

and software optimizations, i.e., why a specific hardware/software configuration leads

to a specific execution cost and how. Further, current accelerator design exploration

mechanisms cannot explain the optimality or efficiency of obtained design solutions,

especially when the search space is so vast that doing the brute-force exploration is

impractical to demonstrate the optimality of the solution. For instance, a random

search or a black-box exploration makes it hard for designers to infer why the obtained

solution is the most efficient (or among the top solutions) within the constraint budget.

Thus, the lack of explainability of the design costs and design decisions affects the

designer’s productivity, as fine-tuning the design becomes challenging. It also usually

leads to excessive sampling. Excessive sampling means not only very high exploration

time (unsuitable for dynamic DSE required by several application executions) but

also solutions of likely poor quality within some exploration budget. It is because the

obtained valid solution may not be very efficient with the high exploration budget used

by excessive and often ineffectual trials, which are generated without understanding

the inefficiencies behind the obtained cost and implications of varying parameters on

the design/execution costs.

4) Less reusability: The current approach develops design tools and related
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system stack specific to an architecture template, including PPA cost models, mapper,

and simulator. As workloads evolve (e.g., new kinds of AI models are developed [33, 92])

and new architecture templates are designed, expert designers need to develop the new

tools from scratch [93]. Thus, this approach limits sustainability, designer productivity,

and efficiency of the design. It is primarily due to the fact that the design tools are

developed for a single template, and hence, they can be incompatible with architectures

from a broad space, which impacts their reusability. For instance, when architecture

needs to be enhanced to facilitate evolving AI workloads [33], the design tools for the

previous template cannot be heavily reused and needs heavy rework. A mapper for

processing language models [14, 15] on systolic arrays [41] differs considerably from the

one that needs to be developed for a spatial architecture for vision or graph learning

models (unstructured sparse) [33]. Likewise, PPA cost models or simulators for

different ML accelerators with scalar/vector PEs [4, 94] and accelerators/dataflows for

different ML operators [33, 95], FFTs [96], etc. are developed separately. Such heavy

development requirements also put a huge accessibility toll on resource-constrained

researchers, e.g., graduate students. This marks the need for more agile design

methodology.

1.2 Overview of the Proposed Approach, Contributions, and

Dissertation Organization

This dissertation introduces an effective design methodology, as illustrated in Fig.

1.3, for designing and evaluating efficient domain-specific architectures in an agile and

explainable manner. In particular, it makes the following key contributions.

1. Making Design Space (More) Comprehensive (Chapter 2). Instead of

an experts-tailored design of the accelerator or its dataflow, this dissertation

advocates for formulating a comprehensive design space for the hardware/soft-
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ware codesign of domain-specific accelerators. For example, instead of using

specific dataflow for processing deep learning (DL) models on accelerators, it

formulates comprehensive mapping space for the spatial and temporal execution

of the deep learning models, improving the efficiency (e.g., reduction in the

energy-delay product) by an order of magnitude. Likewise, instead of limiting

the optimizations of the hardware configurations to just computational or mem-

ory units, it considers various relevant parameters, e.g., interconnect links and

bit-width and a variety of sparsity-exploiting components. Further, one key

aspect of this work is that it demonstrates joint hardware/software codesign.

The codesign is done such that the executions of the workloads are optimized to

utilize the hardware’s resources in the most effective manner, and the hardware

exploration, in turn, is tailored for mitigating the inefficiencies left after the

software-optimized execution.

2. Enabling Explainability and Agility in the Design Space Exploration

by Using Bottleneck Analysis (Chapter 3). This dissertation proposes to
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use bottleneck models to drive the design space exploration of domain-specific

architectures. Proposed bottleneck model is a graph-based abstraction to analyze

the costs of executing workloads on accelerators in an explicit and automated

way. Applying bottleneck analysis over such a cost graph or the bottleneck

model helps pinpoint bottlenecks and the associated hyparameters requiring

further optimization. Further, an API and a generalized framework is proposed

that can work with different bottleneck models and enable bottleneck analysis-

driven design space exploration. By using the information about the cost factors

through the proposed abstraction, the framework can reason why a certain

hardware/software configuration of an accelerator leads to specific costs. Its

applicability is demonstrated through the cost analysis and design optimizations

for executing computer vision and language models on an edge accelerator with

Eyeriss-like [4] spatial architecture.

3. Improving Reusability of Design Tool Development for Accelerators

(Chapter 4). This dissertation advocates for developing design and characteri-

zation tools around an abstraction of accelerators, instead of building PPA cost

models, mappers, and simulators from scratch for every new domain-specific

architecture. It proposes an architectural flow graph-based abstraction and

a methodology for such development, e.g., developing automated latency es-

timation incorporating architectural details and bottleneck characterization,

including for dense/sparse tensor computations.

1.3 Dissertation Statement

The domain-specific architecture design space exploration should be: Comprehen-

sive for efficient hardware/software codesign; Explainable for enhanced efficiency and

designer productivity; Agile for enabling dynamic optimizations, better reusability,
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and better time-to-market.

1.4 Dissertation Impact

The contributions of this dissertation and the author’s research and development

efforts towards the proposed design methodology have led to many follow-up works,

adoptions, invited talks, honors, and a comprehensive survey by the author on the

efficient processing of the sparse and compact machine learning models on the domain-

specific accelerators.

Follow-up Works and Adoptions: Techniques for efficiently mapping appli-

cations on DSAs (both for perfectly nested loops of ML operators [40, 86] and

general-purpose computing [97]) have been recognized by many works and some of

the top researchers in the research areas as state-of-the-art. They studied these

techniques quantitatively and/or qualitatively and even used them in developing

follow-up works (e.g., [98–100], to list a few). These also include master’s theses and

doctoral dissertations at several top universities and recent industrial research such

as [41, 101–104]. The adopted or follow-up works have been regularly published at

the flagship conferences and journals in the domains of computer architecture, design

automation, embedded systems, parallel and distributed computing, code optimization,

machine learning, and computing in general. The author’s compilation and simulation

frameworks implementing these techniques [40], [91] have regularly received several

downloads every month and about 60 stars on GitHub. Some of the techniques and

works developed throughout this dissertation have been studied in seminar classes at

top research universities in the U.S. and also referenced by recent books and surveys

on related topics (e.g., books in the Synthesis Lecture Series in Computer Architecture

by Morgan & Claypool [105, 106]). Overall, the proposed techniques altogether have

received over 400 citations as per Google Scholar, Semantics Scholar, etc.
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Honors, Awards, and Invited Talks: Some of the techniques and works de-

veloped throughout this dissertation have been invited and presented in the premier

international forums, including ARM Research Summits, Annual Days of NSF/Intel

CAPA Research Center (Computer Assisted Programming for Heterogeneous Architec-

tures), Future Chips Forum, SRC Techcon, IBM/IEEE CAS AI Compute Symposium.

They have been highlighted on or featured by various organizations, media, magazines,

and social media, including ACM Tech news, Communications of the ACM blog, ASU

news, insideHPC, IEEE Bridge and IEEE Eta Kappa Nu (HKN), DeepAI, Hacker

news, and Intel Labs Select Publications. Some of these works have also received

several competitive awards such as Outstanding research awards at ASU and a Silver

Medal in ACM Student Research Competition. The challenges laid out by this work for

agile development has also affected chartering the need and vision for the sustainable

computing [37].

Literature Survey: The author’s comprehensive survey on the efficient processing

of sparse and compact machine learning models and designing efficient accelerators for

such models was published in Proceedings of the IEEE [33]. It has been received well

and widely studied and recognized by various communities (computer architecture,

machine learning, etc.), including senior researchers (e.g., research works [107–110]).

The information from the survey has also been studied or used by several master’s

theses and doctoral dissertations at top universities, including ETH Zurich, Harvard,

Purdue, and the University of California at Santa Barbara.
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Chapter 2

MAKING DESIGN SPACE COMPREHENSIVE

The efficiency of the domain-specific architecture’s design heavily depends on the

architectural components that are tailored for the set of workloads as well as the

configurations of the design parameters and the obtained code (mapping) optimization.

A major challenge with the existing design approaches, including those for the machine

learning accelerators, is that they limit the hardware/software design space. This

chapter discusses the need for making the design space comprehensive so that a vast

range of hardware and/or software configurations can be specified and explored, which

in turn, could allow the designers to achieve highly efficient solutions for the set of

target workloads.

Domain-specific architectures typically accelerate loops of the workloads by execut-

ing loop iterations spatially onto PEs in parallel and managing the data accesses from

local/shared register files or buffers and off-chip memory. Prior design approaches

restricted the workload executions to specific dataflows, e.g., output stationary or

weight stationary or row stationary when designing architectures for dense/sparse deep

learning models. It limits the spatial parallelism that can be achieved for different ML

operators or loop-kernels, interleaving of the NoC communication latency with compu-

tations, the data reuse that can be effectively exploited through buffers, and thereby

the overall latency or the energy consumption. Contrarily, this chapter demonstrates

how to formulate a comprehensive mapping space representation for optimizing the

spatial and temporal execution of the loops in the workloads, which could cover the

vast space of loop tilings/orderings/parallelism. It also shows how exploration of such a

comprehensive design space improves the efficiency (e.g., reduction in the energy-delay
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product) by one order of magnitude. Such comprehensive mapping formulation can

also help achieve better hardware/software codesigns that can flexibly accelerate a

variety of workloads.

2.1 Background

At the heart of several important-to-accelerate applications, e.g., multimedia,

imaging, and deep learning are perfectly nested loops, which are often compute- and

memory-intensive. A perfectly nested loop is a nested loop, where all the assignment

instructions are inside the innermost loop. For example, the convolution kernel (that

executes for the majority of execution time in computer vision models (e.g., ResNet152

[1], ResNeXt [111], EfficientNets [112]) is a 7-deep perfectly nested loop. Likewise,

general matrix multiplication (GEMM) is the primary operation in Transformers [13]

and language models based on Transformers e.g., BERT [14].

Recent research efforts and commercial solutions have extensively demonstrated

that these power and performance-critical loops can be efficiently accelerated on

dataflow accelerators. Typically, these domain-customized accelerators feature spa-

tial architectures, which are those that expose low-level aspects of the hardware’s

interconnect and storage to the hardware-software interface. Spatial architectures

can be coarse-grained or fine-grained. Coarse-grained architectures feature arrays of

interconnected PEs, and fine-grained designs are realized by programming FPGAs.

Coarse-grained spatial architectures are a common implementation choice for designing

domain-specific hardware accelerators including for ML, e.g., systolic arrays are used

in Tensor Processing Unit [29, 30, 113–115] and specialized spatial architectures in

Eyeriss [45] and [54, 84, 88, 116–120].

As Fig. 2.1 illustrates, the accelerator usually comprises an array of PEs (processing

elements) that may contain private register files (RFs) and shared buffers or a
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DRAM (Off-Chip)

Each PE of the array
processes a certain subset of
the computation graph in a
specific sequence.

comm_data(&SPM, &RF, #bytes)

dma_load(&DRAM, &SPM, 
#burst_size)

Scratch-Pad Memory

for i=1:I

for j=1:J

for k=1:K

for l=1:L {
...

}

Flattened Computation Graph

Figure 2.1: Programming the dataflow accelerators requires explicit management of

computational, memory, communication, and control resources.

scratchpad memory (SPM). PEs are simple in design (functional units with little local

control), and the shared scratchpads or the buffers are non-coherent with software-

directed execution. Therefore, these domain-specific architectures or accelerators are

a few orders of magnitude more power-efficient than out-of-order CPU or GPU cores

[4, 29, 30]. They lead to highly energy-efficient execution of ML models that are

compute-intensive and memory-intensive. Performance-critical tensor computations

(e.g., of ML models) are relatively simple operations like element-wise or tensor

additions and multiplications. So, they can be processed efficiently with structured

computations on the PE-array. Moreover, private and shared memories of PEs enable

high temporal reuse of the data [33, 40, 121]; with efficient data management, PEs

can be continuously engaged in tensor computations while the data is communicated

via memories [45]. Additionally, interconnects like mesh or multicast enable data

communication among PEs and spatial reuse of the data, lowering the accesses to

off-chip memory. Thus, with minimized execution time, spatial-architecture-based

hardware accelerators yield very high throughput and low latency for processing

domain workloads like ML models [4, 30, 122].

However, how to discover the most efficient way to execute a perfectly nested loop
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of an application onto the computational and memory resources of a given dataflow

accelerator (execution method) remained an essential and yet unsolved challenge. This

is because, the joint search space of hardware design of the accelerator, combined with

the ways to execute the loops both spatially and temporally on it, is vast. In other

words, not only the architecture can be configured in many different ways, but for

each of those configurations, the number of ways to answer questions like – how to

divide the loop execution among PEs, which PEs processes what subset of the data

and in which sequence, when to schedule the data movement between memory-levels

of the accelerator (for data prefetching), and how much buffering to do in the buffers

or on-chip memories – are numerous.

The different ways in which a perfectly nested loop can be executed on the dataflow

accelerator are referred herein as execution methods. When a programmer chooses a

way of spatiotemporal execution of the loop-nest, that leads to a particular execution

method. – Execution methods significantly impact the computation and communica-

tion patterns within the accelerator and therefore, the power and performance of the

execution. – If they are not optimized/chosen well, acceleration benefits may even be

negative! In the absence of a systematic and explicit way to capture and explore vast

design space, prior techniques have considered only certain execution methods (like

row-stationary [45], output-stationary [43, 44, 123] mechanisms for convolutions or

GEMMs). Hence, they end up exploring only a tiny fraction of the mapping space,

during manual tuning [88] or randomization-based search [54, 124].

2.2 Spatiotemporal Execution of Loops on Dataflow Accelerators

The efficiency of executing a perfectly nested loop onto a domain-specific archi-

tecture or a dataflow accelerator depends on the execution method which defines the

spatiotemporal organization of loop iterations. If all loop iterations are processed
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simultaneously on different PEs, then execution would finish in one shot. However,

due to a limited number of PEs, only some loops are (partially) executed in space, and

remaining loops iterate temporally on each PE. For example, consider the loop-nest

of Fig. 2.2(a), which is a simplified convolution kernel. It shows that a convolution of

a 5×5 input feature map (ifmap) with 3×3 weights of two filters yields two output

channels of 3×3 output feature map (ofmap). All data elements are of 16 bits. Now,

Fig. 2.2(b) shows one execution method to map the nest of Fig. 2.2(a) onto a sample

dataflow accelerator consisting 3×3 PEs, where each PE accesses own 16B RF and

a 256B shared SPM. For example, executing the loop with an index variable (IV)

ox in space requires a row of 3 PEs in the accelerator. Similarly, spatially executing

both the loops with IVs ox and oy requires 3×3 PEs. Here, each PE computes a

unique ofmap value O(m L2,oy S,ox S) while temporally executing loops with IVs

m, fx, and fy. PE(1,1) corresponds to oy S=1 and ox S=1. So, PE(1,1) processes

O(m L2,1,1) and requires ifmaps I(1,1)–I(3,3) and all the weights W(1,1,1)–W(2,3,3).

In contrast, if some other execution method corresponds to executing loops with IVs

fx and fy in space, then each PE will maintain different weights and will generate

a partial outcome. Thus, selecting which loops are (completely or in part)

executed in the space determines what subset of the data gets processed

by each PE.

The organization of the loops that execute temporally on each PE de-

termines the exact sequence of processing the data and thus, significantly

impacts the data reuse and data management of RFs and SPM. For example, for the

execution method of Fig. 2.2(b), loops with IVs m, fy, and fx execute temporally.

The loop corresponding to the columns of the filters (fx) executes at level 1. This

implies that the data corresponding to the loop with IV fx L1 is buffered into RFs

(L1 memory) of PEs. The execution method allocated data into RFs at maximum
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(a)

for m=1:2

for oy=1:3

for ox=1:3 

for fy=1:3

for fx=1:3

O[m][oy][ox]+= 

I[oy+fy-1][ox+fx-1]     

× W[m][fy][fx];

Oy=3

Ox=3

ofmap
channel2

ofmap
channel1

m=2

m=1

Fy×Fx
=3x3

Oy×Ox=3x3

(b)

% access DRAM once (no L3 loops)

dma() % prefetch data in 256B SPM

for m_L2=1:2

for fy_L2=1:3

access_SPM_and_comm_NoC(); 

for fx_L1=1:3

for oy_S=1:3

for ox_S=1:3

O[m_L2][oy_S][ox_S]+= 

W[m_L2][fy_L2][fx_L1]×

I[oy_S+fy_L2-1]

[ox_S+fx_L2-1];

filter

ifmap

5x5

Ofmaps
Execute
Spatially

data in RF is I: 1x3 
W: 1x1x3, O: 1x1x1

Figure 2.2: (a) Convolution of a 5×5 input feature map with 3×3 weights of two filters.

(b) An execution method, which executes a 3×3 output feature map on different PEs

of the dataflow accelerator.

capacity (3 elements for I and W, 1 element for O i.e., 7 elements or 14 bytes in

16-byte RFs). Thus, each PE executes 3 times (fx L1=1:3) and processes data from

the registers. Now, when the remaining loops execute (a total of 6 iterations of L2

loops with IVs fy L2 and m L2), new data is accessed from the SPM (L2 memory)

and communicated to PEs via NoC. Since the operand O is invariant of fy L2, it gets

used thrice from RFs of PEs. Thus, both the ifmaps and weights are loaded from

SPM 2×3 = 6 times, while ofmap is reused and written to SPM just twice. Now, after

interchanging both the L2 loops, the loop with IV m L2 becomes innermost. Hence,

with I being invariant of m L2, ifmap gets reused.

Note that the execution method of Fig. 2.2(b) shows just one way of spatiotemporal

execution and many such variations are possible. However, when execution methods

are not explicitly modeled (e.g., in the code of Fig. 2.2a), a specific execution sequence
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is implicit, and it is impracticable to capture and explore the variations in both the

spatial execution and data reuse in memory hierarchy.

2.3 Related Work

Dataflow accelerator architectures: Several dataflow accelerator designs for

domain-specific acceleration are proposed recently [4, 29, 30, 114]. Google TPU

[30] is a systolic-array accelerator for computer vision and language models. Chen et

al. [4] proposed Eyeriss architecture that efficiently executes their novel row stationary

dataflow mechanism. Cong et al. [125] used a polyhedral based analysis to generate

high-performance systolic array architectures for executing loops on FPGAs. HyPar

architecture [126] is an array of hybrid memory cube based accelerators for training

deep neural networks (DNNs). Lu et al. [114] considered various dataflow mechanisms

to execute convolutions and proposed a dataflow accelerator architecture which can

execute either of them.

Compilation techniques for loop optimizations: Although techniques of loop

tiling and permutation are well studied over the past few decades, they have been

either agnostic to hardware features or primarily researched for off-the-shelf processors

[127–130]. Moreover, their cost functions are often limited to the memory subsystem

of a processor with an objective to optimize the data allocation in the on-chip memory.

However, minimizing DRAM accesses is not sufficient to achieve efficient mappings for

dataflow accelerators, since other factors like efficient interleaving of computation with

communication, efficient reuse of different operands, and higher resource utilization

significantly contribute to the net acceleration. In fact, due to diverse architectural

features (pipelined PEs, data buffering options, NoC configurations, memory sizes, and

memory configurations), complete modeling and optimization for the entire accelerator

system are required. Furthermore, these loop optimization techniques may require
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drastic pruning for exploring the optimal execution method. For example, loop

optimization techniques of [128, 131] suffer from the vast space of loop-orderings, since

up to 7!=5040 orderings (per tiling configuration) need to be explored for a 7-deep loop-

nest. Besides, an alternative to MIMD-style dataflow execution is software pipelining

the loops [132]; loop operations of the same or consecutive iterations concurrently

execute on PEs of a coarse-grain reconfigurable array (CGRA) accelerator [97, 133–

141]. Such an approach is beneficial to accelerating non-vectorizable loops through

instruction-level parallelism. However, these mapping techniques were primarily

evaluated for kernels with relatively small computational or memory requirements and

on considerably smaller PE arrays (16–64 PEs) e.g., in [97, 142–144]. In contrast, high-

performance demanding loop-kernels of GEMM, convolutions, logistic regressions, etc.

exhibit abundant data- and thread-level parallelism and can be efficiently accelerated

on the designs with larger arrays of PEs (e.g., from 256 to 65,536) featuring larger

RFs.

Explicit modeling of all execution methods: For compute- and memory-intensive

loop-nests, numerous execution methods exist for configuring tiling and ordering of

the loops for their spatial execution and for accessing the data from RFs, scratchpad

memory or global buffers, and DRAM. In the absence of a system to explicitly

and succinctly capture the vast space of execution methods, the programmers and

architects considered specific execution methods. For example, [53, 145] tiled loop-nest

once (transformed a 7-deep nest to 14-deep), which specified how accelerator accesses

DRAM and buffer the data in the SPM. However, they lacked tiling the loops further

to explicitly model the spatial execution and RF accesses. This scenario is similar

to the code of Fig. 2.2a, which implicitly assumed a sequence and offered no insight

about variations in the data loaded from the scratchpad to the register files and how

differently PEs can process data. Similarly, [43, 44] executed loops corresponding to
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ofmaps in the space, missing out exploring many execution methods. Techniques used

by [43, 44] maximized the psum reuse, and [4] maximized weight reuse in the register

file and psum reuse in the scratchpad and did not explore other execution methods.

Likewise, techniques like [54, 145–147] considered a batch size of N=1 images, missing

the opportunities for weight reuse. Thus, prior techniques organized the loops in

certain ways and without explicit modeling of the complete spatiotemporal execution,

they lacked information about different execution methods. It is demonstrated later

that without a systematic approach (like the representation proposed in this chapter)

that captures vast space of the execution methods, information available about the

entire space is not comprehensive. Hence, the programmer/optimizer ends up with an

inferior solution.

Analytical modeling of dataflow execution: For mapping perfectly nested loops

onto dataflow accelerators and for design exploration, it is necessary to determine the

effectiveness of an execution method statically. Since dataflow accelerators exhibit

simple design and are explicitly managed, few works recently developed analytical

models to either estimate energy consumption or execution time [31, 46, 53] for DNNs.

MAESTRO [148] provides an analytical model for DNNs and estimates the efficiency of

an execution method. However, the user needs to understand the proposed directives

and write them in MAESTRO DSL, where chosen parameters for the directives can

significantly impact the spatiotemporal execution. Yang et al. [31] proposed an energy

model [149] for dataflow execution of DNNs and LSTMs, but it lacks estimation of the

execution time. Likewise, [53, 150] proposed performance models with an assumption

that PEs are always engaged in performing operations and never stall. Thus, prior

analytical models either lack estimation of energy consumption or execution time, or

do not accurately model data reuse or miss penalty, or lack auto-optimizer. Moreover,

these models are specific to DNNs (i.e., may not be capable of analyzing nested loops
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Figure 2.3: Overview of dMazeRunner framework for an efficient application mapping

onto dataflow accelerators.

from various applications). Furthermore, they require the user to specify DNN layer

parameters as inputs and do not provide integrated support for common ML/AI

application libraries like TensorFlow, MXNet, or PyTorch. Instead, this work develops

a more comprehensive analytical modeling, which is discussed later in chapter 4.

2.4 dMazeRunner Framework and Implementation

To efficiently map perfectly nested loops onto programmable dataflow accelerators,

dMazeRunner framework is proposed as a comprehensive solution. Fig. 2.3 shows

dMazeRunner framework. Its front-end parses the application and extracts target

loop-nest. After analyzing the loop-nest, dMazeRunner formulates the holistic repre-

sentation as described above, which features explicitly tiled loops for spatial execution

as well as for accessing data from RFs, SPM, and DRAM. Various configurations of

this representation capture the vast space of execution methods. It also estimates

execution costs for processing these loops spatiotemporally on the accelerator (chapter

4). With drastic pruning of the execution methods, it can find (near)optimal execution

method quickly, e.g., in seconds [86].

Framework implementation: dMazeRunner framework features analysis, transfor-

mations, and optimizations for dataflow execution of loops. Front-end of the framework

leverages TVM environment [124] to support various applications and multiple ML
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libraries such as MXNet, keras, and TensorFlow. Using the TVM environment,

dMazeRunner achieved execution method can be transformed into LLVM IR [151] for

code generation. Moreover, for a rapid design space exploration on modern multi-core

platforms, the framework implementation leverages the hardware features like caching

of the commonly invoked analysis routines and multi-threading. The framework has

been made available at https://github.com/MPSLab-ASU/dMazeRunner.

2.5 Holistic Representation to Capture Vast Space of Execution Methods

Execution on the accelerator architectures takes place by means of executing the

loop iterations onto the PE array both spatially and temporally. To determine spatial

execution onto processing elements and the data accessed from register files or local

memories, scratchpad or global buffers, and DRAM, each loop of the loop-nest is

explicitly tiled at these four levels. Fig. 2.4(b) shows the proposed representation,

which is obtained after transforming the algorithm of Fig. 2.4(a). Thus, the proposed

formulation transforms a 7-deep nested loop into a 28-deep nested loop. In this

explicitly tiled form, the configurable parameters are—loop iteration counts (tiling

factors like N SPATIAL, N RF ) and ordering of the loops at any of these four

levels.

This representation can be configured to represent various execution methods. For

example, in order to achieve the method of Fig. 2.2(b), the seven innermost loops

that correspond to spatial execution are configured. The innermost two loops (ox

and oy) that have tiling factors greater than 1 (Ox SPATIAL = 3, Oy SPATIAL=3)

determine how PEs are grouped in a 2D array. For example, Fig. 2.5 shows tiling for

spatial execution of three loops. Here, unrolling the third tiled loop (M SPATIAL=2)

for spatial execution results in two groups of 3×3 PEs. In fact, if the architecture

features interconnections for 3D array (e.g., cubic or vertically-stacked 2D array), then
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for n_L3 = 1:N_DRAM
for m_L3 = 1:M_DRAM
for c_L3 = 1:C_DRAM
for oy_L3 = 1:Oy_DRAM
for ox_L3 = 1:Ox_DRAM
for fy_L3 = 1:Fy_DRAM
for fx_L3 = 1:Fx_DRAM
{ 
dma( );

for n_L2 = 1:N_SPM
for m_L2 = 1:M_SPM
for c_L2 = 1:C_SPM
for oy_L2 = 1:Oy_SPM
for ox_L2 = 1:Ox_SPM
for fy_L2 = 1:Fy_SPM
for fx_L2 = 1:Fx_SPM
{
access_SPM_and_comm_NoC();

for n_L1 = 1:N_RF
for m_L1 = 1:M_RF
for c_L1 = 1:C_RF
for oy_L1 = 1:Oy_RF
for ox_L1 = 1:Ox_RF
for fy_L1 = 1:Fy_RF
for fx_L1 = 1:Fx_RF
{
for n_S = 1:N_SPATIAL
for m_S = 1:M_SPATIAL
for c_S = 1:C_SPATIAL
for oy_S = 1:Oy_SPATIAL
for ox_S = 1:Ox_SPATIAL
for fy_S = 1:Fy_SPATIAL
for fx_S = 1:Fx_SPATIAL

O[][][][] += 

I[][][][] ×

W[][][][];

}
}

}

● Iteration counts (tiling factors) and
orderings for L3 loops determine data
communicated to (reused in) SPM.

● Iterations of L2 loops affect SPM
accesses and the cost of data
communication to RF via NOC.

● Iterations of L1 loops indicate
data accessed by a PE from RF.

● Inner loops are unrolled in
space; Spatial execution
determines the subset of the
data processed by each PE.

for n=1:N % batch size

for m=1:M % filters

for c=1:C % channels

for oy=1:Oy % ofmap rows

for ox=1:Ox % ofmap cols

for fy=1:Fy % filter height

for fx=1:Fx % filter width

O[n][m][oy][ox] +=  

I[n][c][oy+fy-1][ox+fx-1]

× W[m][c][fy][fx];

(b)

(a)

Figure 2.4: Explicitly tiled representation that comprehensively models the vast space

of methods for spatiotemporal execution.

such tiling for spatially executing more than two loops can be translated into mapping

onto a 3D array.

The seven loops at memory/buffer levels L1, L2, and L3 execute temporally on each

PE and are configured to specify the accesses to RF, SPM, and DRAM. Here, tiling

factors (e.g., N SPM=2) impact the size of the data accessed from L1/L2/L3 memory
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% loops for temporal execution at L1,L2,L3

{

for n_S = 1:N_SPATIAL=1

for c_S = 1:C_SPATIAL=1

for fy_S = 1:Fy_SPATIAL=1

for fx_S = 1:Fx_SPATIAL=1

for m_S = 1:M_SPATIAL=2
for oy_S = 1:Oy_SPATIAL=3

for ox_S = 1:Ox_SPATIAL=3

O[][][][] += 

I[][][][] ×

W[][][][];

}

Configuring tiling for 
spatially executing 
three loops.

% access DRAM once

dma() % prefetch in SPM

for fy_L2=1:3

access_SPM_comm_NoC();

for fx_L1=1:3

for m_S=1:2

for oy_S=1:3

for ox_S=1:3

O[m_S][oy_S][ox_S]+= 

W[m_S][fy_L2][fx_L1]×

I[oy_S+fy_L2-1]

[ox_S+fx_L1-1];

Figure 2.5: Configuring the representation of Fig. 2.4(b) for spatial execution of three

loops, which results in two PE-groups in the accelerator.

(section 4.1.1 provides the exact calculation), and ordering of the loop determines the

schedule of data movement i.e., data reuse/eviction. For example, in Fig. 2.4(b), the

iteration counts of loops with IVs m L2 and fy L2 determine accesses to SPM, and

for executing innermost loop (with IV fy L2), operand ”O” (psum) is reused. Thus,

this explicitly tiled transformation of Fig. 2.4(a) can be configured to represent the

various spatiotemporal organization of the loops (tiling/ordering/unrolling), which

corresponds to different execution methods to program the dataflow accelerators.

Thus, in the comprehensive mapping space formulation, since each loop of the input

nest is explicitly modeled for spatial execution and for accessing data from L1/L2/L3

etc. memory, it captures the vast space of execution methods. Hence, the compiler

can determine and explore the global space of execution methods and achieve the

optimal execution method.

Note that the convolution layers from deep neural network (DNN) models are used

here to explain the background and examples and for demonstrating the search space
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and design space exploration capabilities. This is because, convolution layers in deep

learning models feature a 7-deep loop-nest (deeper than matrix multiplication or other

applications), exhibiting various ways of data reuse and spatial execution. They are

widely used in deep learning and media processing applications [1, 8, 9, 18, 30, 111, 152].

However, the proposed approach is more general and can optimize the execution of

any perfectly nested loop (featuring direct memory accesses and statically known loop

bounds) on a dataflow accelerator.

2.6 Drastically Pruning the Vast Search Space

2.6.1 Determining Valid Tiling Options

Statically pruning the search space becomes essential when it is vast. A common

approach used in pruning of the accelerator design space is restricting values of the

design hyperparameters based on the bounds of specified constraints. For instance,

the buffer size can be restricted to less than 100kB if the total power budget is 0.1W.

Such pruning usually requires no or a few evaluations of cost functions, while limiting

the search of each hyperparameter to only meaningful values. In addition, infeasible

solutions can be pruned statically by checking, in formulating the search space, against

the validity of a solution w.r.t. constraints imposed by the accelerator design and

execution. This is described herein by formulating the mapping space of execution

methods while considering the validity of tiling options.

After multi-level tiling of a loop, trip-counts (TCs) of the tiled loops can be of any

integer value. For example, consider a loop that iterates N=8 times. After tiling it

into four levels, the trip-counts of the tiled loops are N SPATIAL, N RF , N SPM ,

and N DRAM , which are the optimization parameters.

When off-the-shelf optimizers (constraint-solvers for non-linear programming that
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use simulated-annealing, newton’s method, etc.) are used [54, 153], in each step,

they randomly select the parameter values from all possible combinations (84). For

large-scale optimization problems, since the valid methods are very few (e.g., 20 out

of 4096 in this example), an optimizer’s majority of the search time is often spent on

discarding invalid solutions. However, a constraint-driven pruning of the space can

be employed before beginning the exploration and analytical evaluation of execution

methods, by considering only valid tiling options (e.g., 20 instead of 84). It ensures

that for tiling of a loop into four loops, the total iterations executed by the tiled loops

match the functionality of the loop-nest, i.e.,

cons : N SPATIAL ·N RF ·N SPM ·N DRAM = N

In general, for any loop index-variable iv,

TC[base][iv] = TC[SPATIAL][iv] · TC[RF ][iv] · TC[SPM ][iv] · TC[DRAM ][iv]

For pruning the mapping space, it can be ensured that the pruning is subjected to

constraints from the architecture resources (PEs, RF, and SPM). For example, the

data to be allocated by an execution method must fit into RF of a PE and in a

multi-bank SPM/buffer, i.e.,

cons :
∑total Operands

op=1 data alloc[RF ][op] ≤ RF size

cons :
∑total Operands

op=1 data alloc[SPM ][op] ≤ SPM size

cons :
∏total IV s

i=1 TC[SPATIAL][IV i] ≤ Total PEs

For example, when RF tiling factors < N RF,M RF,C RF,Oy RF,Ox RF, Fy RF, Fx RF >

are selected as < 1, 1, 1, 1, 1, 1, 3 >, allocated registers for weights are data alloc[RF][W]

= M RF× C RF × Fy RF× Fx RF = 3. Total allocated registers are 3 + 3 + 1 = 7

(for input activations or I, weights or W , and output activations or O), and this is a

valid method for an 8-element RF (example of Fig. 2.2, no double-buffering is assumed
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Table 2.1: Analyzing size of the mapping space for deep learning accelerators.

Model Layer
Tile

Sizings

Tile

Sizings

with Valid

Factors

Valid

Tilings

w.r.t.

Hardware

Orderings

at a

Memory

Level

Orderings

with

Unique/Max

Data Reuse

Full

Map.

Space

Factorization-

Constrained

Mapping

Space

Factorization-

Constrained

Reuse-Aware

Map. Space

A B C D E F: A*D2 G: B*D2 H: B*E2

ResNet18 CONV 2 1a O(1025) O(1013) O(107) O(104) 15/3 O(1032) O(1020) O(1014)

MobileNetV2 features.2.conv.0 O(1022) O(1012) O(106) O(104) 15/3 O(1030) O(1019) O(1013)

EfficientNetB0 blks.2.expand O(1022) O(1012) O(106) O(104) 15/3 O(1029) O(1020) O(1013)

VGG-16 CONV 1 2 O(1028) O(1014) O(107) O(104) 15/3 O(1036) O(1021) O(1015)

ResNet50 CONV 2 1b O(1025) O(1013) O(107) O(104) 15/3 O(1032) O(1020) O(1014)

Vision

Transformer

patchembeddings.

CONV2D
O(1025) O(1013) O(106) O(104) 15/3 O(1032) O(1020) O(1014)

FasterRCNN-

MobileNetV3

features.12.

conv2.excite
O(1026) O(1013) O(106) O(104) 15/3 O(1033) O(1020) O(1014)

YOLOv5 features.1.conv O(1027) O(1014) O(107) O(104) 15/3 O(1034) O(1021) O(1015)

Transformer
decoder.

output projection
O(1027) O(109) O(104) O(101) 3/3 O(1028) O(1010) O(1010)

BERT
encoder.layer.0.

output.dense
O(1026) O(109) O(105) O(101) 3/3 O(1027) O(1011) O(1010)

Wav2Vec2
encoder.layers.0.

intermediate.dense
O(1028) O(1012) O(106) O(101) 3/3 O(1029) O(1013) O(1012)

here). However, a solution with RF-level loop tiling factors < 2, 1, 1, 1, 1, 1, 3 > is

invalid and not considered for the exploration, since it allocates 6 + 3 + 2 = 11

elements. Thus, the constraints discard invalid tiling options. Table 2.1 shows that

such factorization based and architecture-aware pruning can discard invalid tilings in

a significant way. They prune the search space of tiling configurations by a square

root or even a cube root, e.g., from O(1022)–O(1028) configurations to a much smaller

range of O(109)–O(1014) configurations. Thus, overall pruning achieved is a factor of

O(109) – O(1018) for different loop-kernels and layers of different deep learning models

(columns A → B → C and columns F → G).
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2.6.2 Determining Loop Orderings for Unique Data Movement Costs

There can be many solutions in vast design space with the same costs as others or

much higher than the most efficient solution (globally suboptimal) within a bounded

subspace. For domain-specific exploration, pruning such feasible yet ineffectual

solutions statically can be done by approximating the costs of different solutions

statically (e.g., without an actual full evaluation of cost functions) and imposing

hyperparameters for exploration that limit the search space to effectual solutions. This

is described herein by taking an example of pruning the loop ordering search space.

While tiling factors for L1, L2, and L3 loops determine the size of the data accessed

from RF, SPM, and DRAM, the orderings of these loops determine the data reuse

and scheduling of the data movement. In a loop nest, data operands (tensors) are

often invariant of specific loops and can be reused [128]. Therefore, for a given a

loop-nest, it is possible to create a list of all those loop-orderings (schedules) that

feature unique reuse of operands, and the optimizer needs to target just those orderings.

For example, it is demonstrated herein that out of 7!=5040 orderings to organize

7-deep loop-nest of convolution, loop-orderings featuring unique reuse factors are just

up to 15. Such reduction stems from the fact that for execution of tiled L2/L3 loops,

memory management ensures the availability of the data blocks prior to the execution,

and reuse factors of operands (data blocks) get limited, as compared to numerous

hit/miss occurrences possible (at cache-line granularity) in a cache-based memory

hierarchy.

Fig. 2.6 depicts a 4-deep loop-nest along with information about each operand

being invariant of certain loops. To explain the impact of orderings, in this example, it

is assumed that the current memory level (e.g., RF) can accommodate 3 data elements.

Thus, during each loop iteration (total 192), the data corresponding to each operand
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for n = 1:N=2

for m = 1:M=8

for c = 1:C=4

for fy = 1:Fy=3 {

comm_data();

O[n][m]+= 

I[n][c][fy]×

W[m][c][fy]

}

Loop Order I W O

Unique Reuse Factors for Data Operands

–

{..., n} 

{..., m} M = 8 –

{..., m,  c} – – C = 4

{..., m, fy} – – Fy = 3

{..., fy, c} – C×Fy = 4×3

–

N = 2– –

O             c, fy
I                                      m

W        n

invariant of loops 
with index variables 

Figure 2.6: Determining all orderings of loops that feature unique data reuse factors.

Achieved orderings are five among a total of 4! = 24 orderings. Dash symbol indicates

a use factor of 1 for an operand (i.e., no reuse).

can be accessed from lower memory (e.g., SPM) and brought to the current memory

level. In other words, for a given ordering, for each operand, the function comm data()

may (not) execute in every loop iteration. Fig. 2.6 also tabulates different orderings

that feature unique reuse factors. Loop IVs are in lower-case, and trip-counts (TCs) are

in upper-case. For each schedule, a listing of loop IVs from the right- to left-hand-side

indicate the order of innermost to outermost loops. For example, the first ordering

indicates that loop with IV n is the innermost, and ”...” indicates that the ordering of

outer 3 loops does not matter for this schedule. So, selecting any one ordering among

3! combinations yields the same reuse.

To generate the schedules (algorithm 2), dMazeRunner iterates over each operand

and constructs the loop-orderings for which the operand is invariant of inner loops.

For example, W is invariant of n, and the first loop-ordering is the only schedule where

W is reused for N=2 iterations. Thus, out of 192 iterations, W is accessed from memory

only 192/2 = 96 times. However, since I and O are indexed through n, they are

communicated from lower memory during all 192 iterations (for a given ordering,

algorithm 1 determines such reuse factors for operands). Similarly, I gets reused only in
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the second ordering. Now, O is invariant of two IVs c and fy (total independent IVs=2).

So, more than one orderings feature unique reuse of O (generated by lines 5–15 of

algo. 2). Two possible orderings (3rd and 4th) are where O is reused only in the

innermost loop with IV as either c or fy. Similarly, O is reused in both the inner loops

when IVs for inner loops are permutations of c and fy. Here, both the permutations

(’c’, ’fy’) or (’fy’, ’c’) yield the same reuse factors (1 for I and W and 12 for O). So,

any one permutation can be considered (line 16 in Algo. 2 prunes another), which is

5th ordering. Thus, dMazeRunner prunes 4! = 24 orderings to just 5. Similarly, for

convolution of Fig. 2.4(a), dMazeRunner prunes 7!=5040 orderings to 15 orderings

that feature unique reuse, which are listed in Table 2.2. For given tiling factors of

Algorithm 1: Determine Data Reuse(Input loop ordering, Input level, In-

put operand list, Output reuse vector)

1 foreach operand op in operand list do

2 operand reuse factor = 1;

3 list op dependent IVs = get op dependencies(op);

4 foreach iv in reversed(list(loop ordering)) do

5 tc = get TripCounts(iv, level);

6 if (tc == 1) then

7 continue;

8 else if (iv is not in list op dependent IVs) then

9 operand reuse factor *= tc;

10 else

11 break;

12 reuse vector[op] = operand reuse factor

13 return reuse vector
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Algorithm 2: Generate Loop Orderings(Input operand list, Output

pruned orderings)

1 foreach operand op in operand list do

2 list op independent IV = get op dependencies(op);

3 total independent IVs = len(list op independent IV);

4 list orderings = null; iter = 1;

5 while iter ≤ total independent IVs do

6 list IVs = null; temp list =

get combinations IVs(list op independent IV, iter);

7 foreach item in temp list) do

8 list permutations = get all permutations(item);

9 list IVs.append(list permutations);

10 list IVs.remove duplicate items();

11 foreach item in list IVs) do

12 temp ordering = prepend dependent IVs(item,

list op dependent IV);

13 order = prepend missing IVs in random order (temp ordering,

list op independent IVs);

14 list orderings.append(order);

15 iter++;

16 pruned orderings= prune orderings same reuse(list orderings);

17 return pruned orderings

an execution method, collective orderings (of L2 and L3 loops) to reuse the data

while accessing SPM and DRAM are up to 15×15 instead of 5040×5040. Note that

the list of orderings (e.g., ones in Table 2.2) are determined statically once, before
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Table 2.2: Unique data reuse factors for accessing lower memory

Schedule Ifmap Weights Ofmap

{..., m} M 1 1

{..., m, ox} 1 Ox 1

{..., m, oy} 1 Oy 1

{..., m, n} 1 N 1

{..., m, oy, ox} 1 Oy × Ox 1

{..., m, n, ox} 1 N × Ox 1

{..., m, n, oy} 1 N × Oy 1

{..., n, oy, ox} 1 N × Oy × Ox 1

{..., m, fx} 1 1 Fx

{..., m, fy} 1 1 Fy

{..., m, c} 1 1 C

{..., m, fy, fx} 1 1 Fy × Fx

{..., m, c, fx} 1 1 C × Fx

{..., m, c, fy} 1 1 C × Fy

{..., c, fy, fx} 1 1 C × Fy × Fx

the exploration and evaluation of execution methods begin. Furthermore, during

exploration of execution methods, for a given set of tiling factors, it is possible that

one or more loops iterate(s) just once (e.g., M SPM=1). In such a scenario, among

these 15 orderings, several orderings feature the same reuse factors. In other words,

unique reuse factors reduce from 15 orderings. Thus, during exploration, for each set

of tiling factors, dMazeRunner dynamically prunes the list of 15 orderings (of Table

2.2) further.

dMazeRunner constructs the list of orderings depending on the operand being

invariant of the loops, which is determined by analyzing the indexing expressions of

the operand (e.g., I is invariant of IV m). Therefore, the proposed pruning technique
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is applicable to direct memory access patterns (including affine accesses), which are

commonly found in many applications. Note that in determining orderings, a loop

interchange is considered only when it is a legal transformation. The legality can be

determined by analyzing distance- and dependence-vectors for the loops [127].

2.6.3 Additional Pruning Heuristics

Depending on the depth and iteration counts of the loops in the application, the

exhaustive exploration may take even several hours. One strategy can be to pre-

compile the application for common target architectures, where the optimal execution

method is explored just once. However, to allow re-compiling applications by users

and rapid design space explorations, the optimizer should be able to generate a highly

efficient solution promptly. So, dMazeRunner embeds a pruning heuristic that achieves

close-to-optimal solutions in second(s) through the following strategies:

OPT 1) Targeting execution methods featuring high resource utilization:

dMazeRunner explores only those tiling factors that highly utilize (e.g., 60%) RFs,

SPM, and PEs. High utilization improves data reuse and reduces DRAM accesses.

Note that very high utilization does not guarantee an optimal solution, as it may not

effectively interleave computation and communication cycles.

OPT 2) Discard execution methods requiring several memory accesses of

non-contiguous data: Some IVs of loops correspond to a minor dimension of tensors

(fy and fx for W [m][c][fy][fx]). For such IVs, when tiling factors of L3 loops (i.e.,

Fy DRAM) are greater than 1, it requires many DMA invocations with small burst-sizes.

Thus, it results in higher DMA cycles and may introduce the miss penalty for SPM

management. So, dMazeRunner discards such execution methods which are susceptible

to higher execution time.

OPT 3) Discard execution methods that require inter-PE communication:
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Often a read + write (r+w) operand (O) is an invariant of few IVs (c, fy, and fx). If

loops corresponding to these IVs execute spatially, it requires inter-PE communication

(for reduction), which may introduce stall cycles and often costs higher energy. There-

fore, to avoid inter-PE communication, dMazeRunner decides not to execute such loops

in space. This strategy discards several dataflow mechanisms (e.g., weight-stationary,

row-stationary).

OPT 4) Targeting execution methods that maximize the reuse of operands:

Although dMaze-Runner determines all loop-orderings featuring unique reuse factors,

space can be pruned to few orderings that maximize the data reuse. For example,

in Table 2.2, only schedules #8 and #15 maximize the reuse of weights and ofmap

respectively. Thus, schedules #2–#7 and #9–#14 are discarded.

OPT 5) Leveraging hardware features of compilation platform: Implemen-

tation of dMazeRunner framework integrates - (i) caching of the frequently used

analysis routines and commonly referenced hash tables (e.g., loop orderings), and

(ii) concurrently exploring various execution methods and evaluating their efficacy

with multi-threading. Thus, on modern multi-core processors, the exploration time is

significantly reduced. Note that OPT4 and OPT5 do not impact optimality and can

be used for an exhaustive search.

2.7 Experiment Results and Analysis

This section describes the efficiencies of execution methods obtained after exploring

the comprehensive design space, that can be formulated through proposed methodology

and with dMazeRunner framework. The optimization objective is set to minimize

the total summation of the Energy-Delay-Product (EDP) of all the loops that are

evaluated.

Benchmarks: For evaluating different execution methods (featuring diverse data
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reuse patterns and various ways of spatial execution), different convolution layers

are considered from widely used DNNs - ResNet and ResNext models [1, 111] for

ImageNet classification (with batch size of 4 images).

Specification of the target platform: A dataflow accelerator architecture is

considered which is similar as recent works including Eyeriss [4] and [31, 114]. The

accelerator consists of 16×16 PEs with 16-bit precision. Each PE accesses 512B RF

and a 128 kB scratch-pad. Like Eyeriss architecture [45], each pipelined PE consists

of a 2-stage multiplier and an adder. The accelerator features 4 single-cycle multi-cast

networks [4] to communicate the operands to PEs and 1 such network for reduction.

The shared SPM consists of 64 banks (2 kB each) that can be allocated to any data.

Data is accessed from DRAM via DMA and managed in SPM with double-buffering

[121, 138]. DRAM latency model for data transfers via DMA is same as Cell processors

that featured SPMs [154]. Energy costs for accelerator resources were obtained from

hardware evaluations by Yang et al. [31] for a 28 nm technology. The analytical cost

modeling of the architecture and its validation is described later in chapter 4

Mapping techniques evaluated: To evaluate the effectiveness of the optimal

solutions achieved by the comprehensive mapping space, various execution methods

are determined for dataflow mechanisms described by previous techniques: (i) For

output stationary mechanism (Oy|Ox), (i.a) SOC [44, 45] in which, entire PE array

processes single output channel, and (i.b) simultaneous processing of multiple output

channels (MOC) [43, 45] on different PE-groups for ifmap reuse. For both SOC

and MOC, the data movement schedule iterates over channels for minimizing psum

accumulation cost, (ii) WS1 for weight stationary mechanism (Fy|Fx) [45, 114], (iii)

RS [4] for row stationary (Oy|Fy) mechanism, which maximizes weight reuse in RF,

psum accumulation in RFs/PE-array, psum reuse in SPM, and (iv) coarse weight

stationary (WS2) for M|C mechanism, which is like matrix-multiplication on systolic
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Figure 2.7: (a) For popular mechanisms, achieved execution methods reduce the

total EDP by 9.16× on average. (b) Optimal execution methods for other dataflow

mechanisms are also achieved.

arrays [30]. Any other previous technique that optimized EDP through other dataflow

mechanisms were not known to the author at the time of these evaluations. However,

all mechanisms that show different parallelisms and dataflows are still evaluated to

demonstrate effectiveness of achieved execution methods.

38



2.7.1 Solutions Obtained After Comprehensive Exploration Reduce EDP by 9.16×

Fig. 2.7(a) shows the evaluation of various execution methods for popular dataflow

mechanisms. The evaluations depict EDP of each convolution layer on the primary

axis and total execution cycles for these six layers on the secondary axis (lower the

better). For better visualization, EDP results are plotted on a logarithmic scale.

i) For each dataflow mechanism, the EDP and the total cycles are reduced significantly,

when compared to execution methods achieved by prior approaches. For example, for

conv5 2, EDP was reduced by 44.47× and execution cycles by 18.72×, as compared

to SOC. On average, the summation of the EDP of convolution layers was reduced by

9.16× over other techniques and the total execution cycles by 5.83×.

The primary reason for such a significant scope of improvement is that prior

techniques target certain ways of spatial execution and data reuse, which are often, not

very efficient. For example, when 14×14 PEs executed ofmaps or the output channel(s)

spatially, the PE utilization achieved on a 16×16 array was just 76%. Similarly, SOC

and MOC maximized psum accumulation in RF, which did not always yield high

RF utilization (e.g., 436B utilized for 512B RF). Moreover, with a fixed optimization

strategy to reuse certain data operand(s), no single heuristic efficiently leveraged the

maximum data reuse possible. For example, for convolution layers at beginning of

ResNe(x)t (conv1 ), ifmaps are significantly larger and weight reuse is desired. In

contrast, for later layers (conv4 2 ), weights dominate the data movement, and ifmap

reuse yields better execution. The execution methods obtained by prior approaches

were not able to adapt to such dynamics of loop characteristics. Thus, prior techniques

neither ensured very high resource utilization, nor efficient reuse of all data operands.

So, even if they somehow obtained a reasonable solution, a scope for further reduction

in both execution time and energy remained.
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With holistic representation, dMazeRunner captured the vast space of execution

methods and after drastically pruning the search, it made the brute-force exploration

feasible. Consequently, it achieved the optimal execution methods that outperformed

prior techniques. For example, for executing ResNet conv5 2 with output stationary

dataflow, the obtained execution method allocated 36 elements of image tensor (I),

144 elements of weights (W ), and 64 elements for output tensor (O) (244 from

256) in RFs, achieving image and weight reuse through processing the data of 4

images and 16 filters simultaneously. Cycles for performing Multiply and ACcumulate

(MAC) operations on this data in the registers were 576, which perfectly interleaved

with the communication latency of 576 cycles (to communicate 4×1×9×9 = 324

elements of I and 64×1×3×3 = 576 elements of W via different interconnects). Data

elements of O (4×64×7×7 = 12,544) were reused in RFs by accumulating partial

summation during 8 consequent execution passes. Thus, execution pass latency was

576 cycles, and 8 passes processed the data from the scratchpad memory (4608 cycles).

Again, this execution was efficiently interleaved with the latency to communicate

the data of I and W tensors from off-chip memory to a double-buffered SPM via

DMA transfers (3641 cycles). Considering the stall cycles for writing back the data of

output tensor, total execution cycles were 2,459,648, which exceeded an ideal execution

time (2,359,296 cycles for executing 462,422,016 MACs on 4×7×7 PEs) by a mere

4%. Thus, solutions optimized through comprehensive design space formulation can

achieve highly optimized and non-intuitive mappings that account for multiple factors

attributing to efficient accelerations.

ii) Obtained execution methods achieved various data reuses at different accelerator

resources and minimized DRAM accesses for various operands. With a certain opti-

mization strategy, prior heuristics leveraged reuse of specific operands. For example,

SOC and MOC maximized psum reuse at RF and SPM levels, while RS maximized
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weight reuse in RFs and psum reuse in SPM. For executing conv5 1 layer with Oy|Ox

mechanism, SOC allocated 28kB ifmaps, 18kB weights, and 1.5kB psum in SPM,

which were accessed from DRAM 512, 512, and 128 times, respectively. This resulted

in DRAM access of 14.74MB, 9.44MB, and 0.2MB, respectively. However, the exe-

cution method obtained from the comprehensive design space allocated 14.06kB of

ifmaps, 18kB weights, and 12.25kB psum in SPM, which were accessed from DRAM

256, 256, and 16 times. So, the obtained method accessed DRAM for 3.68MB ifmaps,

4.7MB weights, and 0.2MB psum. Thus, the obtained solution exhibited a better

choice of tiling factors and minimized total DRAM accesses for ifmaps by 4× and

2× for weights. In fact, it maximized ifmap and filter reuse spatially, convolution

reuse in RF, and psum reuse at RF and SPM levels. Similarly, for executing conv5 2

layer with M|C mechanism, it reduced DRAM accesses by 16× for ofmap, as com-

pared to WS2. By significantly reusing all operands, execution methods minimized

DRAM accesses, reducing both the energy and execution cycles. Thus, although the

acceleration gains during chip execution can differ from estimations, through better

data reuse, reduced DRAM accesses, and efficient interleaving of computation with

communication, achieved solutions from comprehensively formulated design space can

outperform prior heuristics.

iii) With holistic exploration, achieved the optimal solutions which yield similar EDP

and execution time for various dataflow mechanisms. Fig. 2.7(a) shows that for various

mechanisms, the achieved solutions result in a very similar EDP and execution time

(note the dotted line). This is because: (1) for efficient acceleration, often more than

two loops are spatially executed (e.g., M and C along with Oy and Ox) and hence,

two mechanisms may attain the same solution, and (2) highly efficient solutions share

common characteristics like high utilization of resources, maximized reuse of various

operands, efficient interleaving of computation with communication (i.e., minimum to
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no miss penalty). Therefore, for individual mechanisms, the achieved optimal solutions

yield similar results. Moreover, Fig. 2.7(b) depicts the EDP and execution cycles

for 17 more mechanisms and demonstrates similar results. However, when reduction

operations are performed through inter-PE communication, it results in higher cycles

in the execution model used [40]. This is because, one single-cycle multi-cast network

was used for r+w operands instead of a mesh-style interconnect. This is reflected

in a relatively high execution time and high EDP for mechanisms like Fy|Fx, C|Fx,

and Ox|Fy. Such difference can be observed at least for conv1 layer that consisted

of larger feature maps. Note that none of the prior heuristics pruned the space such

drastically that a brute-force algorithm is applied to achieve the optimal solutions.

Furthermore, no prior technique achieved the optimal solutions that minimize EDP

while using a variety of dataflow mechanisms. Therefore, Fig. 2.7(b) does not feature

any evaluations of prior works.

2.7.2 Obtained Solutions Reduce Energy Consumption Up to 30.84% Over Other

Optimization Tools

Recently Yang et al. [31] proposed an auto-optimizer [149] to reduce the energy con-

sumption of DNN dataflow execution. This section shows evaluations after executing

the various convolution layers of ResNet with [149] and obtained optimized execution

methods. Then, they are compared with the solutions achieved by dMazeRunner in

order to demonstrate the impact of holistic exploration.

Fig. 2.8 shows the energy consumption of optimized methods obtained by [149]

and that of dMazeRunner (holistic mapping space formulation). Here, the energy of

a convolution layer is obtained from the best outcome among all execution methods

explored. Execution methods achieved by dMazeRunner outperformed [149] by

reducing the energy up to 30.84% and by 15.55% on average. Even for individual
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Figure 2.8: Mappings obtained from comprehensive mapping space reduce energy

consumption up to 30.84% as compared to the auto-optimizer of Yang et al (2018).

dataflow mechanisms (like output- or row-stationary [4, 31]), obtained execution

methods from comprehensive mapping space reduced the energy significantly over

[149]. For example, they reduced the energy of executing conv4 2 with N|Ox by 36%

and conv5 2 with Oy|Ox by 14%.

Note that heuristically exploring a small fraction of all execution methods may

not yield efficient EDP or reasonable execution time. In fact, heuristically obtained

solution may fail to efficiently interleave the computation with communication latency

(high miss penalty). Since [31, 149] lacked performance model, this work did not

compare the EDP or execution time of obtained methods with it.

Table 2.3: DNN layer-specific and overall best memory sizes for a 256-PE accelerator.

ResNet Layer
Layer-Specific

Best Design
EDP

Overall Top

#1 Design

EDP

(normalized)

Overall Top

#2 Design

EDP

(normalized)

Conv1 <256,512k> 1.59E+16

<256, 512k>

1x

<256, 1024k>

1.16x

Conv2 2 <256,512k> 4.52E+15 1x 1.03x

Conv3 2 <256,1024k> 3.56E+15 1.10x 1x

Conv4 2 <256,1024k> 3.57E+15 1.11x 1x

Conv5 1 <256,1024k> 2.83E+15 1.08x 1x

Conv5 2 <256,128k> 6.14E+15 1.05x 1.03x

Total (6 layers) <256,512k> 3.78E+16 1x 1.04x
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Figure 2.9: Exploration of memory sizes for a 256-PE accelerator. Designs featuring

256B RFs and 512 kB SPMs yield lower EDP.

2.7.3 Exploring Memory Configurations

As holistic design space exploration enables efficient execution methods, dMazeRun-

ner can be leveraged to invoke a rapid DSE for landing upon better architectural

design solutions. Table 2.3 lists the results of a DSE experiment which optimizes the

on-chip memory sizes for the targeted 256-PE accelerator. The second-left column

lists the best memory configuration for each layer and the third-left column lists

corresponding EDP. The columns on the right-hand side show the two best designs

that achieved the best EDP (normalized) for some layers and in total, a lower EDP as

compared to other configurations. Both the designs #1 and #2 (in fact, the top four

designs) featured 256B RFs per PE. Fig. 2.9 depicts the EDP (a total of all the six

convolution kernels) for the variations in the RF sizes (primary horizontal axis) and

SPM sizes (series in the legend).

Fig. 2.9 shows that EDP is notably lower when the RF size is 128B or larger. This

is because, the convolution kernels exhibit the significant reuse of different operands,

which can be better sustained with larger RFs, avoiding costly accesses to SPM and
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DRAM. However, increasing the RF size beyond 512B increases the EDP again, since

it is hard to efficiently utilize RF (i.e., finding a schedule that balances communication

latency with computation from the RF) while the energy cost to access RF increases.

The RF size of 256B demonstrates a balance in the trade-off and yield significantly

lower EDPs. Similarly, an SPM size of 512kB demonstrates lower EPDs. If an SPM

size is relatively small (e.g., 64kB or smaller) then, after reusing the data at the RF

level, the accesses mostly go to DRAM since there is little-to-no reuse at SPM level.

On the other hand, accessing a larger SPM significantly costs more energy and can

yield a large increase in the EDP, if RF size is smaller (e.g., consider a 512kB or

1024kB SPM and a 16B RF). Thus, dMazeRunner can be leveraged for exploring the

optimized designs.

2.8 Conclusions

This chapter has presented several aspects of enabling efficient accelerator designs,

especially the effectiveness of formulating a comprehensive design space for achieving

efficient executions and obtaining better hardware/software codesigns. The design

space needs to be comprehensive so that a vast range of hardware and/or software

configurations can be specified and explored and, consequently, highly efficient solutions

can be obtained. Instead of restricting the execution of applications like deep learning

models to one or a few specific dataflows, the proposed approach introduces formulation

of a comprehensive mapping space by covering spatial and temporal execution at all

levels of hierarchy within the architecture. The evaluations have shown that exploring

such a comprehensive design space helps achieve the dataflow that can adapt to

architecture configuration and functionality and shapes of tensors of the loops, thereby

improving the efficiency notably (e.g., reduction in the energy-delay product by an order

of magnitude). This is primarily because, as compared to a fixed mapping strategy, for
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an ML operator, the explored solutions can exhibit higher spatial parallelism, effective

interleaving of the communication latency with computations, and high data reuse of

various tensors exploited spatially and temporally, and thereby, achieve low latency or

energy consumption. Moreover, considering a broad architectural design space and

including them in mapping exploration for spatiotemporal execution can help achieve

a highly efficient and constraints-meeting solution. Further, the ability to formulate

mapping space comprehensively for a range of architectures and being able to explore

the mappings quickly (e.g., in few seconds) could help achieve adaptive execution

methods a.k.a. dataflows, and thereby, notably higher efficiency of hardware-software

codesigns in the design exploration process.
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Chapter 3

AGILE AND EXPLAINABLE DESIGN SPACE EXPLORATION

Effective design space exploration (DSE) is paramount for hardware/software codesigns

of domain-specific architectures that must meet strict execution constraints. For their

vast search space, existing DSE techniques can require excessive trials to obtain a

valid and efficient solution because they rely on black-box explorations that do not

reason about design inefficiencies. This marks the need for developing explainable

design methodology.

This chapter proposes Explainable-DSE – a framework for the DSE of accelerator

codesigns using bottleneck analysis. By leveraging information about execution costs

from bottleneck models, the proposed DSE is able to identify bottlenecks and reason

about design inefficiencies, thereby making bottleneck-mitigating acquisitions in further

explorations. This chapter describes the construction of bottleneck models for DNN

accelerators. Then, it also proposes an API for expressing domain-specific bottleneck

models and interfacing them with the DSE framework. Acquisitions made by the

proposed DSE systematically cater to multiple bottlenecks that arise in executions of

multi-functional workloads or multiple workloads with diverse execution characteristics.

By reasoning about obtained designs and their costs, the proposed framework optimizes

both the hardware and software configurations in a tightly coupled manner.

Evaluations of the proposed framework for recent computer vision and language

models show that Explainable-DSE mostly explores effectual candidates, achieving

codesigns of 6× lower latency in 47× fewer iterations vs. non-explainable DSEs using

evolutionary or ML-based optimizations. By taking minutes or tens of iterations, it

enables opportunities for runtime DSEs.
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Figure 3.1: DSE with (a) Non-feedback, (b) Unconstrained black-box, (c) Constrained

black-box, and (d) Explainable optimization, which leverages domain-specific bottle-

neck models.

3.1 Overview

Domain-specific architectures, e.g., for deep learning models, are deployed from

datacenters to edge. In order to meet strict constraints on execution costs (e.g.,

power and area) while minimizing an objective (e.g., latency), their hardware/software

codesigns must be effectively explored using an effective design space exploration

(DSE). However, the search space is vast (e.g., contain O(1029) solutions), with each

evaluation taking milliseconds or even hours [41]. For instance, [41] showed that a

TPU-like architecture has 1014 hardware solutions with modest options for design

parameters. For every hardware configuration, software space can also be huge. For

example, DNN layers can be mapped on a spatial architecture in O(1015) ways aka

dataflows [86] (also see discussion for Table 2.1 in Chapter 2), even after aggressively
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pruning the mapping space. Clearly, an effective exploration is needed to achieve

feasible and efficient solutions 1 quickly.

Recent DSE techniques for deep learning accelerators use non-feedback or feedback-

based, black-box optimizations. Non-feedback optimizations include grid search (in

[48, 49]) and random search (in [47, 50]). They evaluate different solutions for a

pre-set number of iterations and terminate (Fig. 3.1a). Black-box optimizations, on

the other hand, consider value of the objective before acquiring 2 the next candidates

(Fig. 3.1b-c). Thus, they can be more effective than non-feedback approaches. They

include simulated annealing [59], genetic algorithm [51, 53, 54], Bayesian optimization

[2, 41, 61–64, 155], and reinforcement learning [65–67, 72, 156]. These optimizations

can be unconstrained or constrained.

For vast accelerator hardware/software codesign space, existing techniques require

excessive trials for convergence or even finding a feasible solution. This is because

of lack of explainability during the exploration. By explainability, it is implied

herein the ability of the DSE to reason about, at each attempt, why a

certain design corresponds to specific costs, and what are the underlying

inefficiencies, and how they can be ameliorated. Existing DSE approaches are

non-explainable, as they lack information and reasoning about the quality of designs

acquired during DSE. They may be able to figure out which of the previous trials

reduced the objective but they cannot determine why? Consequently, in deciding

the acquisition targets for the next trial, they cannot reason about and estimate

the quality of the next possible candidates. In contrast, an explainable DSE would

1A feasible solution meets all constraints, and its hardware and software configurations are
compatible; An efficient solution minimizes objective; Agility refers to DSE’s ability to find desired
solutions quickly, which becomes crucial for exploring vast space in practical DSE budgets and
runtime DSEs.

2Acquisition refers to a step in a DSE algorithm that selects next set of candidate designs to
evaluate. §3.2.1 discusses the terminology for the DSE techniques.
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identify inefficiencies in the acquired design that incur high costs and also suggest

mitigation options that would improve designs and execution further. For instance,

for reducing the latency of a DNN accelerator, an explainable DSE could reason that

the latency is dominated by memory access time that cannot be hidden behind the

time for computation or communicating data on-chip. Therefore, it could strive to

reduce the latency further by increasing off-chip bandwidth or on-chip buffer size to

further exploit the available data reuse.

The goal of this chapter is to develop a framework for an agile and effec-

tive DSE of hardware/software codesigns of accelerators by introducing

explainablity in the DSE process.

Proposed approach to achieve explainable DSE is through the use of

bottleneck analysis. Enabling explainability in DSE with bottleneck analysis re-

quires bottleneck models . Conventional DSEs evaluate cost models that provide just

a single value like latency. In contrast, a bottleneck model is a graphical representation

of which and how various design parameters and intermediate factors contribute to

the total cost. For instance, a toy example tree in Fig. 3.2 illustrates how the time

for computation, memory accesses, and NoC communication are intermediate factors

derived from hardware/software parameters, leading to total latency. Thus, bottleneck
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models can provide rich information in an explicitly analyzable format. Bottleneck

models can also help find mitigation, i.e., when any factor (on-chip communication)

gets identified as a bottleneck, how to tune different design parameters based on

the workload execution-related characteristics (e.g., increase bit-widths of NoCs by

certain amount or increase physical links or time-shared unicast support). These

bottleneck models can be developed based on domain-specific information, which is

often embedded within experts-defined, domain-specific cost models (like [40, 121]) but

implicitly. Having the explicitly analyzable bottleneck models and their driving the

DSE can help DSE explain inefficiencies of acquired designs (referred to as bottleneck

analysis) and to make mitigating acquisition decisions.

For enabling DSE of deep learning accelerators using bottleneck analysis, proposed

approach overcomes the following shortcomings.

1) This chapter develops a bottleneck model for deep learning accelerators.

Taking latency minimization as an example, it is described what execution charac-

teristics of DNN accelerators need to be leveraged, how to construct a corresponding

bottleneck model, how its bottleneck graph provides insights in design/execution inef-

ficiencies, how to pinpoint bottlenecks, and what are mitigation options for identified

bottlenecks. By applying bottleneck analysis on software-optimized executions of each

hardware design, proposed DSE co-explores both hardware-software configurations of

DNN accelerators in adaptive and tightly coupled manner.

2) This chapter proposes an API for specifying domain-specific bottleneck

models and interfacing them with the DSE. Through proposed API, bottleneck

model of an architecture/system can be described as a tree corresponding to the

target cost. Navigating such tree enables the DSE to analyze the bottlenecks, relate

the bottlenecks with the design parameters, and reason about the desired scaling

for mitigation. For instance, by parsing a latency tree (Fig. 3.2), the DSE could
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reason that latency is a maximum value of the time taken for computations, on-chip

communications, and memory accesses; if computational time exceed other factors by

3×, then the related parameters (number of functional units in PEs and number of

PEs) may need to be scaled next accordingly.

The API can allow expert designers to systematically express their domain-specific

bottleneck models and integrate them in DSE while leveraging constrained exploration

framework. This helps overcome a limitation of previous DSEs using bottleneck analysis

in other domains like multimedia or FPGA-HLS [157–160] which lack such interface;

as search mechanisms were defined in domain-specific ways for their bottleneck models,

they could not be decoupled or reused for other domains.

3) This chapter proposes a generic framework for constrained DSE using

bottleneck models, with acquisitions accounting for multiple bottlenecks

in multi-workload executions. Previous DSEs using bottleneck analysis optimize

only a single task at a time, i.e., consider a single cost value of executing a loop-kernel or

a whole task and iteratively mitigate its bottleneck. However, when workloads involve

different functions of diverse execution characteristics, e.g., a DNN with multiple layers

or multiple DNNs, changing a design parameter impacts their contribution to overall

cost in distinct ways; considering just a total cost could not be useful. Also, mitigation

strategies to address layer-wise bottlenecks can lead to range of different values for

diverse parameters. So, proposed framework systematically aggregates parameters

predicted for mitigating bottlenecks in executions of multiple functions in one or more

workloads, for making next acquisitions. Lastly, the DSE exploits awareness about

constraints utilization, striving to explore among feasible solutions in the vast space

and finding more efficient solutions, without quickly exhausting the constraints.

Results: This chapter demonstrates proposed explainable and agile DSE framework

by exploring high-performance edge inference accelerators for recent computer vision
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and language processing models. By iteratively mitigating bottlenecks, Explainable-

DSE reduces latency under constraints in mostly every attempt (1.3× on average).

Thus, it explores effectual candidates and achieves efficient codesigns in minutes,

while non-explainable optimizations may fail to obtain even a feasible solution over

days. Explainable-DSE obtains codesigns of 6× lower latency in (36× less search

time on average and up to 1675×) 47× fewer iterations vs. previous DSE approaches

for DNN accelerators. By achieving highly efficient solutions in only 54 iterations,

Explainable-DSE enables opportunities for cost-effective and dynamic explorations in

vast space.

3.2 Accelerator Hardware/Software Codesign Exploration

3.2.1 DSE Problem Formulation and Terminology

Exploration of accelerator designs is a constrained minimization problem, where

the most efficient solution 3 corresponds to minimized objective (e.g., latency),

subjected to inequality constraints on some costs (e.g., area, power) and parameters p

of accelerator design [161]. Fig. 3.3 illustrates the DSE problem formulation. During

the optimization, every solution gets evaluated by cost models for objectives and

inequality constraints. The DSE technique needs to consider only feasible solutions

and determine the most efficient solution by processing several iterations (trials). It

is a discrete optimization since the search space is usually confined to presumably

effective solutions, e.g., power-of-two or categorical values of parameters. It is also

derivative-free optimization [2].

min obj(p), p = (p1, p2, ..., pn) ∈ Rn

subject to costi(p) ≤ constrainti; for i = 1, 2, ...,m

3In the accelerator design space exploration context, terms ”solutions”, ”designs”, and ”configu-
rations” are used interchangeably.
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Figure 3.3: Accelerator DSE as constrained minimization.

3.2.2 Accelerator Hardware/Software Codesigns DSE

Hardware/software codesigns can be explored by partitioning the search space and

optimizing software space as a subspace in a loop. So, the DSE technique needs to

find the best mapping of a task onto architecture and repeat the search with different

architectural configurations [162]. Partitioning enables exploration in reduced space

compared to exploring parameters from multiple spaces altogether. DSE techniques

for DNN accelerators explore hardware designs through non-feedback or black-box

optimizations like evolutionary or ML-based [41, 51, 53, 54, 61–63, 65–67, 72, 155].

Such approaches are also commonly used for designing or optimizing computing systems

in general [2, 56, 163–169]. For mapping DNNs on a design (subspace optimization),

they typically fix the way of execution or dataflow, e.g., in [61, 65, 67, 70–72, 157].

Hence, for processing each functionality (nested loop such as a DNN layer), these

techniques usually have just one mapping. Thus, they primarily optimize designs of

accelerator architecture, i.e., parameters for buffers, processing elements (PEs), and

NoCs.
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3.3 Limitations of Prior DSE Approaches

Non-feedback DSE approaches search used by previous techniques either exhaus-

tively over statically reduced space (e.g., grid search in [49, 170]) or randomly (e.g.,

in [47]). So, they do not consider any outputs like objective or utilized constraints

and terminate after using a large exploration budget. It is illustrated by Fig. 3.1(a).

On the other hand, black-box optimizations such as Bayesian Optimization (e.g.,

in [2, 41, 61–63]) consider values of the objective for previously tried solutions. It

is illustrated by Fig. 3.1(b)–(c). Considering the objective helps them predict the

likelihood of where the minima may lie; they acquire a candidate for the next trial

accordingly. The process repeats until convergence or the number of trials exceeding

a threshold. While black-box DSE could be more efficient than non-feedback DSE,

they all face the following limitations:

Previous DSE techniques lack reasoning about bottlenecks incurring high

costs: An efficient DSE mechanism should determine challenges hindering the reduc-

tion of objectives or utilized constraints. It should also determine which among the

many parameters can help mitigate those inefficiencies and with what values. However,

with objective as the only input, these black-box or system-oblivious DSEs can figure

out only which prior trials reduced objective. But, they do not reason about what

costs a solution could lead to and why – a crucial aspect in exploring enormous design

space. This challenge is exacerbated by the fact that execution characteristics of

different functions in workloads are diverse (e.g., memory- vs. compute-bounded DNN

operators, energy consumption characteristics). By considering just the total cost,

black-box DSEs cannot consider diverse bottlenecks in multi-modal or multi-workload

executions, which need to be addressed systematically.

Implications: A major implication of excessive sampling caused by lacking
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explainability is inefficiency of obtained solutions. Fig. 3.5(a) illustrates this

through a toy scenario, i.e., exploring the number of PEs and global buffer size for

a single ResNet layer. It shows an exploration done by earlier to later trials with

HyperMapper 2.0 [2] – an efficient, Bayesian-based optimizer. The figure shows that

even for a tiny space, acquired solutions are inefficient (high latency), as there is no

reasoning about underlying bottlenecks and their mitigation. So, even though DSE

has already acquired some better solutions before, the later acquisitions correspond

to inefficient solutions. As the design space becomes vast, the non-explainable DSEs

can require too many trials (at least, in thousands [2, 41, 65]), and they may still not

find the most efficient solutions. For example, Fig. 3.4(a) shows that the latency of

the solutions obtained by non-explainable DSEs can be up to 35× higher, even for

2500 trials (two days of search time). This is because, practical exploration budget is

fractional (thousands) compared to vast design space (quadrillions). By generating
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trials without understanding bottlenecks and their mitigation, most of the search

budget gets spent on excessive and likely ineffectual trials.

Lacking reasoning about inefficiencies can deprive the DSE of a tightly coupled

hardware/software codesign optimization. For instance, DSEs in [61, 65–67, 70–

72] mainly explore architectural parameters with black-box DSEs and use a fixed

dataflow for executions. 4 Fixing the execution methods limit the effectual utilization

of architectural resources when subjected to various tensor shapes and functionali-

ties [33, 95]. Consequently, DSEs may achieve architecture designs that are either

incompatible with the dataflow (infeasible solutions) or inefficient. Likewise, in

isolated co-optimizations, obtained HW design and dataflow are oblivious of each

other, leading to excessive trials and inefficient solutions.

For constrained optimizations, lack of awareness about utilization of con-

straints in black-box DSEs leads to exploring infeasible and inefficient solutions and

excessive trials. This is because DSEs cannot determine which constraints are vio-

lated, which regions could exhaust constraints quickly while not optimizing objective

much, and how configuring different accelerator design parameters could affect all this.

Fig. 3.4(b) illustrates this for an edge accelerator DSE subjected to power and area

constraints. For constrained optimizations like HyperMapper2.0 [2], out of 2500 trials,

only 18% of the evaluated solutions were feasible, and up to only 52% for constrained

reinforcement learning [65].

Another implication of excessive trials is inapplicability to dynamic DSE

scenarios. Excessive trials lead to low agility, as illustrated in Fig. 3.4(c). Non-

explainable DSEs consume very high exploration time, even weeks, while obtaining

solutions of lower efficiency. It makes existing DSE approaches unsuitable for dynamic

explorations (e.g., convergence within a few tens to 100 iterations). For instance,

4§3.2.2 and §3.11 provide background on HW/SW codesign DSE.
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[1] with (a) Prior techniques (HyperMapper2.0 [2]), and (b) Explainable-DSE, which

reasons about inefficiencies in achieved executions, limiting the search to crucial

parameters and tuning accordingly.

unlike one-time ASIC designs, deploying accelerator overlays over FPGAs (edge/cloud;

dedicated/multi-tenant) can benefit from dynamic DSEs, where constraints for DSE

and resource budget may also become available just before deployment.

3.4 DSE Using Bottleneck Analysis: Motivation and Challenges

3.4.1 Making DSE Explainable Through Bottleneck Analysis

Fig. 3.5(b) illustrates the same problem of designing a DNN accelerator as in

Fig. 3.5(a), but by using bottleneck analysis in the DSE. Before acquiring new

candidates, the DSE analyzes current design through the bottleneck model and

pinpoints the bottleneck in achieved latency. Then, it uses mitigation obtained from

the bottleneck model to make next acquisitions. A bottleneck, in the context of

the latency optimization for a deep learning accelerator, can be attributed to one of
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the execution factors, such as time consumed by computations, communication via

NoCs, and off-chip memory accesses with direct memory access (DMA) controller. For

instance, after evaluating the initial point (number of PEs, shared memory size) = (64,

64kB), the DSE can reason that the computation time of the design is 4.14× higher

than the time taken by off/on-chip data communication. From the mitigation strategy,

DSE concludes and communicates to the designers that it would scale the total number

of PEs next by at least 4.14×. 5 Since this is the only mitigation suggested, the

newly acquired and optimized design becomes (512, 64kB). By repeating this process,

the DSE informs that the previous bottleneck got mitigated and DMA-transfers

is the new bottleneck. Using the bottleneck model, the DSE considers execution

characteristics (like data accessed from off-chip memory and unexploited data reuse)

and mitigation for the current design point, adjusting the size of shared on-chip

memory or off-chip bandwidth. This iterative process continues. It not only enables

the DSE to characterize and explain DSE decisions but also reduces objectives at

almost every acquisition attempt, converging to efficient solutions quickly.

3.4.2 Challenges in Enabling DSE of Accelerators Using Bottleneck Analysis

Need bottleneck models for DNN accelerators. DSE using bottleneck

analysis requires bottleneck models. Unlike cost models used in black-box DSEs

that provide a single value, bottleneck models can provide rich information, in an

explicitly analyzable manner, about 1) how design parameters contribute to different

factors that lead to the total cost, and 2) mitigation options when any factor gets

identified as a bottleneck. Such bottleneck/root-cause analysis have been applied

for characterizing fixed designs and finding mitigation, e.g., for industry pipelines

5Just to note the power of explicit bottleneck mitigation strategies, if area constraint was unmet,
DSE could intelligently let communication time increase but meet constraints first through reduced
buffer/NoC sizes.
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and production systems, hardware or software for specific applications [97, 157, 171],

FPGA-based HLS [159, 160], overlapping microarchitectural events [172], and power

outage [173]. Likewise, optimizing DNN accelerators with bottleneck analysis also

require developing bottleneck models.

Need an interface to decouple domain-specific bottleneck models from a

domain-independent exploration mechanism and express them to DSE.

Once bottleneck models are developed, there needs to be a DSE framework that

can integrate such a domain-specific bottleneck model to drive the iterative search.

However, since bottleneck models are usually domain-specific, search mechanisms

provided by prior DSE techniques using bottleneck analysis [157–159] are implemented

too specifically for their domain. There needs to be an interface to decouple the

domain-independent search mechanism from domain-specific bottleneck models so

that designers can reuse and apply the same search mechanism for exploring designs

in new domains like DNN acceleration.

Need acquisitions accounting for mitigation of multiple bottlenecks in

multi-functional or multiple-workload executions. Prior DSE techniques using

bottleneck analysis (in other domains) [157–160] optimize only a single task at a time,

i.e., consider a single cost value of executing a loop-kernel or whole task and iteratively

mitigate arising bottleneck. However, when workloads involve different functions

of diverse execution characteristics, e.g., a DNN with multiple layers or multiple

DNNs, changing a design parameter impacts their contribution to the overall cost in

distinct ways; considering just a total cost may not be useful. Mitigation strategies to

address these layer-wise bottlenecks can lead to changing diverse parameters and a

range of values possible for the same parameter. Therefore, when the DSE makes its

next acquisitions, it needs to ensure that multiple bottlenecks arising from executing

different functions of target workloads are mitigated systematically and effectively.
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3.5 Explainable-DSE: Constraints-aware DSE Using Bottleneck Analysis

This section presents Explainable-DSE – This section presents Explainable-DSE –

a framework for an agile and explainable DSE using bottleneck analysis for optimizing

deep learning accelerator designs. First, this chapter discusses proposed framework’s

overall workflow and illustrate it with a walk-through example. Then, it describes how

its bottleneck analyzer processes bottleneck models, i.e., determines factors incurring a

high cost, parameters relevant to the bottleneck factors, and new values of parameters

that can reduce the cost. This chapter also introduces an API through which architects

can specify domain-specific bottleneck models, e.g., for analyzing accelerator execution

costs and bottleneck mitigation strategies. For bottleneck analysis involving the

execution of multiple workloads or multiple functions within a workload, it discusses

how Explainable-DSE aggregates the obtained parameters and their new values,

including considering bottlenecks of only execution-critical functions. The chapter
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Figure 3.7: Example walkthrough. a) A DNN and accelerator architecture parameters,

b) Analyzing bottlenecks for executing each layer/function, c) Aggregating bottleneck

mitigation for multi-functional/multiple workloads, d) Acquiring new candidates that

mitigate bottlenecks; e) Constraints utilization-aware update of the new solution.

then describes how the proposed framework considers inequality constraints when

updating the obtained solutions, prioritizing exploration of feasible regions. It also

provides an in-depth bottleneck model and bottlenecks mitigation strategies for

exploring low-latency designs of DNN accelerators using Explainable-DSE. Lastly, it

discusses how proposed approach can enable a tightly coupled accelerator/mappings

co-explorations.

3.5.1 Framework Workflow

Fig. 3.6 illustrates the workflow of Explainable-DSE. The DSE uses bottleneck

analysis to explore solutions that reduce a critical cost, denoted as CR. Critical

cost is usually an objective O that needs to be minimized, and optionally an unmet

inequality constraint value C. To reduce the cost, the bottleneck analyzer considers

the current solution (S) and analyzes cost-related bottleneck information (I). The
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analyzer identifies the bottleneck factors incurring higher cost value and finds the

scaling ”s” by which the objective/constraint value needs to be reduced (”s” is internal

to the analyzer, so not shown in Fig. 3.6). Then, the analyzer determines design

parameters (p′) crucial for mitigating the bottleneck and their values (v′). Workloads

can be multi-modal or usually involve multiple sub-functions (sf), e.g., the accelerator

needs to be optimized for different DNNs or various layers in a DNN. So, the DSE

applies bottleneck analysis to the costs of each sub-function individually and aggregates

the corresponding feedback obtained. This aggregation leads to a set of predicted

design parameters (p′′) and their respective values (v′′). Based on these predictions, a

new set of candidate solutions (CS) is derived for the subsequent acquisition. The

process iterates, as depicted in Fig. 3.6. Acquiring and evaluating candidates in the

CS is referred to herein as one ”acquisition attempt”. It is analogous to z sequential

DSE iterations if a CS contains z candidates. The current solution, S, is updated once

(from z candidates) at every acquisition attempt. When some inequality constraint

is not met, the framework considers the utilized budgets of constraints for acquired

candidates in updating the current solution. This approach enables the DSE to

prioritize reaching feasible subspaces. In Fig. 3.6, the introduction of new modules for

the proposed approach and corresponding information flow is illustrated through a

diagonal stride pattern and a different shade (red). The workings of these modules

are described next, accompanied by a walk-through example (illustrated in Fig. 3.7).

Additional information regarding the capabilities of the framework, current limitations,

and future works for further automation and enhancements are discussed in §3.13 and

§3.14, respectively.
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3.5.2 Framework Inputs and Outputs

Inputs: Information of the design space, constraints, objective, workloads, initial point,

and total iterations. Outputs upon convergence or termination: Optimized solution

and its costs.

Design Space: It defines the design parameters of type integer, real, or categorical.

Their possible values can be expressed as either a list or a mathematical expression.

Constraints and Objective: Users can define inequality constraints on multiple costs.

Proposed implementation currently optimizes a single objective. It can be extended

for multiple objectives through existing acquisition techniques.

Target System and Cost Models: System can incorporate arbitrary cost models and

subspace optimizations for populating costs. It can also provide costs at sub-functions

granularity, e.g., the latency of individual DNN layers. The proposed API (§3.5.3)

enables the seamless integration of the bottleneck models.

To demonstrate DNN accelerator design explorations, this work leverages existing

cost models and use them to evaluate all techniques. Accelergy [89] is used to obtain

the total area, energy per data access (for 45nm technology node), and maximum

power. The maximum power is obtained from the maximum energy consumed by all

design components in a single cycle. Accelergy provides technology-specific estimations

via plugins for Aladdin [174] and CACTI [175]. dMazeRunner infrastructure [40]

proposed in this disseration is used to obtain the latency and energy consumed by

mappings of DNN layers and for quick mapping optimizations for each architecture

design.

64



val

val
val

val

val

val

val

val

n1
n2

n3

n4

n5

n6 n7
n8

n9

n10

n11

n12
max

max
add

{
‘n2’: [p1],
‘n5’: [p2, p5, p6],
‘n6’: [p2, p5, p7],
‘n7’: [p2, p5, p8],
‘n8’: [p2, p5, p9],
‘n9’: [p3, p4],
…

}(a) (b)

p1:@func1(Scaling, ExecInfo, Config)

p13:@func13(Scaling, ExecInfo, Config)

def func4(Scale,ExecInfo,Config):
newConfig = copy(Config)
newConfig[p4] *= Scaling 
return newConfig

(c)

…

val

Figure 3.8: Proposed API through which designers or design automation tools can

specify a bottleneck model of a system. The information can contain: (a) Bottleneck

graph containing factors contributing to a cost, (b) Different parameters impacting the

factors, and (c) Handles to subroutines that calculate new values of the parameters.

3.5.3 Bottleneck Analyzer

Before each acquisition attempt, Explainable-DSE conducts bottleneck analysis on

the obtained solution from previous attempt. It uses the bottleneck model, which helps

pinpoint the execution bottlenecks and suggests options to mitigate them, ultimately

reducing costs. For instance, Fig. 3.7 demonstrates this exploration process for an

18-layer DNN, where nine layers have unique tensor shapes for execution-critical

operators (CONV and GEMM). Fig. 3.7(a) shows the architectural template and

parameter values of the current solution during the DSE. Fig. 3.7(b) displays the

bottleneck analyzer’s ability to identify bottlenecks for each DNN layer and estimate

which parameters should be updated with what specific values. This section further

explains how the analyzer works and presents an API through which designers can

specify their domain-specific bottleneck models for the DSE.

By evaluating the bottleneck model, the bottleneck analyzer determines (a) bot-

tleneck factors, (b) parameters that are most critical for reducing the costs of these

bottleneck factors, and (c) values of these critical parameters. Designers can provide
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the information for bottleneck models through an API that comprises up to three data

structures, as illustrated in Fig. 3.8. The first and the key data structure is a graph

of the bottleneck model, which outlines the underlying factors contributing to the

total cost. The second includes a list of related parameters for each factor. The third

contains handles to subroutines that predict the next values of parameters. When

some information is unavailable, such as how to predict the value of a parameter,

Explainable-DSE resorts to its black-box counterpart (e.g., sampling neighboring

values).

(a) Determining bottleneck factors from bottleneck model graph: A

bottleneck model is a graphical representation of which and how various factors

contribute to the cost of executing a workload on an accelerator, as depicted in

Fig. 3.8(a). It is represented as a tree whose nodes are mathematical functions like

addition, multiplication, division, and maximum. Each node typically represents a cost

factor, which is calculated from values of its children by applying the corresponding

mathematical function. Thus, the root node of the bottleneck model represents

the total cost and leaf nodes are hardware, software, or execution related design

parameters.

For example, Fig. 3.9 shows a simplified bottleneck model for a DNN layer

execution, where the root corresponds to the overall cost (e.g., latency). The total

cost depends on child nodes representing underlying cost factors. For example,

the total latency is determined as the maximum value among the computational

time, the total on-chip communication time, and the total DMA time for off-chip

memory accesses. The total DMA time, in turn, is additive and depends on the

off-chip footprint of different tensors and the bandwidth. Similarly, the time for

communicating data from on-chip buffers to PEs via NoCs is approximated with the

total data packets communicated to different workgroups and NoC bus widths. Leaf
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Figure 3.9: A simplified bottleneck model for analyzing the latency of a DNN layer

execution on a DNN accelerator. As compared to conventional cost models that provide

a single value, the graph-based bottleneck models can provide richer information in

an explicitly analyzable format and outline how hardware/software parameters relate

to total cost, allowing designers and the DSE to make informed decisions.

nodes in a bottleneck graph typically represent values of the design parameters from the

design space, such as hardware design parameters, application parameters like tensor

shapes and quantization bit-width, and the accelerator’s execution characteristics

for a given workload or application or the code optimization parameters. Execution

characteristics include data allocation to buffers, on/off-chip communication of data,

and unexploited reuse, etc. (§3.5.7) and obtained from mapping of a workload on the

accelerator.

During each acquisition attempt, the analyzer considers current solution and

populates the graph with the corresponding actual values. For each cost factor,

which is an intermediate node, the analyzer calculates its contribution to the total

cost as the ratio of its value to the total cost. The analyzer traverses the graph

and computes contribution of each factor based on the associated mathematical

operation. For instance, at a max node, it traces back to the maximum value; at
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an add node, it counts contributions proportionally. It identifies the factor with the

highest contribution as the primary bottleneck. The analyzer then calculates the

scaling ”s”, which is the ratio by which the cost of the bottleneck factor should be

reduced to alleviate bottleneck. In Fig. 3.9, DMA time dominates the total latency,

whereas the computational and on-chip communication time contributes to only 24.4%

and 25.9% of the total latency, respectively. The analyzer finds that the later factors

can be balanced by scaling down the DMA time, e.g., by a factor of 100% ÷ 25.9%

or 3.85×. Through traversal, the analyzer identifies the memory footprint of tensor

A as the primary bottleneck operand. The analyzer may also determine multiple

bottlenecks (based on decreasing order of their contributions) so that the acquisition

function can generate an adequate number of candidates.

(b) Selecting parameters associated with the bottleneck: To determine

which parameters impact specific bottleneck factors, the analyzer can traverse the

bottleneck graph, or designers can provide this information through a dictionary that

maps the node names/numbers to relevant parameters (Fig. 3.8b). In the example

bottleneck graph of Fig. 3.8(a), nodes ’n4’ and ’n9’ correspond to DMA time and the

off-chip footprint of Tensor A, respectively. They are associated with parameters ’p3’

and ’p4’ (e.g., ’L2 size’ and ’offchip BW ’ in Fig. 3.7a). Once the bottleneck factor

and mitigating parameters are identified, DSE can obtain new values from supporting

subroutines or evaluating the bottleneck path.

(c) Obtaining values of critical parameters for bottleneck mitigation:

Designers can provide handles to domain-specific subroutines that contain mitigation

strategies for different design parameters, as shown in Fig. 3.8(c). Each subroutine

calculates the new value of a parameter based on the current parameter value, the

scaling s required for reducing the bottleneck factor, and the execution characteristics

of the current design configuration (§3.5.7). For example, the function ‘func4’ can
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scale the off-chip bandwidth to reduce DMA time, and functions ‘func5’ to ‘func8’

can scale the bus width or NoC links to lower on-chip communication time. The DSE

can leverage these subroutines to predict bottleneck-mitigating values for acquiring

the next candidates.

While accelerator designers can specify bottleneck models in the proposed graphical

representation, design tools or machine learning-based approaches can be developed

for automatic construction of bottleneck models or mitigation options for designing

new processors and off-the-shelf or large-scale architectures (§3.14).

3.5.4 Addressing Bottlenecks in Multi-Functional and Multi-Workload Executions

As Fig. 3.7(b) illustrates, the analyzer performs bottleneck analysis on each

sub-function of workloads (DNN layer) one by one. Due to the diverse execution char-

acteristics of these functionalities, the predictions obtained for each sub-function can

be distinct, depending on the factors like available reuse and parallelism. Additionally,

mitigation options for multiple bottlenecks in executions of various DNN layers may

involve multiple values for the same parameter. Hence, an aggregation is required to

determine the next set of parameters and their values (Fig. 3.7c). The DSE employs

two methods for the aggregation/filtering of the predicted parameters and values:

(i) Aggregating different values of the same parameter: After analyzing the solution

S for multiple sub-functions (identifying bottlenecks and predicting mitigation), there

can be different predicted values of the same parameter. So, the final prediction

can be obtained by either iterating over some of these predicted values or applying

a function (maximum, minimum, average) on them. Choosing the maximum value

can lead to faster convergence, but it can favor a single sub-function and be overly

aggressive for others. For instance, selecting a new value as 16× (from options like

4×, 8×, 16×) of the current number of PEs can significantly reduce latency of a
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non-performance-critical DNN layer but not of other layers, while consuming higher

area and power. Thus, exploration can quickly exhaust the budget for constraints

without getting a chance to explore a considerable range of intermediate candidates

that could minimize the overall cost. Instead, selection of the minimum value as the

final prediction is opted (shown in Fig. 3.7c).

(ii) Aggregating parameters from only bottleneck sub-functions: Not all the sub-

functions or cost factors require improvement. Hence, Explainable-DSE allows focusing

on only the bottleneck ones, i.e., those contributing the most to the total cost. This

capability is achieved through two tunable parameters: K and threshold. The DSE

considers predictions from up to top-K sub-functions whose fractional contributions

to the total cost exceed a certain threshold. In target DNNs, the number of layers

with unique tensor shapes (l) can range from a few to several tens. So, K is arbitrarily

set to five and the threshold to 0.5*(1/l)*100%, considering predictions from layers

that consume higher portions of the cost. For the example in Fig. 3.7, the analyzer

considers mitigating bottlenecks from the top-5 layers that contribute at least 5.5% to

the total latency.

3.5.5 Bottlenecks-Guided Acquisitions of New Candidates

After aggregating predicted parameter values for mitigating bottlenecks, the DSE

populates the candidates CS to be acquired next. For simplicity, the acquisition

function samples a new candidate for each new parameter value. As Fig. 3.7(d)

shows, all but one parameter of the candidate has the same value as in the current

solution. This mechanism naturally facilitates an iterative search that adaptively tunes

among bottleneck parameters. It avoids a greedy local search [176] by the following

means. i) It limits exploration parameters to only a few (critical for addressing the

bottleneck); ii) It can predict values of larger step-size (non-neighbors) based on
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bottleneck mitigation analysis (whereas local search explores p immediate neighboring

values for all p parameters in the selected solution). Acquisitions by addressing multiple,

dynamic bottlenecks (different parameters to be optimized at each DSE iteration)

and exploring larger step sizes usually help avoid over-optimization within the local

neighborhood (converging to local optimal). §3.14 further discusses workarounds for

overcoming the bottleneck-oriented greediness in the search. With modular framework,

the designers may also specify other acquisition/update functions that act upon

bottlenecks-mitigating parameters. When acquiring a candidate, if a predicted value

is not present in the defined design space (e.g., non-power-of-2), the DSE rounds it up

to the closest value.

3.5.6 Constraints-Budget Awareness in Updating the New Solution

When exploring a vast space under tight constraints, initially acquired solutions

usually fail to meet some constraints (e.g., low-area, high-latency region). To effectively

explore the space, the DSE accounts for the constraints budget when selecting the new

solution, which, in turn, impacts the acquisitions of new candidates. In determining the

new solution among the explored candidates, the DSE first checks whether the acquired

candidates meet all constraints and by what margin. If any candidate does not meet

all constraints, it selects a candidate that uses the least constraints budget as the new

solution. The constraints budget is calculated as the average of the utilized constraint

values that are normalized to the constraint thresholds. Such accounting is illustrated

in Fig. 3.7(e) - scenario 1. Further, for monomodal cost models, when a candidate

(corresponding to the new value of some parameter) violates more constraints than the

obtained solution, the DSE can stop further exploration for that parameter’s range.

Thus, by prioritizing the feasibility of solutions, the DSE limits acquiring solutions

that optimize the objective at the expense of violating constraints. When multiple
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candidates satisfy all constraints (scenario 2), the DSE selects the one (as the new

solution) that achieves the lowest objective value with a lower constraints budget, i.e.,

the smallest value for objective×constraints budget. Such a strategy can help avoid

greedy optimization that chases marginal objective reduction, seeking more promising

solutions without quickly exhausting the constraints.

3.5.7 Bottleneck Mitigation for Designing Deep Learning Accelerators

This work uses the latency of executing a DNN as an example cost for describing

bottleneck mitigation for optimizing DNN accelerator/mapping codesigns. It is

described herein what information about the latency can be analyzed for constructing

a bottleneck model and predicting new values to mitigate various bottlenecks.

Information embedded in bottleneck model: The bottleneck model incorporates

execution characteristics of an optimized mapping of a DNN layer onto an architecture

design. They include:

• T comp T comm, T dma: Total time consumed by computations on PEs, communi-

cating data via NoCs, and accessing data from off-chip memory via DMA, respectively.

• Accel freq: Frequency of the accelerator (MHz)

• data offchip: Data (bytes) accessed from off-chip, per operand

• data noc: Data (bytes) communicated via NoC, per operand

• NoC groups needed: Maximum number of concurrent links that can be provided

for communicating unique data to different PE-groups; one variable per operand.

• NoC bytes per group: Size of the data that can be broadcast to PEs within every

workgroup of PEs; one variable per operand.

Using above information, a bottleneck graph can be created as illustrated in Fig.

3.9. Typically, this information is available from experts-defined cost models like

[40, 89, 121]. If not, it may be obtained through similar analysis, hardware counters,
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or ML models.

Dictionary of affected parameters: It contains different factors contributing to

the latency as keys and a list of relevant parameters as values. For example, the

computation time is affected by the number of PEs and functional units in PEs. The

time consumed by NoC communication is affected by the concurrent unicast links in

NoCs, bit-widths of NoCs, and size of the local buffer or RF. The buffer size impacts

the exploited reuse and the size of the data to be communicated. DMA time is affected

by the bandwidth for off-chip memory accesses and the size of the shared memory.

Determining new values of accelerator design parameters: For a design con-

figuration, analyzing the bottleneck model of a cost provides s, which is the scaling to

be achieved by reducing a bottleneck factor’s cost. X current and X new indicates

the current and predicted value of a parameter X, respectively. X is a parameter im-

pacting the bottleneck factor (obtained from dictionary). This chapter next describes

the calculations for values of various design parameters.

• PEs: The number of PEs required can be calculated directly from the needed

scaling. PEs new = s ∗ PEs current.

• Off-chip BW: Bandwidth (BW) for off-chip and on-chip communication is obtained

from the number of data elements communicated per operand and the target scaling

factor. E.g.,

scaled T dma = T dma÷ s;

footprint = sum(data offchip);

bytes per cycle = footprint÷ scaled T dma

offchip BW new = bytes per cycle ∗ Accelerator freq

• NoC Links and Bit-width: For DNN accelerators, separate NoCs communicate

different operands, each with multiple concurrent links for various PE groups. For

every NoC, the maximum number of PE-groups with simultaneous access and the total
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bytes broadcast to each group are obtained from the cost model [40]. If communication

time is a bottleneck, the operand causing it (’op’) is available from the bottleneck

analysis of the graph. Then, for the corresponding NoC, its width (bits) is scaled to

make the broadcast faster based on the needed scaling. The new value is clamped to

avoid exceeding the maximum width feasible for a one-shot broadcast.

max width feasible = exec info[noc bytes per group][op] ∗ 8

width scaled = noc width current ∗ s

noc width new = min(width scaled,max width feasible)

Similarly, total unicast links needed by the NoC for op are calculated from required

concurrent accesses by PE groups.

max links feasible = exec info[noc groups needed][op]

links scaled = noc unicast links current[op] ∗ s

unicast links new[op] = min(links scaled,max links feasible)

Whenever the number of PE-groups requiring different data elements exceeds the

available unicast links (by V×), the data is unicast with time-sharing (V times) over

configurable NoC (as in Eyeriss [4]) to facilitate the mapping. Parameter virtual

unicast links indicates time sharing over a unicast link, which can be set as number

of time sharing instances (V ).

• Sizing RFs and Memory: The total NoC communication time can be reduced by

increasing the bottleneck operand (op)’s reuse in the RF (register file or local buffer)

of the PEs. Increasing the reuse by R requires (R×) larger chunks of non-bottleneck

operands, which need to be stored in the RF and communicated via other NoCs.

Using the information about non-exploited (available) reuse of the bottleneck operand

and the required scaling, the new RF size can be calculated as:

target scaling = min(max reuse available RF [op], S)

RF size new =
∑

opi
dexec info[data RF ][opi]∗
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target scaling ÷ reuse available RF [opi]e

The calculation is similar for the global buffer (scratchpad memory), except for the

targeted scaling. In off-chip data communication, multiple operands are communicated

one by one via DMA (unlike simultaneously by NoCs per operand). So, the targeted

scaling of the scratchpad depends on the bottleneck operand’s (with remaining reuse)

contribution (f) to the total off-chip footprint. The speedup/scaling achievable through

exploiting reuse (A) can be approximated with the Amdahl’s law as:

A = (s ∗ f)÷ (1− s + (s ∗ f))

target scaling = min(max reuse available SPM [op], A)

SPM size new =
∑

opi
dexec info[data SPM ][opi]∗

target scaling ÷ reuse available SPM [opi]e

Explainable-DSE workflow and bottleneck analysis and mitigation for DNN accel-

erators were implemented in python. It allows easy interfacing with the cost models

for DNN accelerators. Since the implementation of the bottleneck analysis module and

the bottleneck-guided DSE is external to the cost model, they could be extended to

interface with other accelerator cost models like MAESTRO [121] that make the execu-

tion characteristics available (e.g., bandwidth, Ops, data packets to be communicated).

§3.14 and §3.12 discuss such specification efforts for bottleneck models.

3.5.8 Tightly Coupled Hardware/Software Codesign Explorations

Efficient codesign requires optimizing both the hardware configurations and map-

pings in a coordinated manner. However, when using black-box DSEs, these configura-

tions are typically explored in a loosely coupled manner. In other words, the acquired

candidates usually do not address inefficiencies in the achieved execution with their

co-optimization counterparts. For example, the acquired values of the off-chip/NoC

bandwidth may be inefficient or incompatible with the selected loop tile configuration
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(in the same/previous trials in the mapping optimization), resulting in significantly

higher communication time and total latency.

To address these inefficiencies, the DSE integrates mapping space optimizations

and explores HW/SW codesign in a tightly coupled manner through bottleneck-guided

exploration. The usage of bottleneck models allows reasoning about design inefficiencies

for the objective optimized by a co-optimization counterpart. For example, the DSE

considers software optimization as a subspace for iteratively optimizing hardware

configurations. For a hardware configuration, when the DSE optimizes mappings

through explorations or even a fixed schema, it mostly leads to efficient executions

that can adapt to the tensor shapes and workload characteristics (reuse, batching,

parallelism, etc.) for the selected hardware configuration. Then, the DSE uses

bottleneck models that consist of both hardware and software/execution parameters.

The DSE finds bottlenecks in the executions optimized by the mapping optimizer.

Then, in the next attempt, the DSE acquires new hardware candidates such that

they address bottlenecks in the executions optimized previously through software

configurations. Once a new hardware design is updated as the current solution,

software configurations are optimized again in tandem. Consequently, this approach

leads to an efficient codesign for diverse tensor shapes and workload characteristics.

For efficient exploration of hardware/mapping codesign within practical budgets,

DSE needs to explore quality mappings quickly. Proposed approach builds on previous

research on mappers for DNN accelerators that eliminate infeasible and ineffective

mappings by pruning loop tilings and orderings (detailed in §3.9, §3.10). For fast

mapping optimizations, the proosed DSE has integrated and extended dMazeRunner

[40], which can find near-optimal solutions within seconds. Mappers like dMazeRunner

[40], Interstellar [177], or ZigZag [170] consider comprehensive space, optimally prune

loop orderings, and prune tilings based on the utilization of architectural resources
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(PEs, buffers, non-contiguous memory accesses). Then, they linearly explore the pruned

space. However, one challenge with their fixed utilization thresholds for pruning is

that it may lead to a search space that contains either too few mappings (e.g., tens) for

some DNN layers or too many (many thousands) for others. To address this challenge,

these search hyperparameters of dMazeRunner are adusted automatically to formulate

the mapping search space that contains up to the top-N mappings based on utilization

thresholds. N is the size of pruned mapping space formulated by adjusting thresholds

for pruning the search space iteratively, which must be within a user-specified range,

such as [10, 10000]. These mappings are then evaluated linearly, as in dMazeRunner

[40] or Timeloop [47]. This approach helps achieve quality mappings by pruning

ineffectual methods like in dMazeRunner/Interstellar, while also ensuring a reasonably

large space of high-quality mappings as per specified exploration budget.

3.6 Experimental Methodology

• Benchmarks: Eleven deep learning models are evaluated for Computer Vision (CV)

and Natural Langugage Processing (NLP) tasks [32]. CV models include ResNet18,

MobileNetV2, and EfficientNetB0 [10] (light) and VGG16, ResNet50, and Vision

Transformer [178] (large) for classifying ImageNet images. The light and large labels

differentiate models based on inference latency and total computations. For object

detection, recent models like FasterRCNN-MobileNetV3 [179] and YOLOv5 [180]

(large) are evaluated. NLP models include Transformer for English-German sentence

translation [13] and BERT-base-uncased [14] for Q&A on SQuAD dataset. Facebook

wav2vec 2.0 [181] is also evaluated for automatic speech recognition (ASR). Their

DNN layers are 18, 53, 82, 16, 54, 86, 79, 60, 163, 85, and 109 respectively. Models

are obtained from PyTorch and Hugging Face [182].

• Design space: Table 3.1 lists the design space of a DNN accelerator for inference
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Table 3.1: Design space for edge DNN accelerators.

Data: int16; Freq. 500 MHz; Constraints: Throughput>=40/10 FPS (vision

light/large), 120/530/176k samples/second (NLP: Transformer/BERT/ wav2vec2);

Area < 75 mm2; Max. power < 4W. Objective: Minimize latency.

Parameter Values Options

PEs 64, 128, ..., 4096 7

L1 buffer (B) 8, 16, ..., 1024 8

L2 buffer (kB) 64, 128, ..., 4096 7

Offchip bandwidth

(MBPS)

1024, 2048, 4096, 6400, 8192,

12800, 19200, 25600, 38400, 51200
10

NOC datawidth 16*i; i: [1, 16] 16

Physical unicast (×4) PEs*i / 64; i: [1, 64] 644

Virtual unicast (×4) 23i; i: [0, 3] 44

at the edge. Like existing accelerators, four dedicated NoCs are considered for a total

of four read/write operands [33]. The number of links for concurrent or time-shared

unicasting is per each NoC. To limit the design space for related techniques, the number

of unicast links are expressed as a fraction of total PEs. Execution constraints are

selected based on the requirements for ML benchmarks [32] and designs of industrial

edge accelerators for ML inference, e.g., [183, 184]. The objective is set as minimizing

the latency of the single-stream execution [32].

• DSE techniques: Explainable-DSE is evaluated against previous accelerator DSE

frameworks using constrained optimizations - Hypermapper 2.0 [2] and Confuciux [65]

for reinforcement learning (RL). Confuciux limits the total parameters to two, works

with a single constraint, and requires the same number of values for all parameters.

So, its implementation is generalized for evaluations. Proposed approach is also

evaluated against non-feedback or black-box approaches like Grid search, Random
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search, Simulated annealing (Scipy [185]), Genetic algorithm (Scikit-Opt [186]), and

Bayesian optimization [187]. All techniques are evaluated on a Dell precision 5820

tower workstation. Like previous DNN accelerator DSEs, the cost models [40, 89]

were used. The system for evaluating the candidates with cost models was the same

for all techniques.

•Mapping optimizations and codesign explorations: Prior works mostly used

a fixed dataflow, such that exploration time is primarily spent on optimizing hardware

configurations, while getting efficient mappings with fixed schema. So, first the

mapping technique is fixed as an optimized output stationary dataflow (SOC-MOP)

[45] for all approaches. Then, the codesign with Explainable-DSE is demonstrated

by a tightly coupled optimization of both the hardware and mapping configurations.

Obtained codesigns are also compared with those obtained by black-box approaches.

Black-box codesign DSE explores hardware configurations with two techniques that

were found effective: random search and HyperMapper 2.0. §3.10 details setup for

an effective black-box exploration of mappings in a comprehensive yet highly pruned

space of feasible/effectual mappings. For mapping each DNN layer on every hardware

configuration, black-box DSE evaluations use Timeloop-like random search for 10,000

mapping trials, as it was found effective in quickly obtaining high-quality mappings

(§3.10).

• Exploration budget: A total of 2500 iterations are considered for statically finding

the best solutions. Dynamic DSE capabilities are also analyzed by explorations in the

total 100 iterations.
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Figure 3.10: Explainable-DSE obtained codesigns of 6× lower latency.
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Figure 3.11: Explainable-DSE with fixed dataflow and codesigns reduce search time

by 53× and 103× (minutes vs. days–weeks).

3.7 Results and Analysis

3.7.1 Explainable-DSE Obtained Codesigns of 6× Low Latency in 47× Less

Iterations

Fig. 3.10 illustrates the latency obtained by different techniques for static explo-

ration. By exploring among quality solutions, Explainable-DSE obtained 6× more

efficient solutions, on average, as compared to previous approaches, and up to 9.6× over

random search and 49.3× over Bayesian optimization. Even when dataflow (schema

for optimized mappings) was fixed for all techniques, it obtained 1.77× lower latency

on average and up to 7.89×. By applying bottleneck analysis on workload executions

at every acquisition attempt, Explainable-DSE could determine parameters critical for

improving efficiency. Thus, it can effectively reach high-reward subspaces among the

vast space. Fig. 3.12 illustrates this with latency reduction obtained over iterations

by taking examples of two models, EfficientNet for CV and Transformer for NLP.
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Figure 3.12: Latency reduced over iterations for (a) EfficientNet; (b) Transformer.

With objective reduction at almost every attempt, the Explainable-DSE converges

to quality solutions early on (some tens of iterations) and usually of better efficiency.

For instance, obtained solutions have 6.6×-35.1× lower latency for EfficientNet, as

compared to the DSEs with fixed dataflow and 2.1×-9.7× as compared to black-box

co-optimizations. Overall, at every attempt, it reduced the values of objective for

feasible acquisitions by geomean 1.30× and 1.32× for fixed and co-explored map-

pings (as shown in Table 3.2). Acquisitions by non-explainable techniques, being

bottlenecks-unaware, do not focus much on defacto promising subspaces. In fact, in

some of the evaluations for Bayesian optimization, random search, and constrained

RL, the reduction in the objective throughout the DSE iterations was negative (Table

3.2). They acquired candidates without understanding bottlenecks, out of which many

were feasible but corresponded to lower efficiencies than the previously encountered

best solutions.

Fig. 3.11 shows the total time (bars) taken by DSE techniques. Through constraints

accommodation and systematically mitigating bottlenecks in multi-functional workload
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Table 3.2: At every acquisition attempt, Explainable-DSE reduces objective by 30%

vs. ∼1.4% by non-explainable techniques.

N/A is indicated when a technique could not find a single feasible hardware solution.

DSE Technique ResNet18 MobileNetv2 EfficientNet VGG16 ResNet50
Vision

Transformer

FasterRCNN-

MobileNetv3
YOLOv5 Transformer BERT Wav2Vec2 Average

Grid Search-FixDF 1.71% 1.03% 1.07% 1.21% 1.25% 1.41% 0.71% 0.55% 0.98% 1.04% 1.07% 1.09%

Random Search-FixDF 0.52% -0.87% 7.34% -2.26% 4.69% -4.29% -1.41% -0.90% 0.01% 0.97% -1.45% 0.21%

Simulated Annealing-FixDF N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Genetic Algorithm-FixDF N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Bayesian Optimization-FixDF 11.26% 26.57% 19.57% 19.22% -1.09% -4.89% -10.01% -12.28% 10.15% -0.27% 11.33% 6.32%

HyperMapper 2.0-FixDF 5.32% 1.21% 0.44% 2.67% 4.94% 4.86% -0.20% 0.87% 1.40% 3.35% 1.18% 2.37%

Reinforcement Learning-FixDF -0.75% -4.13% 5.18% -2.51% -2.97% -10.47% 0.67% 1.66% 4.62% 0.50% -0.50% -0.79%

Random Search-Codesign -0.07% -0.29% 0.14% 0.44% 0.33% 0.57% 0.23% 0.91% 0.48% -0.24% 0.02% 0.23%

HyperMapper 2.0-Codesign 0.56% 0.46% 0.59% 0.64% 0.68% 0.68% 0.72% 0.76% 0.43% 0.52% 0.73% 0.62%

ExplainableDSE-FixDF 53.54% 21.92% 20.48% 52.42% 15.32% 31.74% 23.73% 21.54% 30.96% 40.66% 21.44% 30.34%

ExplainableDSE-Codesign 30.50% 23.45% 32.10% 32.03% 18.77% 46.29% 27.03% 18.78% 26.19% 47.30% 46.70% 31.74%

executions, explorations quickly converged or terminated while achieving even more

efficient solutions. For example, Explainable-DSE with fixed and optimized mappings

explored about only 59 and 54 designs, respectively (shown by triangles; ∼2500 for other

techniques). It led to search time reduction of 53× and 103× on average over black-box

explorations, when using fixed dataflow for all techniques and hardware/mapping co-

optimization, respectively. Maximum reduction in the search time was up to 501× and

1675×, respectively. Using modest information on mitigating bottlenecks, explainable

DSEs consumed only 21 and 64 minutes, on average. In fact, they achieved the most

efficient solutions for BERT under just two minutes!

3.7.2 Including Software Design Space in the Exploration Enables 4.24× Better

Solutions

With the availability of exploration budget (by a drastic reduction in the search

time), hardware/software codesigns can truly be enabled by optimizing both of them

in a tightly coupled manner. Codesigns obtained with Explainable-DSE reduced

objective by 4.24× on average as compared to using a single optimized mapping
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per DNN operator. The higher efficiency emanates from achieving better mappings

tailored for processing various DNN layers (different functionality and tensor shapes

of DNN operators) on the selected hardware configuration. They leverage higher

spatial parallelism and more effectively hide data communication latency behind

computations as compared to a pre-set dataflow. Further, mapping optimizations

reduce the objective considerably without necessarily increasing hardware resources.

Thus, by having a more constraints-budget on hand, the DSE was able to reduce the

objective further (also evident in Fig. 3.12a).

For exploring comprehensively defined vast space of architectural configurations

with non-explainable DSEs, presetting dataflow can lead to many infeasible solutions

(§3.7.3). Note that infeasible solutions are not just hardware configurations with

exceeding constraints like area or power. The designs can also be infeasible when a

generated hardware configuration is incompatible with the used software, i.e., dataflow

for mapping. For instance, in configurations generated by non-explainable DSEs, the

total number of links for time-shared unicast was often lower than that needed by

spatial parallelism in the dataflow used for mapping. That is exactly why a codesign

or joint exploration with the software is important.

Black-box co-optimizations incorporated mapping explorations and reduced latency

of obtained solutions further by 2.33× for HyperMapper 2.0 and 2.63× for random

search, as compared to their DSEs using a fixed schema for optimized mappings.

It is primarily because of the availability of more constraints-budget at hand, as

discussed before. The co-optimizations also alleviated aforementioned challenge of

mapping-hardware incompatibility. As Fig. 3.13 shows, with software optimization

in the loop, the black-box co-optimizations find more feasible designs than black-

box DSEs using a fixed mapping schema, when allowed to explore hardware design

configurations for the same number of trials. However, even after 2500 trials for
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exploring hardware configurations and 10,000 trials for exploring mappings of each

DNN layer on every hardware configuration, the latency of codesigns obtained by black-

box approaches are still 1.6× higher than the codesigns obtained by Explainable-DSE,

while consuming 103× more search time (taking 7-16 days for four workloads). Key

reasons for such effective explorations by Explainable-DSE include generating fewer yet

objective-reducing trials and tightly coupled codesigns. As Explainable-DSE leverages

the domain knowledge, its generated designs continually address arising execution

inefficiencies, converging in 47× less iterations. In black-box co-optimizations, the DSE

is loosely coupled, as the generated hardware configuration is not necessarily tailored

to work best with the optimized mappings (from the previous/same trial for the

hardware DSE). In contrast, tightly coupled codesign exploration in Explainable-DSE

finds hardware configurations that alleviate inefficiencies in the workload executions

optimized previously by mappings; Once new hardware configuration is generated,

mapping exploration strives to utilize hardware resources effectively, lowering costs

further. And, this repeats. Thus, optimizations for both hardware and software

configurations strive to reduce inefficiencies in the execution optimized by their

counterpart.

Although optimizing the mappings for every hardware design requires additional

search time, the overall increase for exploring codesigns with Explainable-DSE was

only 3× on average (from 21 minutes to 64). In fact, for all except large object

detection models, the DSE time increased from 16 minutes to only 26 minutes. One

reason is that the mappings can be quickly evaluated with analytical performance

models (e.g., a minute each for several hundred to a few thousand mappings) and

concurrent execution with multiple threads [40] (subjected to execution on four cores

at maximum in the evaluations). Moreover, applying bottleneck analysis on efficient

mappings helped obtain efficient designs faster (1.1× lower iterations for hardware
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Figure 3.13: Most acquisitions by Explainable-DSE met area and power constraints,

as compared to non-explainable techniques. Solutions obtained by all but Explainable-

DSE mostly did not meet strict throughput requirements.

designs on average, and up to 1.9×). Whenever the DSE for codesigns evaluated

a similar number of architecture designs as proposed DSE with fixed dataflow, it

went on to explore even more efficient solutions (e.g., 2.33× lower latency for Vision

Transformer).

3.7.3 By Considering Utilization of Constraints, DSE Mostly Acquires Feasible

Solutions Without Exhausting Constraints Quickly

Non-explainable black-box optimization approaches, e.g., with Genetic Algorithm

or Bayesian Optimization, did not know which configurations could likely lead to

feasible subspaces. Therefore, even after exploring over days, they almost did not

obtain a single feasible solution. When considering only area and power constraints,

feasibility of the explored solutions was higher for mostly all techniques (Fig. 3.13),

e.g., 15% for random search and 50% for constraints-aware reinforcement learning.

However, when considering throughput requirement for DNN inference, the feasibility

of the explored solutions was barely ∼0.1%–0.3%. By exploring mappings, the black-

box codesign optimizations addressed the challenge of mappings being incompatible

for the obtained hardware configurations. Thus, they improved feasibility by 2×-5×,
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Table 3.3: Latency minimized by DSE techniques in 100 iterations.

Explainable-DSE evaluated ∼54 solutions. Designs obtained by Non-Explainable DSEs were

low-throughput (shaded values) and incompatible with used dataflow (dashes). More

importantly, * denotes that none of the obtained candidates by a non-explainable DSE met

even area/power constraints.

DSE Technique ResNet18 MobileNetv2 EfficientNet VGG16 ResNet50
Vision

Transformer

FasterRCNN-

MobileNetv3
YOLOv5 Transformer BERT Wav2Vec2

Grid Search-FixDF 278 73.4 92.0 3650 747 1973 1625 1477 251 780 1933

Random Search-FixDF -* 197 694 41912 626 1376 3152 7754 157 1044 2357

Simulated Annealing-FixDF -* -* -* -* -* -* -* -* -* -* -*

Genetic Algorithm-FixDF -* -* -* - -* - - -* -* -* -*

Bayesian Optimization-FixDF - - - - - - - - - - -

HyperMapper 2.0-FixDF 53.3 46.5 135 1339 493 1308 13582 1142 171 663 912

Reinforcement Learning-FixDF - - 360 - - - 21150 18082 143 1428 1428

Random Search-Codesign 69.6 12.7 9.5 870 209 857 224 218 244 240 1427

HyperMapper 2.0-Codesign 63.1 5.1 10.3 1233 87.3 1084 830 348 133 637 1945

ExplainableDSE-Codesign 11.2 5.7 4.3 109 54.9 233 89.2 92.1 76.2 121 494

but the overall feasibility was still ∼0.6%. Such low feasibility for DSE in humongous

space is presumably caused by not accommodating constraints during exploration

and bottlenecks-unaware acquisition trials. Contrarily, Explainable-DSE prioritized

to meet the constraints for its acquisitions and update of the new solutions, which

helped avoid infeasible subspaces. Plus, addressing bottlenecks in executions helped

acquiring high-performance solutions. Hence, 87% and 15% of solutions explored by

Explainable-DSE codesigns were feasible when considering area and power constraints

and all the three constraints, respectively. For DNNs like BERT and MobileNetV2,

89%–98% of the explored solutions met area and power constraints. Once Explainable-

DSE achieved a solution that met all constraints, it always ensured to optimize further

with a feasible solution.

3.7.4 Enabling Efficient Dynamic Exploration in the Vast Space

Table 3.3 shows latency of solutions achieved in 100 iterations by different tech-

niques. Under a short exploration budget, non-explainable techniques did not find a
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feasible solution (shaded values). Even after ignoring intense throughput requirements,

most techniques could not find feasible solutions. Contrarily, by exploring spaces

where candidates utilize low budget of constraints, Explainable-DSE quickly landed

feasible solutions. Black-box approaches explored feasible codesigns, but they did not

meet throughput requirements. On the other hand, by addressing the bottlenecks in

multi-functional executions, Explainable-DSE achieved solutions of one to two orders

of magnitude lower latency over other techniques.

3.8 Case Study: Efficiency of the Designs Achieved by DSE

Methodology: This study compares the efficiency of designs obtained by proposed

DSE ( §3.7; Fig. 3.10) to those of edge AI accelerators. The DSE can only explore

designs for the spatial architecture templates used by the cost models (e.g., in [40,

47, 89, 121]). Therefore, to make a fair comparison, only those edge accelerators with

similar architectural features are considered. Specifically, two edge accelerators are

compared against: 1) Coral Edge TPU [3], a state-of-the-art industrial edge accelerator

platform developed by Google, and 2) Eyeriss [4], an efficient edge accelerator that

incorporates several special optimizations for high energy efficiency and low latency.

While novel edge accelerators have been developed recently, they typically con-

tain several (micro)architectural features for specialization (e.g., mixed-precision

computations or sparsity exploiting features [33]) that are not modeled (accurately)

by the commonly used/available latency models for edge AI accelerators. The ar-

chitectures considered here are suitable for the comparison, as they are commonly

used as a template in the system-level tools for design and execution modeling

[40, 47, 65, 103, 121, 177]. Table 3.4 compares the architectural features and execution

optimizations for the Edge TPU, Eyeriss, and the template architecture used by the

DSE cost models. The results for Edge TPU were obtained from the performance
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Table 3.4: Comparison of architectural features and execution optimization for edge

AI acceleration.

Feature Edge TPU Eyeriss DSE

Data Precision 8b* 16b 16b

Technology - 65nm 45nm

PEs Scalar MAC Scalar MAC Scalar MAC

Temporal Reuse Yes Yes Yes

Spatial Reuse
Data Distribution

and Reduction

Data Distribution

and Reduction

Data

Distribution

Mapping

Optimizations

Automatic

(TFLite)
Fixed-Style Automatic

Hardware-Mapping

Co-optimization
No Yes Yes

Accelerator-DNN

Codesign
Yes† No No

Frequency (MHz) 125-500 100-250 500

∗ Edge TPU results are scaled to match 16b precision used in comparison.

† For Edge TPU, the EfficientNet-EdgeTPU model is codesigned.

¶ In lack of information about the actual power consumed by edge TPU for different models, 1.4W

power is considered (as reported for MobileNetV2 in the edge TPU datasheet).

benchmarking of TPU-optimized models [188], and the results for Eyeriss chip were

obtained from its evaluations [4].

Results: Fig. 3.14 shows performance achieved by all three designs and the

resultant energy efficiency and area efficiency. The results demonstrate that, on

average, codesigns obtained by the DSE attain 3.7× higher throughput than the Edge

TPU. It is due to the DSE’s ability to analyze execution bottlenecks and optimize both

mappings and hardware configurations, such as NoC configurations/bandwidth and
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buffer sizes. The DSE-achieved designs also required more than an order of magnitude

less on-chip area, presumably due to allocating significantly smaller buffers and fewer

MAC units (e.g., considering Edge TPU configurations studied in [189]). The overall

area efficiency is higher by about 14× for MobileNetV2 and 49× on average due to a

high-throughput execution for VGG-16. Although the DSE was focused on minimizing

latency, energy efficiency of its designs matches that of the EfficientNet-Edge TPU

codesign, and is even higher by 2.9× for VGG-16.

When compared to Eyeriss, the DSE achieves designs of lower latency (with

similar area/power budgets), and improves area efficiency by up to 11.84× and energy

efficiency of VGG-16 by up to 1.33×—while not incorporating additional efficiency-

gaining features as in Eyeriss. For instance, Eyeriss leverages frequency scaling, power

gating, zero skipping, and compression (for up to 86% sparsity in AlexNet layers).

Thus, Eyeriss achieves about 2×–3.75× higher energy efficiency when compared to

the designs obtained by DSE that minimized latency. In most cases, the codesigns

obtained by DSE in a tightly coupled manner outperform the Eyeriss-like designs.

These comparisons demonstrate the potential of the proposed capabilities for the

accelerator system design. With the continued development of automated execution

modeling and inclusion of more template architectures and specialization components,

proposed methodology can be expected to enhance efficiency further.

3.9 Additional Related Works

This section discusses additional related work beyond the background on DNN

accelerator DSE techniques described in §3.2.2, their limitations in §3.3, and previous

DSEs using bottleneck analysis for different domains in §3.4.

• Execution cost models of DNN accelerators: The cost models of SECDA

[160] and TVM/VTA [124] support end-to-end simulation and synthesis, while faster
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Figure 3.14: Comparison of efficiency of the designs obtained by the DSE with that of

the edge accelerators Google Coral Edge TPU [3] and Eyeriss [4]: (a) Throughput

(frames per second i.e., FPS) [3.7×, 8.7×], (b) Area efficiency (FPS/mm2) [49×, 57×],

and (c) Energy efficiency (FPS/Joule) [1.5×, 0.6×].

analytical models are more commonly used to optimize mappings and accelerator

design configurations. Their examples include MAESTRO [121], Accelergy [89],

SCALE-Sim [46], and those of Timeloop [47], dMazeRunner [40], and Interstellar [177]

infrastructures. Most of these models estimate both latency/throughput and energy. In

addition to computational cycles, MAESTRO, dMazeRunner, and Timeloop account

for on-chip and off-chip communication latency. Table 3.5 compares their execution
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modeling features. For the DSE, the cost model of dMazeRunner infrastructure was

used, which also considers the performance overheads of non-contiguous memory

accesses and allows explicit specification of NoC bandwidths and flexibly specifying

mappings through loop nest configurations.

• Mappers for DNN accelerators: Mappers typically target the space of all valid

loop tilings and orderings. For tensor shapes of a layer, there can be many factors

of loop iteration counts, and just populating the space of valid mappings could be

time-consuming (microseconds–several seconds) [190]. Table 3.6 compares different

mappers. Timeloop [47], a commonly used mapper, explores mappings through random

sampling, while GAMMA [191] uses a genetic algorithm. However, GAMMA limits

the number of loops that can be executed spatially and does not prune invalid tilings

before exploration, requiring several-fold more trials for convergence [192]. Without

eliminating ineffectual loop tilings and orderings beforehand, black-box explorations

typically require thousands of trials, generating many invalid mappings, and take

hours to map a single DNN layer once [193]. Mind Mappings [103] reduces the

search time by training a surrogate model that estimates costs faster than analytical

models. CoSA [193] uses a prime factorization-based approach to construct the tiling

space for a mixed-integer programming solver. But, many tilings corresponding to

combinations of prime factors remain unexplored, potentially resulting in sub-optimal

solutions. Additionally, most mappers do not support depthwise-convolutions, invoking

convolutions channel-by-channel. So, they miss opportunities for exploiting parallelism

across multiple channels and reducing miss penalties for accessing contiguous data of

consecutive channels from the off-chip memory.

Interstellar [177] prunes ineffectual tilings by constraining the search to pre-set

resource utilization thresholds. dMazeRunner [40] goes further and prunes loop

orderings for unique/maximum reuse of operands and proposes heuristics that reduce
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the space to highly efficient mappings, which can be explored in second(s). Hence,

proposed dMazeRunner infrastructure is utilized in the codesign and it was extended

to construct the space of up to top-N mappings, where N is the maximum mapping

trials allowed. ZigZag [170] and follow-up mappers build upon such pruning strategies.

ZigZag allows uneven blockings of loops for processing different tensors, which may

partially improve efficiency. However, ZigZag’s search time for a DNN layer is nearly

hours [170]. While works such as [170, 194–197] optimize DNN mappings on one or

more hardware accelerators, they require exploring hardware parameters exhaustively

or with black-box optimizations.

• Hardware/software codesign explorations of DNN accelerators: Previous

DNN accelerator DSEs, such as [41, 51, 61, 62, 69], used black-box optimizations.

They incur excessive trials and ineffectual solutions, as they lack reasoning about the

higher costs of obtained candidates and the potential efficiency of candidates to be

acquired next (§3.3). Further, DSEs of [61, 65–67, 70–72] used a fixed dataflow in

explorations. It obviates increasing search time further but may not lead to the most

efficient solutions compared to codesigns.

Recent approaches HASCO [62] and DiGamma [198] optimize both hardware and

mapping configurations in a black-box manner, encountering the same challenges

of ineffectual and excessive trials due to non-explainability (§3.3). Secondly, with a

loosely coupled codesign exploration (§3.5.8), they acquire HW/SW configurations

that may not be effective or suitable for the counterpart. Furthermore, they target a

limited hardware design space comprising only buffers and PEs. Finally, they typically

do not explore a single accelerator design that addresses inefficiencies in executing

DNNs with many layers.

• DSE using bottleneck analysis: DSEs of [157, 158] use bottleneck analysis, but

they are unaware of constraints utilization and optimize only a single loop-kernel.
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Plus, they explored only neighboring values of parameters (instead of scaling them

to mitigate bottleneck in one shot). It leads to search time comparable to black-box

DSEs [157]. AutoDSE [159] and SECDA [160] proposed bottleneck analysis specific

to FPGA-based HLS, and their search optimizes a single loop-kernel/task of a single

workload at a time. This work proposes using bottleneck models for DNN accelerator

designs; proposed DSE framework generalizes prior DSEs to the case of multiple

loop-nests, multi-modal workloads, and multiple workloads through aggregation of

various bottleneck mitigation (for new acquisitions of promising designs). Further,

via proposed API and data structures, proposed framework decouples bottleneck

models from search algorithms, allowing designers to systematically express the

bottleneck models for their domain-specific architectures/systems and interface with

the bottleneck-guided, explainable DSE.

3.10 Constructing Effectual Mapping Space and Black-Box Mappers

Background: The process of optimizing mappings of a DNN layer on an acceler-

ator design involves exploring an enormous search space, as demonstrated by previous

works [86, 191] and later summarized in Table 3.7. This search space is primarily

composed of configurations for loop tile sizings and loop orderings. Loop tilings

determine the data bursts that need to be accessed via memory hierarchy and spatial

parallelism, whereas loop orderings determine the data reuse and impact the total

memory accesses. For mapping DNN operators such as convolutions and multi-layer

perceptrons on an accelerator with a 3-level buffer/memory hierarchy and 1-level

spatial parallelism [4], the mapping space corresponds to 28-deep and 12-deep nested

loops, respectively [40]. Tile sizings are configurations that represent the values for

loop iterations at each temporal/spatial level in the architectural processing hierarchy.

For a selected tiling configuration, processing of a 7-deep nested loop at a buffer level
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Table 3.5: Execution cost models for deep learning accelerators.

Features
Timeloop

[47]

dMazeRunner

[40]

MAESTRO

[121]

Interstellar

[177]

SCALE-Sim

[46]

Accelergy

[89]

Performance Estimate Yes Yes Yes No Yes No

Energy Estimate Yes Yes Yes Yes No Yes

Integrated Support

for ML Libraries
No Yes Yes No No N/A

Layers

Supported

GEMM,

CONV

GEMM, CONV,

DWCONV

GEMM, CONV,

DWCONV

GEMM,

CONV

GEMM,

CONV
N/A

Data Precision Variable Variable Variable Variable Fixed Variable

Mapping

Specification

Loop Nest

Configuration

Loop Nest

Configuration
Directives

Loop Nest

Configuration
N/A N/A

Dataflow All All All All WS, OS, IS N/A

Spatial and Temporal

Data Reuse
Yes Yes Yes Yes Yes N/A

Data Reuse with

Striding Convolution
Yes No Yes N/A N/A N/A

Considers On-Chip

Communication Latency
Yes Yes Yes No N/A N/A

Memory Hierarchy Arbitrary 3-level 3-level 3/4-level Fixed Arbitrary

Models overhead of

non-contiguous accesses
No Yes No No No No

corresponds to 7! different loop orderings. Table 3.7 lists the DNNs and their layers

with the largest search space, which can contain up to O(1036) configurations.

Pruning invalid loop tilings: To optimize the tile sizes of a DNN layer using a

black-box optimizer, designers often set the index variables of tiled loops as design

parameters and specify lower/upper bounds (loop iterations) to define the range of

values that the optimizer can explore [103, 191]. However, the search space for tile

sizes can be enormous, containing as many as O(1028) configurations for certain DNN

layers, as shown in Table 3.7. A black-box optimizer is unlikely to find more than

a few valid mappings under practical exploration budgets for exploring such a large

search space [193]. This is because, for each loop in a DNN operator, only a small

subset of factors of loop iterations lead to valid tile sizes. For example, a set (8, 4,
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Table 3.6: Mappers for deep learning accelerators.

Features
Timeloop

[47]

Gamma

[191]

Mind

Mappings [103]

CoSA

[193]

Interstellar

[177]

ZigZag

[170]

dMazeRunner

[40]

Comprehensive

Mapping Space
Yes No Yes No Yes Yes Yes

Discard Invalid

Mappings for

Mapping-Space

Construction

Yes No No Yes Yes Yes Yes

Prune Inefficient

Tilings
No No No No No Yes Yes

Prune Inefficient

Orderings
No No No No Fixed Yes Yes

Layers

Supported

CONV,

GEMM

CONV,

GEMM,

DWCONV

CONV,

MTTKRP

CONV,

GEMM

CONV,

GEMM

CONV,

GEMM

CONV,

GEMM,

DWCONV

Exploration

Approach
Random

Genetic

Algorithm

Gradient

Descent

Mixed

Integer

Programming

Heuristic Heuristic Heuristic

Uneven Tiling

for Tensors
No No No No No Yes No

Search Time Minutes Minutes Minutes Seconds Minutes Hours Seconds

Off-line

Training
No No Yes No No No No

2, 16) makes a valid 4-level tiling configuration for 1024 loop iterations over output

activations/filters, while many more do not. Therefore, designers formulate the space

of valid tiling sizes based on factorization of loop iterations [47, 193]. As shown in

Table 3.7, this prunes the search space of tiling configurations by a square root or

even a cube root, e.g., from O(1022)–O(1028) configurations to a much smaller range

of O(109)–O(1014) configurations. Invalid tiling configurations, which require more

architectural resources than are available in the target hardware configuration, are

usually discarded by black-box optimizers during the exploration (as indicated in

column C of Table 3.7).
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Table 3.7: Analyzing size of the mapping space for deep learning accelerators.

Model Layer
Tile

Sizings

Tile

Sizings

with Valid

Factors

Valid

Tilings

w.r.t.

Hardware

Orderings

at a

Memory

Level

Orderings

with

Unique/Max

Data Reuse

Full

Map.

Space

Factorization-

Constrained

Mapping

Space

Factorization-

Constrained

Reuse-Aware

Map. Space

A B C D E F: A*D2 G: B*D2 H: B*E2

ResNet18 CONV 2 1a O(1025) O(1013) O(107) O(104) 15/3 O(1032) O(1020) O(1014)

MobileNetV2 features.2.conv.0 O(1022) O(1012) O(106) O(104) 15/3 O(1030) O(1019) O(1013)

EfficientNetB0 blks.2.expand O(1022) O(1012) O(106) O(104) 15/3 O(1029) O(1020) O(1013)

VGG-16 CONV 1 2 O(1028) O(1014) O(107) O(104) 15/3 O(1036) O(1021) O(1015)

ResNet50 CONV 2 1b O(1025) O(1013) O(107) O(104) 15/3 O(1032) O(1020) O(1014)

Vision

Transformer

patchembeddings.

CONV2D
O(1025) O(1013) O(106) O(104) 15/3 O(1032) O(1020) O(1014)

FasterRCNN-

MobileNetV3

features.12.

conv2.excite
O(1026) O(1013) O(106) O(104) 15/3 O(1033) O(1020) O(1014)

YOLOv5 features.1.conv O(1027) O(1014) O(107) O(104) 15/3 O(1034) O(1021) O(1015)

Transformer
decoder.

output projection
O(1027) O(109) O(104) O(101) 3/3 O(1028) O(1010) O(1010)

BERT
encoder.layer.0.

output.dense
O(1026) O(109) O(105) O(101) 3/3 O(1027) O(1011) O(1010)

Wav2Vec2
encoder.layers.0.

intermediate.dense
O(1028) O(1012) O(106) O(101) 3/3 O(1029) O(1013) O(1012)

Pruning ineffectual loop orderings: The space is reduced further by discarding

ineffective loop orderings. Previous black-box mappers explored all orderings, resulting

in a large number of configurations (7! or O(104)) for processing a convolution at

a memory level in the memory hierarchy. Instead, proposed approach builds upon

previous research that has shown only a handful of loop-orderings having unique data

reuse of tensors (15 for convolutions) and a few with maximum reuse of various tensors

[40, 170].

Overall mapping space: The GAMMA-like mapper considers full (non-factorized)

tiling space and all loop-orderings [191] (column F ), while Timeloop [47] and CoSA

[193] consider factorized tile sizes but all loop orderings. For evaluations with black-box

mappers, factorized tile sizes (all valid factorization) were used and only loop orderings

with unique data reuse were considered. In practice, there are only a few unique data

reuse scenarios (vs. 15/3) for each tiling configuration, so all of them can be explored
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Figure 3.15: Efficiency of mappings obtained by different black-box optimizations for

accelerating ResNet layers.

linearly [40]. Therefore, black-box optimizations were invoked with 10,000 trials for

mapping each layer on a hardware configuration. During each trial, the optimization

acquired a tiling configuration and evaluated all effectual loop-orderings through the

cost model, selecting the one that minimized the objective. Thus, the mapping space

formulation discarded a large number of invalid and ineffective configurations (column

H) without compromising the optimality.

Selection of the mapping optimization technique: Evaluations comparing

black-box DSEs of hardware configurations with fixed mapping schema showed that

random search and Bayesian optimization-based HyperMapper 2.0 [2] were the most

effective, as depicted in Figure 3.10. As a result, these two techniques were selected

for optimizing both the hardware and mapping configurations. However, when they

were applied to optimize mappings from the pruned space (column H in Table 3.7),

it was found that random search obtained efficient mappings within several seconds.

By contrast, HyperMapper 2.0 generated efficient mappings, but its search overhead

was prohibitively high, requiring a few hours to evaluate just a single DNN layer.

Consequently, random search was used for optimizing mappings during the codesign

DSE.

The quality of mappings obtained by random search was also compared with those

obtained by simulated annealing, genetic algorithm, and Bayesian optimization for
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ResNet18 layers, as shown in Fig. 3.15. 6 The random search successfully achieved

low-latency mappings for all layers, whereas simulated annealing [185] failed to map a

few layers (in 10,000 trials), and genetic algorithm [186] led to a higher overall latency

than random search and took almost four hours to optimize mappings for the nine

layers, making it impractical for codesign search. Therefore, a Timeloop-like random

search was used to quickly and efficiently explore the highly pruned mapping space.

3.11 Codesign Optimization: Multi-Stage or Joint?

The optimization of hardware and software codesigns can be done either by

exploring partitioned sub-spaces in a sequential manner or simultaneously. In a

partitioned or a two-stage optimization, an outer loop iterates over different hardware

configurations, and an inner loop optimizes the software space for each hardware

configuration selected. On the other hand, the joint or simultaneous exploration

involves finding a new configuration for both the hardware and software parameters at

the same time in a trial. Although approaches using simultaneous search have been

proposed, they are often infeasible to apply to a multi-workload exploration, target

system with diverse and time-consuming cost evaluations, and huge collective search

space. Therefore, partitioned sub-space exploration is commonly used for optimizing

codesigns (§3.2.2). For demonstration of Explainable-DSE, all the DSE evaluations

also follow two-stage optimization.

Firstly, approaches using simultaneous search [2, 198] typically optimize configura-

tions for individual loop kernels such as a single DNN layer, as they optimize both the

hardware and software parameters at every search attempt. It does not necessarily

lead to a single accelerator design that is most efficient for the entire workload or a

6The mappings were evaluated for the initial hardware configuration, corresponding to the lowest
values of design parameters in Table 3.1.
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set of workloads, as layer-specific designs may not be optimal overall for the entire

DNN or multiple DNNs.

Furthermore, simultaneously optimizing both hardware and software parameters

can be very time-consuming. A target system often involves different cost functions

or modules for different metrics that could consume different evaluation times. For

example, evaluating area and power of each hardware configuration via Accelergy

[89] alone could take a few seconds, whereas the cost models of dMazeRunner [40]

or Timeloop [47] could estimate latency/energy for hundreds–thousands of mappings

in a second. For exploring codesigns for a DNN with L=50 unique layers, consider

a black-box DSE that is budgeted H=2,500 trials for hardware configurations and

M = 10,000 trials for mapping each DNN layer on each hardware configuration.

Simultaneous exploration of hardware and software configurations in H × M trials

for each of the L layers requires the system to evaluate power/area costs for H × M

× L times, which would take more than 0.7 million hours, or 79 years! In contrast, a

two-stage partitioned exploration evaluates power/area costs only for H trials and

if the DSE samples infeasible mappings for a hardware configuration, they can be

discarded promptly without further detailed evaluation. The experiments show that

the black-box DSEs obtained codesigns in a few days to a few weeks with exploring

the partitioned subspaces.

Finally, in addition to the design parameters such as the total PEs or buffer sizes,

hardware configurations can have various parameters, such as bandwidth, reconfigura-

tion of NoCs (time-multiplexed communication of data packets, bus widths), and those

for architectural specialization/heterogeneity, which further increase the search space

for both the hardware and software/mapping configurations. With the vast space

for both the hardware and software/mapping configurations, the collective search

space becomes huge, compounding the already challenging exploration of feasible and
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effective solutions for either of the hardware and software parameters. Additionally,

in the DSE trials, simultaneously acquired hardware and software configurations

may not be compatible with each other or may not mitigate execution inefficiencies

corresponding to their counterpart.

3.12 Discussion on Specification Needed by DSE Approaches

Black-box optimizations such as random search, simulated annealing, or Bayesian

optimization are easy to deploy and require minimal tuning and specification for

meaningfully curating and constraining the design space, which may take some hours

or days. However, due to their non-explainable nature, they may mostly explore

inefficient or infeasible solutions while consuming significant search time for excessive

sampling. Applying these black-box exploration approaches to a domain-specific design

optimization problem may still need some additional specification efforts [65, 191],

depending on their implementation. For instance, Confuciux [65] is a reinforcement

learning-based DSE framework that uses an LSTM/MLP-based policy network. For

the targeted evaluations, it was extended to allow an arbitrary number of parameters, a

different environment (target setup), different numbers of possible options for different

parameters (different list sizes), and an arbitrary number of constraints. The reward

calculation was also extended to consider an arbitrary number of constraints and their

utilization. This extension required adding/modifying a few tens of lines of code (LoC)

and a few days of work.

For bottleneck-guided DSE, a bottleneck model was developed for the target

domain of DNN accelerator’s hardware/mapping codesign. This is similar to efforts

made previously in other domains [157–159, 172, 173]. The bottleneck model was

expressed to the DSE framework via proposed API. It led to about tens of LoC

that specified how different factors contribute to overall cost and a few to several
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lines for integrating first-hand information about bottleneck mitigation that provided

predictions for new values of each parameter. It is worth noting that this is significantly

less code and development efforts compared to domain-specific analytical cost models

[40, 121], which typically require thousands of lines of code and provide only a single

value for the total cost. The bottleneck model used in the DSE is generally simpler

than the full analytical model, as it only considers major execution-related factors.

And to infer new parameter values for bottleneck mitigation, it incorporates simple

estimates or performs a walk-through of the populated values/paths in the bottleneck

graph. In general, domain experts can derive the bottleneck model from either the

graphical representation of the analytical model they develop/use or the sensitivity of

a cost to the design parameters, which may take several days. §3.14 discusses how

bottleneck mitigation may be generalized for arbitrary systems.

3.13 Discussion on Capabilities and Distinguished Features

This section highlights the capabilities of the proposed DSE using bottleneck

models for agile and explainable explorations.

• Efficient designs. Explainable-DSE finds better solutions since it investigates costs

and bottlenecks that incur higher costs; by exploring candidates that can mitigate

inefficiencies in obtained designs, DSE provides efficient designs.

• Quick/runtime DSE. The DSE can reduce objective values at almost every

acquisition attempt; it searches mostly in feasible/effectual solution spaces. Thus,

DSE achieves efficient solutions quickly, which is beneficial for early design phase and

for dynamic DSEs, e.g., deploying accelerator overlays at run time. Additionally, it

can help when acquisition budgets are limited, e.g., due to evaluation of a solution

consuming minutes to hours [41]. Further, when designers optimize designs offline with

hybrid optimization methodologies [65] comprising multiple optimizations, quickly
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found efficient solutions can serve as high-quality initial points.

• Explainability in the DSE and design process. This work shows the need

for explainability in the design process, e.g., in exploring the vast design space of

deep learning accelerators and how DSE driven by bottleneck models can achieve

explainability. Unlike cost models that provide a single value, bottleneck models can

provide rich information in an explicitly analyzable format. Consequently, explorations

based on bottleneck analysis can help explain why designs perform well/poorly and

which regions are well-explored/unexplored in the vast space and why.

• Generalized bottleneck-driven DSE for multiple micro-benchmarks and

workloads. In acquiring new candidates, DSE accounts for various bottlenecks in

executing multiple loop nests (e.g., DNN layers) of diverse characteristics. Thus, the

DSE can provide a single solution that is most effective overall, in contrast to previous

DSEs that provide loop-kernel-specific solutions.

• Specification for expressing domain-specific bottleneck models to the

DSE. This work proposes an API for expressing domain-specific bottleneck models so

that the designers and/or design automation tools can integrate them to bottleneck-

driven DSE frameworks and reuse the DSE.

• Comprehensive design space specification. In the DSE, appropriate values

of a parameter is selected through bottleneck models. Thus, the DSE can alleviate

the need for fine-tuning the design space; users can comprehensively define/explore

vast space, e.g., more parameters and large ranges of values (arbitrary instead of

power-of-two).

• Bottleneck analysis for hardware/software codesign of deep learning ac-

celerators. By taking the latency of accelerators as an example, this work shows

how to construct bottleneck models (for designing deep learning accelerators) and

bottleneck analysis for improving the accelerator designs based on their execution
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characteristics. It shows how bottleneck models, as compared to conventional cost

models, can be inherently analyzable and information-rich, allowing to make informed

decisions for the design optimizations.

3.14 Further Opportunities and Research Directions

• Improving efficiency further through better acquisitions: By using bot-

tleneck models and considering available budgets of constraints, the DSE can find

outperforming solutions. However, it may still converge to a suboptimal solution (e.g.,

for VGG-16) due to the greed for resolving the bottlenecks for further optimizations.

This challenge can be addressed by making the acquisitions more exploratory, e.g.,

exploring distant promising subspaces. It can be achieved by exploring multiple

spaces side-by-side by targeting a pool of various initial points [2]. Alternatively,

the acquisition function can incorporate both self-supervised learning or inducing

randomness [103] and bottleneck/constraint considerations.

• Exploring and addressing implications of specifying ineffectual bottleneck

analysis for an arbitrary system: In Explainable DSE, the bottleneck model helps

explain design cost and guide the DSE. It considers which factors constitute overall

cost and how design parameters and their scaling could impact each factor. For

various domain-specific systems, designers usually characterize them manually and

develop domain-specific bottleneck models/analyses or have first-hand information

[157–159, 171–173]. Even for designing deep learning accelerators, designers already

develop cost models or closely work with them [40, 41, 47, 51, 53, 54, 59, 61–63, 121].

Thus, they can determine bottleneck model and mitigation in various ways. For

instance, designers can obtain a bottleneck model by simplifying their analytical cost

model, which they can provide along with the cost model. Alternately, designers

could estimate bottleneck mitigation through characterization or sensitivity analysis
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of design parameters. Designers can also opt for automation techniques, as discussed

later.

A domain-specific bottleneck model constructed by domain experts or possibly

learned from domain-specific data can lead to an effective DSE. However, in the

absence of an effectual analysis for an arbitrary system, the resulting exploration may

be slower or suboptimal. For instance, the DSE may require more acquisitions and be

slower if the designer-provided mitigation scales the parameter values conservatively or

associates irrelevant parameters with bottleneck factors (e.g., the total number of PEs

to the DMA time). Conversely, the DSE may converge to suboptimal solutions if the

designer either skips associating a critical parameter with a bottleneck factor or scales

values aggressively. The examples include a) a user not suggesting explorations of NOC

links or bit-widths when on-chip communication time is the bottleneck and b) the

DSE scaling the number of PEs by 2× or more, even if the required scaling was only

1.2×. Either can cause the DSE to miss a range of efficient and constraints-satisfying

solutions.

•Automating construction of bottleneck models and bottleneck mitigation

for arbitrary or large-scale domain-specific systems: For expert-defined cost

models, such as those of DNN accelerators, manual bottleneck analysis by designers

with first-hand domain information can be possible. In general, when domain-specific

architectures can be described and evaluated as flow graphs, the analysis of cost-

s/bottlenecks may be automated by parsing execution information for architectural

components [34, 199, 200].

There can be scenarios where designers may want to optimize the application

processing for off-the-shelf processors or can only access pre-existing design models

and simulators that are large-scale or complicated. In such cases, designers may

not be able to provide the domain-information for constructing bottleneck models
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and available designs or large-scale simulation models (e.g., in C++/RTL) need to

be used for deriving bottleneck models. Hence, learning-based approaches can be

developed [201], which could be broadly applicable, while still leveraging the proposed

structure/organization of the bottleneck models and their usage in gray-box/white-box

design space exploration. Graph-based ML models or self-supervised ML models can

be more suitable, including but not limited to decision trees, graph neural networks,

and reinforcement learning. Likewise, bottleneck mitigation in complicated scenarios

can be estimated using gray-box optimization functions that approximate the relevance

and contributions of each parameter to the total cost [202] or through surrogates [103].

The dynamic DSE evaluation demonstrates the potential of incorporating explain-

ability into the DSE. Efficiency, agility, and generalization of the DSE can be improved

even further through improving the predictions for bottleneck mitigation, the decision

mechanism that uses the feedback, aggregation and acquisition functions, and parallel

evaluation/exploration of candidates and promising subspaces.

3.15 Conclusions

Agile and efficient exploration in the vast design space, e.g., for hardware/software

codesigns of deep learning accelerators, require techniques that not just should consider

objectives and constraints but are also explainable. They need to reason about obtained

costs for acquired solutions and how to improve underlying execution inefficiencies.

Non-explainable DSE with black-box optimizations (evolutionary, ML-based) lack

such capability; obtaining efficient solutions even after thousands of trials or days

can be challenging. To overcome such challenges, Explainable-DSE is proposed,

which analyzes execution through bottleneck models. As compared to cost models

that provide a total value, a bottleneck model can graphically express which and

how various design parameters and intermediate factors contribute to the total cost.
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Thus, it can provide rich information in an explicitly analyzable format, allowing

the designers and DSE to identify the bottleneck factors for the obtained costs and

acquire mitigating solutions. Proposed API can allow designers and/or automation

tools to express their domain-specific bottleneck models and interface with the DSE.

Through aggregation of predictions for bottleneck mitigation, the DSE facilitates

a single effective solution for multi-functional or multiple workloads. In addition,

awareness of utilized constraints in the decision making allows the DSE to prioritize

exploration among feasible solutions and find more efficient solutions without quickly

exhausting the constraints. The demonstration of optimizing codesigns of DNN

accelerators showed how Explainable-DSE could effectively explore feasible and efficient

candidates (6× low-latency solutions). By obtaining most efficient solutions in short

exploration budgets (47× fewer iterations or minutes/hours vs. days/weeks), it opens

up opportunities for cost-effective and dynamic explorations.
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Chapter 4

AGILE EXECUTION MODELING

A comprehensive exploration of hardware/software/data codesigns in an agile

manner can yield efficient accelerator designs and application executions. Such ex-

plorations, however, require developing tools for the accelerator system, including

power/performance/area (PPA) cost models, a compiler, and a simulator. Towards

their automated and sustainable development, this chapter first presents case study

about the execution modeling of processing nested loops on dataflow accelerators for

dense and sparse tensor computations. Then, it presents challenges in sustainable

design development, followed by describing how a generic accelerator abstraction and

corresponding automation methodology towards developing an agile design methodol-

ogy.

4.1 Case Study: Modeling Execution of Nested Loops on Dataflow Accelerators

This section provides background about execution modeling of the accelerators

by describing a case study about (manual) execution modeling for processing nested

loops on dataflow accelerators. The described execution model has been in use

in dMazeRunner framework [40] for evaluating the execution costs of processing

DNN operators on accelerators. The architecture template is the same as the one

used in chapter 2.7. To determine the goodness of an execution method statically,

the methodology in this study explicitly models computation and communication

costs for various architectural features and estimates the execution time and energy

consumption. From an input loop-nest, the model analyzes indexing expressions and

data dependencies of operands. Then, the model determines various data reuse factors,
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DMA invocations and burst sizes for managing non-contiguous data in SPM, miss

penalty, data communication through NoC, and any stall cycles inter/intra-PE-group

communication (for reduction operations).

4.1.1 Determining Data Allocation

For the given tiling factors of an execution method, the data to be allocated in RF

of a PE, in SPM, and the data communicated to the PE array is determined as:

data alloc[option][op] = evaluate index expr(op, effective TC)

where, for each iv in the list IV,

effective TC[iv] =



TC[RF ][iv] ; option = RF

TC[Spatial][iv]× TC[RF ][iv] ; option = PE Array

TC[Spatial][iv]× TC[RF ][iv]× TC[SPM ][iv] ; option = SPM

For example, to determine the data allocated in RFs of PEs, it is needed that

effective TC[iv] = TC[RF ][iv]

i.e.,

effective TC[n] = TC[RF ][n] = N RF, effective TC[fy] = TC[RF ][fy] = Fy RF

and so forth.

Then, data alloc[RF ][W ] is calculated by evaluating the indexing expression for

operand W where, the value for index iv is used as effective TC[iv]. Thus, after

analyzing index expressions of W[m][c][fy][fx], the following can be obtained.

data alloc[RF ][W ] = effective TC[m]× effective TC[c]× effective TC[fy]× effective TC[fx]

= M RF × C RF × Fy RF × Fx RF
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Table 4.1: Notation for analytical modeling of dataflow execution.

Term Interpretation

IV=[’n’,..,’fx’]
List of loop index variables (from outermost to inner-

most loop).

total IVs Length of list IV (same as depth of the loop-nest).

level Either of {Spatial, RF, SPM, DRAM, base}.

TC[level][iv]
2D array of loop iteration counts.

For example, TC[RF][’n’] refers

to N RF = 4.

effective TC[iv]

Vector of effective loop Trip-

Counts per iv.

Calculated to find the data allo-

cation.

data alloc[option][op] option = {RF, PE Array, SPM}; op is a data operand.

Data Reuse[level][op] level = {SPM, DRAM}; op is a data operand.

Energy[option]

option = {RF, Operation Type, NoC, SPM, DRAM}.

Operation Type corresponds to operations supported

by PEs (e.g., MAC, ADD).

When the RF tiling factors are < 1, 1, 1, 1, 1, 1, 3 >, registers allocated in a PE for W

are determined as 1×1×1×3 = 3. Similarly, after analyzing indexing expressions of

W , the model determines the weights communicated to PE array as

data alloc[PE Array][W ] = [M SPATIAL×M RF ]× [C SPATIAL× C RF ]×

[Fy SPATIAL× Fy RF ]× [Fx SPATIAL× Fx RF ]

4.1.2 Estimating Energy Consumption

Total energy for executing the nested loop consists of the energy consumed in

RF accesses, in performing useful operations on PEs, in communicating data via

interconnect, and in accessing the data from SPM and DRAM, i.e.,
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Total Energy = e Ops + e RF + (comm energy 1 SPM pass × total SPM pass)

+ e DRAM

In the proposed execution model of the dataflow accelerator, during each loop iteration,

an operand is read/written from/to RF of a PE for the execution of an operation, i.e.,

total loop iterations =
∏total IV s

i=1 TC[base][IVi]

e RF = total loop iterations×
∑total Operands

op=1 Energy[RF ]

In the example of Fig. 2.2(b), there are 2 read operands and 1 read+write (r+w)

operand. So, the cost for RF accesses during each loop iteration is approximated as

4×Energy[RF ]. Energy (pJ) of various operations and for accessing data elements

from memory are obtained from the literature [4, 31] and provided as an input to the

model. Moreover, energy for operations performed by PEs is:

e Ops = total loop iterations×
∑total Operations

opr=1 Energy[Operation Type[opr]]

In the example of Fig. 2.4(b), just 1 Multiply-and-ACcumulate (MAC) operation is

performed on a PE in executing a loop iteration. The model currently does not support

loops with conditional statements. However, since each loop iteration sequentially

executes on a PE, the model can be extended to accommodate them by taking the

maximum latency and energy consumption of the true and false paths.

Based on tiling factors for L1 loops (level-1 buffer or RF), each PE executes a

certain number of loop iterations to process the data from allocated registers. It is

referred herein as one RF pass. During an RF pass, while PEs process data from RFs,
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new data for the next RF pass can be accessed from SPM and communicated to PEs

via an interconnect network.

energy access SPM 1 RF pass[op] = data alloc[PE array][op]× Energy[SPM ]

energy NOC 1 RF pass[op] = data alloc[RF ][op]× p[op]× Energy[NOC]

energy 1 RF pass[op] = energy NOC 1 RF pass[op]+energy access SPM 1 RF pass[op]

Although total data communicated to PE array is determined by data alloc[PE array],

many PEs may process the same data. Such spatial reuse is modeled by finding the

total PEs that read/write the same operand. If an operand op belongs to a write

operation, only those PEs are considered that produce the outcome. Thus,

p[op] =


∏total IV s

i=1 TC[Spatial][IVi] ; op belongs to read operation∏len(list dependent IV [op])
i=1 TC[Spatial][list dependent IV [op][i]] ; op belongs to write operation

Based on the ordering of the L2 loops (that correspond to SPM accesses), the reuse

of data operands for the consecutive RF passes is determined and communication

energy for one SPM pass is found.

comm energy 1 SPM pass =
∑total operands

op=1 energy 1 RF pass[op] ×

(total RF pass ÷ Data Reuse[SPM][op])

After determining the data allocated in SPM (processed in 1 SPM pass) and the reuse

of the data in SPM, the energy consumption for communicating data from DRAM

can be determined as follows:
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e DRAM =
∑total operands

op=1 data alloc[SPM][op] × Energy[DRAM] ×

(total SPM pass ÷ Data Reuse[DRAM][op])

4.1.3 Estimating Execution Time

During processing the data in a RF pass, PEs execute certain number of iterations

and perform all operations within each loop iteration. So, estimated cycles are:

cycles UsefulOps = loop iterations RF pass× latency 1 loop iteration

loop iterations RF pass =
∏total IV s

i=1 TC[RF ][IV i]

latency 1 loop iteration =
∑total operations

opr=1 l

l =


1 ; if PE is pipelined

latency[operationopr] ; PE is nonpipelined

During an RF pass, while PEs process data from RFs, new data for the next RF

pass can be accessed from SPM and communicated to PEs via interconnect. This

interleaving of the communication latency with the computation being performed by

PEs can be either achieved by double-buffering the RFs or through software scheduling

scheme. If no such support is available, the PE array completely stalls to obtain the

necessary data from SPM for the next RF pass. Total cycles required to communicate

operands during a RF pass is:

comm cycles operand[op] = data alloc[PE array][op] / B
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where B is the width of the data bus for interconnect. Depending on the ordering of

L2 loops (that correspond to accessing the data from SPM), some operands are not

reused after an RF pass and communicated between SPM and the PE array at every

RF pass. However, some operand(s) can be reused and are communicated at every

xth RF pass. For example, for an ordering where the loop with index variable c L2 is

innermost, the ofmap O (or the psum) is reused for C SPM=4 consecutive RF passes.

Taking that into account, the communication latency is determined as:

comm cycles[RF pass#][network#] = map operands to NOC(

comm cycles operand,Data Reuse[SPM ])

In a default setup, popular single-cycle multi-cast interconnect is supported. The

networks to communicate read and write operands between SPM and PE array are

three and one, respectively [4, 31]. There is one network to communicate r+w operands

among PEs (used for reduction operations). Often the total operands in the loop-nest

are few and are simultaneously communicated to/from the PEs via interconnect

(including executing common kernels like matrix multiplication, convolution, regres-

sion, and sequence models). If not, they need to be sequentially broadcast to PEs

via available interconnect. For example, when the total data operands are more

than available networks, the communication can be scheduled onto networks via a

round-robin mechanism. In fact, for performing design space exploration through

dMazeRunner, architects can extend the model to accommodate various interconnect

topologies. Total cycles required to process the data of SPM (1 SPM pass) are:

cycles SPM pass =
∑total RF pass

i=1 max(cycles UsefulOps,
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max1≤j≤total networks comm cycles[i][j])

Usually, the execution requires several SPM passes. During each SPM pass, the

PE array processes the data from one buffer of SPM, and DMA controller accesses

DRAM for the data of another buffer. After calculating the size of the data allocated

in SPM, the total DMA invocations required and the burst size (of contiguous data)

per invocation can be determined. To calculate DMA cycles, a latency model of Cell

processors [154] (that featured SPMs) is considered, i.e.,

DMA Model(u) = 291 (initiation latency) + 0.24 × u; u: burst width (bytes)

cont data alloc spm[op], DMA initiations[op]← data alloc[SPM ][op]

DMA cycles[op] = DMA Model(cont data alloc spm[op]) × DMA initiations[op] ×

(accel freq ÷ dma freq)

Based on the data being reused in consecutive SPM passes, the cycles required for

accessing the DRAM during each SPM pass can be calculated as follows:

DRAM access cycles[SPM pass #] =
∑total operands

op=1 DMA cycles[op]

if(SPM pass# mod Data Reuse[DRAM ][op] == 0)

total cycles =
∑total SPM pass

i=1 max(DRAM access cycles[i], cycles SPM pass)

Note: Implementation of the proposed execution model deals with the various complex

scenarios including:

• Modeling stall cycles and energy consumption for inter-PE communication: When a

r+w operand (e.g., O) is invariant of a loop (c, fy, fx) that executes spatially (e.g.,

C SPATIAL > 1), computing the output requires inter-PE communication. Depending
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on the data buffering mechanism of the RF, PE array may not start processing new

data from RF or cannot get new data from interconnect while PEs perform the

reduction operations onto previously computed data. Therefore, depending on the

spatial execution of loops and data reuse factors, stall cycles and energy consumed

are accounted.

• Accurate modeling of continuous data reuse through several RF+SPM passes: De-

pending on the ordering of the loops, some operand gets reused continuously throughout

all RF passes of an SPM pass and through several such SPM passes. For example, for

an ordering of L2 loops with IVs {n L2,m L2,oy L2,ox l2,c L2,fy L2,fx L2} (outer-

most to innermost) with TCs < 1, 1, 1, 1, 4, 3, 3 >, total RF passes in an SPM pass

are 4×3×3 = 36. In each RF pass, operands I and W are communicated from SPM

to RFs via NoC while O is reused in RFs. Now, for an ordering of L3 loops with IVs

{oy L3,ox l3,fy L3,fx L3, n L3,m L3,c L3} with TCs < 1, 1, 1, 1, 2, 32, 16 >, O gets

reused in consecutive 16 SPM passes. Thus, write-back of O occurs just once after

every 16 SPM passes; each SPM pass consists of 36 RF passes. Such reuse of data at

consecutive memory levels is referred herein as a continuous reuse and it is accurately

modeled for various operands.

• Detailed model of data reuse and communication for r+w operands: Processing of a

r+w operand on PE array may require to read previously computed value (e.g., input

psum) from SPM and interconnect. Furthermore, such read operation can be skipped

some times, if the operand is zero-initialized. Thus, the calculation of the miss penalty

and energy consumption are offset accordingly.

4.1.4 Validation Experiments

Specification of the target platform The accelerator architecture modeled is the

same as the one used in the chapter 2.7.
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Figure 4.1: Validation results for ResNet conv5 2. The energy consumption estimated

by the execution model is close to the energy model of Yang et al. (2018).

Validation against Yang et al. (2018) [149]: To determine the accuracy of the

proposed dataflow execution model, it is validated against evaluations of a recent

work [31, 149]. Validating the execution model is often challenging since it requires (i)

the same architecture specification, (ii) the information about the adopted execution

method, and (iii) the absolute values of execution time and energy consumed by the

platforms. Therefore, the execution methods used are those ones that are obtained

by the tool [149] and the same methods are evaluated with the proposed analytical

model.

This validation experiment covers various dataflow mechanisms which represent

how different loops are executed spatially. For example, Fy|Fx represents a weight

stationary mechanism where PEs are grouped based on unrolling Fy and Fx loops

for spatial execution [31]. Note that these dataflow mechanisms also incorporate

the variations in temporal execution (different data reuse patterns) and the spatial

execution of more than two loops.

It is found that the proposed model achieves the same PE utilization as Yang et al.

[31, 149]. Moreover, Fig. 4.1 shows that for various dataflow mechanisms, the energy

consumption (in pJ) estimated by the model closely matches to the energy estimation

tool [149] (the difference is 4.19%). In fact, for commonly used dataflow mechanisms
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Figure 4.2: Performance validation against Eyeriss architecture.

like output-stationary (Oy|Ox), the difference is 0.3%. A higher difference (about 14%)

was observed for M |Fx mechanism. A possible reason is that the model of [149] is

more accurate for the interconnect organization (e.g., per-hop communication cost)

while the proposed model considers the same cost for multicast communication.

Furthermore, Fig. 4.1 shows the breakdown of the energy for system resources

where, each bar on the left-hand side represents the evaluation from Yang et al. [149],

and the second bar for each mechanism represents the estimation from the proposed

execution model. It is found that energy estimated for system resources is similar to

that obtained by [149]. In fact, for optimized execution methods, the estimated energy

for DRAM accesses is very low, and most of the energy consumption is attributed to

accessing data from RFs.

Validation against Eyeriss architecture: The proposed dataflow execution model

is extended for modeling Eyeriss accelerator [4] that executed AlexNet for ImageNet

classification [9]. Execution methods reported in [4] are evaluated. For modeling, the

following Eyeriss-specific enhancements are considered: (i) separate and larger bit-

widths of different input, output, and reduction networks, (ii) a dedicated mesh-style

network for reduction, and (iii) in communicating the data (e.g., a row of 1×3 ifmap),

reusing the neighborhood data (1×2 ifmap) from RFs in the sliding-window execution.
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Fig. 4.2 shows the execution cycles considering (a) ideal acceleration (i.e., total MAC

operations ÷ total PEs), (b) processing time reported for Eyeriss architecture [4], and

(c) estimation of execution cycles. It is found that the estimations closely matched

execution cycles of the architecture [4], with a difference of 11% in the total execution

cycles. Thus, the execution model can effectively estimate the execution costs of

processing loops on dataflow accelerators.

4.2 Case Study: Execution Modeling of Sparse DNN Accelerators

4.2.1 Need for Efficiently Exploiting Sparsity

Deep learning models achieve high task accuracy for various applications but

incur high execution time, energy, storage, and environmental implications due to

data-intensive models [33]. So, compact models are developed with sparsification,

shape reduction, and quantization of (often over-parameterized) tensors [203]. They

can enable notable efficiency (20× fewer operations in a GEMM with 90%/50%

sparsity of matrices) while achieving target accuracy. Many other domains also face

challenges in exploiting sparsity, and accelerators have been proposed for some of

the more processing-intensive domains; this includes graph processing [204, 205],

database operations [206], genomics [207, 208], and compression [209]. In some cases,

computation primitives even extend across domains. For example, finding intersecting

non-zeros is analogous to joins in a database context [210]. Therefore, developing

techniques for efficient sparse tensor processing in an ML context can likely speed up

innovation in a broader context.

While commodity and emerging AI accelerators support different quantizations,

exploiting acceleration opportunities due to sparse and irregular-shaped tensors remains

challenging. For hardware accelerators, leveraging sparsity necessitates mechanisms to
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store, extract, communicate, compute, and load-balance the non-zeros (NZs) that are

scattered in tensors [33]. Otherwise, execution is inefficient by orders of magnitude,

e.g., on conventional AI engines [4, 29, 30, 42, 115, 125, 147] or CPUs/GPUs [5, 33, 211–

213]. These NZ-processing mechanisms can be designed at hardware/software/model

levels and their availability and implementation choices determine the kinds of sparse

models that can be accelerated and the obtained efficiency. Using such mechanisms,

accelerators nowadays can leverage sparsity, but they are efficient for processing sparsity

of only limited range or fixed patterns. This is because of current ad hoc design approach

where designers make certain choices of design features for targeting some workloads.

As a result, existing accelerators leave notable acceleration on the table when processing

diverse 1 sparsity range/patterns present within and across deep learning models of

various application domains.

4.2.2 Accelerators for Sparse DNNs

Sparse, size-reduced, and quantized tensors of ML models offer various oppor-

tunities for storage, performance, and energy efficiency. Hence, several accelerators

have provided marginal or comprehensive support and leveraged some or all the

opportunities. Table 4.2 lists such common objectives and corresponding accelerator

solutions that meet these objectives.

Different accelerators for inference and learning exploit W -sparsity, IA-sparsity,

or both, which impacts acceleration gains [239]. Several accelerators, including

Cambricon-X [5], exploit only static sparsity (Table 4.3), e.g., when locations of zeros

in weights are known beforehand for inference. Static sparsity allows offline encoding

1Depending on the application domain, tensors contain low, e.g., (0%–30%), moderate (30%–75%),

high (75%–99%), or hyper (99%+) sparsity. The need to support diverse sparsity levels/patterns of

deep learning models [33], unlike conventional hyper-sparsity in HPC, and exploiting the achievable

efficiency of accelerators impose the challenge.
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Table 4.2: Accelerators for processing sparse tensor computations.

Objective Techniques

Compressed data

in off-chip

memory (storage)

[4, 5, 38, 42, 94, 95, 112,

122, 212, 214–232]

Compressed data

in on-chip

memory (storage)

[5, 38, 94, 95, 112, 122, 212,

214–220, 222–230, 232–234]

Skip processing

zeros

(energy efficiency)

[4, 5, 94, 95, 112, 122, 212,

214, 216–243]

,

Reduce ineffectual

computation cycles

(performance & energy)

[5, 94, 95, 112, 122, 212,

214–220, 222–230, 232–234,

238, 239, 243]

Load balancing

(performance)

[94, 95, 122, 219, 222–224,

227, 230, 232, 235, 236, 239]

and data transformations for arranging structured computations (e.g., for systolic

arrays [235, 244, 247]). Recent accelerators, including ZENA [239], SNAP [218], and

EyerissV2 [95], leverage dynamic sparsity also. It requires determining locations

of intersecting NZs in both tensors at run-time to feed functional units, on-the-fly

decoding (encoding) NZs, and often balancing computations on PEs. Table 4.3 lists

different accelerators that support static and dynamic sparsity of tensors.

Previous accelerator designs for compact ML models varied in terms of the hardware

design space, e.g., a certain type of architectural component for sparsity-decoding
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or non-zero extraction. For instance, for existing accelerators, hardware structures

for processing NZs are designed with some choices, which, with the configuration

of their design hyperparameters, impacts the acceleration achieved. For example,

in Cambricon-X/S [5, 251], the data extraction mechanism processes a 256-element

stream to feed 16 multipliers of dot product engine every cycle. So, they efficiently

process up to ∼90% sparsity, but for sparser NLP models like BERT-base-uncased

[14] (92% sparse weights [182]) on SQuAD [252], get only ∼8× from 12× achievable

speedup. 2 Their efficiency falls steeply with increased sparsity, or when multiple

tensors are highly or hyper sparse [18, 253–257]. Further, Cambricon-X only process

static sparsity of weights and Cambricon-S requires weights with a certain block-

sparsity [258] structure. ExTensor [225], an accelerator for hyper-sparse computations,

used an intersection mechanism for extracting NZs that compares two streams of

positions of NZs. Such choice is effective when positions of NZs in two tensors are

identical or within a short range (e.g., low/moderate sparsity); obtained speedup on

their evaluated benchmarks fell short by ∼4× and ∼8×, as compared to the achievable

and ideal speedups, respectively. SIGMA [212] extracts data similarly, and doing so

as pre-processing worsens the latency. Function units in SCNN [217] (supports only

unit-strided convolutions) and SNAP [218] contain multipliers and adder trees, which

are poorly utilized (below 20%) for high sparsity (90%) [218], so they can be inefficient

for sparse workloads as MobileNetV2 [259] or Transformers [13, 14]. Further, all

accelerators encode tensors in some fixed format that is efficient for a limited sparsity

range [33] (e.g., CSR at hyper-sparsity and bitmaps/RLC-4 for low/moderate sparsity

[33]).

A few approaches optimized SpMV on CPU/GPU [260–263] but lead to specific

2Discussion about the speedup of an accelerator, unless mentioned otherwise in this section,

refers to a reduction in execution time by leveraging sparsity as compared to dense tensor processing

on an accelerator with a similar configuration at its peak.
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dataflow (suitable only when one tensor is hyper-sparse and another is dense). With

specific hardware design components for sparsity, execution methods for accelerators

are maneuvered, often degrading the efficiency. For instance, EIE [122] and EyerissV2

[95] use weight stationary dataflow [33, 45] for processing tensors on PEs, where

weights (sparser) are indexed (looked-up) with a position of an NZ activation (denser).

So, the obtained efficiency vs. peak can be low.

To overcome inefficiencies in processing unstructured sparsity, some techniques

induce coarse-grain sparse structures, e.g., by pruning entire tensor dimensions [211]

or blocks of elements [94, 248, 258, 264]. When being accelerator-unaware, such

pruning does not yield the desired efficiency and is also inapplicable for conventional

accelerators. This is because, no synergy is established between attained pruning

and the target accelerator’s requirements for execution and efficiency. For instance,

density-bounded blocks need to be encoded similar to blocks with unstructured sparsity

[33], e.g., with bitmap [244], one-dimensional coordinates [219], or run-length coding.

So, for the same sparsity and block size, the storage overhead is similar to processing

a tensor that has unstructured sparsity. Coarse-grain block-sparse tensors can be

encoded at block-granularity, which can significantly reduce the metadata size (almost

eliminated for dimensional pruning [265]). Coarse-grain pruning, however, has some

limitations in the sparsity that can be achieved without reducing the task accuracy.

Moreover, some hardware/software support is still needed to process NZs, including

determining their positions. Recently, accelerator designs have been explored to

support some sparsity structures [219, 251], and they also share similar inefficiencies.

For example, sparse tensor cores in nVidia A100 [84] support a fixed 50% block

sparsity in a single tensor, and Cambricon-S [94] is inefficient in exploiting high or

hyper sparsity.
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4.2.3 Overview of Components for Sparse Tensor Accelerators

In contrast to settling upon arbitrary design choices, this work develops design

abstractions and taxonomy to establish a systematic representation of the wide space

at each hardwarw/software/model design level and quantify them to determine their

efficiency for varying sparsity. For the hardware design space, abstractions can be

developed for specifying mechanisms for a variety of encoding, decoding, extraction,

communication, buffering, computation, and load-balancing of NZs. For instance,

abstractions for data extraction can define various ways for locating the matching

NZs in tensors based on the positions of NZs, along with corresponding functionality

and execution cost. Likewise, abstractions for buffering could cover different models

of accessing streaming/stationary data and metadata (for tensors in different sparsity-

encoded formats), and so forth. Altogether, these abstractions can capture a wide

range of microarchitectural features involved in processing NZs of varying patterns,

from obtaining the input data to storing the produced output (and encoding it).

Therefore, they could enable systematic modeling of the accelerator functionality and

execution efficiency for a wide design space, including some common and previously

proposed designs. Plus, implementation of these decoupled abstractions could allow

hardware designers to configure the accelerator by selecting from the available features

or even define special-purpose features and evaluate it quickly with better modularity

and reusability. Next, different hardware and software aspects of the accelerator

system are described that help in leveraging sparsity effectively.

Sparsity encodings: Sparse tensors are compressed using encodings, where only

NZ values are stored in a ”data” tensor and one or more ”metadata” tensors encode

locations of NZs. There are different formats and associated costs for encoding and

decoding. For different sparsity levels, their effectiveness can vary in terms of storage
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efficiency. E.g., tensors can be compressed by 1.8× and 2.8× for 50% and 70% sparsity

(bitmap or RLC-2) and 7.6× and 55×–60× for 90% (RLC-4) and 99% sparsity (CSC

or RLC-7). Structured sparsity (coarse-grain block-sparse) can alleviate the overheads

of metadata and fine-grained data extraction by encoding indices for only large dense

blocks. For accelerating ML models, sparse tensors are also quantized i.e., their

precisions are lowered (typically int8 or int16 for inference [95, 217, 239] and FP16

for learning [212, 222]) and often approximated by clustering data of similar values

[38, 94, 122]. Therefore, encoded sparse data contains quantized values of NZs.

NZ detection and data extraction: In processing sparse tensors of different

primitives, corresponding elements of the weight and activation tensors are multiplied

and accumulated. Depending on the sparsity, accelerators need to use data extraction

logic that decodes compressed tensors, search within a window of NZs or index the

buffer, and obtain matching pairs of NZs to feed the functional units for computation.

Up to moderate IA-sparsity and high W -sparsity, these indexing or intersection-based

mechanisms efficiently extract sufficient NZs at every cycle for keeping functional

units engaged. For efficient compute-bounded executions at such sparsity, accelerators

reported achieving near-ideal speedups (e.g., about 80%–97% of the speedup corre-

sponding to reduced operations, i.e., sparsity-speedup ratio) [5, 122, 239]. However,

extraction becomes challenging at high (e.g., 90%+) or hyper sparsity as NZs are

scattered at distant locations [254], and execution is usually memory-bounded with

low arithmetic intensity. The data extraction mechanism can be either shared among

PEs or employed in PEs, which also impacts overall efficiency.

Memory management: Compressed tensors are often stored in the shared

on-chip memory that is non-coherent, multi-banked, and often non-unified. For a

pre-determined sequence of execution, a controller or PEs initiates the accesses between

off-chip and on-chip memory; their latency needs to be hidden behind computations on
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PEs. The techniques for hiding miss penalty for sparse tensors include double-buffering

or asynchronous computation and memory accesses. The data reuse opportunities can

vary for various sparsity and dimensions of tensors of common DNNs and sparsity can

lower the reuse. Further, techniques could leverage cross-layer reuse of intermediate

output layers and reduce the overall latency.

Communication networks: Once tensor blocks are fetched from memory, they

are distributed to appropriate PEs via interconnect networks (often one per operand).

Efficient designs ensure that sufficient data can be fed to PEs while they perform

computations. Reuse is leveraged spatially by multicast or mesh networks that

communicate common data blocks to multiple PEs. It lowers accesses to memory

hierarchy and communication latency. However, spatial reuse opportunities vary

depending on the sparsity, NZ extraction mechanism, and mapping of the functionality

on the accelerator. Executing inter-PE communications can be challenging, as it

may become unstructured due to sparsity and the temporal and spatial mechanisms

for reduction/collection of the outputs. Configurable designs can support various

communication patterns for different sparsity, reuse, and functionality.

PE architecture: Several accelerators consist of scalar PEs with fused MAC units

(e.g., EIE [122], LNPU [222], and Envision [221]). Others contain SIMD PEs (multiple

functional units) (e.g., EyerissV2 [95]) or vector PEs consisting of multiplier-arrays

and adder-trees (e.g., Cambricon-X [5] and SNAP [218]). PE architectures either

directly process pairs of matching NZs extracted from tensors or use hardware logic

for data extraction or coordinate computation. Effectively utilizing functional units

can be challenging for variations in sparsity, precisions, and functionality, and it may

require configurable designs. Further, sparsity-aware dataflow mechanisms (mapping

of tensor computations on accelerator resources) can be used by different accelera-

tors. Accelerators have leveraged value similarity of tensors and the corresponding
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modifications in the PE architecture.

Load balancing: Depending on the distribution of zeros, the execution may end

up with processing a different amount of NZs on different PEs or their functional

units, which creates inter-PE or intra-PE load imbalance. accelerators achieve load

balance through either software techniques (e.g., structured pruning or data reorga-

nization) or by providing a hardware module for dynamic work balance (through

asynchronous execution or work sharing), which provides further accelerations. For

example, ZENA [239] leveraged the sparsity of both activation and weight tensors for

AlexNet and VGG-16 models and reported about 32% additional performance gains

through load balancing. Dynamic load balancing can provide notable speedups for

high, unstructured sparsity [254].

Write-back and post-processing: Tensor elements produced by PEs need to

be collected, post-processed for further operations, and written back to the memory.

PEs in different accelerators either write back sequentially or asynchronously through

a shared bus or via point-to-point links. In addition, accelerators usually contain a

post-processing unit that re-organizes the data (as per the dataflow mechanism of the

current and next layer of the model) and encodes sparse output on the fly.

More details on categorization for these components, their trade-offs are available

in [33]. Next accelerations achieved by some template architectures are discussed

along with their analysis.

4.2.4 Analysis: Accelerations Achieved

This section analyzes the sparsity of recent DNN models (for NLP and CV) and

the acceleration that can be achieved with some of the popular accelerators-alike

architectures.

DNN models: Table 4.4 summarizes analyzed DNN models and their overall
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Table 4.4: Sparsity of some popular DNNs.

Model Domain Dataset
GOps

(dense)

Sparsity % Sparse

ModelIA W Ops

MobileNetV2 [259] CV ImageNet 0.3 34 52 81 [266]

EfficientNetB0 [112] CV ImageNet 0.5 0 68 60 [266]

Transformer [13] NLP WMT En-De 4.6 0 79 79 [267]

BERT-base-uncased [14] NLP SQuAD 9.3 0 92 92 [182]

sparsity across all CONV, GEMM, and DW-CONV operations. For each of these

DNN operations, W -sparsity was obtained from sparse DNN models (listed in the last

column). IA-sparsity was obtained by performing inference with sample data (images

and text sequences).

Accelerators: Table 4.5 summarizes analyzed accelerators and their sparsity-

centered features. Their architectures targeted unstructured or block-sparse sparsity

of activations and/or weights. Their features represent variations across data encoding,

data extraction, vector processing, memory hierarchy, NoC, and load balancing.

Methodology: To determine the impact of sparsity on achievable acceleration,

a data-driven analysis of the execution latency was performed. For each DNN layer,

zeros (or blocks of zeros) were induced randomly according to the sparsity of its

tensors. The overall execution time was determined from the latency of processing

on functional units, data decoding, extraction of non-zeros, work synchronization,

and off-chip memory transfers, which were calculated based on analytical modeling of

the microarchitectural features. The speedups were calculated over oracle processing

of dense tensors at the accelerator’s peak utilization of computational resources and

off-chip bandwidth. In this study, the processing of DW-CONV on these accelerators
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Figure 4.3: (a) Obtained speedups for accelerators listed in Table 4.5. (b) Analysis of

execution time overheads for obtained accelerations.

is not considered, since they are often not pruned, and their execution needs to be

group-wise, which is extremely inefficient. Such unsupported performance-critical

operators were assumed to be processed with dense tensors at peak utilization of

hardware resources.

Analysis: Fig. 4.3(a) shows speedups of accelerators for targeted DNN models,

for leveraging the sparsity of supported DNN operators. It illustrates speedups

for (i) reduction in the operations due to sparsity (desired), (ii) peak utilization of

accelerator’s computational resources and off-chip bandwidth while leveraging sparsity,
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over such oracle processing of dense tensors (potential), and (iii) actual processing

on accelerator over oracle processing of dense tensors (obtained). For understanding

implications of execution overheads including those incurred by metadata processing

and load imbalance, Fig. 4.3(b) illustrates fractions for desired computation time and

execution overheads in a stacked format. The overheads were extracted for layer-wise

processing and then accumulated to determine the overall impact. Fractions include:

• Computation time: Minimum execution time required for processing at peak on

accelerator’s functional units.

• NZ extraction: Time required for decoding NZs from communicated operands and

extracting matching operands for feeding the functional units. It also corresponds to

balanced computations.

• Load imbalance: Time required for on-chip processing on the accelerator, considering

the imbalanced computations subjected to the accelerator’s work synchronization and

work sharing schemes.

• DMA time: Time required for off-chip data communication via DMA transfers, in

addition to on-chip processing.

Fig. 4.3(a) shows that accelerators efficiently exploited moderate sparsity. E.g., for

4.8× reductions in operations of Transformer due to W -sparsity, they achieved about

4×–4.2× speedup. The exploitation of speedup lowers when activations are dense

and weights are highly or hyper-sparse. This is because accelerators like EIE and

Cambricon-X broadcast activations to PEs and extract matching pairs corresponding

to NZ weights. So, communication of activations and extraction of matching NZ

operands consume significant execution time, while there are fewer operations to

feed the functional units (Fig. 4.3b). E.g., for BERT-base-uncased [14] (92% sparse

weights [182]) on SQuAD [252], they achieved about 7.7×–8.9× speedup out of 12.2×

speedup for processing at peak. Due to block-sparse weights, computations on PEs

131



of Cambricon-S are always balanced. Therefore, it achieved higher speedups. By

using blocks of 16×16 or even 1×16 (across input and output channels) for pruning,

inducing similar sparsity is not possible sometimes. So, the reduction in operations and

potential for the speedup was slightly lower for Cambricon-S (e.g., for EfficientNetB0).

In general, due to high DRAM bandwidth, overheads incurred by DMA transfers were

hidden (for Cambricon-X/S) or negligible for non-interleaved transfers (e.g., for EIE).

Fig. 4.3(a) also shows that Cambricon-S and ZENA-IA-W achieved higher speedups

for CV models by leveraging unstructured sparsity of activations. High IA-sparsity

amplified total sparsity during processing several layers (e.g., MobileNetV2), incurring

considerable excess processing in data extraction for Cambricon-X/S and in load

imbalance for ZENA-IA-W. With zero-aware static sorting of filters and dynamic load

balance, ZENA [239] could overcome such imbalance. But, it would suffer through

high on-chip communication time since it used only one shared bus for multicast via

NoC and collecting outputs. Such communication overhead was disregarded for ZENA-

IA-W in this study, as most accelerators use separate NoCs or buses for alleviating

communication overheads. Also, due to low DRAM bandwidth, overheads incurred by

DMA transfers were higher for ZENA-IA-W, mainly for executing DW-CONVs with

dense tensors.

To summarize, efficiently exploiting sparsity requires dedicated support through

new hardware and/or software modules in domain-specific architectures that need

to be tailored as per the sparsity and its pattern. Due to such newer modules, their

execution modeling and analysis requires developing additional tools.

4.3 Automating the Architectural Execution Modeling and Characterization

Most research efforts have focused on proposing new domain-specific architectures

a.k.a. DSAs or efficiently exploring hardware/software designs of previously proposed
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architecture templates. Recent architectural modeling or simulation frameworks for

DSAs can analyze execution costs, e.g., for a limited architectural templates for dense

DNNs such as systolic arrays or a spatial architecture with an array of processing

elements and 3-level memory hierarchy. However, they are manually developed by

domain-experts, containing several 1000s of lines-of-code, and extending them for

characterizing new architectures is infeasible, such as DSAs for sparse DNNs. Further,

the lack of automated architecture-level execution modeling limits the design space

of novel architectures that can be explored/optimized, affecting overall efficiency of

solutions, and it delays time-to-market with low sustainability of design process.

To address this issue, this chapter introduces DSAProf : a framework for automated

execution modeling and bottleneck characterization by a modular, dataflow-driven

approach. The framework uses a flow-graph-based methodology for modeling DSAs

in a modular manner via a library of architectural components and analyzing their

executions. The methodology can account for analytically modeling and simulating

intricacies in the presence of a variety of architectural features such as asynchronous

execution of workgroups, sparse data processing, arbitrary buffer hierarchies, and

multi-chip or mixed-precision modules. Preliminary evaluations of modeling previously

proposed DSAs for dense/sparse deep learning demonstrate that proposed approach is

extensible for novel DSAs and it can accurately and automatically characterize their

latency and identify execution bottlenecks, without requiring designers to manually

build analysis/simulator from scratch for every DSA.

4.3.1 Overview

Current approaches for execution modeling of DSAs. They require heavy

development efforts from experts and target a specific architectural template. For

instance, analytical models for estimating latency of deep learning accelerators such
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as [40, 46, 47, 121, 177] were developed by domain-experts for a specific template

architecture, e.g., either a systolic array or a spatial architecture with 3/4-level

memory hierarchy for dense DNN operators like convolutions or matrix multiplications

[41, 76, 77]. These analytical cost models contain several 1000s of lines of code

(LoC), and extending them becomes very challenging, when an architecture needs

to be modified with a new component for specialization, e.g., evaluating a DSA for

sparse DNNs. While AI-based approaches for quantifying processor executions exist

[66, 103, 124, 268], they also face same limitations. This is because, the models have

been developed only for off-the-shelf processors and require extensive data curation

and off-line training, which again may rely on already developed in-house simulators

for target DSAs or actual processors that are available in only post-design phase.

Time-consuming development efforts from domain-experts are required due to

lacking automatic architecture-level execution modeling for DSAs. It limits the design

space of novel architectures that can be modeled or explored, affecting an agile design

development (prolongs time-to-market) and overall efficiency of solutions. Further, it

significantly lowers the sustainability of the DSA design process. Recent industrial

studies like [36] have shown that the carbon footprint for producing processors,

especially DSAs, can largely overshadow the benefits achieved through operational

efficiency (e.g., 80%). And, their calculations focused only on post-design phases like

manufacturing. The implications can exacerbate notably when accounting for the

design-time efforts and human/compute resources.

Need. Generic methodologies are required for flexible and extensible execution

modeling, quantification, and characterization for a wide range of DSAs, without

having to build a full analysis/simulators from scratch in entirety for new DSA

templates – which is the primary objective of this work.

Underlying research challenges. There are two main challenges that prevent
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the automated latency/energy modeling and characterization of DSAs: 1) Unitary

or non-modular development for a highly customized architecture template, and 2)

lack of automatic determination of execution activity. Firstly, it is challenging to

extend or partly reuse an existing unitary model for developing a new cost model

or simulator for a new DSA. This is because, for a unitary model, designers require

significant efforts to first figure out exact modeling of each component that can be

reused. Plus, efforts/implications of introducing models of new components on the total

latency/energy are non-trivial and might lead to erroneous modeling. Further, these

unitary models only provide a single value, such as total latency, and for performance

characterization, it makes infeasible to automatically track it down to the underlying

design/execution factors that are likely causing inefficiencies.

Secondly, component-level and overall execution modeling requires execution

activity of each component, such as invocation counts and the meta-information

about the received input data. For a fixed template architecture, such information

is embedded manually based on the calculations for specific workloads, e.g., in [40,

75, 121]. Otherwise, it needs to be calculated manually based on mappings of the

workloads onto DSA and intra-DSA dataflow, and supplied as an auxiliary input to

the execution model, e.g., in [89]. For a more generalized execution modeling, such

information about execution activity needs to be supplied automatically.

Proposed approach. This chapter proposes DSAProf, a framework for auto-

mated execution modeling and bottleneck characterization, which addresses above

challenges through a modular, dataflow-driven approach. Modular modeling/charac-

terization approach requires a flexible abstraction for DSAs that can model DSAs

of various hierarchy, spatial resources, pipelining, and heterogeneity of components.

This work proposes to visualize, express, and evaluate DSAs as flow graphs, which can

enable modularity, while allowing to model a wide range of DSAs. Through proposed
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python-based embedded DSL constructs and features, DSAProf allows specifying

the architecture graph of DSAs in a flexible/readable manner, as compared to prior

approaches. Especially, they allow concealing low-level components and automatic

interfacing of DSA inputs/outputs with a synthetic controller.

The proposed execution model follows a dataflow-driven approach for supplying

execution activity. The latency model of each component in the library processes

input data or control logic from the input ports for deriving the latency corresponding

to the activity, and populates synthetic data on output ports for forwarding the

execution activity to sink nodes. The dataflow is triggered/updated by the external

inputs to the DSA, which are provided by configuring the outputs from the synthetic

controller. Such controller outputs (control logic or meta information about input data

for DSA) can be provided by designers or automation tools through machine code

related routines. The DSA components receiving inputs from the controller are invoked

by such routines, which are invoked as part of the mappings of workloads on a DSA.

With the modular construction of DSA and execution activity exchange among nodes

via ports, overall latency for a time interval can be calculated simply by traversing the

DSA’s architecture graph and aggregating the latency values of individual components.

Each time interval correspond to invoking one or more routines for configuring one

or more controller-interfacing components, and it can be advanced as per mapping

for the DSA. DSAProf uses the latency of each component and constructs a simple

bottleneck graph. By traversing the latency values for the DSA components and those

in its bottleneck graph, DSAProf can automatically pinpoints execution bottlenecks.

Results and broad impacts. Preliminary evaluations of popular DSAs for

dense/sparse deep learning [4, 5] show that DSAProf can accurately determine the

execution time and energy consumption of DNN workloads within 1%-6% of the

reported results for these DSAs. The evaluations also demonstrate that with the
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proposed modular approach, latency modeling of DSAs for dense deep learning (e.g.,

Eyeriss [4]) can be easily extended to model and characterize the latency/energy of

DSAs for sparse DNNs (e.g., Cambricon-X [5], EIE [122], or SIGMA [212]), without

enforcing experts to develop a new latency model or a simulator from scratch. It

introduces up to only a few 10s of LoC for extending the library by introducing a few

new components, while simply reusing the libraries for available components, DSA

specification, and overall cost modeling methodology for modular executions, whereas

current approaches of developing dedicated, unitary simulators/models for a new DSA

template typically take 1000s of LoC [40, 47, 121] and weeks–months of development

efforts [88]. Further, this work shows a study of automated characterization of

Cambricon-X like accelerator for BERT, which matches prior analysis [33] and reveals

how indexing modules and load imbalance due to irregular weight sparsity incur 56%

excess time, dropping the speedup (over dense model computations) from 12.5× (ideal)

to 8×.

4.3.2 DSAProf: Modular, Dataflow- driven Execution Modeling

Architecture Graph Abstraction

Flow graph based abstraction for arbitrary hierarchy: Design abstraction

impacts the architectures that can be specified by designers or ML-based automation

tools and thereafter evaluated or optimized during the explorations. Proposed abstrac-

tion for specifying and evaluating the domain-specific architectures is a flow graph

(FG). In the proposed flow graph representation for DSAs, the nodes are primary

components of computation, memory, control logic, or interconnect networks [74, 199],

or even a sub-graph that represents high-level architectural components like processing

engines. The edges simply represent the interconnections/bus of appropriate data
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widths among the inputs/outputs of the nodes. Fig. 4.4 represents an example flow

graph for the Cambricon-X [5] like DSA. As figure illustrates, such approach can

allow modular construction of an accelerator or even a multi-accelerator design, while

modeling arbitrary compute/buffer hierarchy for automated analysis. For instance,

such approach could allow modeling of memory hierarchy from 2 to 4-levels [177],

unified or shared L1 or L2 buffers, compute engines accessing data from on-chip buffers

or even directly from off-chip memory via DMAs [5, 47, 269].

Named input/output ports of the nodes enable flexibility in specifying con-

nectivity and automatic dataflow for architectural evaluation/simulation:

Each node contains some input and/or output ports that can be connected to the ports

of the other nodes via creating edges. The named ports make it easier for architectural

specification by designers or AI-based tools that rely on textual representation for

correctly specifying the connections among the nodes. The input/output ports are

implemented via pointers (or pointer-like data accesses by modifying lists in Python),

which make it easier for automated flow of the data for functionality/cycle-level

simulation or metadata for performance/energy analysis.

Supernodes for grouping/concealing low-level components or modules: Sys-

tematic execution analysis, simulation, or visualization of an architecture graph often

require the designers to group some low-level components and treat as a high-level

architecture component in the hierarchy. For instance, the datapath of a processing

element may need to be defined through buffers, ALU, multiplexers, delays, address

generators, and additional control logic. In the proposed architecture graph, such a

sub-graph for a PE can be defined by grouping of the preliminary components as a

supernode, even if the high-level PE definition is unavailable in the imported libraries.

When analysis/simulation of an architecture graph reaches such a supernode, it can

iterate over the sub-graph similar to the overall architectural flow graph.
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Figure 4.4: Flow graph of Cambricon-X like accelerator (for sparse deep learning

models), which efficiently exploits unstructured sparsity of weights. With a flexible flow-

graph abstraction and specification in DSAProf, designers or architecture generation

tools can easily specify and characterize various DSAs of different hierarchy and

specialization.
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Advantages: The flow graph abstraction allows modular construction of architectures

and modeling arbitrary hierarchy and grouping of components for higher level analysis.

Hence, it can facilitate designs of a wide range of DSA architectures such as [4,

33, 94, 118, 206, 225], as also observed by [89, 199], and even novel architectures.

Moreover, the modular, dataflow-driven latency/energy modeling enables opportunities

for automated bottleneck characterization of the DSAs as detailed in section 4.3.2.

Further, since algorithms are compiled as data flow graphs [91, 97, 141, 199, 270] or

application code can be decomposed into task graphs [271], they can be conveniently

mapped on flow graphs of DSAs, which could be useful in automated architecture

search for novel workloads [34].

DSA Graph Specification

DSAProf uses a python-based embedded DSL, which allows importing the constructs

for specifying the architecture graph, while leveraging in-built data types and language

constructs in Python for flexibility and compactness in specification. This approach also

makes feasible to import or integrate additional libraries (typically in Python/C++) for

hardware specification/generation (e.g., from PyMTL [272], gem5 [90], CACTI [175]),

design space exploration [2, 185–187], or application’s dataflow graph specifications.

The proposed graph specification library builds upon Python’s networkx package,

which allows associating custom objects with nodes and edges for a customized DFG

(dataflow graph) as well as common routines for constructing/parsing DFG. The listing

below shows declaring a new architectural graph of a DSA or a multi-DSA SoC.

myDSA = accel(name='myDSA')

The newly defined DSA object contains an empty DFG object (for the overall

architecture graph) and properties and/or routines for execution modeling, including
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latency, energy, functionality simulation, and architecture visualization [200].

Node Specification: New nodes can be added to the DSA’s flow graph by ‘add node‘

routine as shown below. It allows to specify the name of the node and associate an

architectural component from the imported libraries. The component class defined

in the library should contain the information about its input/output ports, internal

properties (e.g., buffer size/banks), and the definitions for execution modeling such as

latency, power, or functionality for simulation. If a component is not specified or it

lacks some features, by default, a baseline node object or its definitions are used.

myDSA.dfg.add_node(Name='Buf_L2_Weights', Object=buffer(size=1024,

data_width=32, banks=8, double_buffering=True))

Each node contains input/output ports. For instance, a node corresponding to a

multi-bank buffer object could have ports for reading/writing the data in each banks

of the on-chip buffer. For making the specification flexible/readable, these ports are

named in the class initialization of a component, which are later used to connect the

nodes during the modular construction of a DSA. If port names are unspecified in the

component definition, then the DSL generates and uses default names input port i

and output port i, where i is the number of the input/output port. Input ports can

be designated for receiving either data or control logic. Typical examples of input

data ports are data values and buffer addresses generated by components within DSA,

whereas control logic like read/write enable or resetting summation in MACs is usually

supplied by custom FSMs or controller.

Edge Specification: Edges represent the interconnections among nodes. Intercon-

nections are setup between output ports of source nodes and input ports of sink

nodes. The ports are numbered, and with several ports for each nodes, specifying a

connection correctly could be challenging. Therefore, proposed specification allows
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naming ports and connecting them accordingly. Designers or architecture generation

tools could specify multiple source-sink pairs as lists, as shown below. Each item in

a list is defined as a node name.port name, which helps the graph parser to locate

appropriate components and their ports.

myDSA.dfg.add_edges(list_sources=["DRAM.rd_data0", "BufC_L2.rd_data0"],

list_sinks= ["DMA.rd_data_offchip", "DMA.rd_data_onchip"],

pipelined=True)

Once an edge is specified for connecting ports of components, the ports are

connected via pointers (or pointer-alike data access mechanism) in the underling

implementation. This represents the setting up data buses of the necessary bitwidth,

which must be same for a source port and a sink port. Such setup enables the dataflow

for actual data-based simulation or exchange of meta information about analytical

modeling of the data transfers (section 4.3.2).

Pipelining. DSA graphs typically contain architectural components that correspond

to different pipeline stages and work in an interleaved manner. Therefore, by default,

when edges are formed, they represent a pipeline buffer for a different stage. However,

designers can specify whether the connected components constitute the same pipeline

stage or not.

Supernode/Grouping Specification: The listing below shows The supernode can

be also be defined initially by creating a new flow graph object and associating it.

PE_datapath = ['Function_Unit', 'Weight_Buffer']

PE = myDSA.dfg.add_supernode('PE', PE_datapath)

Controller/Host Interfacing: The effectual latency/energy analysis of architectural

components typically depend on the control inputs specified, which triggers the
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execution corresponding to certain datapath/operation. Such control logic needs to

be supplied to the input ports of the components and should be configured at regular

intervals, based on a workload’s mapping on the target DSA. Typically, such control

logic contains several Boolean signals or categorical values, provided from the host

machine or a customized controller that is tightly coupled to the DSA. For a quick

setup of a synthetic controller for analytical modeling, the DSL allows specifying

a synthetic controller and automatically generating related input/output ports and

interconnects, as listed below.

# Define a synthetic controller for the DSA

controller = controller()

myDSA.dfg.add_node('Controller', controller)

# Determine unconnected inputs/outputs for interfacing with the

controller

controller_inputs, controller_outputs =

myDSA.dfg.get_unconnected_ports()

# Populate controller with the necessary ports for the interfacing

controller.set_unconnected_ports( controller_inputs, controller_outputs)

# Connect ports between controller and DSA components

myDSA.dfg.connect_controller(name='Controller')

Once a DSA is specified with all architecture components and a synthetic controller

is defined, the automatic interfacing of controller is achieved by figuring out all

unconnected input/output ports of the components in the target DSA. In section 4.3.6,

this chapter presents a case study for defining Cambricon-X like DSA with DSAProf’s

DSL.
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Dataflow-driven Execution Modeling

The proposed approach uses a modular, dataflow-driven modeling. The proposed

approach is modular, which uses execution model of each architectural component in

the DSA graph in order to populate overall quantification. With a dataflow-driven

modeling, connected components in the DSA graph exchange the meta information

about data transfers/properties. Such information received by the component during

each invocation represents the execution activity. Therefore, the latency model of

each component processes meta information about input data or control logic from

the corresponding input ports, and then it derives the latency corresponding to the

activity. It also populates synthetic data (meta information) on output ports, which

forwards the execution activity to the input ports of the sink nodes.

With the modular construction of DSA and execution activity exchange among

nodes via ports, overall latency for a time interval can be calculated simply by travers-

ing the DSA’s architecture graph. In the DSA graph, one or more root nodes can be

designated and the nodes are traversed from the root nodes based on their heights

in the tree. Heights of the nodes are determined based on the heights of their prede-

cessors. Based on whether connected components corresponds to the same/different

pipeline stage, obtained latency values from models of individual components are

aggregated (taking maximum/addition of values). In case of synchronization between

the components, the collective latency is updated at the end of each interval.

Overall latency can be found by evaluating models of architectural components as

per the DSA graph traversal and summation of aggregated value for every time interval.

The time intervals can be advanced as per mapping of a workload onto the DSA. Each

time interval corresponds to invoking one or more routines, which configures inputs

to the one or more controller-interfacing components. The configurations/data to
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the interfaced components of the DSA are provided by the outputs from a synthetic

controller or host (through machine code routines or a custom instruction/bit-stream).

Such controller outputs are usually provided by designers or generated through

automation tools for the machine code generation. In section 4.3.6, a case study is

discussed for mapping SpMV operator on Cambricon-X like DSA that is specified

and analyzed with DSAProf. It shows how the relevant machine code routines can be

extended to supply the configurations generated by controller.

DSAProf’s DSL provides routines for invoking such analysis through a simple

function call. Additionally, designers can directly initialize the traversal order or

visualize the DSA by invoking in-built methods as shown in the listing below.

myDSA.view()

myDSA.dfg.set_roots(['DMA'])

myDSA.dfg.traverse()

execution_time = myDSA.dfg.get_latency()

Temporal data representation: The proposed execution model allows considering

data transfers between components over time, which are represented as a n + 1-d

array/list where n represents the dimensionality of the data received/sent by the

ports of each node. Such temporal representation enables the latency model for a

component to consider the whole data sequence for an execution interval and estimating

their latency in one shot. This reduces the invocations to the component be made

and consequently, a faster analytical estimation or functionality simulation. This

is typically possible for most DSAs that process vector streams, at least for several

cycles or a time period. Otherwise, either the temporal processing can be disabled

or components can be invoked by the generated code in a regular fashion, i.e., at a

cycle-level or a single element-level granularity.
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Approximating processing for repeated execution behaviors: The execution

model allows marking the advancement of execution interval with a repeat factor,

which makes the analysis faster. For instance, given a mapping of nested loops on

DSAs, execution pattern could be repetitive and the execution latency/energy could

simply be estimated by multiplying the obtained estimates with the repetition factor

for the loop processing.

Data-aware analysis and functionality simulation: Execution model could

be invoked by configuring it with data-aware analysis as well, where components

communicate actual data based on their functionality and their latency models take the

actual data values into account (e.g., for sparse data processing). While this approach

could likely consume less time for analysis as compared to invoking components at

every cycle in cycle-level simulators, it is usually slower than the analysis based on

meta information about the input/output data (used by default).

Library for Modeling Performance of Domain-Specific Architectures

This work develops a library for estimating performance of modules based on the meta

information about data transfers/properties in the execution. Several libraries/frame-

works for estimating area or power for these components exist, such as DSAGen

[199], Accelergy [89], CACTI [175], which can be integrated to proposed infrastructure

for area/power models of the components. Next the chapter describes some of the

preliminary components that are modeled by the proposed library.

Off-chip memory. This work models a dummy banked DRAM for off-chip accesses.

For off-chip data transfers, a DMA engine is modeled that can be interfaced with

multiple on-chip buffers, accessing them one at a time. A standard latency model is

followed that considers latency for initiating the transfer and burst communication

over maximum bandwidth available [154]. External models such as CACTI are used
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for accurate estimation of latency parameters for a broad range of off-chip memory

configurations.

On-chip memory. Multi-port and multi-bank SRAM buffers or register files are

modeled for accessing data on-chip. The on-chip buffers can contain several read-write

banks and can be double-buffered for hiding the data access time via memory hierarchy.

The execution model considers various scenarios, e.g., when data can be written into

banks in either a round-robin fashion or as contiguous block within a target bank.

For accurate estimation of read/write latencies for these buffers and broad range of

SRAM configurations, external models such as CACTI are used.

Functional units. Different function units modeled in the library supports common

arithmetical and logical functions on scalar or vector data. For instance, MAC units

can perform scalar operations, contain SIMD lanes, or contain multiplier-arrays and/or

adder-trees.

NoCs. The proposed library models common interconnects such as unicast, broadcast,

mesh, crossbars, or configurable multicast [4, 95]. Based on the information about total

inputs/outputs, communication bandwidth (links, bit-widths of links), and hops, their

latency estimation is simple, i.e., the time taken to forward data in time-multiplexed

manner [121, 273].

Sparse data compression and indexing. The components for extracting non-zeros

from sparse data support indexing-based and intersection-based mechanisms that act

upon positions of non-zeros in one or more tensors [33]. These modules synthetically

generate a sample stream for accounting for sparsity structure in real-world and make

estimates based on their capabilities for extracting non-zeros from the sample stream.

The modules for encoding/decoding sparse data support commonly used compression

formats such as COO, CSR, CSC, bitmap, RLC, etc.

Control logic. The library models commonly used components such as multiplexer,
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is shown here for processing sparse ML layers on Cambricon-X [5] like DSA that is
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Figure 4.6: Detailed latency bottleneck analysis for Eyeriss [4] like DSA, which

accounts for execution activity as well as execution models and design parameters of

architectural components. It can help not only identify the root causes of inefficiencies

but also mitigation strategies for improving workload mapping and architecture design.

FSMs for address generators, as well as synchronization and delay elements.

Note that the proposed methodology targets performance or energy modeling of

the modules, but designers could extend the modeling for other important metrics

such as resilience and security of domain-specific architectures [34].
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Automated Bottleneck Characterization

The modular, dataflow-driven latency/energy modeling enables opportunities for

automated bottleneck characterization of the DSAs. This is because, in the modular

approach of execution modeling for the whole DSA or a multi-DSA SoC, the information

about costs of each architectural component (and subsystem) serves as a fundamental

part. This information is inherently available in an explicit manner, as compared to

deriving it from the collective cost model or simulator manually written by experts

for a specific DSA. Further, with the dataflow-driven execution, metadata about

the tensors processed by each component (tensor shapes, sequences received over

time, sparsity, etc.) also becomes inherently available in an explicit manner, which

relates to the execution activity observed over time. The availability of both the

information is essential in constructing a bottleneck analysis of the execution cost,

which are usually absent in conventional analytical/simulation-based execution models

for performance/energy, requiring explicit manual efforts by domain-experts.

In several scenarios, a simple bottleneck analysis with the information about the

components, whose execution costs are excessive or prevailing the overall latency/en-

ergy, could be sufficient. For instance, consider the architectural graph of Cambricon-X

like DSA in the Fig. 4.4 for dense/sparse deep learning. The latency of such DSAs

are primarily dependent on the factors like time consumed by computations (Func-

tion Units in PEs - PEFUs), time taken by DMAs for input/output activations and

weights, time consumed by NoCs for communicating data between shared buffers and

registers/buffers in PEs, and the time taken by decoding and extracting non-zeros

for feeding to PEs (indexing and neuron broadcast synchronization). Usually, with a

highly pipelined architecture design, these components are almost equally engaged

in their executions, and the total execution time is determined by a maximum value
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among these factors, as illustrated in Fig. 4.5. Thus, a simple analysis determining the

datapath consuming maximum value could serve to identify the primary bottleneck.

An actual case study analysis for BERT layers is provided in section 4.3.3.

More accurate accounting for activity may be required when the excess time (con-

sumed by non-perfect interleaving of these execution factors) causes synchronization

at intervals, and the active time of components may not be in tandem with overall

synchronized activity. Further, constructing a more detailed bottleneck model is

envisioned by leveraging the meta-information about execution activity and the repre-

sentation of the execution cost calculation for each component. For instance, for an

Eyeriss-like spatial architecture, the simple bottleneck graph (e.g., of Fig. 4.5, which

directly considers maximum/addition among latency values) could be transformed into

more accurate bottleneck model as illustrated in Fig. 4.6. Such detailed accounting

remains an open opportunity for future research. Once such detailed bottleneck models

can be constructed, the bottleneck identification and mitigation may be obtained

by traversing the information-rich graph and scaling the DSA design parameter or

execution metadata (from mapping) based on the contributions of a bottleneck factor

to the total cost [273].

4.3.3 Results and Analysis

DSAProf’s DSL and execution modeling of common components are used to

evaluate latency/energy of DSAs. For preliminary analysis, two popular DSAs are con-

sidered for dense/sparse deep learning - Eyeriss [4] and Cambricon-X [5]. Evaluations

include executions of operators like convolutions and MLPs for their reported results.
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Figure 4.7: For processing AlexNet convolution layers on Eyeriss [4] like DSA, DSAProf

estimates the total execution cycles within 1% of the reported results.

Validation 1: Dense DNN Executions

Eyeriss-like DSA [4] is modeled and its execution is evaluated, comparing their reported

results, e.g., AlexNet for ImageNet classification [274]. The outputs from controller are

configured as per mapping-style reported in [4] for their row-stationary dataflow. Fig.

4.7 shows the comparison of execution cycles based on the processing time reported

in [4] and the estimated execution cycles. It is found that the proposed estimations

closely matched execution cycles of the architecture [4], with a difference of about 1%

in the total execution cycles. It was infeasible to validate energy consumption against

[4], since it did not report energy consumption when executing layers with reported

mapping configurations.

The evaluations also included executions of convolutions or matrix multiplications

on similar DSAs with other dataflow-style such as output stationary and compared

with experts-defined tools such as dMazeRunner [86]. Such estimates for execution

cycles and energy consumption matched closely with those reported by dMazeRunner.
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Figure 4.8: For accelerating fully-connected (MLP) layers of sparse DNNs on

Cambricon-X [5] like DSA, DSAProf estimates performance speedups (over dense

DNNs) within 6% of the reported results.

Validation 2: Sparse DNN Executions

This section demonstrates how proposed modular approach can be easily extended

to model and characterize the latency of new DSAs, e.g., for sparse DNNs, without

enforcing the development of a new analysis or a simulator for the whole DSA from

scratch. After modeling the DSA for dense DNNs, e.g., Eyeriss [4], the library was

extended for modeling executions of the DSA components by adding the models for

two new modules, i.e., indexing and synchronization for sparse tensor computations.

Such support requires adding only up to a few 10s of LoC, while simply reusing the

models of available components, such as buffers, NoCs, and compute units for dense

tensor processing. It also reuses the DSL for DSA specification and overall modular,

dataflow-driven cost calculation approach.

After modeling the Cambricon-X [5], estimated performance was validated for

various sparsity in weights of classification (MLP) layers and compared the results with

reported values. Fig. 4.8 compares estimated speedup by DSAProf with the reported

speedups in [5], when evaluating a sparse VGG-16 classification layer for various
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Figure 4.9: DSAProf’s simple bottleneck analysis of latency (execution cycles) for

processing a BERT encoder layer with 92% weight sparsity on a Cambricon-X [5] like

DSA. Overheads of non-zero extraction and imbalance caused by irregular sparsity

leads to 56% excess execution time beyond effectual computations. Such automated

characterization helps determine the underlying execution inefficiencies for further

optimization.

sparsity (55%-95%). It shows that on average, estimated speedups differ from the

reported results by 6%. Since the details about DRAM configuration/technology was

not clear from [5], the energy consumption could not be compared directly. However,

when using DRAM power/energy estimates for a 28 or 45nm technology [122, 177], it

is found that total energy for Cambricon-X is heavily consumed by off-chip memory

accesses, as also reported in [5].

Bottleneck Characterization

This section shows an automated characterization of Cambricon-X like accelerator for

BERT layers [14] (e.g., encoder classification). As discussed previously in section 4.3.2,

the latency of such DSA is preliminary dependent on the factors like time consumed

by computations on PEFUs, time taken by DMAs for input/output activations and

weights, time consumed by NoCs for communicating data between shared buffers and
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registers/buffers in PEs, and the time taken by decoding and extracting non-zeros

for feeding to PEs (indexing and neuron broadcast synchronization). Cambricon-X

uses fat-tree NoCs for output collection and broadcasting of input neurons, making

NoC time becomes non-important or at par with computations on PEs. Fig. 4.9

shows evaluation of a simple bottleneck graph for a BERT encoder layer. The

bottlenecks in the total latency are in indexing and synchronization (load imbalance).

For the obtained latency, only 64% represents the time required ideally for effectual

computations (738 cycles, not shown), while additional 3% gets spent on indexing

mechanism for PEs that extract non-zeros, and the rest 33% of excess time is incurred

by load imbalance among indexing subunits. This is because, some indexing subunits

could spend more cycles to populate sufficient non-zeros for PEs, as the distribution of

non-zeros can be imbalanced and irregular. As same neurons need to be processed by

all indexing units and PEs, a synchronization is required, which delays the processing

depending on a tailing indexing subunit, while other modules remain idle. This

obtained characterization also matches with prior analysis reported in [33]. Such

overheads for indexing and load imbalance incur 56% excess time. It drops the speedup

(over dense model computations) from 12.5× (ideal, considering 92% weight sparsity

[33, 182]) to 8×.

4.3.4 Related Works

Graph-based Domain-Specific Architecture Specification: A vast majority

of DSAs are specified through a corresponding custom architecture template, as they

are application-tailored architectures for ASICs or FPGAs. Thus, their architecture

specification is restrained by the underlying template, and it does not require/allow

specifying modular construction of the various architectures. A few recent efforts for

evaluating/exploring DSAs, such as Accelergy [89] and DSAGen [199] follow similar
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graph-based approach, but they limit the design space that can be specified, or their

details, or offer less flexibility. For instance, Accelergy only allows specifying the nodes

and their hierarchy, but not explicit connections among inputs/outputs of the nodes,

which is essential in modeling performance and functionality simulation. Through

its Scala-based DSL, DSAGen allows specifying connections between the nodes of

architecture graph via switches (NoC nodes). However, these connections may need to

be defined in a certain order for correctness, as there is no way to indicate connecting

a specific input/output of a node to that of another node. Further, it lacks constructs

for concealing the low-level components into a higher-level module.

Libraries and Frameworks for Modular Accelerator Construction and Ex-

ecution Modeling: Frameworks like DSAGen [199] and Accelergy [89] define

preliminary components for computation, memory, interconnections, and control.

Their definitions typically specify execution costs like area or power; overall cost

for the DSA can be obtained by simply addition of the costs of all the components.

For performance modeling of the DSA, DSAGen [199] requires cycle-level simulation

of the functionality or hardware synthesis of each component [199], which is highly

time-consuming. Frameworks for accelerator generation such as MAGNet [75] and

AutoDNNChip [275] could estimate the performance/energy, but only for a fixed

template architecture.

Automated Execution Modeling of Domain-Specific Architectures: The

cost models of SECDA [160] and TVM/VTA [124] support end-to-end simulation and

synthesis for their DNN accelerator templates, and it could be highly time consuming.

Faster analytical models are more commonly used to optimize mappings and design

configurations for deep learning accelerators. Their examples include MAESTRO [121],

SCALE-Sim [46], and those of Timeloop [47], dMazeRunner [40], and Interstellar [177]

infrastructures. However, all these analytical cost models are developed specifically for

155



a certain template architecture, e.g., either a systolic array or a spatial architecture

with 3/4-level memory hierarchy. Therefore, extending them becomes very challenging,

when an architecture needs to be modified with a new component for specialization.

Bottleneck Characterization for Performance/Energy: Characterizing bot-

tlenecks in executions of workloads on DSAs is extremely important for optimizing

the architecture, configurations of its design parameters, code optimization, as well

as for evolving algorithms/workloads. Bottleneck analysis/characterization refers to

identifying the underlying inefficiencies that incur higher execution costs (performance

and energy) and related strategies for mitigating such inefficiencies. Such bottleneck

analysis have been developed/applied for characterizing fixed designs and finding

mitigation strategies, e.g., for industry pipelines and production systems, hardware or

software for specific applications [157, 171], FPGA-based HLS [159, 160], overlapping

microarchitectural events [172], power outage [173], and recently for deep learning

accelerators [273]. However, such characterization efforts are largely manual, and

they are too specific for their target processor architecture. For instance, AutoDSE

[159] and SECDA [160] proposed bottleneck models specific to FPGA-based HLS.

Further, current tools for simulation or analytical performance modeling of DSAs

contain manually defined cost models, which provide only a single execution value,

missing the richer information about how architectural design components contribute

to the overall performance and potential mitigation strategies.

4.3.5 Impact on Sustainability

Improving sustainability of computing-systems involves design-process and processor-

manufacturing. Even for domain-specific accelerators(DSAs), expert-designers develop

system-stack specific to architecture-template. It includes architectural-models for

energy/performance and functionality-simulators. As workloads change and new
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architecture-templates are developed, designers must create new architectural-modeling

tools from scratch. It is time/resources-intensive; limits sustainability and designer-

productivity; increases carbon-footprints of DSAs. Plus, tools designed for specific

architecture-templates are difficult to extend/reuse for exploring broader design-space,

limiting design-efficiency. The proposed approach uses accelerator abstraction (flow

graph) for automatic and modular accelerator modeling/characterization, spanning

wide range of architectural-features. Thus, designers can define/analyze accelerators

in 10s of lines-of-code (vs.1000s) and build-upon common methodology/infrastructure.

4.3.6 Case Study: Analyzing Sparse GEMMs on Cambricon-X like DSA

Defining the DSA

The DSA can be defined by using the DSL constructs for defining nodes, edges, and

grouping of nodes as discussed in section 4.3.2. Listing in Fig. 4.10 shows such

definition for Cambricon-X like DSA depicted in Fig. 4.4. With the proposed DSL

constructs, DSAs can be defined simply in a few tens of lines of code.

Mapping for the DSA

Listing in Fig. 4.11 shows how an SpMV operator can be mapped on a Cambricon-X like

DSA. The mapping embeds the machine code routines for setting the controller/host

signals and advancing the time intervals. For instance, routines for read/write DMAs

(line number 14) sets the related meta information that is provided by the controller

to the DMA, which is shown by the pseudo-code listing in the Fig. 4.12.
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Figure 4.10: Code listing for defining a Cambricon-X like DSA

1 myDSA = accel(name='Cambricon-X', freq(MHz)=1024, technology(nm)=65)

2 dfg = myDSA.dfg

3 num_PEs = 16; num_multipliers = 16

4

5 # ******************** Define nodes (components) for DSA ********************

6 dfg.add_node('DRAM', DRAM(size=5)) # size in GB

7 dfg.add_node('DMA', DMA(bandwidth=256000)) # BW in MB/second

8 dfg.add_node('NBin', buffer(size=8192, read_ports=1, write_ports=1))

9 dfg.add_node('NBout', buffer(size=8192, read_ports=1, write_ports=1))

10 # DMA writes data to buffers in PEs and on-chip NBin via demux

11 dfg.add_node('demux1', demux(num_outputs=num_PEs+1)) # write data for sink

12 dfg.add_node('demux2', demux(num_outputs=num_PEs+1)) # write address for sink

13 # Per PE: 1 synapse buffer, 1 function unit; 1 central neuron indexing subunit

14 for i in range(num_PEs):

15 dfg.add_node(f'BufferController_{i+1}_indexing',

indexNonZerosLookupVector(input_length=num_multipliers,

lookup_window_size=num_multipliers*16))

↪→

↪→

16 dfg.add_node(f'SB_{i+1}', buffer(size=1024, read_ports=num_multipliers,

write_ports=1))↪→

17 dfg.add_node(f'PEFU_{i+1}', vectorMAC(multipliers=16, datawidth=16))

18 # sync. neuron broadcast

19 dfg.add_node('synchronizer', synchronizer(num_inputs=num_PEs))

20 # assemble outputs from PEs

21 dfg.add_node(f'BufferController_assemble', buffer(read_ports=1,

write_ports=num_PEs))↪→
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22 # ******************** Add connections between ports ********************

23 # DRAM inputs, outputs, and control signals

24 dfg.add_edges(["DRAM.read_data_0", "DMA.write_data_offchip",

DMA.read_write_addr_offchip", "DMA.read_write_addr_offchip"],

["DMA.read_data_offchip", "DRAM.write_data_0", "DRAM.write_addr_0",

"DRAM.read_addr_0"])

↪→

↪→

↪→

25 dfg.add_edges(["DMA.read_enable_offchip", "DMA.write_enable_offchip",

"DMA.read_enable_onchip", "DMA.write_enable_onchip"], ["DRAM.read_enable_0",

"DRAM.write_enable_0", "NBout.read_enable_0", "NBout.write_enable_0"])

↪→

↪→

26

27 # DMA inputs, outputs, and control signals

28 dfg.add_edges(["NBout.read_data_0", "DMA.write_data_onchip",

"DMA.read_write_addr_onchip"], ["DMA.read_data_onchip", "demux1.input_data",

"demux2.input_data"])

↪→

↪→

29 dfg.add_edges(["DMA.out_dest_onchip", "DMA.out_dest_onchip"], ["demux1.select",

"demux2.select"])↪→

30

31 # L2 (shared) buffers: inputs, outputs, and control signals

32 dfg.add_edges([f"BufferController_assemble.read_data_0"],

[f"NBout.write_data_0"])↪→

33 dfg.add_edges(["demux1.output_data_0", "demux2.output_data_0"],

["NBin.write_data_0", "NBin.write_addr_0"])↪→

34 for i in range(num_PEs):

35 dfg.add_edges([f"demux1.output_data_{i+1}"], [f"SB_{i+1}.write_data_0"])

36 dfg.add_edges([f"demux2.output_data_{i+1}"], [f"SB_{i+1}.write_addr_0"])

37

38 # Connect indexing subunits with L2 buffer, their outputs to PEs, and connect

datapath in PEs↪→
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39 for i in range(num_PEs):

40 dfg.add_edges([f"NBin.read_data_{i}"],

[f"BufferController_{i+1}_indexing.input_data"])↪→

41 dfg.add_edges([f"BufferController_{i+1}_indexing.output_data"],

[f"synchronizer.input_data_{i}"])↪→

42 dfg.add_edges([f"synchronizer.output_data_{i}"],

[f"PEFU_{i+1}.input_data_0"])↪→

43 dfg.add_edges([f"SB_{i+1}.read_data_0"], [f"PEFU_{i+1}.input_data_1"])

44 dfg.add_edges([f"PEFU_{i+1}.output_data"],

[f"BufferController_assemble.write_data_{i}"])↪→

Figure 4.11: Pseudo-code listing for defining mapping of SpMV operator on a

Cambricon-X like DSA. Mapping embeds the machine code routines for configur-

ing inputs to the DSA via controller interface at different intervals.

1 def SpMV(myDSA, J, K, neuron_vector, weights_matrix, output_vector):

2 # Inputs: 1xK input neurons, JxK weights, 1xJ output neurons

3 # DSA has 8kB NBin, 2B data, double buffered, 2k elements

4 # DSA has 2kB SBs, 2B data, double buffered, 512 elements

5 tc_j_S = largest_factor_within_threshold(J, num_PEs) # Number of active

PEs↪→

6 tc_k_L1 = largest_factor_within_threshold(K, 512) # Iterations for

processing data from weight buffer in PEs (L1)↪→

7 tc_k_L2 = largest_factor_within_threshold(K // tc_k_L1, 4) # Iterations for

processing elements from shared (L2) buffer↪→

8 tc_k_L3 = K // (tc_k_L1 * tc_k_L2) # Iterations for

off-chip memory (L3) accesses↪→
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9 tc_j_L3 = J // tc_j_S # Iterations for

off-chip memory (L3) accesses↪→

10 for k_L3 in range(tc_k_L3):

11 # DMA transfers for input neurons

12 start_address, burst_size = get_neuron_indices_L3(K, tc_k_L3, k_L3)

13 read_dma(myDSA, neuron_vector, start_address, burst_size)

14 # DMA transfers for weights (multiple accesses due to non-contiguous bursts

for different PEs)↪→

15 for j_L3 in range(tc_j_L3):

16 start_address, burst_size, offset, num_invocations =

get_weights_indices_L3(J, K, tc_j_L3, j_L3, tc_k_L3, k_L3)↪→

17 for access in num_invocaitions:

18 read_dma(myDSA, weights_matrix, start_address + access*offset,

burst_size)↪→

19 for k_L2 in range(tc_k_L2):

20 address_neurons = get_neuron_address_L2(K, tc_k_L3, tc_k_L2, k_L2)

21 read_buffer_NBin(myDSA, address_nuerons)

22 for j_S in range(tc_j_S):

23 address_synapes = get_weights_address_L1(J, K, tc_k_L3, tc_k_L2,

tc_j_S)↪→

24 # No L1 loop. Execution for a PE's data processing from synapse

buffer is modeled in one shot.↪→

25 read_buffer_SB(myDSA, address_synapses)

26 address_outputs = get_outputs_address_L2(J, tc_J_L3, j_S)

27 write_buffer_NBout(myDSA, address_outputs)

28 # DMA transfers for output neurons

29 start_address, burst_size = get_outputs_indices_L3(J, tc_j_L3, j_L3)

30 write_dma(myDSA, output_vector, start_address, burst_size)
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Figure 4.12: Pseudo-code listing for configuring outputs from the controller for setting

a DMA transfer.

1 def set_DMA_transfer(controller_obj, read_write_addr_offchip,

read_write_addr_onchip, write_enable_n, burst_size, onchip_dest=0):↪→

2 controller_obj['DMA.write_enable_n'] = write_enable_n

3 controller_obj['DMA.burst_size'] = burst_size

4 controller_obj['DMA.read_write_addr_offchip'] =

read_write_addr_offchip↪→

5 controller_obj['DMA.read_write_addr_onchip'] = read_write_addr_onchip

6 if write_enable_n == True:

7 controller_obj['DMA.in_dest_onchip'] = onchip_dest

4.4 Conclusions

Techniques for automated architectural modeling and characterization of DSAs

are essential for their agile design development and design optimizations. Current

approaches develop unitary analysis/simulations for every DSA template architec-

ture, requiring time-consuming efforts from domain-experts. This restricts design

exploration/optimization of novel DSAs and makes the DSA design process highly

unsustainable. This chapter proposes a modular, dataflow-driven methodology and

framework (DSAProf ) for flexible and extensible execution modeling, quantification,

and characterization for a wide range of DSAs, without having to build a full analy-

sis/simulators from scratch in entirety for new DSA templates. The dataflow-driven

exchange of execution-related information among DSA components alleviates the need

of explicit calculation of execution activity, allowing to quantify or simulate each
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component separately. Overall methodology builds upon such modular evaluations

and aggregates the analysis globally based on pipelining/synchronization among com-

ponents and specified workload mapping for the DSA. Such modularity also makes it

possible to account for each component’s contribution to overall execution cost, leading

to an automated bottleneck characterization for the DSAs. Preliminary evaluations by

modeling the DSAs for dense/sparse deep learning shows that the proposed framework

DSAProf can accurately model their performance and energy consumption. It also

demonstrates the potential for modeling and characterizing DSAs in a flexible and

extensible manner.
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Chapter 5

CONCLUSIONS AND FUTURE DIRECTIONS

This dissertation advocated for an effective design methodology towards designing

efficient next-generation accelerators in an agile, explainable manner. Firstly, for-

mulation of a comprehensive hardware/software codesign space for architectures is

required. Holistic mapping space formulation for spatial and temporal execution

enables determining adaptive dataflows, and inclusion of a broad range of architectures

allows exploring efficient, constraints-meeting solutions. Second, bottleneck character-

ization of obtained solutions and bottleneck model-guided design optimization brings

explainability in the design exploration process. It helps reason about the effectiveness

of sampled solutions during the exploration process, systematically reducing execution

costs. Lastly, the design and characterization tools need to be developed around an

accelerator abstraction (e.g., a flow graph), which introduces modular and extensible

development for a broad range of domain-specific architectures. Next, several open

challenges and research directions are discussed that can help achieve better designs

and advance the automation further in designing efficient domain-specific architectures.

•Automating construction of bottleneck models and bottleneck mitigation

for arbitrary or large-scale domain-specific systems: For expert-defined cost

models, such as those of DNN accelerators, manual bottleneck analysis by designers

with first-hand domain information can be possible. When domain-specific architec-

tures can be described and evaluated as flow graphs, the analysis of costs/bottlenecks

may be automated by specifying the bottleneck models of architectural components

as graph of their analytical costs and having a centralized methodology for integrating

individual graph models into overall bottleneck model.
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There can be scenarios where designers may want to optimize the application

processing for off-the-shelf processors or can only access pre-existing design models

and simulators that are large-scale or complicated. In such cases, designers may

not be able to provide the domain-information for constructing bottleneck models

and available designs or large-scale simulation models (e.g., in C++/RTL) need to

be used for deriving bottleneck models. Hence, learning-based approaches can be

developed [201], which could be broadly applicable, while still leveraging the proposed

structure/organization of the bottleneck models and their usage in gray-box/white-box

design space exploration. Graph-based ML models or self-supervised ML models can

be more suitable, including but not limited to decision trees, graph neural networks,

and reinforcement learning. Likewise, bottleneck mitigation in complicated scenarios

can be estimated using gray-box optimization functions that approximate the relevance

and contributions of each parameter to the total cost [202] or through surrogates [103].

• Automating the mapping space formulation and code generation for arbi-

trary domain-specific architectures: The compiler for a flow-graph based architec-

tural description and design methodology needs to take the flow graph representation

of a DSA, dataflow graph of the targeted workload-functionality, and provide the opti-

mized machine code (actual/virtual ISA). Its design would need to deal with several

challenges, including (but not limited to) developing IRs/DFGs for DSA components

and generating overall functionality and ensuring its correctness, checking the compat-

ibility of workloads for execution on a DSA and apply necessary transformations to

workload’s source code and/or input data for correctness and efficiency, developing

virtual ISA for simulation and as a common front for lowering vendor-specific ISAs,

and programming/synthesizing accelerator host controller for non-accelerated code

and supporting control logic. Further, there remains opportunities for identifying

data/code transformations that could make the programs amenable to accelerated
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execution. For instance, source code of a workload may be written in a way that it

is not executable on the accelerator but applying some transformation can make it

possible to execute the workload’s functionality on the DSA (e.g., identifying and

transforming convolution into matrix multiplication).

While some tasks have been investigated in the mainstream compiler research for

individual DSAs, designing a compiler for a flow-graph representation faces unique

challenges/steps involving development of future methodologies and representations

that can be applied to families of DSAs for different domains.

•Automated, template-free architecture exploration for domain workloads:

As new kinds of domain workloads emerge or become execution-critical for computing

tasks (graph learning, federated learning, Fourier transformations, reinforcement

learning), automatic exploration of suitable hardware template architectures can be

useful. This differs from today’s scenarios, where experts manually come up with a

suitable template from scratch or follow templates developed previously (e.g., systolic

arrays). This could be addressed by developing a Design Space Description Language

(DSDL) for architecture-level exploration [34, 200]. It can build upon existing libraries

for accelerator designs that could provide cost modeling of accelerator’s components

or their compilation support. It also requires developing constructs for specifying

architectural space for hardware components, rules for constructing feasible and

efficient architectures from components, etc. Once such a language can help explore

novel architectures from scratch, the vast space of hardware components and their

dataflows would make agile exploration of efficient and novel architectures challenging.

Therefore, it needs to be equipped with AI-based techniques such that it focuses on

formulating feasible and effectual hardware architectures and their dataflows – for both

when defining the design space to begin with (off-line pruning) and when formulating

candidate hardware architectures during exploration (on-the-fly pruning).
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