
Explainable-DSE: An Agile and Explainable Exploration of
Efficient HW/SW Codesigns of Deep Learning Accelerators Using

Bottleneck Analysis
Shail Dave

Arizona State University
Tempe, AZ, USA

Shail.Dave@asu.edu

Tony Nowatzki
University of California, Los Angeles

Los Angeles, CA, USA
tjn@cs.ucla.edu

Aviral Shrivastava
Arizona State University

Tempe, AZ, USA
Aviral.Shrivastava@asu.edu

ABSTRACT
Effective design space exploration (DSE) is paramount for hard-
ware/software codesigns of deep learning accelerators that must
meet strict execution constraints. For their vast search space, ex-
isting DSE techniques can require excessive trials to obtain a valid
and efficient solution because they rely on black-box explorations
that do not reason about design inefficiencies. In this paper, we
propose Explainable-DSE – a framework for the DSE of accelerator
codesigns using bottleneck analysis. By leveraging information
about execution costs from bottleneck models, our DSE is able to
identify bottlenecks and reason about design inefficiencies, thereby
making bottleneck-mitigating acquisitions in further explorations.
We describe the construction of bottleneck models for DNN accel-
erators. We also propose an API for expressing domain-specific
bottleneck models and interfacing them with the DSE framework.
Acquisitions of our DSE systematically cater to multiple bottlenecks
that arise in executions of multi-functional workloads or multiple
workloads with diverse execution characteristics. Evaluations for
recent computer vision and language models show that Explainable-
DSE mostly explores effectual candidates, achieving codesigns of
6× lower latency in 47× fewer iterations vs. non-explainable DSEs
using evolutionary or ML-based optimizations. By taking minutes
or tens of iterations, it enables opportunities for runtime DSEs.

CCS CONCEPTS
•Hardware→ Hardware accelerators; Electronic design automation;
• Computer systems organization → Special purpose systems; •
General and reference→Design; •Computingmethodologies
→Modeling methodologies; • Software and its engineering
→ Abstraction, modeling and modularity.

KEYWORDS
design space exploration, domain-specific architectures, gray-box
optimization, bottleneck model, hardware/software codesign, ex-
plainability, machine learning and systems

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0394-2/23/03. . . $15.00
https://doi.org/10.1145/3623278.3624772

design

design

design
Objective

DSE Algo. System

System

Utilized Constraints

Objective
logging

Utilized Constraints

Objective
logging

Utilized Constraints

(a)

(b)

(c) design
System

Objective
logging

Utilized Constraints

(d)

DSE Algo.

DSE Algo.

Non-
Feedback

Black-box
(Unconstrained)

Black-box
(Constrained)

Explainable

e.g., power(d) = 1W;
throughput(d) = 10 FPS

d

logging
e.g., latency(d) = 100ms

DSE Algo.

Bottleneck models

System

Figure 1: DSEwith (a) Non-feedback, (b) Unconstrained black-
box, (c) Constrained black-box, and (d) Explainable optimiza-
tion, which leverages domain-specific bottleneck models.

ACM Reference Format:
Shail Dave, Tony Nowatzki, and Aviral Shrivastava. 2023. Explainable-
DSE: An Agile and Explainable Exploration of Efficient HW/SW Code-
signs of Deep Learning Accelerators Using Bottleneck Analysis. In 28th
ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 4 (ASPLOS ’23), March 25–29,
2023, Vancouver, BC, Canada. ACM, New York, NY, USA, 21 pages. https:
//doi.org/10.1145/3623278.3624772

1 INTRODUCTION
Domain-specific accelerators, e.g., for deep learning models, are
deployed from datacenters to edge. In order to meet strict con-
straints on execution costs (e.g., power and area) while minimizing
an objective (e.g., latency), their hardware/software codesigns must
be effectively explored using an effective design space exploration
(DSE). However, the search space is vast (e.g., contain𝑂 (1029) solu-
tions), with each evaluation taking milliseconds or even hours [86].
For instance, [86] showed that a TPU-like architecture has 1014
hardware solutions with modest options for design parameters. For
every hardware configuration, software space can also be huge. For
example, DNN layers can be mapped on a spatial architecture in
𝑂 (1015) ways aka dataflows ([18] and Table 7), even after aggres-
sively pruning the mapping space. Clearly, an effective exploration
is needed to achieve feasible and efficient solutions quickly. 1

Recent DSE techniques for deep learning accelerators use non-
feedback or feedback-based, black-box optimizations. Non-feedback

1A feasible solution meets all constraints, and its hardware and software config-
urations are compatible; An efficient solution minimizes objective; Agility refers to
DSE’s ability to find desired solutions quickly, which becomes crucial for exploring
vast space in practical DSE budgets and runtime DSEs.

https://orcid.org/0000-0003-4262-3938
https://orcid.org/0000-0001-8483-3824
https://orcid.org/0000-0002-1075-897X
https://doi.org/10.1145/3623278.3624772
https://doi.org/10.1145/3623278.3624772
https://doi.org/10.1145/3623278.3624772

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Shail Dave, Tony Nowatzki, and Aviral Shrivastava

optimizations include grid search (in [32, 57]) and random search
(in [41, 53]). They evaluate different solutions for a pre-set number
of iterations and terminate (Fig. 1a). Black-box optimizations, on
the other hand, consider value of the objective before acquiring2
the next candidates (Fig. 1b-c). Thus, they can be more effective
than non-feedback approaches. They include simulated annealing
[74], genetic algorithm [68, 76, 85], Bayesian optimization [34, 48,
51, 54, 58, 81, 86], and reinforcement learning [10, 36, 79, 82, 89].
These optimizations can be unconstrained or constrained.

For vast accelerator hardware/software codesign space, existing
techniques require excessive trials for convergence or even finding
a feasible solution. We argue that this is because of lack of explain-
ability during the exploration. By explainability, we imply the
ability of the DSE to reason about, at each attempt, why a
certain design corresponds to specific costs, and what are the
underlying inefficiencies, and how they can be ameliorated.
Existing DSE approaches are non-explainable, as they lack infor-
mation and reasoning about the quality of designs acquired during
DSE. They may be able to figure out which of the previous trials re-
duced the objective but they cannot determine why? Consequently,
in deciding the acquisition targets for the next trial, they cannot
reason about and estimate the quality of the next possible candi-
dates. In contrast, an explainable DSE would identify inefficiencies
in the acquired design that incur high costs and also suggest mitiga-
tion options that would improve designs and execution further. For
instance, for reducing the latency of a DNN accelerator, an explain-
able DSE could reason that the latency is dominated by memory
access time that cannot be hidden behind the time for computation
or communicating data on-chip. Therefore, it could strive to reduce
the latency further by increasing off-chip bandwidth or on-chip
buffer size to further exploit the available data reuse.
The goal of this paper is to develop a framework for an agile
and effective DSE of hardware/software codesigns of acceler-
ators by introducing explainablity in the DSE process.

compute
time

(max)

#PEs,
#FUs/PE

#NoCs, Bitwidth #, #Links

Buffer
Sizes,

Bandwidth

off-chip
memory
access
timeOn-chip

commu-
nication

time

Latency

Figure 2: Example bot-
tleneck model of DNN
accelerator latency.

Our approach to achieve ex-
plainable DSE is through the use
of bottleneck analysis. Enabling
explainability in DSE with bottle-
neck analysis requires bottleneck
models. Conventional DSEs evalu-
ate cost models that provide just a
single value like latency. In contrast,
a bottleneck model is a graphical
representation of which and how
various design parameters and intermediate factors contribute to
the total cost. For instance, a toy example tree in Fig. 2 illustrates
how the time for computation, memory accesses, and NoC commu-
nication are intermediate factors derived from hardware/software
parameters, leading to total latency. Thus, bottleneck models can
provide rich information in an explicitly analyzable format. Bottle-
neck models can also help find mitigation, i.e., when any factor (on-
chip communication) gets identified as a bottleneck, how to tune dif-
ferent design parameters based on the workload execution-related
characteristics (e.g., increase bit-widths of NoCs by certain amount

2Acquisition refers to a step in a DSE algorithm that selects next set of candidate
designs to evaluate. §A.1 discusses the terminology for the DSE techniques.

or increase physical links or time-shared unicast support). These
bottleneck models can be developed based on domain-specific infor-
mation, which is often embedded within experts-defined, domain-
specific cost models (like [15, 44]) but implicitly. Having the explic-
itly analyzable bottleneck models and their driving the DSE can
help DSE explain inefficiencies of acquired designs (referred to as
bottleneck analysis) and to make mitigating acquisition decisions.

For enabling DSE of deep learning accelerators using bottleneck
analysis, our approach overcomes the following shortcomings.
1) We develop a bottleneck model for deep learning accelera-
tors. Taking latency minimization as an example, we describe what
execution characteristics of DNN accelerators need to be lever-
aged, how to construct a corresponding bottleneck model, how
its bottleneck graph provides insights in design/execution inef-
ficiencies, how to pinpoint bottlenecks, and what are mitigation
options for identified bottlenecks. By applying bottleneck analysis
on software-optimized executions of each hardware design, our
DSE co-explores both hardware-software configurations of DNN
accelerators in adaptive and tightly coupled manner.
2) We propose API for specifying domain-specific bottleneck
models and interfacing them with the DSE. Through proposed
API, bottleneck model of an architecture/system can be described
as a tree corresponding to the target cost. Navigating such tree
enables the DSE to analyze the bottlenecks, relate the bottlenecks
with the design parameters, and reason about the desired scaling
for mitigation. For instance, by parsing a latency tree (Fig. 2), the
DSE could reason that latency is a maximum value of the time taken
for computations, on-chip communications, and memory accesses;
if computational time exceed other factors by 3×, then the related
parameters (number of functional units in PEs and number of PEs)
may need to be scaled next accordingly.
The API can allow expert designers to systematically express their
domain-specific bottleneck models and integrate them in DSE while
leveraging constrained exploration framework. This helps over-
come a limitation of previous DSEs using bottleneck analysis in
other domains like multimedia or FPGA-HLS [26, 29, 67, 84] which
lack such interface; as search mechanisms were defined in domain-
specific ways for their bottleneck models, they could not be decou-
pled or reused for other domains.
3) We propose a generic framework for constrained DSE
using bottleneck models, with acquisitions accounting for
multiple bottlenecks in multi-workload executions. Previous
DSEs using bottleneck analysis optimize only a single task at a
time, i.e., consider a single cost value of executing a loop-kernel
or a whole task and iteratively mitigate its bottleneck. However,
when workloads involve different functions of diverse execution
characteristics, e.g., a DNN with multiple layers or multiple DNNs,
changing a design parameter impacts their contribution to overall
cost in distinct ways; considering just a total cost could not be
useful. Also, mitigation strategies to address layer-wise bottlenecks
can lead to range of different values for diverse parameters. So,
our framework systematically aggregates parameters predicted for
mitigating bottlenecks in executions of multiple functions in one
or more workloads, for making next acquisitions. Lastly, the DSE
exploits awareness about constraints utilization, striving to explore
among feasible solutions in the vast space and finding more efficient
solutions, without quickly exhausting the constraints.

Explainable-DSE: Agile and Explainable Exploration of Efficient HW/SW Codesigns of Deep Learning Accelerators ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Results: We demonstrate our explainable and agile DSE frame-
work by exploring high-performance edge inference accelerators
for recent computer vision and language processing models. By
iteratively mitigating bottlenecks, Explainable-DSE reduces latency
under constraints in mostly every attempt (1.3× on average). Thus,
it explores effectual candidates and achieves efficient codesigns in
minutes, while non-explainable optimizations may fail to obtain
even a feasible solution over days. Explainable-DSE obtains code-
signs of 6× lower latency in (36× less search time on average and
up to 1675×) 47× fewer iterations vs. previous DSE approaches for
DNN accelerators. By achieving highly efficient solutions in only 54
iterations, Explainable-DSE enables opportunities for cost-effective
and dynamic explorations in vast space.

2 LIMITATIONS OF PRIOR DSE APPROACHES
Non-feedback DSE approaches search used by previous techniques
either exhaustively over statically reduced space (e.g., grid search
in [32, 49]) or randomly (e.g., in [53]). So, they do not consider any
outputs like objective or utilized constraints and terminate after
using a large exploration budget. It is illustrated by Fig. 1(a). On the
other hand, black-box optimizations such as Bayesian Optimization
(e.g., in [51, 54, 58, 81, 86]) consider values of the objective for pre-
viously tried solutions. It is illustrated by Fig. 1(b)–(c). Considering
the objective helps them predict the likelihood of where the minima
may lie; they acquire a candidate for the next trial accordingly. The
process repeats until convergence or the number of trials exceed-
ing a threshold. While black-box DSE could be more efficient than
non-feedback DSE, they all face the following limitations:
Previous DSE techniques lack reasoning about bottlenecks
incurring high costs: An efficient DSE mechanism should de-
termine challenges hindering the reduction of objectives or uti-
lized constraints. It should also determine which among the many
parameters can help mitigate those inefficiencies and with what
values. However, with objective as the only input, these black-box
or system-oblivious DSEs can figure out only which prior trials re-
duced objective. But, they do not reason about what costs a solution
could lead to and why – a crucial aspect in exploring enormous de-
sign space. This challenge is exacerbated by the fact that execution
characteristics of different functions in workloads are diverse (e.g.,
memory- vs. compute-bounded DNN operators, energy consump-
tion characteristics). By considering just the total cost, black-box
DSEs cannot consider diverse bottlenecks in multi-modal or multi-
workload executions, which need to be addressed systematically.

Implications:Amajor implication of excessive sampling caused
by lacking explainability is inefficiency of obtained solutions.
Fig. 4(a) illustrates this through a toy scenario, i.e., exploring the
number of PEs and global buffer size for a single ResNet layer. It
shows an exploration done by earlier to later trials with HyperMap-
per 2.0 [51] – an efficient, Bayesian-based optimizer. The figure
shows that even for a tiny space, acquired solutions are inefficient
(high latency), as there is no reasoning about underlying bottlenecks
and their mitigation. So, even though DSE has already acquired
some better solutions before, the later acquisitions correspond to
inefficient solutions. As the design space becomes vast, the non-
explainable DSEs can require too many trials (at least, in thousands
[36, 51, 86]), and they may still not find the most efficient solutions.

0

1440

2880
37.06x

(c)

0
10
20
30
40
50

5.23x
1

La
te

n
cy

R

e
d

u
ct

io
n

0%

25%

50%

75%

100%

Fe
as

ib
le

 S
o

lu
ti

o
n

s
Ex

p
lo

re
d

 (
%

)

Agility

Non-Feedback Black-Box
(Unconstrained)

Constrained
Black-Box Explainable

4.94x

(b) Feasibility(a) Efficiency

Ex
p

lo
ra

ti
o

n

Ti
m

e
 (

m
in

u
te

s)

2880

1440

Edge inference accelerator DSE for
EfficientNet. Minimizing latency with

constrained area and power.

0

Figure 3: Effectiveness of non-explainable and explainable
DSE frameworks for exploring efficient and feasible solutions
in the vast space: (a) Efficiency (latency minimization), (b)
Feasibility (in % of the total solutions evaluated); (c) Agility
(exploration time in minutes). Analysis is shown here for
exploring edge accelerator design for EfficientNetB0 model.

For example, Fig. 3(a) shows that the latency of the solutions ob-
tained by non-explainable DSEs can be up to 35× higher, even for
2500 trials (two days of search time). This is because, practical ex-
ploration budget is fractional (thousands) compared to vast design
space (quadrillions). By generating trials without understanding
bottlenecks and their mitigation, most of the search budget gets
spent on excessive and likely ineffectual trials.

Lacking reasoning about inefficiencies can deprive the DSE of
a tightly coupled hardware/software codesign optimization.
For instance, DSEs in [10, 36, 40, 58, 63, 82, 89] mainly explore archi-
tectural parameters with black-box DSEs and use a fixed dataflow
for executions.3 Fixing the execution methods limit the effectual
utilization of architectural resources when subjected to various
tensor shapes and functionalities [9, 13]. Consequently, DSEs may
achieve architecture designs that are either incompatible with the
dataflow (infeasible solutions) or inefficient. Likewise, in isolated
co-optimizations, obtained HW design and dataflow are oblivious
of each other, leading to excessive trials and inefficient solutions.

For constrained optimizations, lack of awareness about uti-
lization of constraints in black-box DSEs leads to exploring infea-
sible and inefficient solutions and excessive trials. This is because
DSEs cannot determine which constraints are violated, which re-
gions could exhaust constraints quickly while not optimizing ob-
jective much, and how configuring different accelerator design
parameters could affect all this. Fig. 3(b) illustrates this for an edge
accelerator DSE subjected to power and area constraints. For con-
strained optimizations like HyperMapper2.0 [51], out of 2500 trials,
only 18% of the evaluated solutions were feasible, and up to only
52% for constrained reinforcement learning [36].

Another implication of excessive trials is inapplicability to
dynamic DSE scenarios. Excessive trials lead to low agility, as
illustrated in Fig. 3(c). Non-explainable DSEs consume very high
exploration time, even weeks, while obtaining solutions of lower
efficiency. It makes existing DSE approaches unsuitable for dynamic
explorations (e.g., convergence within a few tens to 100 iterations).
For instance, unlike one-time ASIC designs, deploying accelerator
overlays over FPGAs (edge/cloud; dedicated/multi-tenant) can ben-
efit from dynamic DSEs, where constraints for DSE and resource
budget may also become available just before deployment.

3§A.2 and §G provide background on HW/SW codesign DSE.

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Shail Dave, Tony Nowatzki, and Aviral Shrivastava

64kB 4MB

Earlier
Iterations

Later
Iterations

NO Reasoning for Acquired
Candidate’s Inefficiency, Feasibility

64kB 4MB
4k

Tdma =
1.7
Tcomp

Tcomp =
4.1Tdma

Tdma =
1.7Tcomp Tcomp =

1.4Tdma

Tdma
= 1.4
Tcomp

Tdma =
1.1
Tcomp

Tcomp = 2.1Tdma

(b)(a) Explore Mostly Promising Parameters &
Large Step Sizes based on Inefficiency

Scratchpad Memory Size

64

Minima
Explored Candidates

Minima
Selected
Explored
Candidates

64

4k

#P
Es

Scratchpad Memory Size

512

#P
Es

1 1512

La
te

n
cy

 (
m

s)

La
te

n
cy

 (
m

s)

Figure 4: Example DSE of #PEs and shared memory sizes for
ResNet CONV5_2b [30] with (a) Prior techniques (HyperMap-
per2.0 [51]), and (b) Explainable-DSE, which reasons about
inefficiencies in achieved executions, limiting the search to
crucial parameters and tuning accordingly.

3 DSE USING BOTTLENECK ANALYSIS:
MOTIVATION AND CHALLENGES

3.1 Making DSE Explainable Through
Bottleneck Analysis

In Fig. 4(b), we illustrate the same problem of designing a DNN
accelerator as in Fig. 4(a), but by using bottleneck analysis in the
DSE. Before acquiring new candidates, the DSE analyzes current de-
sign through the bottleneck model and pinpoints the bottleneck in
achieved latency. Then, it uses mitigation obtained from the bottle-
neck model to make next acquisitions. A bottleneck, in the context
of the latency optimization for a deep learning accelerator, can be
attributed to one of the execution factors, such as time consumed
by computations, communication via NoCs, and off-chip memory
accesses with direct memory access (DMA) controller. For instance,
after evaluating the initial point (number of PEs, shared memory
size) = (64, 64kB), the DSE can reason that the computation time of
the design is 4.14× higher than the time taken by off/on-chip data
communication. From the mitigation strategy, DSE concludes and
communicates to the designers that it would scale the total number
of PEs next by at least 4.14×.4 Since this is the only mitigation
suggested, the newly acquired and optimized design becomes (512,
64kB). By repeating this process, the DSE informs that the previous
bottleneck got mitigated and DMA-transfers is the new bottleneck.
Using the bottleneck model, the DSE considers execution charac-
teristics (like data accessed from off-chip memory and unexploited
data reuse) and mitigation for the current design point, adjusting
the size of shared on-chip memory or off-chip bandwidth. This iter-
ative process continues. It not only enables the DSE to characterize
and explain DSE decisions but also reduces objectives at almost
every acquisition attempt, converging to efficient solutions quickly.

3.2 Challenges in Enabling DSE of DNN
Accelerators Using Bottleneck Analysis

Need bottleneck models for DNN accelerators. DSE using bot-
tleneck analysis requires bottleneck models. Unlike cost models
used in black-box DSEs that provide a single value, bottleneck mod-
els can provide rich information, in an explicitly analyzable manner,

4Just to note the power of explicit bottleneck mitigation strategies, if area con-
straint was unmet, DSE could intelligently let communication time increase but meet
constraints first through reduced buffer/NoC sizes.

Update
Initial Point

Best
Solution

(S)

Optimized
Objective

(O)

Cost
Models

< O, C > x sf
results

Bottleneck
Analyzer

Aggregate
Feedback

System
req. resp.

req.

resp.

req.

Terminate?
Yes

No

<p’, v’>
x
sf

<p’’, v’’>

BICS

Flow in conventional DSE
Enhanced Flow with Explainable-DSE
Modules in Conventional DSE & System
Enhanced Modules in Explainable-DSE
New Modules in Explainable-DSE

Inputs and Outputs

<S, resp.

S

Explainable-DSE

resp.

<S, p’’, v’’>

CR>

Design
Space

Workloads
Constraints
Objective

Max.
Iterations

CR: Critical cost CS: Candidate solutions BI: Bottleneck model info.
p’: Predicted parameters p’’: Aggregated params S: Current solution
sf: Sub-functions in workload v’: Values of predicted params v’’: Aggregated values

Subspace
Optimizers

Acquisition of
Candidates

req. Bottleneck
Models

& Collect
Exec. Info.

Utilized
Constraints

(C)

Figure 5: Explainable-DSE: A framework for exploring design
space using domain-specific bottleneck models.

about 1) how design parameters contribute to different factors that
lead to the total cost, and 2) mitigation options when any factor gets
identified as a bottleneck. Such bottleneck/root-cause analysis have
been applied for characterizing fixed designs and finding mitiga-
tion, e.g., for industry pipelines and production systems, hardware
or software for specific applications [14, 70, 84], FPGA-based HLS
[29, 67], overlapping microarchitectural events [24], and power out-
age [28]. Likewise, optimizing DNN accelerators with bottleneck
analysis also require developing bottleneck models.
Need an interface to decouple domain-specific bottleneck
models from a domain-independent exploration mechanism
and express them to DSE. Once bottleneck models are developed,
there needs to be a DSE framework that can integrate such a domain-
specific bottleneck model to drive the iterative search. However,
since bottleneck models are usually domain-specific, search mecha-
nisms provided by prior DSE techniques using bottleneck analysis
[26, 67, 84] are implemented too specifically for their domain. There
needs to be an interface to decouple the domain-independent search
mechanism from domain-specific bottleneck models so that design-
ers can reuse and apply the same search mechanism for exploring
designs in new domains like DNN acceleration.
Need acquisitions accounting for mitigation of multiple bot-
tlenecks in multi-functional or multiple-workload execu-
tions. Prior DSE techniques using bottleneck analysis (in other
domains) [26, 29, 67, 84] optimize only a single task at a time, i.e.,
consider a single cost value of executing a loop-kernel or whole
task and iteratively mitigate arising bottleneck. However, when
workloads involve different functions of diverse execution char-
acteristics, e.g., a DNN with multiple layers or multiple DNNs,
changing a design parameter impacts their contribution to the over-
all cost in distinct ways; considering just a total cost may not be
useful. Mitigation strategies to address these layer-wise bottlenecks
can lead to changing diverse parameters and a range of values
possible for the same parameter. Therefore, when the DSE makes
its next acquisitions, it needs to ensure that multiple bottlenecks
arising from executing different functions of target workloads are
mitigated systematically and effectively.

4 EXPLAINABLE-DSE: CONSTRAINTS-AWARE
DSE USING BOTTLENECK ANALYSIS

This section presents Explainable-DSE – This section presents
Explainable-DSE – a framework for an agile and explainable DSE

Explainable-DSE: Agile and Explainable Exploration of Efficient HW/SW Codesigns of Deep Learning Accelerators ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

NPU

L1

L2 Buffer

PEA DNN-18. Unique
layers L: 9

(a) Example of a workload and an DNN accelerator

{PEs: 256, L1_size: 128B, L2_size: 64KB,
offchip_BW: 51.2GBPS, NoC1_unicast_links: 1,
NoC2_unicast_links: 1, NoC3_unicast_links: 64,
NoCs_bitwidth: 48b, frequency: 500 MHz}

Layer
ID

% total
latency Bottleneck Related Design

Parameters Value

1 16.87% NoC time L1_size, NoC1_unicast_
links, NoCs_bitwidth

256,
2, 72

2 11.02% NoC time L1_size, NoC1_unicast_
links, NoCs_bitwidth

256,
2, 96

3 11.55% DMA time L2_size 128

4 11.09% DMA time L2_size 128

5 13.16% DMA time L2_size 128

6 06.78% Compute time PEs 343

7 10.32% NoC time L1_size, NoC1_unicast_
links, NoCs_bitwidth

256,
3, 72

8 09.66% DMA time L2_size 128

9 09.55% DMA time L2_size 128

1

3

2
4

5

(b) Analyzing Bottlenecks in Workload Executions

Consider estimations for bottlenecks of Top-K
layers that contribute to at last %threshold of the

total cost. E.g., K=5, threshold=
1

2
×

1

𝐿
×100%.

(c) Aggregating Predictions for Bottlenecks
in Multi-Functional Workload Executions

L1_size

min
256,
256

(d) Acquiring Bottleneck-Mitigating Candidates

<256,
128,
64,
51.2,
1,
1,
64,
48,
500>

<256, 256, 64, 51.2, 1, 1, 64, 48, 500>

<256, 128, 128, 51.2, 1, 1, 64, 48, 500>

<256, 128, 64, 51.2, 4, 1, 64, 48, 500>

<256, 128, 64, 51.2, 1, 1, 64, 80, 500>

Candidate Solutions Acquired
for Evaluations (CS)

Current
Solution (S)

= 256

L2_size

min
128,
128,
128

= 128

NOC1_
unicast_
links

NOCs_
bitwidth

min
2,
2

min
𝟕𝟐,
𝟗𝟔

= 72= 2

New
Solution
is Updated
After
Evaluating
These 4
Acquired
Candidates

(e) Constraints Utilization-Aware Update of New Solution

Scenario 1: Constraints Unmet Scenario 2: All Constraints are Met
Check Utilized Budgets of Constraints

Candidate
Obj. Constr1 Constr2 Constr3 Average # Met

1 X 1.719 0.104 0.196 0.673 2/3

2 X 1.592 0.097 0.171 0.620 2/3

3 X 1.485 0.081 0.168 0.578 2/3

4 X 1.889 0.091 0.172 0.717 2/3

Budget: Cost X’s Value ÷ Constraint X’s Value
A Constraint is Met When Budget <= 1

Values Rounded Up as per Design Space

X: Don’t Care

New
Solution

Candidate
Obj. Constr.

Budget

Obj. x
Constr.
Budget

1 15.7 0.58 9.20

2 15.2 0.54 8.14

3 15.8 0.42 6.63

4 38.3 0.42 16.23

Check for Low Value of Objective
at Low Constraints-Budget

or

One acquisition attempt.

Controller

FUs
O

ff
-c

h
ip

 M
e

m
o

ry

collection &
distribution

NoCs

NoC
for

reduction

d
m

a

Figure 6: Example walkthrough. a) A DNN and accelerator architecture parameters, b) Analyzing bottlenecks for executing
each layer/function (§4.3), c) Aggregating bottleneck mitigation for multi-functional/multiple workloads (§4.4), d) Acquiring
new candidates that mitigate bottlenecks (§4.5); e) Constraints utilization-aware update of the new solution (§4.6).

using bottleneck analysis for optimizing deep learning accelerator
designs. First, we discuss our framework’s overall workflow and
illustrate it with a walk-through example. Then, we describe how
its bottleneck analyzer processes bottleneck models, i.e., determines
factors incurring a high cost, parameters relevant to the bottleneck
factors, and new values of parameters that can reduce the cost.
We also introduce an API through which architects can specify
domain-specific bottleneck models, e.g., for analyzing accelerator
execution costs and bottleneck mitigation strategies. For bottleneck
analysis involving the execution of multiple workloads or multi-
ple functions within a workload, we discuss how Explainable-DSE
aggregates the obtained parameters and their new values, includ-
ing considering bottlenecks of only execution-critical functions.
We then describe how the proposed framework considers inequal-
ity constraints when updating the obtained solutions, prioritizing
exploration of feasible regions. We also provide an in-depth bot-
tleneck model and bottlenecks mitigation strategies for exploring
low-latency designs of DNN accelerators using Explainable-DSE.
Lastly, we discuss how our approach can enable a tightly coupled
accelerator/mappings co-explorations.

4.1 Framework Workflow
Fig. 5 illustrates the workflow of Explainable-DSE. The DSE uses
bottleneck analysis to explore solutions that reduce a critical cost,
denoted as 𝐶𝑅. Critical cost is usually an objective 𝑂 that needs to
be minimized, and optionally an unmet inequality constraint value
𝐶 . To reduce the cost, the bottleneck analyzer considers the current
solution (𝑆) and analyzes cost-related bottleneck information (𝐼).
The analyzer identifies the bottleneck factors incurring higher cost
value and finds the scaling "s" by which the objective/constraint
value needs to be reduced ("s" is internal to the analyzer, so not
shown in Fig. 5). Then, the analyzer determines design parameters

(𝑝′) crucial for mitigating the bottleneck and their values (𝑣 ′). Work-
loads can be multi-modal or usually involve multiple sub-functions
(𝑠 𝑓), e.g., the accelerator needs to be optimized for different DNNs
or various layers in a DNN. So, the DSE applies bottleneck analysis
to the costs of each sub-function individually and aggregates the
corresponding feedback obtained. This aggregation leads to a set of
predicted design parameters (𝑝′′) and their respective values (𝑣 ′′).
Based on these predictions, a new set of candidate solutions (𝐶𝑆)
is derived for the subsequent acquisition. The process iterates, as
depicted in Fig. 5. We refer to acquiring and evaluating candidates
in the𝐶𝑆 as one "acquisition attempt". It is analogous to 𝑧 sequential
DSE iterations if a 𝐶𝑆 contains 𝑧 candidates. The current solution,
𝑆 , is updated once (from 𝑧 candidates) at every acquisition attempt.
When some inequality constraint is not met, the framework con-
siders the utilized budgets of constraints for acquired candidates in
updating the current solution. This approach enables the DSE to
prioritize reaching feasible subspaces. In Fig. 5, the introduction of
new modules for the proposed approach and corresponding infor-
mation flow is illustrated through a diagonal stride pattern and a
different shade (red). The workings of these modules are described
next, accompanied by a walk-through example (illustrated in Fig. 6).
Additional information regarding the capabilities of the framework,
current limitations, and future works for further automation and
enhancements are discussed in §B and §C, respectively.

4.2 Framework Inputs and Outputs
Inputs: Information of the design space, constraints, objective, work-
loads, initial point, and total iterations. Outputs upon convergence
or termination: Optimized solution and its costs.
Design Space: It defines the design parameters of type integer, real,
or categorical. Their possible values can be expressed as either a
list or a mathematical expression.

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Shail Dave, Tony Nowatzki, and Aviral Shrivastava

val

val
val

val

val

val

val

val

n1
n2

n3

n4

n5

n6 n7
n8

n9

n10

n11

n12
max

max
add

{
‘n2’: [p1],
‘n5’: [p2, p5, p6],
‘n6’: [p2, p5, p7],
‘n7’: [p2, p5, p8],
‘n8’: [p2, p5, p9],
‘n9’: [p3, p4],
…

}(a) (b)

p1:@func1(Scaling, ExecInfo, Config)

p13:@func13(Scaling, ExecInfo, Config)

def func4(Scale,ExecInfo,Config):
newConfig = copy(Config)
newConfig[p4] *= Scaling
return newConfig

(c)

…

val

Figure 7: Proposed API through which designers or design
automation tools can specify a bottleneck model of a system.
The information can contain: (a) Bottleneck graph contain-
ing factors contributing to a cost, (b) Different parameters
impacting the factors, and (c) Handles to subroutines that
calculate new values of the parameters.

Constraints and Objective: Users can define inequality constraints
on multiple costs. Our current implementation optimizes a single
objective. It can be extended formultiple objectives through existing
acquisition techniques.
Target System and Cost Models: System can incorporate arbitrary
cost models and subspace optimizations for populating costs. It
can also provide costs at sub-functions granularity, e.g., the latency
of individual DNN layers. The proposed API (§4.3) enables the
seamless integration of the bottleneck models.

To demonstrate DNN accelerator design explorations, we lever-
age existing cost models and use them to evaluate all techniques.
We use Accelergy [80] to obtain the total area, energy per data
access (for 45nm technology node), and maximum power. The max-
imum power is obtained from the maximum energy consumed
by all design components in a single cycle. Accelergy provides
technology-specific estimations via plugins for Aladdin [65] and
CACTI [50]. We use our dMazeRunner infrastructure [15] to obtain
the latency and energy consumed by mappings of DNN layers and
for quick mapping optimizations for each architecture design.

4.3 Bottleneck Analyzer
Before each acquisition attempt, Explainable-DSE conducts bottle-
neck analysis on the obtained solution from previous attempt. It
uses the bottleneck model, which helps pinpoint the execution bot-
tlenecks and suggests options to mitigate them, ultimately reducing
costs. For instance, Fig. 6 demonstrates this exploration process for
an 18-layer DNN, where nine layers have unique tensor shapes for
execution-critical operators (CONV and GEMM). Fig. 6(a) shows
the architectural template and parameter values of the current so-
lution during the DSE. Fig. 6(b) displays the bottleneck analyzer’s
ability to identify bottlenecks for each DNN layer and estimate
which parameters should be updated with what specific values.
This section further explains how the analyzer works and presents
an API through which designers can specify their domain-specific
bottleneck models for the DSE.

By evaluating the bottleneck model, the bottleneck analyzer de-
termines (a) bottleneck factors, (b) parameters that are most critical
for reducing the costs of these bottleneck factors, and (c) values of
these critical parameters. Designers can provide the information
for bottleneck models through an API that comprises up to three
data structures, as illustrated in Fig. 7. The first and the key data
structure is a graph of the bottleneck model, which outlines the un-
derlying factors contributing to the total cost. The second includes a

Latency (cycles)

#PEs

#Bytes/Packet

Execution
Characteristic

Design Parameter

Max
Mul

Add

Max. Packets for

6
#Bytes/
Cycle

7

Tdma

TensorC

Node Categories:

Bottleneck Path

Ops
256

25M

Tcomp Tnoc

TensorA
footprint
for off-chip
accesses
(Bytes)

Bandwidth
(Bytes/Cycle)

50k

TensorB
footprint

footprint
2k

Work-Groups
across all NoCs𝑎

𝑏

40

125k

512k

492k
0.5k

20

19k133k

512k

49MValues shown for
solution analyzed in
acquisition attempt 13

102

Figure 8: A simplified bottleneck model for analyzing the
latency of a DNN layer execution on a DNN accelerator. As
compared to conventional cost models that provide a single
value, the graph-based bottleneck models can provide richer
information in an explicitly analyzable format and outline
how hardware/software parameters relate to total cost, al-
lowing designers and the DSE to make informed decisions.

list of related parameters for each factor. The third contains handles
to subroutines that predict the next values of parameters. When
some information is unavailable, such as how to predict the value of
a parameter, Explainable-DSE resorts to its black-box counterpart
(e.g., sampling neighboring values).

(a) Determining bottleneck factors from bottleneck model
graph: A bottleneck model is a graphical representation of which
and how various factors contribute to the cost of executing a work-
load on an accelerator, as depicted in Fig. 7(a). It is represented as a
tree whose nodes are mathematical functions like addition, multi-
plication, division, and maximum. Each node typically represents a
cost factor, which is calculated from values of its children by apply-
ing the corresponding mathematical function. Thus, the root node
of the bottleneck model represents the total cost and leaf nodes are
hardware, software, or execution related design parameters.

For example, Fig. 8 shows a simplified bottleneck model for a
DNN layer execution, where the root corresponds to the overall cost
(e.g., latency). The total cost depends on child nodes representing
underlying cost factors. For example, the total latency is determined
as the maximum value among the computational time, the total
on-chip communication time, and the total DMA time for off-chip
memory accesses. The total DMA time, in turn, is additive and
depends on the off-chip footprint of different tensors and the band-
width. Similarly, the time for communicating data from on-chip
buffers to PEs via NoCs is approximated with the total data pack-
ets communicated to different workgroups and NoC bus widths.
Leaf nodes in a bottleneck graph typically represent values of the
design parameters from the design space, such as hardware design
parameters, application parameters like tensor shapes and quantiza-
tion bit-width, and the accelerator’s execution characteristics for a
given workload or application or the code optimization parameters.
Execution characteristics include data allocation to buffers, on/off-
chip communication of data, and unexploited reuse, etc. (§4.7) and
obtained from mapping of a workload on the accelerator.

During each acquisition attempt, the analyzer considers current
solution and populates the graph with the corresponding actual
values. For each cost factor, which is an intermediate node, the
analyzer calculates its contribution to the total cost as the ratio
of its value to the total cost. The analyzer traverses the graph

Explainable-DSE: Agile and Explainable Exploration of Efficient HW/SW Codesigns of Deep Learning Accelerators ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

and computes contribution of each factor based on the associated
mathematical operation. For instance, at a max node, it traces back
to the maximum value; at an add node, it counts contributions
proportionally. It identifies the factor with the highest contribution
as the primary bottleneck. The analyzer then calculates the scaling
"s", which is the ratio by which the cost of the bottleneck factor
should be reduced to alleviate bottleneck. In Fig. 8, DMA time
dominates the total latency, whereas the computational and on-
chip communication time contributes to only 24.4% and 25.9% of the
total latency, respectively. The analyzer finds that the later factors
can be balanced by scaling down the DMA time, e.g., by a factor of
100%÷ 25.9% or 3.85×. Through traversal, the analyzer identifies the
memory footprint of tensor A as the primary bottleneck operand.
The analyzer may also determine multiple bottlenecks (based on
decreasing order of their contributions) so that the acquisition
function can generate an adequate number of candidates.

(b) Selecting parameters associated with the bottleneck:
To determine which parameters impact specific bottleneck factors,
the analyzer can traverse the bottleneck graph, or designers can
provide this information through a dictionary that maps the node
names/numbers to relevant parameters (Fig. 7b). In the example
bottleneck graph of Fig. 7(a), nodes ’𝑛4’ and ’𝑛9’ correspond to
DMA time and the off-chip footprint of Tensor A, respectively.
They are associated with parameters ’𝑝3’ and ’𝑝4’ (e.g., ’𝐿2_𝑠𝑖𝑧𝑒’
and ’𝑜 𝑓 𝑓 𝑐ℎ𝑖𝑝_𝐵𝑊 ’ in Fig. 6a). Once the bottleneck factor and miti-
gating parameters are identified, DSE can obtain new values from
supporting subroutines or evaluating the bottleneck path.

(c) Obtaining values of critical parameters for bottleneck
mitigation: Designers can provide handles to domain-specific sub-
routines that contain mitigation strategies for different design pa-
rameters, as shown in Fig. 7(c). Each subroutine calculates the new
value of a parameter based on the current parameter value, the scal-
ing 𝑠 required for reducing the bottleneck factor, and the execution
characteristics of the current design configuration (§4.7). For exam-
ple, the function ‘func4’ can scale the off-chip bandwidth to reduce
DMA time, and functions ‘func5’ to ‘func8’ can scale the bus width
or NoC links to lower on-chip communication time. The DSE can
leverage these subroutines to predict bottleneck-mitigating values
for acquiring the next candidates.

While accelerator designers can specify bottleneck models in
the proposed graphical representation, design tools or machine
learning-based approaches can be developed for automatic con-
struction of bottleneck models or mitigation options for designing
new processors and off-the-shelf or large-scale architectures (§C).

4.4 Addressing Bottlenecks in Multi-Functional
and Multi-Workload Executions

As Fig. 6(b) illustrates, the analyzer performs bottleneck analysis on
each sub-function of workloads (DNN layer) one by one. Due to the
diverse execution characteristics of these functionalities, the predic-
tions obtained for each sub-function can be distinct, depending on
the factors like available reuse and parallelism. Additionally, mitiga-
tion options for multiple bottlenecks in executions of various DNN
layers may involve multiple values for the same parameter. Hence,
an aggregation is required to determine the next set of parameters

and their values (Fig. 6c). The DSE employs two methods for the
aggregation/filtering of the predicted parameters and values:

(i) Aggregating different values of the same parameter: After ana-
lyzing the solution 𝑆 for multiple sub-functions (identifying bottle-
necks and predicting mitigation), there can be different predicted
values of the same parameter. So, the final prediction can be ob-
tained by either iterating over some of these predicted values or
applying a function (maximum,minimum, average) on them. Choos-
ing the maximum value can lead to faster convergence, but it can
favor a single sub-function and be overly aggressive for others. For
instance, selecting a new value as 16× (from options like 4×, 8×,
16×) of the current number of PEs can significantly reduce latency
of a non-performance-critical DNN layer but not of other layers,
while consuming higher area and power. Thus, exploration can
quickly exhaust the budget for constraints without getting a chance
to explore a considerable range of intermediate candidates that
could minimize the overall cost. Instead, we opt for selecting the
minimum value as the final prediction (shown in Fig. 6c).

(ii) Aggregating parameters from only bottleneck sub-functions:
Not all the sub-functions or cost factors require improvement.
Hence, Explainable-DSE allows focusing on only the bottleneck
ones, i.e., those contributing the most to the total cost. This capabil-
ity is achieved through two tunable parameters: 𝐾 and 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 .
The DSE considers predictions from up to top-𝐾 sub-functions
whose fractional contributions to the total cost exceed a certain
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 . In target DNNs, the number of layers with unique tensor
shapes (𝑙) can range from a few to several tens. So,𝐾 is arbitrarily set
to five and the 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 to 0.5*(1/𝑙)*100%, considering predictions
from layers that consume higher portions of the cost. For the ex-
ample in Fig. 6, the analyzer considers mitigating bottlenecks from
the top-5 layers that contribute at least 5.5% to the total latency.

4.5 Bottlenecks-Guided Acquisitions of New
Candidates

After aggregating predicted parameter values for mitigating bottle-
necks, the DSE populates the candidates𝐶𝑆 to be acquired next. For
simplicity, our acquisition function samples a new candidate for
each new parameter value. As Fig. 6(d) shows, all but one parame-
ter of the candidate has the same value as in the current solution.
This mechanism naturally facilitates an iterative search that adap-
tively tunes among bottleneck parameters. It avoids a greedy local
search [56] by the following means. i) It limits exploration param-
eters to only a few (critical for addressing the bottleneck); ii) It
can predict values of larger step-size (non-neighbors) based on
bottleneck mitigation analysis (whereas local search explores 𝑝
immediate neighboring values for all 𝑝 parameters in the selected
solution). Acquisitions by addressing multiple, dynamic bottlenecks
(different parameters to be optimized at each DSE iteration) and
exploring larger step sizes usually help avoid over-optimization
within the local neighborhood (converging to local optimal). §C fur-
ther discusses workarounds for overcoming the bottleneck-oriented
greediness in the search. With modular framework, the designers
may also specify other acquisition/update functions that act upon
bottlenecks-mitigating parameters. When acquiring a candidate, if
a predicted value is not present in the defined design space (e.g.,
non-power-of-2), the DSE rounds it up to the closest value.

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Shail Dave, Tony Nowatzki, and Aviral Shrivastava

4.6 Constraints-Budget Awareness in Updating
the New Solution

When exploring a vast space under tight constraints, initially ac-
quired solutions usually fail to meet some constraints (e.g., low-area,
high-latency region). To effectively explore the space, the DSE ac-
counts for the constraints budget when selecting the new solution,
which, in turn, impacts the acquisitions of new candidates. In deter-
mining the new solution among the explored candidates, the DSE
first checks whether the acquired candidates meet all constraints
and by what margin. If any candidate does not meet all constraints,
it selects a candidate that uses the least constraints budget as the
new solution. The constraints budget is calculated as the average of
the utilized constraint values that are normalized to the constraint
thresholds. Such accounting is illustrated in Fig. 6(e) - scenario 1.
Further, for monomodal cost models, when a candidate (correspond-
ing to the new value of some parameter) violates more constraints
than the obtained solution, the DSE can stop further exploration for
that parameter’s range. Thus, by prioritizing the feasibility of solu-
tions, the DSE limits acquiring solutions that optimize the objective
at the expense of violating constraints. When multiple candidates
satisfy all constraints (scenario 2), the DSE selects the one (as the
new solution) that achieves the lowest objective value with a lower
constraints budget, i.e., the smallest value for objective×constraints
budget. Such a strategy can help avoid greedy optimization that
chases marginal objective reduction, seeking more promising solu-
tions without quickly exhausting the constraints.

4.7 Bottleneck Mitigation for Designing Deep
Learning Accelerators

We use the latency of executing a DNN as an example cost for
describing bottleneck mitigation for optimizing DNN accelera-
tor/mapping codesigns. We describe what information about the
latency can be analyzed for constructing a bottleneck model and
predicting new values to mitigate various bottlenecks.
Information embedded in bottleneck model: The bottleneck
model incorporates execution characteristics of an optimized map-
ping of a DNN layer onto an architecture design. They include:
•𝑇_𝑐𝑜𝑚𝑝 𝑇_𝑐𝑜𝑚𝑚,𝑇_𝑑𝑚𝑎: Total time consumed by computations
on PEs, communicating data via NoCs, and accessing data from
off-chip memory via DMA, respectively. • 𝐴𝑐𝑐𝑒𝑙_𝑓 𝑟𝑒𝑞: Frequency
of the accelerator (MHz) • 𝑑𝑎𝑡𝑎_𝑜 𝑓 𝑓 𝑐ℎ𝑖𝑝: Data (bytes) accessed
from off-chip, per operand • 𝑑𝑎𝑡𝑎_𝑛𝑜𝑐: Data (bytes) communi-
cated via NoC, per operand •𝑁𝑜𝐶_𝑔𝑟𝑜𝑢𝑝𝑠_𝑛𝑒𝑒𝑑𝑒𝑑 : Maximum num-
ber of concurrent links that can be provided for communicating
unique data to different PE-groups; one variable per operand. •
𝑁𝑜𝐶_𝑏𝑦𝑡𝑒𝑠_𝑝𝑒𝑟_𝑔𝑟𝑜𝑢𝑝: Size of the data that can be broadcast to
PEs within every workgroup of PEs; one variable per operand.

Using above information, a bottleneck graph can be created as
illustrated in Fig. 8. Typically, this information is available from
experts-defined cost models like [15, 44, 80]. If not, it may be ob-
tained through similar analysis, hardware counters, or ML models.
Dictionary of affected parameters: It contains different factors
contributing to the latency as keys and a list of relevant parameters
as values. For example, the computation time is affected by the
number of PEs and functional units in PEs. The time consumed by
NoC communication is affected by the concurrent unicast links in

NoCs, bit-widths of NoCs, and size of the local buffer or RF. The
buffer size impacts the exploited reuse and the size of the data to be
communicated. DMA time is affected by the bandwidth for off-chip
memory accesses and the size of the shared memory.
Determining new values of accelerator design parameters:
For a design configuration, analyzing the bottleneck model of a cost
provides 𝑠 , which is the scaling to be achieved by reducing a bottle-
neck factor’s cost. 𝑋_𝑐𝑢𝑟𝑟𝑒𝑛𝑡 and 𝑋_𝑛𝑒𝑤 indicates the current and
predicted value of a parameter 𝑋 , respectively. 𝑋 is a parameter
impacting the bottleneck factor (obtained from dictionary). We next
describe the calculations for values of various design parameters.
• PEs: The number of PEs required can be calculated directly from
the needed scaling. 𝑃𝐸𝑠_𝑛𝑒𝑤 = 𝑠 ∗ 𝑃𝐸𝑠_𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .
• Off-chip BW: Bandwidth (BW) for off-chip and on-chip commu-
nication is obtained from the number of data elements communi-
cated per operand and the target scaling factor. E.g.,
𝑠𝑐𝑎𝑙𝑒𝑑_𝑇_𝑑𝑚𝑎 = 𝑇_𝑑𝑚𝑎 ÷ 𝑠;
𝑓 𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡 = 𝑠𝑢𝑚(𝑑𝑎𝑡𝑎_𝑜 𝑓 𝑓 𝑐ℎ𝑖𝑝);
𝑏𝑦𝑡𝑒𝑠_𝑝𝑒𝑟_𝑐𝑦𝑐𝑙𝑒 = 𝑓 𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡 ÷ 𝑠𝑐𝑎𝑙𝑒𝑑_𝑇_𝑑𝑚𝑎
𝑜 𝑓 𝑓 𝑐ℎ𝑖𝑝_𝐵𝑊 _𝑛𝑒𝑤 = 𝑏𝑦𝑡𝑒𝑠_𝑝𝑒𝑟_𝑐𝑦𝑐𝑙𝑒 ∗𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑜𝑟_𝑓 𝑟𝑒𝑞
•NoC Links and Bit-width: For DNN accelerators, separate NoCs
communicate different operands, each with multiple concurrent
links for various PE groups. For everyNoC, themaximumnumber of
PE-groups with simultaneous access and the total bytes broadcast to
each group are obtained from the cost model [15]. If communication
time is a bottleneck, the operand causing it (’𝑜𝑝’) is available from
the bottleneck analysis of the graph. Then, for the corresponding
NoC, its width (bits) is scaled to make the broadcast faster based on
the needed scaling. The new value is clamped to avoid exceeding
the maximum width feasible for a one-shot broadcast.
𝑚𝑎𝑥_𝑤𝑖𝑑𝑡ℎ_𝑓 𝑒𝑎𝑠𝑖𝑏𝑙𝑒 = 𝑒𝑥𝑒𝑐_𝑖𝑛𝑓 𝑜 [𝑛𝑜𝑐_𝑏𝑦𝑡𝑒𝑠_𝑝𝑒𝑟_𝑔𝑟𝑜𝑢𝑝] [𝑜𝑝] ∗ 8
𝑤𝑖𝑑𝑡ℎ_𝑠𝑐𝑎𝑙𝑒𝑑 = 𝑛𝑜𝑐_𝑤𝑖𝑑𝑡ℎ_𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ∗ 𝑠
𝑛𝑜𝑐_𝑤𝑖𝑑𝑡ℎ_𝑛𝑒𝑤 =𝑚𝑖𝑛(𝑤𝑖𝑑𝑡ℎ_𝑠𝑐𝑎𝑙𝑒𝑑,𝑚𝑎𝑥_𝑤𝑖𝑑𝑡ℎ_𝑓 𝑒𝑎𝑠𝑖𝑏𝑙𝑒)

Similarly, total unicast links needed by the NoC for 𝑜𝑝 are calcu-
lated from required concurrent accesses by PE groups.
𝑚𝑎𝑥_𝑙𝑖𝑛𝑘𝑠_𝑓 𝑒𝑎𝑠𝑖𝑏𝑙𝑒 = 𝑒𝑥𝑒𝑐_𝑖𝑛𝑓 𝑜 [𝑛𝑜𝑐_𝑔𝑟𝑜𝑢𝑝𝑠_𝑛𝑒𝑒𝑑𝑒𝑑] [𝑜𝑝]
𝑙𝑖𝑛𝑘𝑠_𝑠𝑐𝑎𝑙𝑒𝑑 = 𝑛𝑜𝑐_𝑢𝑛𝑖𝑐𝑎𝑠𝑡_𝑙𝑖𝑛𝑘𝑠_𝑐𝑢𝑟𝑟𝑒𝑛𝑡 [𝑜𝑝] ∗ 𝑠
𝑢𝑛𝑖𝑐𝑎𝑠𝑡_𝑙𝑖𝑛𝑘𝑠_𝑛𝑒𝑤 [𝑜𝑝] =𝑚𝑖𝑛 (𝑙𝑖𝑛𝑘𝑠_𝑠𝑐𝑎𝑙𝑒𝑑,𝑚𝑎𝑥_𝑙𝑖𝑛𝑘𝑠_𝑓 𝑒𝑎𝑠𝑖𝑏𝑙𝑒)

Whenever the number of PE-groups requiring different data ele-
ments exceeds the available unicast links (by𝑉×), the data is unicast
with time-sharing (𝑉 times) over configurable NoC (as in Eyeriss
[8]) to facilitate the mapping. Parameter 𝑣𝑖𝑟𝑡𝑢𝑎𝑙_ 𝑢𝑛𝑖𝑐𝑎𝑠𝑡_𝑙𝑖𝑛𝑘𝑠 in-
dicates time sharing over a unicast link, which can be set as number
of time sharing instances (𝑉).
• Sizing RFs and Memory: The total NoC communication time
can be reduced by increasing the bottleneck operand (𝑜𝑝)’s reuse
in the RF (register file or local buffer) of the PEs. Increasing the
reuse by 𝑅 requires (R×) larger chunks of non-bottleneck operands,
which need to be stored in the RF and communicated via other
NoCs. Using the information about non-exploited (available) reuse
of the bottleneck operand and the required scaling, the new RF size
can be calculated as:
𝑡𝑎𝑟𝑔𝑒𝑡_𝑠𝑐𝑎𝑙𝑖𝑛𝑔 =𝑚𝑖𝑛(𝑚𝑎𝑥_𝑟𝑒𝑢𝑠𝑒_𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑅𝐹 [𝑜𝑝], 𝑆)
𝑅𝐹_𝑠𝑖𝑧𝑒_𝑛𝑒𝑤 =

∑
𝑜𝑝𝑖 ⌈𝑒𝑥𝑒𝑐_𝑖𝑛𝑓 𝑜 [𝑑𝑎𝑡𝑎_𝑅𝐹] [𝑜𝑝𝑖]∗

𝑡𝑎𝑟𝑔𝑒𝑡_𝑠𝑐𝑎𝑙𝑖𝑛𝑔 ÷ 𝑟𝑒𝑢𝑠𝑒_𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑅𝐹 [𝑜𝑝𝑖]⌉

Explainable-DSE: Agile and Explainable Exploration of Efficient HW/SW Codesigns of Deep Learning Accelerators ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

The calculation is similar for the global buffer (scratchpad mem-
ory), except for the targeted scaling. In off-chip data communica-
tion, multiple operands are communicated one by one via DMA
(unlike simultaneously by NoCs per operand). So, the targeted scal-
ing of the scratchpad depends on the bottleneck operand’s (with
remaining reuse) contribution (𝑓) to the total off-chip footprint.
The speedup/scaling achievable through exploiting reuse (𝐴) can
be approximated with the Amdahl’s law as:
𝐴 = (𝑠 ∗ 𝑓) ÷ (1 − 𝑠 + (𝑠 ∗ 𝑓))
𝑡𝑎𝑟𝑔𝑒𝑡_𝑠𝑐𝑎𝑙𝑖𝑛𝑔 =𝑚𝑖𝑛(𝑚𝑎𝑥_𝑟𝑒𝑢𝑠𝑒_𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑆𝑃𝑀 [𝑜𝑝], 𝐴)
𝑆𝑃𝑀_𝑠𝑖𝑧𝑒_𝑛𝑒𝑤 =

∑
𝑜𝑝𝑖 ⌈𝑒𝑥𝑒𝑐_𝑖𝑛𝑓 𝑜 [𝑑𝑎𝑡𝑎_𝑆𝑃𝑀] [𝑜𝑝𝑖]∗

𝑡𝑎𝑟𝑔𝑒𝑡_𝑠𝑐𝑎𝑙𝑖𝑛𝑔 ÷ 𝑟𝑒𝑢𝑠𝑒_𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑆𝑃𝑀 [𝑜𝑝𝑖]⌉
We implemented Explainable-DSEworkflow and bottleneck anal-

ysis and mitigation for DNN accelerators in python. It allows easy
interfacing with the cost models for DNN accelerators. Since the im-
plementation of the bottleneck analysis module and the bottleneck-
guided DSE is external to the cost model, they could be extended
to interface with other accelerator cost models like MAESTRO [44]
that make the execution characteristics available (e.g., bandwidth,
Ops, data packets to be communicated). §C and §D discuss such
specification efforts for bottleneck models.

4.8 Tightly Coupled Hardware/Software
Codesign Explorations

Efficient codesign requires optimizing both the hardware configura-
tions and mappings in a coordinated manner. However, when using
black-box DSEs, these configurations are typically explored in a
loosely coupled manner. In other words, the acquired candidates
usually do not address inefficiencies in the achieved execution with
their co-optimization counterparts. For example, the acquired val-
ues of the off-chip/NoC bandwidth may be inefficient or incompati-
ble with the selected loop tile configuration (in the same/previous
trials in the mapping optimization), resulting in significantly higher
communication time and total latency.

To address these inefficiencies, the DSE integrates mapping space
optimizations and explores HW/SW codesign in a tightly coupled
manner through bottleneck-guided exploration. The usage of bot-
tleneck models allows reasoning about design inefficiencies for
the objective optimized by a co-optimization counterpart. For ex-
ample, the DSE considers software optimization as a subspace for
iteratively optimizing hardware configurations. For a hardware con-
figuration, when the DSE optimizes mappings through explorations
or even a fixed schema, it mostly leads to efficient executions that
can adapt to the tensor shapes and workload characteristics (reuse,
batching, parallelism, etc.) for the selected hardware configuration.
Then, the DSE uses bottleneck models that consist of both hardware
and software/execution parameters. The DSE finds bottlenecks in
the executions optimized by the mapping optimizer. Then, in the
next attempt, the DSE acquires new hardware candidates such that
they address bottlenecks in the executions optimized previously
through software configurations. Once a new hardware design is up-
dated as the current solution, software configurations are optimized
again in tandem. Consequently, this approach leads to an efficient
codesign for diverse tensor shapes and workload characteristics.

For efficient exploration of hardware/mapping codesign within
practical budgets, DSE needs to explore quality mappings quickly.

Table 1: Design space for edge DNN accelerators.

Data: int16; Freq. 500 MHz; Constraints: Throughput>=40/10 FPS (vision
light/large), 120/530/176k samples/second (NLP: Transformer/BERT/

wav2vec2); Area < 75 mm2; Max. power < 4W. Objective: Minimize latency.
Parameter Values Options

PEs 64, 128, ..., 4096 7
L1 buffer (B) 8, 16, ..., 1024 8
L2 buffer (kB) 64, 128, ..., 4096 7

Offchip bandwidth
(MBPS)

1024, 2048, 4096, 6400, 8192,
12800, 19200, 25600, 38400, 51200 10

NOC datawidth 16*i; i: [1, 16] 16
Physical unicast (×4) PEs*i / 64; i: [1, 64] 644

Virtual unicast (×4) 23𝑖 ; i: [0, 3] 44

Our approach builds on previous research on mappers for DNN
accelerators that eliminate infeasible and ineffective mappings by
pruning loop tilings and orderings (detailed in §7, §F). For fast map-
ping optimizations, we have integrated and extended dMazeRun-
ner [15], which can find near-optimal solutions within seconds.
Mappers like dMazeRunner [15], Interstellar [83], or ZigZag [49]
consider comprehensive space, optimally prune loop orderings, and
prune tilings based on the utilization of architectural resources (PEs,
buffers, non-contiguous memory accesses). Then, they linearly ex-
plore the pruned space. However, one challenge with their fixed
utilization thresholds for pruning is that it may lead to a search
space that contains either too few mappings (e.g., tens) for some
DNN layers or too many (many thousands) for others. To address
this challenge, we automatically adjust these search hyperparame-
ters of dMazeRunner to formulate the mapping search space that
contains up to the top-𝑁 mappings based on utilization thresholds.
𝑁 is the size of pruned mapping space formulated by adjusting
thresholds for pruning the search space iteratively, which must be
within a user-specified range, such as [10, 10000]. These mappings
are then evaluated linearly, as in dMazeRunner [15] or Timeloop
[53]. This approach helps achieve quality mappings by pruning
ineffectual methods like in dMazeRunner/Interstellar, while also
ensuring a reasonably large space of high-quality mappings as per
specified exploration budget.

5 EXPERIMENTAL METHODOLOGY
• Benchmarks:We evaluate 11 DNNs for Computer Vision (CV)
and Natural Langugage Processing (NLP) tasks [59]. CV models
include ResNet18, MobileNetV2, and EfficientNetB0 [69] (light) and
VGG16, ResNet50, and Vision Transformer [22] (large) for classify-
ing ImageNet images. The light and large labels differentiate mod-
els based on inference latency and total computations. For object
detection, we evaluated recent models FasterRCNN-MobileNetV3
[33] and YOLOv5 [4] (large). NLP models include Transformer for
English-German sentence translation [73] and BERT-base-uncased
[20] for Q&A on SQuAD dataset. We also evaluated Facebook
wav2vec 2.0 [5] for automatic speech recognition (ASR). Their DNN
layers are 18, 53, 82, 16, 54, 86, 79, 60, 163, 85, and 109 respectively.
We obtained models from PyTorch and Hugging Face [78].
• Design space: Table 1 lists the design space of a DNN accelerator
for inference at the edge. Like existing accelerators, we considered
four dedicated NoCs for a total of four read/write operands [13]. The

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Shail Dave, Tony Nowatzki, and Aviral Shrivastava

1
10

100
1000

Grid Search Random Search Simulated Annealing Genetic Algorithm
Bayesian Optimization Hypermapper 2.0 Reinforcement Learning ExplainableDSE-FixDF
Random Search-Codesign Hypermapper 2.0-Codesign ExplainableDSE-Codesign

La
te

n
cy

(m
s)

ResNet18 MobileNetV2 EfficientNet VGG16 ResNet50 Vision
Transformer

FasterRCNN-
MobileNetV3

YOLOv5 Transformer BERT Wav2Vec2

No solutions
with feasible
power/area

Fixed Mapping
Schema:

Codesign:

Figure 9: Explainable-DSE obtained codesigns of 6× lower latency.

1

10

100

1000

10000

1

10

100

1000

10000

Grid Search Random Search Simulated Annealing Genetic Algorithm
Bayesian Optimization Hypermapper 2.0 Reinforcement Learning ExplainableDSE-FixDF
Random Search-Codesign Hypermapper 2.0-Codesign ExplainableDSE-Codesign

50

day
2 days

Ex
p

lo
re

d
So

lu
ti

o
n

s

DSE
Time

(Min.)

ResNet18 MobileNetV2 EfficientNet VGG16 ResNet50 Vision
Transformer

FasterRCNN-
MobileNetV3

YOLOv5 Transformer BERT Wav2Vec2

Fixed Mapping
Schema:

Codesign:

2 weeks1 week

Figure 10: Explainable-DSE with fixed dataflow and codesigns reduce search time by 53× and 103× (minutes vs. days–weeks).

number of links for concurrent or time-shared unicasting is per each
NoC. To limit the design space for related techniques, we considered
expressing the number of unicast links as a fraction of total PEs.
We selected execution constraints based on the requirements for
ML benchmarks [59] and designs of industrial edge accelerators for
ML inference, e.g., [1, 2]. We set the objective as minimizing the
latency of the single-stream execution [59].
• DSE techniques:We evaluated Explainable-DSE against previ-
ous accelerator DSE frameworks using constrained optimizations -
Hypermapper 2.0 [51] and Confuciux [36] for reinforcement learn-
ing (RL). Confuciux limits the total parameters to two, works with
a single constraint, and requires the same number of values for all
parameters. So, we generalized its implementation for evaluations.
We also evaluated our approach against non-feedback or black-box
approaches like Grid search, Random search, Simulated annealing
(Scipy [75]), Genetic algorithm (Scikit-Opt [3]), and Bayesian opti-
mization [52]. We evaluated all techniques on a Dell precision 5820
tower workstation. Like previous DNN accelerator DSEs, we used
the cost models [15, 80]. The system for evaluating the candidates
with cost models was the same for all techniques.
• Mapping optimizations and codesign explorations: Prior
works mostly used a fixed dataflow, such that exploration time
is primarily spent on optimizing hardware configurations, while
getting efficient mappings with fixed schema. So, we first fixed
the mapping technique as an optimized output stationary dataflow
(SOC-MOP) [7] for all approaches. Then, we demonstrate the code-
sign with Explainable-DSE by a tightly coupled optimization of
both the hardware and mapping configurations. We also compare
obtained codesigns with those obtained by black-box approaches.
Black-box codesign DSE explores hardware configurations with two
techniques that were found effective: random search and Hyper-
Mapper 2.0. §F details setup for an effective black-box exploration
of mappings in a comprehensive yet highly pruned space of feasi-
ble/effectual mappings. For mapping each DNN layer on every hard-
ware configuration, black-box DSE evaluations use Timeloop-like

random search for 10,000 mapping trials, as it was found effective
in quickly obtaining high-quality mappings (§F).
• Exploration budget:We consider 2500 iterations for statically
finding the best solutions.We also analyze dynamic DSE capabilities
by explorations in 100 iterations.

6 RESULTS AND ANALYSIS
6.1 Explainable-DSE Obtained Codesigns of 6×

Low Latency in 47× Less Iterations
Fig. 9 illustrates the latency obtained by different techniques for
static exploration. By exploring among quality solutions, Explainable-
DSE obtained 6× more efficient solutions, on average, as compared
to previous approaches, and up to 9.6× over random search and
49.3× over Bayesian optimization. Even when dataflow (schema
for optimized mappings) was fixed for all techniques, it obtained
1.77× lower latency on average and up to 7.89×. By applying bottle-
neck analysis on workload executions at every acquisition attempt,
Explainable-DSE could determine parameters critical for improv-
ing efficiency. Thus, it can effectively reach high-reward subspaces
among the vast space. Fig. 11 illustrates this with latency reduction
obtained over iterations by taking examples of two models, Effi-
cientNet for CV and Transformer for NLP. With objective reduction
at almost every attempt, the Explainable-DSE converges to quality
solutions early on (some tens of iterations) and usually of better
efficiency. For instance, obtained solutions have 6.6×-35.1× lower la-
tency for EfficientNet, as compared to the DSEs with fixed dataflow
and 2.1×-9.7× as compared to black-box co-optimizations. Overall,
at every attempt, it reduced the values of objective for feasible ac-
quisitions by geomean 1.30× and 1.32× for fixed and co-explored
mappings (as shown in Table 3). Acquisitions by non-explainable
techniques, being bottlenecks-unaware, do not focus much on de-
facto promising subspaces. In fact, in some of our evaluations for
Bayesian optimization, random search, and constrained RL, the
reduction in the objective throughout the DSE iterations was neg-
ative (Table 3). They acquired candidates without understanding

Explainable-DSE: Agile and Explainable Exploration of Efficient HW/SW Codesigns of Deep Learning Accelerators ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

10

100

1000

10000

1 2 4 8 16 32 64 128 256 512 1024 2048

Grid Search Random Search Bayesian
Hypermapper 2.0 Reinforcement Learning ExplainableDSE-FixDF
Random Search-Codesign HyperMapper-Codesign ExplainableDSE-Codesign

Iterations

Latency
(ms)

Iterations

Latency
(ms)

1

10

100

1000

1 2 4 8 16 32 64 128 256 512 1024 2048(a)

(b)

Computer Vision (EfficientNet)

Language Processing (Transformer)

Fixed
Mapping
Schema:

Codesign:

Figure 11: Latency reduced over iterations for (a) EfficientNet;
(b) Transformer.

bottlenecks, out of which many were feasible but corresponded to
lower efficiencies than the previously encountered best solutions.

Fig. 10 shows the total time (bars) taken by DSE techniques.
Through constraints accommodation and systematically mitigating
bottlenecks in multi-functional workload executions, explorations
quickly converged or terminated while achieving even more ef-
ficient solutions. For example, Explainable-DSE with fixed and
optimized mappings explored about only 59 and 54 designs, respec-
tively (shown by triangles; ∼2500 for other techniques). It led to
search time reduction of 53× and 103× on average over black-box
explorations, when using fixed dataflow for all techniques and hard-
ware/mapping co-optimization, respectively. Maximum reduction
in the search time was up to 501× and 1675×, respectively. Using
modest information on mitigating bottlenecks, explainable DSEs
consumed only 21 and 64 minutes, on average. In fact, they achieved
the most efficient solutions for BERT under just two minutes!

6.2 Including Software Design Space in the
Exploration Enables 4.24× Better Solutions

With the availability of exploration budget (by a drastic reduc-
tion in the search time), hardware/software codesigns can truly be
enabled by optimizing both of them in a tightly coupled manner.
Codesigns obtained with Explainable-DSE reduced objective by
4.24× on average as compared to using a single optimized mapping
per DNN operator. The higher efficiency emanates from achiev-
ing better mappings tailored for processing various DNN layers
(different functionality and tensor shapes of DNN operators) on
the selected hardware configuration. They leverage higher spatial
parallelism and more effectively hide data communication latency
behind computations as compared to a pre-set dataflow. Further,
mapping optimizations reduce the objective considerably without
necessarily increasing hardware resources. Thus, by having a more
constraints-budget on hand, the DSE was able to reduce the objec-
tive further (also evident in Fig. 11a).

For exploring comprehensively defined vast space of architec-
tural configurations with non-explainable DSEs, presetting dataflow
can lead to many infeasible solutions (§6.3). Note that infeasible
solutions are not just hardware configurations with exceeding con-
straints like area or power. The designs can also be infeasible when
a generated hardware configuration is incompatible with the used
software, i.e., dataflow for mapping. For instance, in configurations
generated by non-explainable DSEs, the total number of links for

Feasible
Solutions
Among

Explored
(%)

0.1

1

10

100
Feasible Area/Power
Feasible Area/Power/Throughput

Random
Search

Grid
Search

Simul.
Anneal.

Gene.
Algo.

Bayes.
Opt.

Hyper
Mapper

Constr.
RL

Codesign

Explain
able-
DSE

Random
Search

Hyper
Mapper

Explain
able-
DSE

Fixed Mapping Schema

Figure 12: Most acquisitions by Explainable-DSE met area
and power constraints, as compared to non-explainable tech-
niques. Solutions obtained by all but Explainable-DSEmostly
did not meet strict throughput requirements.

time-shared unicast was often lower than that needed by spatial
parallelism in the dataflow used for mapping. That is exactly why
a codesign or joint exploration with the software is important.

Black-box co-optimizations incorporated mapping explorations
and reduced latency of obtained solutions further by 2.33× for Hy-
perMapper 2.0 and 2.63× for random search, as compared to their
DSEs using a fixed schema for optimized mappings. It is primarily
because of the availability of more constraints-budget at hand, as
discussed before. The co-optimizations also alleviated aforemen-
tioned challenge of mapping-hardware incompatibility. As Fig. 12
shows, with software optimization in the loop, the black-box co-
optimizations find more feasible designs than black-box DSEs using
a fixed mapping schema, when allowed to explore hardware de-
sign configurations for the same number of trials. However, even
after 2500 trials for exploring hardware configurations and 10,000
trials for exploring mappings of each DNN layer on every hard-
ware configuration, the latency of codesigns obtained by black-box
approaches are still 1.6× higher than the codesigns obtained by
Explainable-DSE, while consuming 103× more search time (taking
7-16 days for four workloads). Key reasons for such effective explo-
rations by Explainable-DSE include generating fewer yet objective-
reducing trials and tightly coupled codesigns. As Explainable-DSE
leverages the domain knowledge, its generated designs continually
address arising execution inefficiencies, converging in 47× less it-
erations. In black-box co-optimizations, the DSE is loosely coupled,
as the generated hardware configuration is not necessarily tailored
to work best with the optimized mappings (from the previous/same
trial for the hardware DSE). In contrast, tightly coupled codesign
exploration in Explainable-DSE finds hardware configurations that
alleviate inefficiencies in the workload executions optimized previ-
ously by mappings; Once new hardware configuration is generated,
mapping exploration strives to utilize hardware resources effec-
tively, lowering costs further. And, this repeats. Thus, optimizations
for both hardware and software configurations strive to reduce in-
efficiencies in the execution optimized by their counterpart.

Although optimizing the mappings for every hardware design
requires additional search time, the overall increase for exploring
codesigns with Explainable-DSE was only 3× on average (from 21
minutes to 64). In fact, for all except large object detection mod-
els, the DSE time increased from 16 minutes to only 26 minutes.
One reason is that the mappings can be quickly evaluated with
analytical performance models (e.g., a minute each for several hun-
dred to a few thousand mappings) and concurrent execution with
multiple threads [15] (subjected to execution on four cores at maxi-
mum in our evaluations). Moreover, applying bottleneck analysis

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Shail Dave, Tony Nowatzki, and Aviral Shrivastava

Table 2: Latency minimized by DSE techniques in 100 iterations.

Explainable-DSE evaluated ∼54 solutions. Designs obtained by Non-Explainable DSEs were low-throughput (shaded values) and incompatible with used
dataflow (dashes). More importantly, * denotes that none of the obtained candidates by a non-explainable DSE met even area/power constraints.

DSE Technique ResNet18 MobileNetv2 EfficientNet VGG16 ResNet50
Vision

Transformer
FasterRCNN-
MobileNetv3 YOLOv5 Transformer BERT Wav2Vec2

Grid Search-FixDF 278 73.4 92.0 3650 747 1973 1625 1477 251 780 1933
Random Search-FixDF -* 197 694 41912 626 1376 3152 7754 157 1044 2357

Simulated Annealing-FixDF -* -* -* -* -* -* -* -* -* -* -*
Genetic Algorithm-FixDF -* -* -* - -* - - -* -* -* -*

Bayesian Optimization-FixDF - - - - - - - - - - -
HyperMapper 2.0-FixDF 53.3 46.5 135 1339 493 1308 13582 1142 171 663 912

Reinforcement Learning-FixDF - - 360 - - - 21150 18082 143 1428 1428
Random Search-Codesign 69.6 12.7 9.5 870 209 857 224 218 244 240 1427
HyperMapper 2.0-Codesign 63.1 5.1 10.3 1233 87.3 1084 830 348 133 637 1945
ExplainableDSE-Codesign 11.2 5.7 4.3 109 54.9 233 89.2 92.1 76.2 121 494

on efficient mappings helped obtain efficient designs faster (1.1×
lower iterations for hardware designs on average, and up to 1.9×).
Whenever the DSE for codesigns evaluated a similar number of
architecture designs as our DSE with fixed dataflow, it went on to
explore even more efficient solutions (e.g., 2.33× lower latency for
Vision Transformer).

6.3 By Considering Utilization of Constraints,
DSE Mostly Acquires Feasible Solutions
Without Exhausting Constraints Quickly

Non-explainable black-box optimization approaches, e.g., with Ge-
netic Algorithm or Bayesian Optimization, did not know which
configurations could likely lead to feasible subspaces. Therefore,
even after exploring over days, they almost did not obtain a sin-
gle feasible solution. When considering only area and power con-
straints, feasibility of the explored solutions was higher for mostly
all techniques (Fig. 12), e.g., 15% for random search and 50% for
constraints-aware reinforcement learning. However, when consid-
ering throughput requirement for DNN inference, the feasibility of
the explored solutions was barely ∼0.1%–0.3%. By exploring map-
pings, the black-box codesign optimizations addressed the challenge
of mappings being incompatible for the obtained hardware config-
urations. Thus, they improved feasibility by 2×-5×, but the overall
feasibility was still ∼0.6%. Such low feasibility for DSE in humon-
gous space is presumably caused by not accommodating constraints
during exploration and bottlenecks-unaware acquisition trials. Con-
trarily, Explainable-DSE prioritized to meet the constraints for its
acquisitions and update of the new solutions, which helped avoid
infeasible subspaces. Plus, addressing bottlenecks in executions
helped acquiring high-performance solutions. Hence, 87% and 15%
of solutions explored by Explainable-DSE codesigns were feasible
when considering area and power constraints and all the three
constraints, respectively. For DNNs like BERT and MobileNetV2,
89%–98% of the explored solutions met area and power constraints.
Once Explainable-DSE achieved a solution that met all constraints,
it always ensured to optimize further with a feasible solution.

6.4 Enabling Efficient Dynamic Exploration in
the Vast Space

Table 2 shows latency of solutions achieved in 100 iterations by dif-
ferent techniques. Under a short exploration budget, non-explainable

techniques did not find a feasible solution (shaded values). Even
after ignoring intense throughput requirements, most techniques
could not find feasible solutions. Contrarily, by exploring spaces
where candidates utilize low budget of constraints, Explainable-
DSE quickly landed feasible solutions. Black-box approaches ex-
plored feasible codesigns, but they did not meet throughput re-
quirements. On the other hand, by addressing the bottlenecks in
multi-functional executions, Explainable-DSE achieved solutions of
one to two orders of magnitude lower latency over other techniques.

7 ADDITIONAL RELATEDWORKS
In this section, we discuss additional related work beyond the back-
ground on DNN accelerator DSE techniques described in §A.2, their
limitations in §2, and previous DSEs using bottleneck analysis for
different domains in §3.
• Execution cost models of DNN accelerators: The cost models
of SECDA [29] and TVM/VTA [6] support end-to-end simulation
and synthesis, while faster analytical models are more commonly
used to optimize mappings and accelerator design configurations.
Their examples include MAESTRO [44], Accelergy [80], SCALE-
Sim [61], and those of Timeloop [53], dMazeRunner [15], and In-
terstellar [83] infrastructures. Most of these models estimate both
latency/throughput and energy. In addition to computational cycles,
MAESTRO, dMazeRunner, and Timeloop account for on-chip and
off-chip communication latency. Table 5 compares their execution
modeling features. For the DSE, we used the cost model of our
dMazeRunner infrastructure, which also considers the performance
overheads of non-contiguous memory accesses and allows explicit
specification of NoC bandwidths and flexibly specifying mappings
through loop nest configurations.
•Mappers for DNN accelerators:Mappers typically target the
space of all valid loop tilings and orderings. For tensor shapes of a
layer, there can be many factors of loop iteration counts, and just
populating the space of valid mappings could be time-consuming
(𝑚𝑖𝑐𝑟𝑜seconds–several seconds) [60]. Table 6 compares different
mappers. Timeloop [53], a commonly used mapper, explores map-
pings through random sampling, while GAMMA [37] uses a genetic
algorithm. However, GAMMA limits the number of loops that can
be executed spatially and does not prune invalid tilings before ex-
ploration, requiring several-fold more trials for convergence [38].
Without eliminating ineffectual loop tilings and orderings before-
hand, black-box explorations typically require thousands of trials,

Explainable-DSE: Agile and Explainable Exploration of Efficient HW/SW Codesigns of Deep Learning Accelerators ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

generating many invalid mappings, and take hours to map a single
DNN layer once [35]. Mind Mappings [31] reduces the search time
by training a surrogate model that estimates costs faster than analyt-
ical models. CoSA [35] uses a prime factorization-based approach to
construct the tiling space for a mixed-integer programming solver.
But, many tilings corresponding to combinations of prime factors
remain unexplored, potentially resulting in sub-optimal solutions.
Additionally, most mappers do not support depthwise-convolutions,
invoking convolutions channel-by-channel. So, they miss oppor-
tunities for exploiting parallelism across multiple channels and
reducing miss penalties for accessing contiguous data of consecu-
tive channels from the off-chip memory.

Interstellar [83] prunes ineffectual tilings by constraining the
search to pre-set resource utilization thresholds. dMazeRunner [15]
goes further and prunes loop orderings for unique/maximum reuse
of operands and proposes heuristics that reduce the space to highly
efficient mappings, which can be explored in second(s). Hence, we
utilize our dMazeRunner infrastructure in our codesign and extend
it to construct the space of up to top-𝑁 mappings, where 𝑁 is
the maximum mapping trials allowed. ZigZag [49] and follow-up
mappers build upon such pruning strategies. ZigZag allows uneven
blockings of loops for processing different tensors, which may
partially improve efficiency. However, ZigZag’s search time for a
DNN layer is nearly hours [49]. While works such as [45, 49, 71, 87,
88] optimize DNN mappings on one or more hardware accelerators,
they require exploring hardware parameters exhaustively or with
black-box optimizations.
•Hardware/software codesign explorations of DNN accelera-
tors: Previous DNN accelerator DSEs, such as [46, 58, 76, 81, 86],
used black-box optimizations. They incur excessive trials and inef-
fectual solutions, as they lack reasoning about the higher costs of
obtained candidates and the potential efficiency of candidates to be
acquired next (§2). Further, DSEs of [10, 36, 40, 58, 63, 82, 89] used
a fixed dataflow in explorations. It obviates increasing search time
further but may not lead to the most efficient solutions compared
to codesigns.

Recent approaches HASCO [81] and DiGamma [39] optimize
both hardware and mapping configurations in a black-box manner,
encountering the same challenges of ineffectual and excessive trials
due to non-explainability (§2). Secondly, with a loosely coupled
codesign exploration (§4.8), they acquire HW/SW configurations
that may not be effective or suitable for the counterpart. Further-
more, they target a limited hardware design space comprising only
buffers and PEs. Finally, they typically do not explore a single ac-
celerator design that addresses inefficiencies in executing DNNs
with many layers.
• DSE using bottleneck analysis: DSEs of [26, 84] use bottleneck
analysis, but they are unaware of constraints utilization and opti-
mize only a single loop-kernel. Plus, they explored only neighboring
values of parameters (instead of scaling them to mitigate bottleneck
in one shot). It leads to search time comparable to black-box DSEs
[84]. AutoDSE [67] and SECDA [29] proposed bottleneck analysis
specific to FPGA-based HLS, and their search optimizes a single
loop-kernel/task of a single workload at a time. We propose using
bottleneckmodels for DNN accelerator designs; our DSE framework
generalizes prior DSEs to the case of multiple loop-nests, multi-
modal workloads, and multiple workloads through aggregation

of various bottleneck mitigation (for new acquisitions of promis-
ing designs). Further, via proposed API and data structures, our
framework decouples bottleneck models from search algorithms,
allowing designers to systematically express the bottleneck models
for their domain-specific architectures/systems and interface with
the bottleneck-guided, explainable DSE.

8 CONCLUSIONS
Agile and efficient exploration in the vast design space, e.g., for
hardware/software codesigns of deep learning accelerators, require
techniques that not just should consider objectives and constraints
but are also explainable. They need to reason about obtained costs
for acquired solutions and how to improve underlying execution
inefficiencies. Non-explainable DSE with black-box optimizations
(evolutionary, ML-based) lack such capability; obtaining efficient
solutions even after thousands of trials or days can be challenging.
To overcome such challenges, we proposed Explainable-DSE, which
analyzes execution through bottleneck models. As compared to
cost models that provide a total value, a bottleneck model can
graphically express which and how various design parameters and
intermediate factors contribute to the total cost. Thus, it can provide
rich information in an explicitly analyzable format, allowing the
designers and DSE to identify the bottleneck factors for the obtained
costs and acquire mitigating solutions. Proposed API can allow
designers and/or automation tools to express their domain-specific
bottleneckmodels and interface with the DSE. Through aggregation
of predictions for bottleneck mitigation, the DSE facilitates a single
effective solution for multi-functional or multiple workloads. In
addition, awareness of utilized constraints in the decision making
allows the DSE to prioritize exploration among feasible solutions
and find more efficient solutions without quickly exhausting the
constraints. Our demonstration of optimizing codesigns of DNN
accelerators showed how Explainable-DSE could effectively explore
feasible and efficient candidates (6× low-latency solutions). By
obtaining most efficient solutions in short exploration budgets (47×
fewer iterations or minutes/hours vs. days/weeks), it opens up
opportunities for cost-effective and dynamic explorations.

ACKNOWLEDGEMENTS
We thank anonymous reviewers for their valuable feedback and
suggestions. This work was partially supported by National Science
Foundation (NSF) grant #1645578 and Graduate College Fellowship
at Arizona State University. This work is done in part for the Artifi-
cial Intelligence Hardware (AIHW) program of the Semiconductor
Research Corporation (SRC).

REFERENCES
[1] 2018. ARM Machine Learning Processor. https://en.wikichip.org/wiki/arm_

holdings/microarchitectures/mlp.
[2] 2019. Intel Nervana NNP-I 100. https://en.wikichip.org/wiki/nervana/nnp/nnp-

i_1100.
[3] 2019. scikit-opt. github.com/guofei9987/scikit-opt/.
[4] 2019. YOLOv5 Classification. https://pytorch.org/hub/ultralytics_yolov5.
[5] Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. 2020.

wav2vec 2.0: A framework for self-supervised learning of speech representations.
Advances in Neural Information Processing Systems 33 (2020), 12449–12460.

[6] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Q. Yan,
Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos

https://en.wikichip.org/wiki/arm_holdings/microarchitectures/mlp
https://en.wikichip.org/wiki/arm_holdings/microarchitectures/mlp
https://en.wikichip.org/wiki/nervana/nnp/nnp-i_1100
https://en.wikichip.org/wiki/nervana/nnp/nnp-i_1100
github.com/guofei9987/scikit-opt/
https://pytorch.org/hub/ultralytics_yolov5

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Shail Dave, Tony Nowatzki, and Aviral Shrivastava

Guestrin, and Arvind Krishnamurthy. 2018. {TVM}: An Automated {End-to-
End} Optimizing Compiler for Deep Learning. In 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 18). 578–594.

[7] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. 2016. Eyeriss: A Spatial Archi-
tecture for Energy-Efficient Dataflow for Convolutional Neural Networks. In
2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture
(ISCA).

[8] Yu-Hsin Chen, Tushar Krishna, Joel S. Emer, and Vivienne Sze. 2017. Eyeriss:
An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural
Networks. IEEE Journal of Solid-State Circuits 52, 1 (2017), 127–138.

[9] Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, and Vivienne Sze. 2019. Eyeriss v2: A
Flexible Accelerator for Emerging Deep Neural Networks on Mobile Devices.
IEEE Journal on Emerging and Selected Topics in Circuits and Systems 9, 2 (2019).

[10] Kanghyun Choi, Deokki Hong, Hojae Yoon, Joonsang Yu, Youngsok Kim, and
Jinho Lee. 2021. Dance: Differentiable accelerator/network co-exploration. In
2021 58th ACM/IEEE Design Automation Conference (DAC). IEEE, 337–342.

[11] Coral. [n. d.]. Edge TPU Performance Benchmarks. https://coral.ai/docs/edgetpu/
benchmarks/.

[12] Ayse K. Coskun, Jose L. Ayala, David Atienza, Tajana Simunic Rosing, and Yusuf
Leblebici. 2009. Dynamic thermal management in 3D multicore architectures. In
2009 Design, Automation Test in Europe Conference Exhibition. 1410–1415.

[13] Shail Dave, Riyadh Baghdadi, Tony Nowatzki, Sasikanth Avancha, Aviral Shri-
vastava, and Baoxin Li. 2021. Hardware Acceleration of Sparse and Irregular
Tensor Computations of ML Models: A Survey and Insights. Proc. IEEE 109, 10
(2021), 1706–1752.

[14] Shail Dave, Mahesh Balasubramanian, and Aviral Shrivastava. 2018. RAMP:
Resource-Aware Mapping for CGRAs. In 2018 55th ACM/ESDA/IEEE Design Au-
tomation Conference (DAC). 1–6.

[15] Shail Dave, Youngbin Kim, Sasikanth Avancha, Kyoungwoo Lee, and Aviral
Shrivastava. 2019. DMazerunner: Executing perfectly nested loops on dataflow
accelerators. ACM Transactions on Embedded Computing Systems (TECS) 18, 5s
(2019), 1–27.

[16] Shail Dave, AlbertoMarchisio, MuhammadAbdullahHanif, Amira Guesmi, Aviral
Shrivastava, Ihsen Alouani, and Muhammad Shafique. 2022. Special Session:
Towards an Agile Design Methodology for Efficient, Reliable, and Secure ML
Systems. In 2022 IEEE 40th VLSI Test Symposium (VTS). IEEE, 1–14.

[17] Shail Dave and Aviral Shrivastava. 2022. Design Space Description Language for
Automated and Comprehensive Exploration of Next-Gen Hardware Accelerators.
inWorkshop on Languages, Tools, and Techniques for Accelerator Design (LATTE’22)
(2022). co-located with the 27th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS 2022).

[18] Shail Dave, Aviral Shrivastava, Youngbin Kim, Sasikanth Avancha, and Kyoung-
woo Lee. 2020. dMazeRunner: Optimizing Convolutions onDataflowAccelerators.
In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 1544–1548.

[19] Aryan Deshwal, Nitthilan Kanappan Jayakodi, Biresh Kumar Joardar, Janard-
han Rao Doppa, and Partha Pratim Pande. 2019. MOOS: A multi-objective design
space exploration and optimization framework for NoC enabled manycore sys-
tems. ACM Transactions on Embedded Computing Systems (TECS) 18, 5s (2019).

[20] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. [n. d.]. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers).

[21] Joydeep Dey and Sudeep Pasricha. 2022. Robust Perception Architecture Design
for Automotive Cyber-Physical Systems. arXiv preprint arXiv:2205.08067 (2022).

[22] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, et al. 2020. An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020).

[23] Lorenzo Ferretti, Giovanni Ansaloni, and Laura Pozzi. 2018. Lattice-traversing
design space exploration for high level synthesis. In 2018 IEEE 36th International
Conference on Computer Design (ICCD). IEEE, 210–217.

[24] Brian A Fields, Rastislav Bodik, Mark D Hill, and Chris J Newburn. 2003. Using
interaction costs for microarchitectural bottleneck analysis. In Proceedings. 36th
Annual IEEE/ACM International Symposium on Microarchitecture, 2003. MICRO-36.
IEEE, 228–239.

[25] Björn Forsberg, Maxim Mattheeuws, Andreas Kurth, Andrea Marongiu, and Luca
Benini. 2020. A synergistic approach to predictable compilation and scheduling
on commodity multi-cores. In The 21st ACM SIGPLAN/SIGBED Conference on
Languages, Compilers, and Tools for Embedded Systems. 108–118.

[26] Gennette Gill and Montek Singh. 2009. Bottleneck analysis and alleviation in
pipelined systems: A fast hierarchical approach. In 2009 15th IEEE Symposium on
Asynchronous Circuits and Systems. IEEE, 195–205.

[27] Soonhoi Ha, Jürgen Teich, Christian Haubelt, Michael Glaß, Tulika Mitra, Rainer
Dömer, Petru Eles, Aviral Shrivastava, Andreas Gerstlauer, and Shuvra S Bhat-
tacharyya. 2017. Introduction to hardware/software codesign. Handbook of
Hardware/Software Codesign (2017), 3–26.

[28] Di Han, Wei Chen, Bo Bai, and Yuguang Fang. 2019. Offloading optimization and
bottleneck analysis for mobile cloud computing. IEEE Transactions on Communi-
cations 67, 9 (2019), 6153–6167.

[29] Jude Haris, Perry Gibson, José Cano, Nicolas Bohm Agostini, and David Kaeli.
2021. SECDA: Efficient Hardware/Software Co-Design of FPGA-based DNN
Accelerators for Edge Inference. In 2021 IEEE 33rd International Symposium on
Computer Architecture and High Performance Computing (SBAC-PAD). IEEE.

[30] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[31] Kartik Hegde, Po-An Tsai, Sitao Huang, Vikas Chandra, Angshuman Parashar,
and Christopher W Fletcher. 2021. Mind mappings: enabling efficient algorithm-
accelerator mapping space search. In Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems.

[32] Christian Heidorn, Frank Hannig, and Jürgen Teich. 2020. Design space explo-
ration for layer-parallel execution of convolutional neural networks on CGRAs.
In Proceedings of the 23th International Workshop on Software and Compilers for
Embedded Systems. 26–31.

[33] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingx-
ing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, Quoc V.
Le, and Hartwig Adam. [n. d.]. Searching for MobileNetV3. In 2019 IEEE/CVF
International Conference on Computer Vision (ICCV). IEEE, 1314–1324.

[34] Qijing Huang, Charles Hong, John Wawrzynek, Mahesh Subedar, and
Yakun Sophia Shao. 2022. Learning A Continuous and Reconstructible Latent
Space for Hardware Accelerator Design. In 2022 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS). IEEE, 277–287.

[35] Qijing Huang, Aravind Kalaiah, Minwoo Kang, James Demmel, Grace Dinh, John
Wawrzynek, Thomas Norell, and Yakun Sophia Shao. 2021. Cosa: Scheduling by
constrained optimization for spatial accelerators. In 2021 ACM/IEEE 48th Annual
International Symposium on Computer Architecture (ISCA). IEEE, 554–566.

[36] Sheng-Chun Kao, Geonhwa Jeong, and Tushar Krishna. 2020. Confuciux: Au-
tonomous hardware resource assignment for dnn accelerators using reinforce-
ment learning. In 2020 53rd Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO). IEEE, 622–636.

[37] Sheng-Chun Kao and Tushar Krishna. 2020. Gamma: Automating the hwmapping
of dnn models on accelerators via genetic algorithm. In Proceedings of the 39th
International Conference on Computer-Aided Design. 1–9.

[38] Sheng-Chun Kao, Angshuman Parashar, Po-An Tsai, and Tushar Krishna. 2022.
Demystifying Map Space Exploration for NPUs. arXiv preprint arXiv:2210.03731
(2022).

[39] Sheng-Chun Kao, Michael Pellauer, Angshuman Parashar, and Tushar Kr-
ishna. 2022. Digamma: Domain-aware genetic algorithm for hw-mapping co-
optimization for dnn accelerators. In 2022 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 232–237.

[40] Liu Ke, Xin He, and Xuan Zhang. 2018. Nnest: Early-stage design space ex-
ploration tool for neural network inference accelerators. In Proceedings of the
International Symposium on Low Power Electronics and Design. 1–6.

[41] David Koeplinger, Christina Delimitrou, Raghu Prabhakar, Christos Kozyrakis,
Yaqi Zhang, and Kunle Olukotun. 2016. Automatic Generation of Efficient Ac-
celerators for Reconfigurable Hardware. In Proceedings of the 43rd International
Symposium on Computer Architecture. IEEE Press, 115–127.

[42] Takuya Kojima, Nguyen Anh Vu Doan, and Hideharu Amano. 2020. GenMap: A
genetic algorithmic approach for optimizing spatial mapping of coarse-grained
reconfigurable architectures. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 28, 11 (2020), 2383–2396.

[43] Aviral Kumar, Amir Yazdanbakhsh, Milad Hashemi, Kevin Swersky, and Sergey
Levine. 2021. Data-Driven Offline Optimization for Architecting Hardware
Accelerators. In International Conference on Learning Representations.

[44] Hyoukjun Kwon, Prasanth Chatarasi, Michael Pellauer, Angshuman Parashar,
Vivek Sarkar, and Tushar Krishna. 2019. Understanding reuse, performance, and
hardware cost of dnn dataflow: A data-centric approach. In Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture. 754–768.

[45] Hyoukjun Kwon, Liangzhen Lai, Michael Pellauer, Tushar Krishna, Yu-Hsin Chen,
and Vikas Chandra. 2021. Heterogeneous dataflow accelerators for multi-DNN
workloads. In 2021 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). IEEE, 71–83.

[46] Yujun Lin, Mengtian Yang, and Song Han. 2021. NAAS: Neural accelerator
architecture search. In 2021 58th ACM/IEEE Design Automation Conference (DAC).
IEEE, 1051–1056.

[47] Google LLC. [n. d.]. Coral Edge TPU Accelerator. https://coral.ai/products/
accelerator-module.

[48] Atefeh Mehrabi, Aninda Manocha, Benjamin C Lee, and Daniel J Sorin. 2020.
Prospector: Synthesizing efficient accelerators via statistical learning. In 2020
Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE.

[49] Linyan Mei, Pouya Houshmand, Vikram Jain, Sebastian Giraldo, and Marian
Verhelst. 2021. ZigZag: Enlarging joint architecture-mapping design space explo-
ration for DNN accelerators. IEEE Trans. Comput. 70, 8 (2021), 1160–1174.

https://coral.ai/docs/edgetpu/benchmarks/
https://coral.ai/docs/edgetpu/benchmarks/
https://coral.ai/products/accelerator-module
https://coral.ai/products/accelerator-module

Explainable-DSE: Agile and Explainable Exploration of Efficient HW/SW Codesigns of Deep Learning Accelerators ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

[50] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P Jouppi. 2009.
CACTI 6.0: A tool to model large caches. HP laboratories 27 (2009), 28.

[51] Luigi Nardi, David Koeplinger, and Kunle Olukotun. 2019. Practical design space
exploration. In 2019 IEEE 27th International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunication Systems (MASCOTS). IEEE,
347–358.

[52] Fernando Nogueira. 2014–. Bayesian Optimization: Open source con-
strained global optimization tool for Python. https://github.com/fmfn/
BayesianOptimization

[53] Angshuman Parashar, Priyanka Raina, Yakun Sophia Shao, Yu-Hsin Chen,
Victor A Ying, Anurag Mukkara, Rangharajan Venkatesan, Brucek Khailany,
Stephen W Keckler, and Joel Emer. 2019. Timeloop: A systematic approach to
dnn accelerator evaluation. In 2019 IEEE international symposium on performance
analysis of systems and software (ISPASS). IEEE, 304–315.

[54] Maryam Parsa, Aayush Ankit, Amirkoushyar Ziabari, and Kaushik Roy. 2019.
Pabo: Pseudo agent-based multi-objective bayesian hyperparameter optimization
for efficient neural accelerator design. In 2019 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD). IEEE, 1–8.

[55] Andy D. Pimentel. 2017. Exploring Exploration: A Tutorial Introduction to
Embedded Systems Design Space Exploration. IEEE Design & Test 34, 1 (2017).

[56] David L Poole and Alan K Mackworth. 2010. Artificial Intelligence: foundations of
computational agents. Cambridge University Press.

[57] Nirmal Prajapati, Sanjay Rajopadhye, Hristo Djidjev, Nandakishore Santhi, Tobias
Grosser, and Rumen Andonov. 2019. Optimization Approach to Accelerator
Codesign. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 39, 6 (2019), 1300–1313.

[58] Brandon Reagen, José Miguel Hernández-Lobato, Robert Adolf, Michael Gelbart,
Paul Whatmough, Gu-Yeon Wei, and David Brooks. 2017. A case for efficient
accelerator design space exploration via bayesian optimization. In 2017 IEEE/ACM
International Symposium on Low Power Electronics and Design (ISLPED). IEEE.

[59] Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson, Guenther
Schmuelling, Carole-Jean Wu, Brian Anderson, Maximilien Breughe, Mark
Charlebois, William Chou, et al. 2020. Mlperf inference benchmark. In 2020
ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA).
IEEE, 446–459.

[60] Enrico Russo, Maurizio Palesi, Davide Patti, Salvatore Monteleone, Giuseppe
Ascia, and Vincenzo Catania. 2022. Multi-Objective End-to-End Design Space
Exploration of Parameterized DNN Accelerators. IEEE Internet of Things Journal
(2022).

[61] Ananda Samajdar, Yuhao Zhu, Paul Whatmough, Matthew Mattina, and Tushar
Krishna. 2018. Scale-sim: Systolic cnn accelerator simulator. arXiv preprint
arXiv:1811.02883 (2018).

[62] Roberto Santana. 2017. Gray-box optimization and factorized distribution algo-
rithms: where two worlds collide. arXiv preprint arXiv:1707.03093 (2017).

[63] Giulia Santoro, Mario R Casu, Valentino Peluso, Andrea Calimera, and Massimo
Alioto. 2018. Energy-performance design exploration of a low-power micropro-
grammed deep-learning accelerator. In 2018 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 1151–1154.

[64] Kiran Seshadri, Berkin Akin, James Laudon, Ravi Narayanaswami, and Amir
Yazdanbakhsh. 2022. An Evaluation of Edge TPU Accelerators for Convolutional
Neural Networks. In 2022 IEEE International Symposium on Workload Characteri-
zation (IISWC). IEEE, 79–91.

[65] Yakun Sophia Shao, Brandon Reagen, Gu-Yeon Wei, and David Brooks. 2014.
Aladdin: A pre-rtl, power-performance accelerator simulator enabling large
design space exploration of customized architectures. In 2014 ACM/IEEE 41st
International Symposium on Computer Architecture (ISCA). IEEE, 97–108.

[66] Amit Kumar Singh, Muhammad Shafique, Akash Kumar, and Jörg Henkel. 2013.
Mapping on multi/many-core systems: Survey of current and emerging trends.
In 2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC). 1–10.

[67] Atefeh Sohrabizadeh, Cody Hao Yu, Min Gao, and Jason Cong. 2022. AutoDSE:
Enabling Software Programmers to Design Efficient FPGA Accelerators. ACM
Transactions on Design Automation of Electronic Systems (TODAES) 27, 4 (2022).

[68] Naveen Suda, Vikas Chandra, Ganesh Dasika, Abinash Mohanty, Yufei Ma, Sarma
Vrudhula, Jae-sun Seo, and Yu Cao. 2016. Throughput-Optimized OpenCL-Based
FPGAAccelerator for Large-Scale Convolutional Neural Networks. In Proceedings
of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays. Association for Computing Machinery, 16–25.

[69] Mingxing Tan and Quoc Le. 2019. Efficientnet: Rethinking model scaling for
convolutional neural networks. In International conference on machine learning.
PMLR, 6105–6114.

[70] Catia Trubiani, Antinisca Di Marco, Vittorio Cortellessa, Nariman Mani, and
Dorina Petriu. 2014. Exploring synergies between bottleneck analysis and perfor-
mance antipatterns. In Proceedings of the 5th ACM/SPEC International Conference
on Performance engineering. 75–86.

[71] Miheer Vaidya, Aravind Sukumaran-Rajam, Atanas Rountev, and P Sadayappan.
[n. d.]. Comprehensive accelerator-dataflow co-design optimization for convo-
lutional neural networks. In 2022 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO). 325–335.

[72] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal,
Zachary DeVito, William S Moses, Sven Verdoolaege, Andrew Adams, and Albert
Cohen. 2018. Tensor comprehensions: Framework-agnostic high-performance
machine learning abstractions. arXiv preprint arXiv:1802.04730 (2018).

[73] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information processing systems. 5998–6008.

[74] Stylianos I Venieris and Christos-Savvas Bouganis. 2016. fpgaConvNet: A frame-
work for mapping convolutional neural networks on FPGAs. In 2016 IEEE 24th
Annual International Symposium on Field-Programmable Custom Computing Ma-
chines (FCCM). IEEE, 40–47.

[75] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler
Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser,
Jonathan Bright, Stéfan van der Walt, Matthew Brett, Joshua Wilson, K. Jar-
rod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern,
Eric Larson, C. J. Carey, Ilhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,
Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul
van Mulbregt, and SciPy. 2020. SciPy 1.0: fundamental algorithms for scientific
computing in Python. Nature methods 17, 3 (2020), 261–272.

[76] Jie Wang and Jason Cong. 2021. Search for Optimal Systolic Arrays: A Compre-
hensive Automated Exploration Framework and Lessons Learned. arXiv preprint
arXiv:2111.14252 (2021).

[77] Jian Weng, Sihao Liu, Vidushi Dadu, Zhengrong Wang, Preyas Shah, and Tony
Nowatzki. 2020. Dsagen: Synthesizing programmable spatial accelerators. In
2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture
(ISCA). IEEE, 268–281.

[78] ThomasWolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, et al. 2020. Transformers: State-of-the-Art Natural Language
Processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations. Association for Computational
Linguistics, 38–45.

[79] Nan Wu, Yuan Xie, and Cong Hao. 2021. Ironman: Gnn-assisted design space
exploration in high-level synthesis via reinforcement learning. In Proceedings of
the 2021 on Great Lakes Symposium on VLSI. 39–44.

[80] Yannan Nellie Wu, Joel S. Emer, and Vivienne Sze. 2019. Accelergy: An
Architecture-Level Energy Estimation Methodology for Accelerator Designs.
In 2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD).

[81] Qingcheng Xiao, Size Zheng, Bingzhe Wu, Pengcheng Xu, Xuehai Qian, and
Yun Liang. 2021. Hasco: Towards agile hardware and software co-design for
tensor computation. In 2021 ACM/IEEE 48th Annual International Symposium on
Computer Architecture (ISCA). IEEE, 1055–1068.

[82] Lei Yang, Zheyu Yan, Meng Li, Hyoukjun Kwon, Liangzhen Lai, Tushar Krishna,
Vikas Chandra, Weiwen Jiang, and Yiyu Shi. 2020. Co-Exploration of Neural
Architectures and Heterogeneous ASIC Accelerator Designs Targeting Multiple
Tasks. In 2020 57th ACM/IEEE Design Automation Conference (DAC). 1–6.

[83] Xuan Yang,MingyuGao, Qiaoyi Liu, Jeff Setter, Jing Pu, Ankita Nayak, Steven Bell,
Kaidi Cao, Heonjae Ha, Priyanka Raina, Christos Kozyrakis, and Mark Horowitz.
2020. Interstellar: Using halide’s scheduling language to analyze dnn accelerators.
In Proceedings of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems. 369–383.

[84] Yang Yang, Marc Geilen, Twan Basten, Sander Stuijk, and Henk Corporaal. [n. d.].
Automated bottleneck-driven design-space exploration of media processing sys-
tems. In 2010 Design, Automation & Test in Europe Conference & Exhibition (DATE
2010). 1041–1046.

[85] Ye Yu, Yingmin Li, Shuai Che, Niraj K Jha, and Weifeng Zhang. 2020. Software-
defined design space exploration for an efficient dnn accelerator architecture.
IEEE Trans. Comput. 70, 1 (2020), 45–56.

[86] Dan Zhang, Safeen Huda, Ebrahim Songhori, Kartik Prabhu, Quoc Le, Anna
Goldie, and Azalia Mirhoseini. 2022. A full-stack search technique for domain
optimized deep learning accelerators. In Proceedings of the 27th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems. 27–42.

[87] Xiaofan Zhang, Yuan Ma, Jinjun Xiong, Wen-Mei W. Hwu, Volodymyr Kin-
dratenko, and Deming Chen. 2022. Exploring HW/SW Co-Design for Video
Analysis on CPU-FPGA Heterogeneous Systems. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 41, 6 (2022), 1606–1619.

[88] Shixuan Zheng, Xianjue Zhang, Leibo Liu, Shaojun Wei, and Shouyi Yin. [n. d.].
Atomic Dataflow based Graph-Level Workload Orchestration for Scalable DNN
Accelerators. In 2022 IEEE International Symposium on High-Performance Com-
puter Architecture (HPCA). 475–489.

[89] Yanqi Zhou, Xuanyi Dong, Tianjian Meng, Mingxing Tan, Berkin Akin, Daiyi
Peng, Amir Yazdanbakhsh, Da Huang, Ravi Narayanaswami, and James Laudon.
2022. Towards the Co-design of Neural Networks and Accelerators. Proceedings
of Machine Learning and Systems 4 (2022), 141–152.

https://github.com/fmfn/BayesianOptimization
https://github.com/fmfn/BayesianOptimization

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Shail Dave, Tony Nowatzki, and Aviral Shrivastava

A ACCELERATOR HARDWARE/SOFTWARE
CODESIGN EXPLORATION

A.1 DSE Problem Formulation and Terminology
Exploration of accelerator designs is a constrained minimization
problem, where the most efficient solution5 corresponds to mini-
mized objective (e.g., latency), subjected to inequality constraints
on some costs (e.g., area, power) and parameters 𝑝 of accelerator
design [55]. Fig. 13 illustrates the DSE problem formulation. During
the optimization, every solution gets evaluated by cost models for
objectives and inequality constraints. The DSE technique needs
to consider only feasible solutions and determine the most effi-
cient solution by processing several iterations (trials). It is a discrete
optimization since the search space is usually confined to presum-
ably effective solutions, e.g., power-of-two or categorical values of
parameters. It is also derivative-free optimization [51].
𝑚𝑖𝑛 𝑜𝑏 𝑗 (𝑝), 𝑝 = (𝑝1, 𝑝2, ..., 𝑝𝑛) ∈ R𝑛

𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 𝑡𝑜 𝑐𝑜𝑠𝑡𝑖 (𝑝) ≤ 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑖 ; 𝑓 𝑜𝑟 𝑖 = 1, 2, ...,𝑚

Initial Solution

Utilized
Constraints

Subspace
Optimizers

Cost
Models

CostsSystem
Candidate
Solution

Search Algorithm

Design Space

Max. Iterations

Acquire Update

(latency, area, power,
throughput, energy)

Design Space Exploration

Objectives

Best
Solution

Optimized
Objectives

TDP
= 2W

area
= 10mm2

Throughput
= 67FPS

latency=15ms

Inequality
Constraints

Workloads Info.

"parameters": [
{ "name": “L1_buffer_size",

“values": "[2**i for i
in range(4, 16)]“}]

Figure 13: Accelerator DSE as constrained minimization.

A.2 DNN Accelerator Hardware/Software
Codesigns DSE

Hardware/software codesigns can be explored by partitioning the
search space and optimizing software space as a subspace in a loop.
So, the DSE technique needs to find the best mapping of a task onto
architecture and repeat the search with different architectural con-
figurations [27]. Partitioning enables exploration in reduced space
compared to exploring parameters from multiple spaces altogether.
DSE techniques for DNN accelerators explore hardware designs
through non-feedback or black-box optimizations like evolution-
ary or ML-based [10, 34, 36, 54, 58, 68, 76, 81, 82, 85, 86, 89]. Such
approaches are also commonly used for designing or optimizing
computing systems in general [12, 19, 21, 23, 25, 42, 51, 66, 72]. For
mapping DNNs on a design (subspace optimization), they typically
fix the way of execution or dataflow, e.g., in [10, 36, 40, 58, 63, 82, 84].
Hence, for processing each functionality (nested loop such as a
DNN layer), these techniques usually have just one mapping. Thus,
they primarily optimize designs of accelerator architecture, i.e.,
parameters for buffers, processing elements (PEs), and NoCs.

5In the accelerator design space exploration context, we use terms "solutions",
"designs", and "configurations" interchangeably.

B CAPABILITIES AND DISTINGUISHED
FEATURES

In this section, we highlight the capabilities of the proposed DSE
using bottleneck models for agile and explainable explorations.
• Efficient designs. Explainable-DSE finds better solutions since
it investigates costs and bottlenecks that incur higher costs; by
exploring candidates that can mitigate inefficiencies in obtained
designs, DSE provides efficient designs.
• Quick/runtime DSE. The DSE can reduce objective values
at almost every acquisition attempt; it searches mostly in feasi-
ble/effectual solution spaces. Thus, DSE achieves efficient solutions
quickly, which is beneficial for early design phase and for dynamic
DSEs, e.g., deploying accelerator overlays at run time. Addition-
ally, it can help when acquisition budgets are limited, e.g., due to
evaluation of a solution consuming minutes to hours [86]. Fur-
ther, when designers optimize designs offline with hybrid optimiza-
tion methodologies [36] comprising multiple optimizations, quickly
found efficient solutions can serve as high-quality initial points.
• Explainability in the DSE and design process. This work
shows the need for explainability in the design process, e.g., in
exploring the vast design space of deep learning accelerators and
how DSE driven by bottleneck models can achieve explainability.
Unlike cost models that provide a single value, bottleneck models
can provide rich information in an explicitly analyzable format.
Consequently, explorations based on bottleneck analysis can help
explain why designs perform well/poorly and which regions are
well-explored/unexplored in the vast space and why.
• Generalized bottleneck-driven DSE for multiple micro-
benchmarks and workloads. In acquiring new candidates, DSE
accounts for various bottlenecks in executing multiple loop nests
(e.g., DNN layers) of diverse characteristics. Thus, the DSE can
provide a single solution that is most effective overall, in contrast
to previous DSEs that provide loop-kernel-specific solutions.
• Specification for expressing domain-specific bottleneck
models to the DSE. This work proposes an API for expressing
domain-specific bottleneck models so that the designers and/or
design automation tools can integrate them to bottleneck-driven
DSE frameworks and reuse the DSE.
•Comprehensive design space specification. In the DSE, appro-
priate values of a parameter is selected through bottleneck models.
Thus, the DSE can alleviate the need for fine-tuning the design
space; users can comprehensively define/explore vast space, e.g.,
more parameters and large ranges of values (arbitrary instead of
power-of-two).
•Bottleneck analysis for hardware/software codesign of deep
learning accelerators. By taking the latency of accelerators as an
example, this work shows how to construct bottleneck models (for
designing deep learning accelerators) and bottleneck analysis for im-
proving the accelerator designs based on their execution character-
istics. It shows how bottleneckmodels, as compared to conventional
cost models, can be inherently analyzable and information-rich,
allowing to make informed decisions for the design optimizations.

C OPPORTUNITIES AND FUTUREWORK
• Improving efficiency further through better acquisitions:
By using bottleneck models and considering available budgets of

Explainable-DSE: Agile and Explainable Exploration of Efficient HW/SW Codesigns of Deep Learning Accelerators ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Table 3: At every acquisition attempt, Explainable-DSE reduces objective by 30% vs. ∼1.4% by non-explainable techniques.
N/A is indicated when a technique could not find a single feasible hardware solution.

DSE Technique ResNet18 MobileNetv2 EfficientNet VGG16 ResNet50 Vision
Transformer

FasterRCNN-
MobileNetv3 YOLOv5 Transformer BERT Wav2Vec2 Average

Grid Search-FixDF 1.71% 1.03% 1.07% 1.21% 1.25% 1.41% 0.71% 0.55% 0.98% 1.04% 1.07% 1.09%
Random Search-FixDF 0.52% -0.87% 7.34% -2.26% 4.69% -4.29% -1.41% -0.90% 0.01% 0.97% -1.45% 0.21%

Simulated Annealing-FixDF N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Genetic Algorithm-FixDF N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Bayesian Optimization-FixDF 11.26% 26.57% 19.57% 19.22% -1.09% -4.89% -10.01% -12.28% 10.15% -0.27% 11.33% 6.32%
HyperMapper 2.0-FixDF 5.32% 1.21% 0.44% 2.67% 4.94% 4.86% -0.20% 0.87% 1.40% 3.35% 1.18% 2.37%

Reinforcement Learning-FixDF -0.75% -4.13% 5.18% -2.51% -2.97% -10.47% 0.67% 1.66% 4.62% 0.50% -0.50% -0.79%
Random Search-Codesign -0.07% -0.29% 0.14% 0.44% 0.33% 0.57% 0.23% 0.91% 0.48% -0.24% 0.02% 0.23%
HyperMapper 2.0-Codesign 0.56% 0.46% 0.59% 0.64% 0.68% 0.68% 0.72% 0.76% 0.43% 0.52% 0.73% 0.62%

ExplainableDSE-FixDF 53.54% 21.92% 20.48% 52.42% 15.32% 31.74% 23.73% 21.54% 30.96% 40.66% 21.44% 30.34%
ExplainableDSE-Codesign 30.50% 23.45% 32.10% 32.03% 18.77% 46.29% 27.03% 18.78% 26.19% 47.30% 46.70% 31.74%

constraints, the DSE can find outperforming solutions. However, it
may still converge to a suboptimal solution (e.g., for VGG-16) due
to the greed for resolving the bottlenecks for further optimizations.
This challenge can be addressed by making the acquisitions more
exploratory, e.g., exploring distant promising subspaces. It can be
achieved by exploring multiple spaces side-by-side by targeting
a pool of various initial points [51]. Alternatively, the acquisition
function can incorporate both self-supervised learning or inducing
randomness [31] and bottleneck/constraint considerations.
• Exploring and addressing implications of specifying inef-
fectual bottleneck analysis for an arbitrary system: In Ex-
plainable DSE, the bottleneck model helps explain design cost and
guide the DSE. It considers which factors constitute overall cost and
how design parameters and their scaling could impact each factor.
For various domain-specific systems, designers usually character-
ize them manually and develop domain-specific bottleneck mod-
els/analyses or have first-hand information [24, 26, 28, 67, 70, 84].
Even for designing deep learning accelerators, designers already
develop cost models or closely work with them [15, 44, 53, 54, 58,
68, 74, 76, 81, 85, 86]. Thus, they can determine bottleneck model
and mitigation in various ways. For instance, designers can obtain a
bottleneck model by simplifying their analytical cost model, which
they can provide along with the cost model. Alternately, designers
could estimate bottleneck mitigation through characterization or
sensitivity analysis of design parameters. Designers can also opt
for automation techniques, as discussed later.

A domain-specific bottleneck model constructed by domain ex-
perts or possibly learned from domain-specific data can lead to an
effective DSE. However, in the absence of an effectual analysis for
an arbitrary system, the resulting exploration may be slower or
suboptimal. For instance, the DSE may require more acquisitions
and be slower if the designer-provided mitigation scales the param-
eter values conservatively or associates irrelevant parameters with
bottleneck factors (e.g., the total number of PEs to the DMA time).
Conversely, the DSE may converge to suboptimal solutions if the
designer either skips associating a critical parameter with a bot-
tleneck factor or scales values aggressively. The examples include
a) a user not suggesting explorations of NOC links or bit-widths
when on-chip communication time is the bottleneck and b) the
DSE scaling the number of PEs by 2× or more, even if the required
scaling was only 1.2×. Either can cause the DSE to miss a range of
efficient and constraints-satisfying solutions.

• Automating construction of bottleneck models and bottle-
neck mitigation for arbitrary or large-scale domain-specific
systems: For expert-defined cost models, such as those of DNN
accelerators, manual bottleneck analysis by designers with first-
hand domain information can be possible. In general, when domain-
specific architectures can be described and evaluated as flow graphs,
the analysis of costs/bottlenecks may be automated by parsing exe-
cution information for architectural components [16, 17, 77].

There can be scenarios where designersmaywant to optimize the
application processing for off-the-shelf processors or can only ac-
cess pre-existing design models and simulators that are large-scale
or complicated. In such cases, designers may not be able to provide
the domain-information for constructing bottleneck models and
available designs or large-scale simulationmodels (e.g., in C++/RTL)
need to be used for deriving bottleneck models. Hence, learning-
based approaches can be developed [43], which could be broadly ap-
plicable, while still leveraging the proposed structure/organization
of the bottleneck models and their usage in gray-box/white-box de-
sign space exploration. Graph-based ML models or self-supervised
ML models can be more suitable, including but not limited to de-
cision trees, graph neural networks, and reinforcement learning.
Likewise, bottleneck mitigation in complicated scenarios can be
estimated using gray-box optimization functions that approximate
the relevance and contributions of each parameter to the total cost
[62] or through surrogates [31].

Our dynamic DSE evaluation demonstrates the potential of in-
corporating explainability into the DSE. Efficiency, agility, and
generalization of the DSE can be improved even further through
improving the predictions for bottleneck mitigation, the decision
mechanism that uses the feedback, aggregation and acquisition
functions, and parallel evaluation/exploration of candidates and
promising subspaces.

D SPECIFICATION NEEDED BY DSE
APPROACHES

Black-box optimizations such as random search, simulated anneal-
ing, or Bayesian optimization are easy to deploy and require min-
imal tuning and specification for meaningfully curating and con-
straining the design space, which may take some hours or days.
However, due to their non-explainable nature, they may mostly
explore inefficient or infeasible solutions while consuming signifi-
cant search time for excessive sampling. Applying these black-box

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Shail Dave, Tony Nowatzki, and Aviral Shrivastava

exploration approaches to a domain-specific design optimization
problemmay still need some additional specification efforts [36, 37],
depending on their implementation. For instance, Confuciux [36]
is a reinforcement learning-based DSE framework that uses an
LSTM/MLP-based policy network. For the targeted evaluations,
we extended it to allow an arbitrary number of parameters, a dif-
ferent environment (target setup), different numbers of possible
options for different parameters (different list sizes), and an arbi-
trary number of constraints.We also extended its reward calculation
to consider an arbitrary number of constraints and their utilization.
This extension required adding/modifying a few tens of lines of
code (LoC) and a few days of work.

For bottleneck-guided DSE, we developed a bottleneck model for
the target domain of DNN accelerator’s hardware/mapping code-
sign. This is similar to efforts made previously in other domains
[24, 26, 28, 67, 84]. The bottleneck model was expressed to the DSE
framework via proposed API. It led to about tens of LoC that spec-
ified how different factors contribute to overall cost and a few to
several lines for integrating first-hand information about bottle-
neck mitigation that provided predictions for new values of each
parameter. It is worth noting that this is significantly less code and
development efforts compared to domain-specific analytical cost
models [15, 44], which typically require thousands of lines of code
and provide only a single value for the total cost. The bottleneck
model used in the DSE is generally simpler than the full analytical
model, as it only considers major execution-related factors. And to
infer new parameter values for bottleneck mitigation, it incorpo-
rates simple estimates or performs a walk-through of the populated
values/paths in the bottleneck graph. In general, domain experts
can derive the bottleneck model from either the graphical represen-
tation of the analytical model they develop/use or the sensitivity
of a cost to the design parameters, which may take several days.
§C discusses how bottleneck mitigation may be generalized for
arbitrary systems.

E CASE STUDY: EFFICIENCY OF THE DESIGNS
ACHIEVED BY DSE

Methodology: In this study, we compare the efficiency of designs
obtained by our DSE (§6; Fig. 9) to those of edge AI accelerators.
The DSE can only explore designs for the spatial architecture tem-
plates used by the cost models (e.g., in [15, 44, 53, 80]). Therefore,
to make a fair comparison, we only considered edge accelerators
with similar architectural features. Specifically, we compare with
two edge accelerators: 1) Coral Edge TPU [47], a state-of-the-art
industrial edge accelerator platform developed by Google, and 2)
Eyeriss [7], an efficient edge accelerator that incorporates several
special optimizations for high energy efficiency and low latency.

While novel edge accelerators have been developed recently, they
typically contain several (micro)architectural features for special-
ization (e.g., mixed-precision computations or sparsity exploiting
features [13]) that are not modeled (accurately) by the commonly
used/available latency models for edge AI accelerators. The archi-
tectures considered here are suitable for the comparison, as they are
commonly used as a template in the system-level tools for design
and execution modeling [15, 31, 36, 44, 53, 83]. Table 4 compares
the architectural features and execution optimizations for the Edge

Table 4: Comparison of architectural features and execution
optimization for edge AI acceleration.

Feature Edge TPU Eyeriss DSE
Data Precision 8b* 16b 16b
Technology - 65nm 45nm

PEs Scalar MAC Scalar MAC Scalar MAC
Temporal Reuse Yes Yes Yes

Spatial Reuse Data Distribution
and Reduction

Data Distribution
and Reduction

Data
Distribution

Mapping
Optimizations

Automatic
(TFLite) Fixed-Style Automatic

Hardware-Mapping
Co-optimization No Yes Yes

Accelerator-DNN
Codesign Yes† No No

Frequency (MHz) 125-500 100-250 500
∗ Edge TPU results are scaled to match 16b precision used in comparison.
† For Edge TPU, the EfficientNet-EdgeTPU model is codesigned.
¶ In lack of information about the actual power consumed by edge TPU for different
models, 1.4W power is considered (as reported for MobileNetV2 in the edge TPU
datasheet).

1

10

100

1000

EfficientNet MobileNetV2 VGG-16

Edge TPU DSE

0.1

1

10

100

AlexNet VGG-16

Eyeriss DSE

0.01

0.1

1

10

100

EfficientNet MobileNetV2 VGG-16

Edge TPU DSE

0.01

0.1

1

10

100

AlexNet VGG-16

Eyeriss DSE

1

10

100

1000

EfficientNet MobileNetV2 VGG-16

Edge TPU DSE

1

10

100

1000

AlexNet VGG-16

Eyeriss DSE

FPS

FPS
mm2

FPS
J

(a) Throughput

(b) Area Efficiency

(c) Energy Efficiency

Figure 14: Comparison of efficiency of the designs obtained
by the DSE with that of the edge accelerators Google Coral
Edge TPU [47] and Eyeriss [8]: (a) Throughput (frames per
second i.e., FPS) [3.7×, 8.7×], (b) Area efficiency (FPS/mm2)
[49×, 57×], and (c) Energy efficiency (FPS/Joule) [1.5×, 0.6×].

TPU, Eyeriss, and the template architecture used by the DSE cost
models.We obtained the results for Edge TPU from the performance
benchmarking of TPU-optimized models [11], and the results for
Eyeriss chip from its evaluations [7].

Results: Fig. 14 shows performance achieved by all three de-
signs and the resultant energy efficiency and area efficiency. The
results demonstrate that, on average, codesigns obtained by the
DSE attain 3.7× higher throughput than the Edge TPU. It is due
to the DSE’s ability to analyze execution bottlenecks and optimize

Explainable-DSE: Agile and Explainable Exploration of Efficient HW/SW Codesigns of Deep Learning Accelerators ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Table 5: Execution cost models for deep learning accelerators.

Features Timeloop
[53]

dMazeRunner
[15]

MAESTRO
[44]

Interstellar
[83]

SCALE-Sim
[61]

Accelergy
[80]

Performance Estimate Yes Yes Yes No Yes No
Energy Estimate Yes Yes Yes Yes No Yes
Integrated Support
for ML Libraries No Yes Yes No No N/A

Layers
Supported

GEMM,
CONV

GEMM, CONV,
DWCONV

GEMM, CONV,
DWCONV

GEMM,
CONV

GEMM,
CONV N/A

Data Precision Variable Variable Variable Variable Fixed Variable
Mapping

Specification
Loop Nest

Configuration
Loop Nest

Configuration Directives Loop Nest
Configuration N/A N/A

Dataflow All All All All WS, OS, IS N/A
Spatial and Temporal

Data Reuse Yes Yes Yes Yes Yes N/A

Data Reuse with
Striding Convolution Yes No Yes N/A N/A N/A

Considers On-Chip
Communication Latency Yes Yes Yes No N/A N/A

Memory Hierarchy Arbitrary 3-level 3-level 3/4-level Fixed Arbitrary
Models overhead of

non-contiguous accesses No Yes No No No No

Table 6: Mappers for deep learning accelerators.

Features Timeloop
[53]

Gamma
[37]

Mind
Mappings [31]

CoSA
[35]

Interstellar
[83]

ZigZag
[49]

dMazeRunner
[15]

Comprehensive
Mapping Space Yes No Yes No Yes Yes Yes

Discard Invalid
Mappings for
Mapping-Space
Construction

Yes No No Yes Yes Yes Yes

Prune Inefficient
Tilings No No No No No Yes Yes

Prune Inefficient
Orderings No No No No Fixed Yes Yes

Layers
Supported

CONV,
GEMM

CONV,
GEMM,

DWCONV
CONV,
MTTKRP

CONV,
GEMM

CONV,
GEMM

CONV,
GEMM

CONV,
GEMM,

DWCONV

Exploration
Approach Random Genetic

Algorithm
Gradient
Descent

Mixed
Integer

Programming
Heuristic Heuristic Heuristic

Uneven Tiling
for Tensors No No No No No Yes No

Search Time Minutes Minutes Minutes Seconds Minutes Hours Seconds
Off-line
Training No No Yes No No No No

both mappings and hardware configurations, such as NoC configu-
rations/bandwidth and buffer sizes. The DSE-achieved designs also
requiredmore than an order of magnitude less on-chip area, presum-
ably due to allocating significantly smaller buffers and fewer MAC
units (e.g., considering Edge TPU configurations studied in [64]).
The overall area efficiency is higher by about 14× for MobileNetV2
and 49× on average due to a high-throughput execution for VGG-
16. Although the DSE was focused on minimizing latency, energy
efficiency of its designs matches that of the EfficientNet-Edge TPU
codesign, and is even higher by 2.9× for VGG-16.

When compared to Eyeriss, the DSE achieves designs of lower
latency (with similar area/power budgets), and improves area effi-
ciency by up to 11.84× and energy efficiency of VGG-16 by up to
1.33×—while not incorporating additional efficiency-gaining fea-
tures as in Eyeriss. For instance, Eyeriss leverages frequency scaling,
power gating, zero skipping, and compression (for up to 86% spar-
sity in AlexNet layers). Thus, Eyeriss achieves about 2×–3.75×
higher energy efficiency when compared to the designs obtained by
DSE that minimized latency. In most cases, the codesigns obtained

by DSE in a tightly coupled manner outperform the Eyeriss-like de-
signs. These comparisons demonstrate the potential of the proposed
capabilities for the accelerator system design. With the continued
development of automated execution modeling and inclusion of
more template architectures and specialization components, pro-
posed methodology can be expected to enhance efficiency further.

F CONSTRUCTING EFFECTUAL MAPPING
SPACE AND BLACK-BOX MAPPERS

Background: The process of optimizing mappings of a DNN layer
on an accelerator design involves exploring an enormous search
space, as demonstrated by previous works [18, 37] and later sum-
marized in Table 7. This search space is primarily composed of
configurations for loop tile sizings and loop orderings. Loop tilings
determine the data bursts that need to be accessed via memory
hierarchy and spatial parallelism, whereas loop orderings deter-
mine the data reuse and impact the total memory accesses. For

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Shail Dave, Tony Nowatzki, and Aviral Shrivastava

Table 7: Analyzing size of the mapping space for deep learning accelerators.

Model Layer Tile
Sizings

Tile
Sizings

with Valid
Factors

Valid
Tilings
w.r.t.

Hardware

Orderings
at a

Memory
Level

Orderings
with

Unique/Max
Data Reuse

Full
Map.
Space

Factorization-
Constrained
Mapping
Space

Factorization-
Constrained
Reuse-Aware
Map. Space

A B C D E F: A*D2 G: B*D2 H: B*E2
ResNet18 CONV_2_1a 𝑂 (1025) 𝑂 (1013) 𝑂 (107) 𝑂 (104) 15/3 𝑂 (1032) 𝑂 (1020) 𝑂 (1014)

MobileNetV2 features.2.conv.0 𝑂 (1022) 𝑂 (1012) 𝑂 (106) 𝑂 (104) 15/3 𝑂 (1030) 𝑂 (1019) 𝑂 (1013)
EfficientNetB0 blks.2.expand 𝑂 (1022) 𝑂 (1012) 𝑂 (106) 𝑂 (104) 15/3 𝑂 (1029) 𝑂 (1020) 𝑂 (1013)

VGG-16 CONV_1_2 𝑂 (1028) 𝑂 (1014) 𝑂 (107) 𝑂 (104) 15/3 𝑂 (1036) 𝑂 (1021) 𝑂 (1015)
ResNet50 CONV_2_1b 𝑂 (1025) 𝑂 (1013) 𝑂 (107) 𝑂 (104) 15/3 𝑂 (1032) 𝑂 (1020) 𝑂 (1014)
Vision

Transformer
patchembeddings.

CONV2D 𝑂 (1025) 𝑂 (1013) 𝑂 (106) 𝑂 (104) 15/3 𝑂 (1032) 𝑂 (1020) 𝑂 (1014)
FasterRCNN-
MobileNetV3

features.12.
conv2.excite 𝑂 (1026) 𝑂 (1013) 𝑂 (106) 𝑂 (104) 15/3 𝑂 (1033) 𝑂 (1020) 𝑂 (1014)

YOLOv5 features.1.conv 𝑂 (1027) 𝑂 (1014) 𝑂 (107) 𝑂 (104) 15/3 𝑂 (1034) 𝑂 (1021) 𝑂 (1015)

Transformer decoder.
output_projection 𝑂 (1027) 𝑂 (109) 𝑂 (104) 𝑂 (101) 3/3 𝑂 (1028) 𝑂 (1010) 𝑂 (1010)

BERT encoder.layer.0.
output.dense 𝑂 (1026) 𝑂 (109) 𝑂 (105) 𝑂 (101) 3/3 𝑂 (1027) 𝑂 (1011) 𝑂 (1010)

Wav2Vec2 encoder.layers.0.
intermediate.dense 𝑂 (1028) 𝑂 (1012) 𝑂 (106) 𝑂 (101) 3/3 𝑂 (1029) 𝑂 (1013) 𝑂 (1012)

mapping DNN operators such as convolutions and multi-layer per-
ceptrons on an accelerator with a 3-level buffer/memory hierarchy
and 1-level spatial parallelism [8], themapping space corresponds to
28-deep and 12-deep nested loops, respectively [15]. Tile sizings are
configurations that represent the values for loop iterations at each
temporal/spatial level in the architectural processing hierarchy. For
a selected tiling configuration, processing of a 7-deep nested loop
at a buffer level corresponds to 7! different loop orderings. Table 7
lists the DNNs and their layers with the largest search space, which
can contain up to 𝑂 (1036) configurations.

Pruning invalid loop tilings: To optimize the tile sizes of a
DNN layer using a black-box optimizer, designers often set the
index variables of tiled loops as design parameters and specify
lower/upper bounds (loop iterations) to define the range of values
that the optimizer can explore [31, 37]. However, the search space
for tile sizes can be enormous, containing as many as 𝑂 (1028) con-
figurations for certain DNN layers, as shown in Table 7. A black-box
optimizer is unlikely to find more than a few valid mappings un-
der practical exploration budgets for exploring such a large search
space [35]. This is because, for each loop in a DNN operator, only a
small subset of factors of loop iterations lead to valid tile sizes. For
example, a set (8, 4, 2, 16) makes a valid 4-level tiling configuration
for 1024 loop iterations over output activations/filters, while many
more do not. Therefore, designers formulate the space of valid tiling
sizes based on factorization of loop iterations [35, 53]. As shown in
Table 7, this prunes the search space of tiling configurations by a
square root or even a cube root, e.g., from𝑂 (1022)–𝑂 (1028) configu-
rations to a much smaller range of 𝑂 (109)–𝑂 (1014) configurations.
Invalid tiling configurations, which require more architectural re-
sources than are available in the target hardware configuration, are
usually discarded by black-box optimizers during the exploration
(as indicated in column 𝐶 of Table 7).

Pruning ineffectual loop orderings: We further reduced the
space by discarding ineffective loop orderings. Previous black-box
mappers explored all orderings, resulting in a large number of

configurations (7! or 𝑂 (104)) for processing a convolution at a
memory level in the memory hierarchy. Instead, our approach build
upon previous research that has shown only a handful of loop-
orderings having unique data reuse of tensors (15 for convolutions)
and a few with maximum reuse of various tensors [15, 49].

Overall mapping space: The GAMMA-like mapper considers
full (non-factorized) tiling space and all loop-orderings [37] (col-
umn 𝐹), while Timeloop [53] and CoSA [35] consider factorized
tile sizes but all loop orderings. For evaluations with black-box
mappers, we used factorized tile sizes (all valid factorization) and
considered only loop orderings with unique data reuse. In practice,
there are only a few unique data reuse scenarios (vs. 15/3) for each
tiling configuration, so all of them can be explored linearly [15].
Therefore, we invoked black-box optimizations with 10,000 trials
for mapping each layer on a hardware configuration. During each
trial, the optimization acquired a tiling configuration and evalu-
ated all effectual loop-orderings through the cost model, selecting
the one that minimized the objective. Thus, the mapping space
formulation discarded a large number of invalid and ineffective
configurations (column 𝐻) without compromising the optimality.

Selection of the mapping optimization technique: Evalua-
tions comparing black-box DSEs of hardware configurations with
fixed mapping schema showed that random search and Bayesian
optimization-based HyperMapper 2.0 [51] were the most effective,
as depicted in Figure 9. As a result, we selected these two tech-
niques for optimizing both the hardware and mapping configura-
tions. However, when we applied them to optimize mappings from
the pruned space (column H in Table 7), we found that random
search obtained efficient mappings within several seconds. By con-
trast, HyperMapper 2.0 generated efficient mappings, but its search
overhead was prohibitively high, requiring a few hours to evaluate
just a single DNN layer. Consequently, we used random search for
optimizing mappings during the codesign DSE.

Explainable-DSE: Agile and Explainable Exploration of Efficient HW/SW Codesigns of Deep Learning Accelerators ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Latency

1

10

100

1000

10000

CONV1_1 CONV2_1a CONV3_1a CONV3_1b CONV4_1a CONV4_1b CONV5_1a CONV5_1b FC Total

Fixed Schema Random Search Simulated Annealing Genetic Algorithm HyperMapper 2.0

Figure 15: Efficiency of mappings obtained by different black-box optimizations for accelerating ResNet layers.

We also compared the quality of mappings obtained by random
search with those obtained by simulated annealing, genetic algo-
rithm, and Bayesian optimization for ResNet18 layers, as shown
in Fig. 15.6 The random search successfully achieved low-latency
mappings for all layers, whereas simulated annealing [75] failed to
map a few layers (in 10,000 trials), and genetic algorithm [3] led to
a higher overall latency than random search and took almost four
hours to optimize mappings for the nine layers, making it impracti-
cal for codesign search. Therefore, we opted to use a Timeloop-like
random search to quickly and efficiently explore the highly pruned
mapping space.

G CODESIGN OPTIMIZATION: MULTI-STAGE
OR JOINT?

The optimization of hardware and software codesigns can be done
either by exploring partitioned sub-spaces in a sequential manner
or simultaneously. In a partitioned or a two-stage optimization, an
outer loop iterates over different hardware configurations, and an
inner loop optimizes the software space for each hardware con-
figuration selected. On the other hand, the joint or simultaneous
exploration involves finding a new configuration for both the hard-
ware and software parameters at the same time in a trial. Although
approaches using simultaneous search have been proposed, they
are often infeasible to apply to a multi-workload exploration, tar-
get system with diverse and time-consuming cost evaluations, and
huge collective search space. Therefore, partitioned sub-space ex-
ploration is commonly used for optimizing codesigns (§A.2). For
demonstration of Explainable-DSE, all our DSE evaluations also
follow two-stage optimization.

Firstly, approaches using simultaneous search [39, 51] typically
optimize configurations for individual loop kernels such as a sin-
gle DNN layer, as they optimize both the hardware and software
parameters at every search attempt. It does not necessarily lead
to a single accelerator design that is most efficient for the entire
workload or a set of workloads, as layer-specific designs may not
be optimal overall for the entire DNN or multiple DNNs.

Furthermore, simultaneously optimizing both hardware and soft-
ware parameters can be very time-consuming. A target system often
involves different cost functions or modules for different metrics
that could consume different evaluation times. For example, evalu-
ating area and power of each hardware configuration via Accelergy
[80] alone could take a few seconds, whereas the cost models of
dMazeRunner [15] or Timeloop [53] could estimate latency/energy

6The mappings were evaluated for the initial hardware configuration, correspond-
ing to the lowest values of design parameters in Table 1.

for hundreds–thousands of mappings in a second. For exploring
codesigns for a DNN with 𝐿=50 unique layers, consider a black-box
DSE that is budgeted 𝐻=2,500 trials for hardware configurations
and𝑀 = 10,000 trials for mapping each DNN layer on each hardware
configuration. Simultaneous exploration of hardware and software
configurations in 𝐻 ×𝑀 trials for each of the 𝐿 layers requires the
system to evaluate power/area costs for 𝐻 × 𝑀 × 𝐿 times, which
would take more than 0.7 million hours, or 79 years! In contrast, a
two-stage partitioned exploration evaluates power/area costs only
for 𝐻 trials and if the DSE samples infeasible mappings for a hard-
ware configuration, they can be discarded promptly without further
detailed evaluation. Our experiments show that the black-box DSEs
obtained codesigns in a few days to a few weeks with exploring
the partitioned subspaces.

Finally, in addition to the design parameters such as the total PEs
or buffer sizes, hardware configurations can have various parame-
ters, such as bandwidth, reconfiguration of NoCs (time-multiplexed
communication of data packets, bus widths), and those for archi-
tectural specialization/heterogeneity, which further increase the
search space for both the hardware and software/mapping con-
figurations. With the vast space for both the hardware and soft-
ware/mapping configurations, the collective search space becomes
huge, compounding the already challenging exploration of feasible
and effective solutions for either of the hardware and software pa-
rameters. Additionally, in the DSE trials, simultaneously acquired
hardware and software configurations may not be compatible with
each other or may not mitigate execution inefficiencies correspond-
ing to their counterpart.

Received 20 October 2022; revised 2 March 2023; accepted 27 April 2023

	Abstract
	1 Introduction
	2 Limitations of Prior DSE Approaches
	3 DSE Using Bottleneck Analysis: Motivation and Challenges
	3.1 Making DSE Explainable Through Bottleneck Analysis
	3.2 Challenges in Enabling DSE of DNN Accelerators Using Bottleneck Analysis

	4 Explainable-DSE: Constraints-aware DSE Using Bottleneck Analysis
	4.1 Framework Workflow
	4.2 Framework Inputs and Outputs
	4.3 Bottleneck Analyzer
	4.4 Addressing Bottlenecks in Multi-Functional and Multi-Workload Executions
	4.5 Bottlenecks-Guided Acquisitions of New Candidates
	4.6 Constraints-Budget Awareness in Updating the New Solution
	4.7 Bottleneck Mitigation for Designing Deep Learning Accelerators
	4.8 Tightly Coupled Hardware/Software Codesign Explorations

	5 Experimental Methodology
	6 Results and Analysis
	6.1 Explainable-DSE Obtained Codesigns of 6 Low Latency in 47 Less Iterations
	6.2 Including Software Design Space in the Exploration Enables 4.24 Better Solutions
	6.3 By Considering Utilization of Constraints, DSE Mostly Acquires Feasible Solutions Without Exhausting Constraints Quickly
	6.4 Enabling Efficient Dynamic Exploration in the Vast Space

	7 Additional Related Works
	8 Conclusions
	References
	A Accelerator Hardware/Software Codesign Exploration
	A.1 DSE Problem Formulation and Terminology
	A.2 DNN Accelerator Hardware/Software Codesigns DSE

	B Capabilities and Distinguished Features
	C Opportunities and Future Work
	D Specification Needed by DSE Approaches
	E Case Study: Efficiency of the Designs Achieved by DSE
	F Constructing Effectual Mapping Space and Black-Box Mappers
	G Codesign Optimization: Multi-Stage or Joint?

