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ABSTRACT
Domain-specific architectures (DSAs) are increasingly de-
signed to efficiently process a variety of workloads, such
as deep learning, linear algebra, and graph analytics. Most
research efforts have focused on proposing new DSAs or
efficiently exploring hardware/software designs of previ-
ously proposed architecture templates. Recent architectural
modeling or simulation frameworks for DSAs can analyze
execution costs, e.g., for a limited architectural templates
for dense DNNs such as systolic arrays or a spatial archi-
tecture with an array of processing elements and 3-level
memory hierarchy. However, they are manually developed
by domain-experts, containing several 1000s of lines-of-code,
and extending them for characterizing new architectures is
infeasible, such as DSAs for sparse DNNs. Further, the lack of
automated architecture-level execution modeling limits the
design space of novel architectures that can be explored/opti-
mized, affecting overall efficiency of solutions, and it delays
time-to-market with low sustainability of design process.
To address this issue, this paper introduces DSAProf : a

framework for automated executionmodeling and bottleneck
characterization by amodular, dataflow-driven approach. The
framework uses a flow-graph-based methodology for model-
ing DSAs in a modular manner via a library of architectural
components and analyzing their executions. The methodol-
ogy can account for analytically modeling and simulating
intricacies in the presence of a variety of architectural fea-
tures such as asynchronous execution of workgroups, sparse
data processing, arbitrary buffer hierarchies, and multi-chip
or mixed-precision modules. Preliminary evaluations of mod-
eling previously proposed DSAs for dense/sparse deep learn-
ing demonstrate that our approach is extensible for novel
DSAs and it can accurately and automatically characterize
their latency and identify execution bottlenecks, without re-
quiring designers to manually build analysis/simulator from
scratch for every DSA.
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CCS CONCEPTS
• Hardware → Electronic design automation; Application
specific processors; Hardware accelerators; • Computer
systems organization → Special purpose systems; System
on a chip; Heterogeneous (hybrid) systems; Neural networks;
• General and reference→ Measurement; Performance;
Design; •Computingmethodologies→Modelingmethod-
ologies; • Software and its engineering→ Domain spe-
cific languages; Abstraction, modeling and modularity; • So-
cial and professional topics→ Sustainability.

1 INTRODUCTION
Domain-specific architectures (DSAs) are increasingly de-
signed for efficiency processing a wide range of workloads,
including deep learning and artificial intelligence, linear alge-
bra, and scientific computing, and they have been deployed
from datacenters to edge [5, 7, 10, 25]. Their designs face
strict execution requirements (e.g., performance, energy, or
area efficiency [40]) and require agile toolflows for designing,
evaluating, and optimizing the DSAs [13, 54]. Tools/tech-
niques for architecture-level execution modeling and char-
acterization of DSAs are paramount for the design phase,
as they provide quantitative evaluations of DSA-workload
configuration and insights for further improvements.

Current approaches for execution modeling of DSAs.
They require heavy development efforts from experts and tar-
get a specific architectural template. For instance, analytical
models for estimating latency of deep learning accelerators
such as [9, 28, 38, 42, 52] were developed by domain-experts
for a specific template architecture, e.g., either a systolic ar-
ray or a spatial architecture with 3/4-level memory hierarchy
for dense DNN operators like convolutions or matrix multi-
plications [30, 33, 54]. These analytical cost models contain
several 1000s of lines of code (LoC), and extending them
becomes very challenging, when an architecture needs to be
modified with a new component for specialization, e.g., eval-
uating a DSA for sparse DNNs. While AI-based approaches
for quantifying processor executions exist [2, 24, 32, 57], they
also face same limitations. This is because, these AI models
have been developed only for off-the-shelf processors and
require extensive data curation and off-line training, which
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again may rely on already developed in-house simulators for
target DSAs or actual processors that are available in only
post-design phase.
Adverse implications. Time-consuming development

efforts from domain-experts are required due to lacking au-
tomatic architecture-level execution modeling for DSAs. It
limits the design space of novel architectures that can bemod-
eled or explored, affecting an agile design development (pro-
longs time-to-market) and overall efficiency of solutions. Fur-
ther, it significantly lowers the sustainability of the DSA de-
sign process. Recent industrial studies like [19] have shown
that the carbon footprint for producing processors, especially
DSAs, can largely overshadow the benefits achieved through
operational efficiency (e.g., 80%). And, their calculations fo-
cused only on post-design phases like manufacturing. The
implications can exacerbate notably when accounting for
the design-time efforts and human/compute resources.

Need. We require generic methodologies for flexible and
extensible execution modeling, quantification, and charac-
terization for a wide range of DSAs, without having to build
a full analysis/simulators from scratch in entirety for new
DSA templates – which is the primary objective of this work.
Underlying research challenges. There are two main

challenges that prevent the automated latency/energy model-
ing and characterization of DSAs: 1) Unitary or non-modular
development, and 2) lack of automatic determination of exe-
cution activity. Firstly, it is challenging to extend or partly
reuse an existing unitary model for developing a new cost
model or simulator for a new DSA. This is because, for a
unitary model, designers require significant efforts to first
figure out exact modeling of each component that can be
reused. Plus, efforts/implications of introducing models of
new components on the total latency/energy are non-trivial
and might lead to erroneous modeling. Further, these unitary
models only provide a single value, such as total latency, and
for performance characterization, it makes infeasible to auto-
matically track it down to the underlying design/execution
factors that are likely causing inefficiencies.
Secondly, component-level and overall execution model-

ing requires execution activity of each component, such as
invocation counts and the meta-information about the re-
ceived input data. For a fixed template architecture, such
information is embedded manually based on the calculations
for specific workloads, e.g., in [9, 28, 45]. Otherwise, it needs
to be calculated manually based on mappings of the work-
loads onto DSA and intra-DSA dataflow, and supplied as
an auxiliary input to the execution model, e.g., in [50]. For
a more generalized execution modeling, such information
about execution activity needs to be supplied automatically.

Our approach. We propose DSAProf, a framework for
automated execution modeling and bottleneck characteri-
zation, which addresses above challenges through a mod-
ular, dataflow-driven approach. Modular modeling/charac-
terization approach requires a flexible abstraction for DSAs
that can model DSAs of various hierarchy, spatial resources,
pipelining, and heterogeneity of components. We visualize,
express, and evaluate DSAs as flow graphs, which can enable
modularity, while allowing to model a wide range of DSAs.
Through proposed python-based embedded DSL constructs
and features, DSAProf allows specifying the architecture
graph of DSAs in a flexible/readable manner, as compared to
prior approaches. Especially, they allow concealing low-level
components and automatic interfacing of DSA inputs/out-
puts with a synthetic controller.

The proposed execution model follows a dataflow-driven
approach for supplying execution activity. The latencymodel
of each component in the library processes input data or
control logic from the input ports for deriving the latency
corresponding to the activity, and populates synthetic data
on output ports for forwarding the execution activity to sink
nodes. The dataflow is triggered/updated by the external
inputs to the DSA, which are provided by configuring the
outputs from the synthetic controller. Such controller out-
puts (control logic or meta information about input data
for DSA) can be provided by designers or automation tools
through machine code related routines. The DSA compo-
nents receiving inputs from the controller are invoked by
such routines, which are invoked as part of the mappings
of workloads on a DSA. With the modular construction of
DSA and execution activity exchange among nodes via ports,
overall latency for a time interval can be calculated simply
by traversing the DSA’s architecture graph and aggregat-
ing the latency values of individual components. Each time
interval correspond to invoking one or more routines for
configuring one or more controller-interfacing components,
and it can be advanced as per mapping for the DSA. DSAProf
uses the latency of each component and constructs a simple
bottleneck graph. By traversing the latency values for the
DSA components and those in its bottleneck graph, DSAProf
can automatically pinpoints execution bottlenecks.

Results and broad impacts. Preliminary evaluations of
popular DSAs for dense/sparse deep learning [3, 55] show
that DSAProf can accurately determine the execution time
and energy consumption of DNN workloads within 1%-6%
of the reported results for these DSAs. The evaluations also
demonstrate that with the proposed modular approach, la-
tency modeling of DSAs for dense deep learning (e.g., Eyeriss
[3]) can be easily extended to model and characterize the
latency/energy of DSAs for sparse DNNs (e.g., Cambricon-X
[55], EIE [21], or SIGMA [39]), without enforcing experts to
develop a new latency model or a simulator from scratch.
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It introduces up to only a few 10s of LoC for extending the
library by introducing a few new components, while simply
reusing the libraries for available components, DSA specifi-
cation, and overall cost modeling methodology for modular
executions, whereas current approaches of developing ded-
icated, unitary simulators/models for a new DSA template
typically take 1000s of LoC [9, 28, 38] and weeks–months
of development efforts [41]. Further, we show a study of
automated characterization of Cambricon-X like accelera-
tor for BERT, which matches prior analysis [7] and reveals
how indexing modules and load imbalance due to irregular
weight sparsity incur 56% excess time, dropping the speedup
(over dense model computations) from 12.5× (ideal) to 8×.

2 DSAProf: MODULAR, DATAFLOW-
DRIVEN EXECUTION MODELING

2.1 Architecture Graph Abstraction
Flow graph based abstraction for arbitrary hierarchy:
Design abstraction impacts the architectures that can be
specified by designers or ML-based automation tools and
thereafter evaluated or optimized during the explorations.
Our abstraction for specifying and evaluating the domain-
specific architectures is a flow graph (FG). In our flow graph
representation for DSAs, the nodes are primary components
of computation, memory, control logic, or interconnect net-
works [37, 47], or even a sub-graph that represents high-level
architectural components like processing engines. The edges
simply represent the interconnections/bus of appropriate
data widths among the inputs/outputs of the nodes. Fig. 1 rep-
resents an example flow graph for the Cambricon-X [55] like
DSA. As figure illustrates, such approach can allow modular
construction of an accelerator or even a multi-accelerator
design, while modeling arbitrary compute/buffer hierarchy
for automated analysis. For instance, such approach could
allow modeling of memory hierarchy from 2 to 4-levels [52],
unified or shared L1 or L2 buffers, compute engines access-
ing data from on-chip buffers or even directly from off-chip
memory via DMAs [18, 38, 55].
Named input/output ports of the nodes enable flexibil-
ity in specifying connectivity and automatic dataflow
for architectural evaluation/simulation: Each node con-
tains some input and/or output ports that can be connected to
the ports of the other nodes via creating edges. The named
ports make it easier for architectural specification by de-
signers or AI-based tools that rely on textual representation
for correctly specifying the connections among the nodes.
The input/output ports are implemented via pointers (or
pointer-like data accesses by modifying lists in Python),
which make it easier for automated flow of the data for
functionality/cycle-level simulation or metadata for perfor-
mance/energy analysis.
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Figure 1: Flow graph of Cambricon-X like accelerator
(for sparse deep learning models), which efficiently ex-
ploits unstructured sparsity of weights. With a flexible
flow-graph abstraction and specification in DSAProf,
designers or architecture generation tools can easily
specify and characterize various DSAs of different hi-
erarchy and specialization.

Supernodes for grouping/concealing low-level compo-
nents or modules: Systematic execution analysis, simula-
tion, or visualization of an architecture graph often require
the designers to group some low-level components and treat
as a high-level architecture component in the hierarchy. For
instance, the datapath of a processing elementmay need to be
defined through buffers, ALU, multiplexers, delays, address
generators, and additional control logic. In our architecture
graph, such a sub-graph for a PE can be defined by group-
ing of the preliminary components as a supernode, even if
the high-level PE definition is unavailable in the imported
libraries. When analysis/simulation of an architecture graph
reaches such a supernode, it can iterate over the sub-graph
similar to the overall architectural flow graph.
Advantages: The flow graph abstraction allows modular
construction of architectures and modeling arbitrary hierar-
chy and grouping of components for higher level analysis.
Hence, it can facilitate designs of a wide range of DSA ar-
chitectures such as [3, 7, 23, 29, 49, 56], as also observed by
[47, 50], and even novel architectures. Moreover, themodular,
dataflow-driven latency/energy modeling enables opportuni-
ties for automated bottleneck characterization of the DSAs as
detailed in section 2.5. Further, since algorithms are compiled
as data flow graphs [6, 8, 12, 47], they can be conveniently
mapped on flow graphs of DSAs, which could be useful in
automated architecture search for novel workloads [10].
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2.2 DSA Graph Specification
DSAProf uses a python-based embedded DSL, which al-
lows importing the constructs for specifying the architecture
graph, while leveraging in-built data types and language con-
structs in Python for flexibility and compactness in specifica-
tion. This approach also makes feasible to import or integrate
additional libraries (typically in Python/C++) for hardware
specification/generation (e.g., from PyMTL [26], gem5 [31],
CACTI [34]), design space exploration [1, 35, 36, 46], or ap-
plication’s dataflow graph specifications.

Our graph specification library builds upon Python’s𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑥
package, which allows associating custom objects with nodes
and edges for a customized DFG (dataflow graph) as well as
common routines for constructing/parsing DFG. The listing
below shows declaring a new architectural graph of a DSA
or a multi-DSA SoC.

myDSA = accel(name='myDSA')

The newly defined DSA object contains an empty DFG ob-
ject (for the overall architecture graph) and properties and/or
routines for execution modeling, including latency, energy,
functionality simulation, and architecture visualization [13].
Node Specification: New nodes can be added to the DSA’s
flow graph by ‘add_node‘ routine as shown below. It allows
to specify the name of the node and associate an architec-
tural component from the imported libraries. The component
class defined in the library should contain the information
about its input/output ports, internal properties (e.g., buffer
size/banks), and the definitions for execution modeling such
as latency, power, or functionality for simulation. If a com-
ponent is not specified or it lacks some features, by default,
a baseline node object or its definitions are used.

myDSA.dfg.add_node(Name='Buf_L2_Weights',
Object=buffer(size=1024, data_width=32, banks=8,
double_buffering=True))

Each node contains input/output ports. For instance, a
node corresponding to a multi-bank buffer object could have
ports for reading/writing the data in each banks of the on-
chip buffer. For making the specification flexible/readable,
these ports are named in the class initialization of a compo-
nent, which are later used to connect the nodes during the
modular construction of a DSA. If port names are unspecified
in the component definition, then the DSL generates and uses
default names input_port_i and output_port_i, where 𝑖
is the number of the input/output port. Input ports can be
designated for receiving either data or control logic. Typi-
cal examples of input data ports are data values and buffer
addresses generated by components within DSA, whereas
control logic like read/write enable or resetting summation
in MACs is usually supplied by custom FSMs or controller.

Edge Specification: Edges represent the interconnections
among nodes. Interconnections are setup between output
ports of source nodes and input ports of sink nodes. The ports
are numbered, and with several ports for each nodes, speci-
fying a connection correctly could be challenging. Therefore,
our specification allows naming ports and connecting them
accordingly. Designers or architecture generation tools could
specify multiple source-sink pairs as lists, as shown below.
Each item in a list is defined as a node_name.port_name,
which helps the graph parser to locate appropriate compo-
nents and their ports.

myDSA.dfg.add_edges(list_sources=["DRAM.rd_data0",
"BufC_L2.rd_data0"], list_sinks=
["DMA.rd_data_offchip", "DMA.rd_data_onchip"],
pipelined=True)

Once an edge is specified for connecting ports of compo-
nents, the ports are connected via pointers (or pointer-alike
data access mechanism) in the underling implementation.
This represents the setting up data buses of the necessary
bitwidth, which must be same for a source port and a sink
port. Such setup enables the dataflow for actual data-based
simulation or exchange of meta information about analytical
modeling of the data transfers (section 2.3).
Pipelining. DSA graphs typically contain architectural com-
ponents that correspond to different pipeline stages andwork
in an interleaved manner. Therefore, by default, when edges
are formed, they represent a pipeline buffer for a different
stage. However, designers can specify whether the connected
components constitute the same pipeline stage or not.
Supernode/Grouping Specification: The listing below
shows The supernode can be also be defined initially by
creating a new flow graph object and associating it.

PE_datapath = ['Function_Unit', 'Weight_Buffer']
PE = myDSA.dfg.add_supernode('PE', PE_datapath)

Controller/Host Interfacing: The effectual latency/energy
analysis of architectural components typically depend on
the control inputs specified, which triggers the execution
corresponding to certain datapath/operation. Such control
logic needs to be supplied to the input ports of the compo-
nents and should be configured at regular intervals, based
on a workload’s mapping on the target DSA. Typically, such
control logic contains several Boolean signals or categorical
values, provided from the host machine or a customized con-
troller that is tightly coupled to the DSA. For a quick setup
of a synthetic controller for analytical modeling, the DSL
allows specifying a synthetic controller and automatically
generating related input/output ports and interconnects, as
listed below.
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# Define a synthetic controller for the DSA
controller = controller()
myDSA.dfg.add_node('Controller', controller)
# Determine unconnected inputs/outputs for

interfacing with the controller
controller_inputs, controller_outputs =

myDSA.dfg.get_unconnected_ports()
# Populate controller with the necessary ports for

the interfacing
controller.set_unconnected_ports(

controller_inputs, controller_outputs)
# Connect ports between controller and DSA

components
myDSA.dfg.connect_controller(name='Controller')

Once a DSA is specified with all architecture components
and a synthetic controller is defined, the automatic interfac-
ing of controller is achieved by figuring out all unconnected
input/output ports of the components in the target DSA. In
section A.1, we show a case study for defining Cambricon-X
like DSA with DSAProf’s DSL.

2.3 Dataflow-driven Execution Modeling
Our approach uses amodular, dataflow-drivenmodeling. The
proposed approach is modular, which uses execution model
of each architectural component in the DSA graph in order to
populate overall quantification. With a dataflow-driven mod-
eling, connected components sin the DSA graph exchange
the meta information about data transfers/properties. Such
information received by the component during each invoca-
tion represents the execution activity. Therefore, the latency
model of each component processes meta information about
input data or control logic from the corresponding input
ports, and then it derives the latency corresponding to the
activity. It also populates synthetic data (meta information)
on output ports, which forwards the execution activity to
the input ports of the sink nodes.

With the modular construction of DSA and execution ac-
tivity exchange among nodes via ports, overall latency for
a time interval can be calculated simply by traversing the
DSA’s architecture graph. In the DSA graph, one or more root
nodes can be designated and the nodes are traversed from the
root nodes based on their heights in the tree. Heights of the
nodes are determined based on the heights of their predeces-
sors. Based on whether connected components corresponds
to the same/different pipeline stage, obtained latency values
from models of individual components are aggregated (tak-
ing maximum/addition of values). In case of synchronization
between the components, the collective latency is updated
at the end of each interval.

Overall latency can be found by evaluating models of
architectural components as per the DSA graph traversal
and summation of aggregated value for every time interval.
The time intervals can be advanced as per mapping of a
workload onto the DSA. Each time interval corresponds to
invoking one or more routines, which configures inputs to
the one or more controller-interfacing components. The con-
figurations/data to the interfaced components of the DSA are
provided by the outputs from a synthetic controller or host
(through machine code routines or a custom instruction/bit-
stream). Such controller outputs are usually provided by
designers or generated through automation tools for the ma-
chine code generation. In section A.2, we discuss a case study
for mapping SpMV operator on Cambricon-X like DSA that
is specified and analyzed with DSAProf. It shows how the
relevant machine code routines can be extended to supply
the configurations generated by controller.

DSAProf’s DSL provides routines for invoking such anal-
ysis through a simple function call. Additionally, designers
can directly initialize the traversal order or visualize the DSA
by invoking in-built methods as shown in the listing below.

myDSA.view()
myDSA.dfg.set_roots(['DMA'])
myDSA.dfg.traverse()
execution_time = myDSA.dfg.get_latency()

Temporal data representation: Our execution model al-
lows considering data transfers between components over
time, which are represented as a 𝑛 + 1-d array/list where
𝑛 represents the dimensionality of the data received/sent
by the ports of each node. Such temporal representation
enables the latency model for a component to consider the
whole data sequence for an execution interval and estimat-
ing their latency in one shot. This reduces the invocations
to the component be made and consequently, a faster analyt-
ical estimation or functionality simulation. This is typically
possible for most DSAs that process vector streams, at least
for several cycles or a time period. Otherwise, either the
temporal processing can be disabled or components can be
invoked by the generated code in a regular fashion, i.e., at a
cycle-level or a single element-level granularity.
Approximating processing for repeated execution be-
haviors: The execution model allows marking the advance-
ment of execution interval with a repeat factor, which makes
the analysis faster. For instance, given a mapping of nested
loops on DSAs, execution pattern could be repetitive and
the execution latency/energy could simply be estimated by
multiplying the obtained estimates with the repetition factor
for the loop processing.
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Data-aware analysis and functionality simulation: Exe-
cution model could be invoked by configuring it with data-
aware analysis as well, where components communicate
actual data based on their functionality and their latency
models take the actual data values into account (e.g., for
sparse data processing). While this approach could likely
consume less time for analysis as compared to invoking com-
ponents at every cycle in cycle-level simulators, it is usually
slower than the analysis based on meta information about
the input/output data (used by default).

2.4 Library for Modeling Performance of
Domain-Specific Architectures

We develop a library for estimating performance of modules
based on the meta information about data transfers/prop-
erties in the execution. Several libraries/frameworks for es-
timating area or power for these components exist, such
as DSAGen [47], Accelergy [50], CACTI [34], which can be
integrated to our infrastructure for area/power models of
the components. Next we describe some of the preliminary
components that are modeled by our library.
Off-chip memory. We model a dummy banked DRAM for
off-chip accesses. For off-chip data transfers, we model a
DMA engine that can be interfaced with multiple on-chip
buffers, accessing them one at a time.We follow a standard la-
tency model that considers latency for initiating the transfer
and burst communication over maximum bandwidth avail-
able [27]. We rely on external models such as CACTI for
accurate estimation of latency parameters for a broad range
of off-chip memory configurations.
On-chip memory. We model multi-port and multi-bank
SRAM buffers or register files for accessing data on-chip.
The on-chip buffers can contain several read-write banks
and can be double-buffered for hiding the data access time via
memory hierarchy. The execution model considers various
scenarios, e.g., when data can be written into banks in either
a round-robin fashion or as contiguous block within a target
bank. For accurate estimation of read/write latencies for
these buffers and broad range of SRAM configurations, we
rely on external models such as CACTI.
Functional units. Different function units modeled in the
library supports common arithmetical and logical functions
on scalar or vector data. For instance, MAC units can perform
scalar operations, contain SIMD lanes, or contain multiplier-
arrays and/or adder-trees.
NoCs. Our library models common interconnects such as
unicast, broadcast, mesh, crossbars, or configurable multicast
[3, 4]. Based on the information about total inputs/outputs,
communication bandwidth (links, bit-widths of links), and
hops, their latency estimation is simple, i.e., the time taken to
forward data in time-multiplexed manner [11, 28]. We plan

to integrate NoC models for SoC-level communication and
chiplets in future.
Sparse data compression and indexing. The components
for extracting non-zeros from sparse data support indexing-
based and intersection-based mechanisms that act upon posi-
tions of non-zeros in one or more tensors [7]. These modules
synthetically generate a sample stream for accounting for
sparsity structure in real-world and make estimates based
on their capabilities for extracting non-zeros from the sam-
ple stream. The modules for encoding/decoding sparse data
support commonly used compression formats such as COO,
CSR, CSC, bitmap, RLC, etc.
Control logic. The library models commonly used compo-
nents such as multiplexer, FSMs for address generators, as
well as synchronization and delay elements.

2.5 Automated Bottleneck Characterization
The modular, dataflow-driven latency/energy modeling en-
ables opportunities for automated bottleneck characteriza-
tion of the DSAs. This is because, in the modular approach
of execution modeling for the whole DSA or a multi-DSA
SoC, the information about costs of each architectural com-
ponent (and subsystem) serves as a fundamental part. This
information is inherently available in an explicit manner, as
compared to deriving it from the collective cost model or
simulator manually written by experts for a specific DSA.
Further, with the dataflow-driven execution, metadata about
the tensors processed by each component (tensor shapes,
sequences received over time, sparsity, etc.) also becomes
inherently available in an explicit manner, which relates to
the execution activity observed over time. The availability of
both the information is essential in constructing a bottleneck
analysis of the execution cost, which are usually absent in
conventional analytical/simulation-based execution models
for performance/energy, requiring explicit manual efforts by
domain-experts.

In several scenarios, a simple bottleneck analysis with the
information about the components, whose execution costs
are excessive or prevailing the overall latency/energy, could
be sufficient. For instance, consider the architectural graph
of Cambricon-X like DSA in the Figure 1 for dense/sparse
deep learning. The latency of such DSAs are primarily de-
pendent on the factors like time consumed by computations
(Function Units in PEs - PEFUs), time taken by DMAs for
input/output activations and weights, time consumed by
NoCs for communicating data between shared buffers and
registers/buffers in PEs, and the time taken by decoding and
extracting non-zeros for feeding to PEs (indexing and neuron
broadcast synchronization). Usually, with a highly pipelined
architecture design, these components are almost equally
engaged in their executions, and the total execution time is
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determined by a maximum value among these factors, as
illustrated in Fig. 2. Thus, a simple analysis determining the
datapath consuming maximum value could serve to identify
the primary bottleneck. We also provide an actual case study
analysis for BERT layers in section 3.3.
More accurate accounting for activity may be required

when the excess time (consumed by non-perfect interleav-
ing of these execution factors) causes synchronization at
intervals, and the active time of components may not be
in tandem with overall synchronized activity. Further, we
envision constructing a more detailed bottleneck model by
leveraging the meta-information about execution activity
and the representation of the execution cost calculation for
each component. For instance, for an Eyeriss-like spatial ar-
chitecture, the simple bottleneck graph (e.g., of Fig. 2, which
directly considers maximum/addition among latency values)
could be transformed into more accurate bottleneck model as

illustrated in Fig. 3. Such detailed accounting remains an in-
progress/future work. Once such detailed bottleneck models
can be constructed, the bottleneck identification and miti-
gation may be obtained by traversing the information-rich
graph and scaling the DSA design parameter or execution
metadata (from mapping) based on the contributions of a
bottleneck factor to the total cost [11].

3 RESULTS AND ANALYSIS
We use DSAProf’s DSL and execution modeling of common
components to evaluate latency/energy of DSAs. For prelim-
inary analysis, we consider two popular DSAs for dense/s-
parse deep learning - Eyeriss [3] and Cambricon-X [55]. We
evaluate executions of operators like convolutions and MLPs
for their reported results.
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Figure 4: For processing AlexNet convolution layers
on Eyeriss [3] like DSA, DSAProf estimates the total
execution cycles within 1% of the reported results.

3.1 Validation 1: Dense DNN Executions
We modeled Eyeriss-like DSA [3] and evaluated its execu-
tion for their reported results, e.g., AlexNet for ImageNet
classification [15]. We configure outputs from controller as
per mapping-style reported in [3] for their row-stationary
dataflow. Figure 4 shows the comparison of execution cycles
based on the processing time reported in [3] and the esti-
mated execution cycles. We find that our estimations closely
matched execution cycles of the architecture [3], with a dif-
ference of about 1% in the total execution cycles. We were
unable to validate energy consumption against [3], since it
did not report energy consumption when executing layers
with reported mapping configurations.

We also evaluated executions of convolutions or matrix
multiplications on similar DSAs with other dataflow-style
such as output stationary and comparedwith experts-defined
tools such as dMazeRunner [14]. We find that the estimates
for execution cycles and energy consumptionmatched closely
with those reported by dMazeRunner.

3.2 Validation 2: Sparse DNN Executions
We demonstrate how proposed modular approach can be
easily extended to model and characterize the latency of new
DSAs, e.g., for sparse DNNs, without enforcing the develop-
ment of a new analysis or a simulator for the whole DSA
from scratch. After modeling the DSA for dense DNNs, e.g.,
Eyeriss [3], we extend the library for modeling executions
of the DSA components by adding the models for two new
modules, i.e., indexing and synchronization for sparse tensor
computations. Such support requires adding only up to a few
10s of LoC, while simply reusing the models of available com-
ponents, such as buffers, NoCs, and compute units for dense
tensor processing. It also reuses the DSL for DSA specifica-
tion and overall modular, dataflow-driven cost calculation
approach.
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Figure 5: For accelerating fully-connected (MLP) lay-
ers of sparse DNNs on Cambricon-X [55] like DSA,
DSAProf estimates performance speedups (over dense
DNNs) within 6% of the reported results.

After modeling the Cambricon-X [55], we validated esti-
mated performance for various sparsity in weights of classi-
fication (MLP) layers and compared the results with reported
values. Fig. 5 compares estimated speedup by DSAProf with
the reported speedups in [55], when evaluating a sparse
VGG-16 classification layer for various sparsity (55%-95%). It
shows that on average, estimated speedups differ from the
reported results by 6%. Since the details about DRAM con-
figuration/technology was not clear from [55], we could not
compare the energy consumption directly. However, when
using DRAM power/energy estimates for a 28 or 45nm tech-
nology [21, 52], we find that total energy for Cambricon-X
is heavily consumed by off-chip memory accesses, as also
reported in [55]. We plan demonstrating modeling/analysis
for more DSAs for deep learning and other domains in near
future.

3.3 Bottleneck Characterization
We show an automated characterization of Cambricon-X
like accelerator for BERT layers [16] (e.g., encoder classifica-
tion). As discussed previously in section 2.5, the latency of
such DSA is preliminary dependent on the factors like time
consumed by computations on PEFUs, time taken by DMAs
for input/output activations and weights, time consumed
by NoCs for communicating data between shared buffers
and registers/buffers in PEs, and the time taken by decoding
and extracting non-zeros for feeding to PEs (indexing and
neuron broadcast synchronization). Cambricon-X uses fat-
tree NoCs for output collection and broadcasting of input
neurons, making NoC time becomes non-important or at par
with computations on PEs. Fig. 6 shows evaluation of a simple
bottleneck graph for a BERT encoder layer. The bottlenecks
in the total latency are in indexing and synchronization (load
imbalance). For the obtained latency, only 64% represents
the time required ideally for effectual computations (738 cy-
cles, not shown), while additional 3% gets spent on indexing
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Figure 6: DSAProf’s simple bottleneck analysis of latency (execution cycles) for processing a BERT encoder layer
with 92% weight sparsity on a Cambricon-X [55] like DSA. Overheads of non-zero extraction and imbalance
caused by irregular sparsity leads to 56% excess execution time beyond effectual computations. Such automated
characterization helps determine the underlying execution inefficiencies for further optimization.

mechanism for PEs that extract non-zeros, and the rest 33%
of excess time is incurred by load imbalance among index-
ing subunits. This is because, some indexing subunits could
spendmore cycles to populate sufficient non-zeros for PEs, as
the distribution of non-zeros can be imbalanced and irregular.
As same neurons need to be processed by all indexing units
and PEs, a synchronization is required, which delays the
processing depending on a tailing indexing subunit, while
other modules remain idle. This obtained characterization
also matches with prior analysis reported in [7]. Such over-
heads for indexing and load imbalance incur 56% excess time.
It drops the speedup (over dense model computations) from
12.5× (ideal, considering 92% weight sparsity [7, 48]) to 8×.

4 RELATEDWORKS
Graph-based Domain-Specific Architecture Specifica-
tion: A vast majority of DSAs are specified through a corre-
sponding custom architecture template, as they are application-
tailored architectures for ASICs or FPGAs. Thus, their archi-
tecture specification is restrained by the underlying template,
and it does not require/allow specifying modular construc-
tion of the various architectures. A few recent efforts for eval-
uating/exploring DSAs, such as Accelergy [50] and DSAGen
[47] follow similar graph-based approach, but they limit the
design space that can be specified, or their details, or offer
less flexibility. For instance, Accelergy only allows specifying
the nodes and their hierarchy, but not explicit connections
among inputs/outputs of the nodes, which is essential inmod-
eling performance and functionality simulation. Through
its Scala-based DSL, DSAGen allows specifying connections
between the nodes of architecture graph via switches (NoC
nodes). However, these connections may need to be defined

in a certain order for correctness, as there is no way to indi-
cate connecting a specific input/output of a node to that of
another node. Further, it lacks constructs for concealing the
low-level components into a higher-level module.
Libraries and Frameworks for Modular Accelerator
Construction and ExecutionModeling: Frameworks like
DSAGen [47] and Accelergy [50] define preliminary com-
ponents for computation, memory, interconnections, and
control. Their definitions typically specify execution costs
like area or power; overall cost for the DSA can be obtained
by simply addition of the costs of all the components. For per-
formance modeling of the DSA, DSAGen [47] requires cycle-
level simulation of the functionality or hardware synthesis
of each component [47], which is highly time-consuming.
Frameworks for accelerator generation such as MAGNet [45]
and AutoDNNChip [51] could estimate the performance/en-
ergy, but only for a fixed template architecture.
Automated ExecutionModeling of Domain-Specific Ar-
chitectures: The cost models of SECDA [22] and TVM/VTA
[2] support end-to-end simulation and synthesis for their
DNN accelerator templates, and it could be highly time con-
suming. Faster analytical models are more commonly used to
optimize mappings and design configurations for deep learn-
ing accelerators. Their examples include MAESTRO [28],
SCALE-Sim [42], and those of Timeloop [38], dMazeRun-
ner [9], and Interstellar [52] infrastructures. However, all
these analytical cost models are developed specifically for
a certain template architecture, e.g., either a systolic array
or a spatial architecture with 3/4-level memory hierarchy.
Therefore, extending them becomes very challenging, when
an architecture needs to be modified with a new component
for specialization.
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Bottleneck Characterization for Performance/Energy:
Characterizing bottlenecks in executions of workloads on
DSAs is extremely important for optimizing the architecture,
configurations of its design parameters, code optimization, as
well as for evolving algorithms/workloads. Bottleneck anal-
ysis/characterization refers to identifying the underlying
inefficiencies that incur higher execution costs (performance
and energy) and related strategies for mitigating such ineffi-
ciencies. Such bottleneck analysis have been developed/ap-
plied for characterizing fixed designs and finding mitigation
strategies, e.g., for industry pipelines and production sys-
tems, hardware or software for specific applications [44, 53],
FPGA-based HLS [22, 43], overlapping microarchitectural
events [17], power outage [20], and recently for deep learn-
ing accelerators [11]. However, such characterization efforts
are largely manual, and they are too specific for their tar-
get processor architecture. For instance, AutoDSE [43] and
SECDA [22] proposed bottleneck models specific to FPGA-
based HLS. Further, current tools for simulation or analytical
performance modeling of DSAs contain manually defined
cost models, which provide only a single execution value,
missing the richer information about how architectural de-
sign components contribute to the overall performance and
potential mitigation strategies.

5 CONCLUSIONS
Techniques for automated architectural modeling and char-
acterization of DSAs are essential for their agile design de-
velopment and design optimizations. Current approaches
develop unitary analysis/simulations for every DSA template
architecture, requiring time-consuming efforts from domain-
experts. This restricts design exploration/optimization of
novel DSAs and makes the DSA design process highly un-
sustainable. We propose a modular, dataflow-driven method-
ology and framework (DSAProf ) for flexible and extensi-
ble execution modeling, quantification, and characteriza-
tion for a wide range of DSAs, without having to build a
full analysis/simulators from scratch in entirety for new
DSA templates. The dataflow-driven exchange of execution-
related information among DSA components alleviates the
need of explicit calculation of execution activity, allowing
to quantify or simulate each component separately. Over-
all methodology builds upon such modular evaluations and
aggregates the analysis globally based on pipelining/syn-
chronization among components and specified workload
mapping for the DSA. Such modularity also makes it possi-
ble to account for each component’s contribution to overall
execution cost, leading to an automated bottleneck charac-
terization for the DSAs. Preliminary evaluations by mod-
eling the DSAs for dense/sparse deep learning shows that

our framework DSAProf can accurately model their perfor-
mance and energy consumption. It also demonstrates the
potential for modeling and characterizing DSAs in a flexible
and extensible manner.
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A CASE STUDY: ANALYZING SPARSE
GEMMS ON CAMBRICON-X LIKE DSA

A.1 Defining the DSA
The DSA can be defined by using the DSL constructs for
defining nodes, edges, and grouping of nodes as discussed
in section 2.2. Listing in Fig. 7 shows such definition for
Cambricon-X like DSA depicted in Fig. 1. With the proposed
DSL constructs, DSAs can be defined simply in a few tens of
lines of code.

A.2 Mapping for the DSA
Listing in Fig. 8 shows how an SpMV operator can bemapped
on a Cambricon-X like DSA. The mapping embeds the ma-
chine code routines for setting the controller/host signals
and advancing the time intervals. For instance, routines for
read/write DMAs (line number 14) sets the related meta in-
formation that is provided by the controller to the DMA,
which is shown by the pseudo-code listing in the Fig. 9.
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Figure 7: Code listing for defining a Cambricon-X like DSA

1 myDSA = accel(name='Cambricon-X', freq(MHz)=1024, technology(nm)=65)
2 dfg = myDSA.dfg
3 num_PEs = 16; num_multipliers = 16
4

5 # *********************************** Define nodes (components) for DSA ***********************************
6 dfg.add_node('DRAM', DRAM(size=5)) # size in GB
7 dfg.add_node('DMA', DMA(bandwidth=256000)) # BW in MB/second
8 dfg.add_node('NBin', buffer(size=8192, read_ports=1, write_ports=1))
9 dfg.add_node('NBout', buffer(size=8192, read_ports=1, write_ports=1))
10 # DMA writes data to buffers in PEs and on-chip NBin via demux
11 dfg.add_node('demux1', demux(num_outputs=num_PEs+1)) # write data for sink
12 dfg.add_node('demux2', demux(num_outputs=num_PEs+1)) # write address for sink
13 # Per PE: one synapse buffer, one function unit, one central indexing subunit for neurons
14 for i in range(num_PEs):
15 dfg.add_node(f'BufferController_{i+1}_indexing', indexNonZerosLookupVector(input_length=num_multipliers,

lookup_window_size=num_multipliers*16))↩→
16 dfg.add_node(f'SB_{i+1}', buffer(size=1024, read_ports=num_multipliers, write_ports=1))
17 dfg.add_node(f'PEFU_{i+1}', vectorMAC(multipliers=16, datawidth=16))
18 dfg.add_node('synchronizer', synchronizer(num_inputs=num_PEs)) # sync. neuron broadcast
19 # assemble outputs from PEs
20 dfg.add_node(f'BufferController_assemble', buffer(read_ports=1, write_ports=num_PEs))
21

22 # ************************************ Add connections between ports ************************************
23 # DRAM inputs, outputs, and control signals
24 dfg.add_edges(["DRAM.read_data_0", "DMA.write_data_offchip", DMA.read_write_addr_offchip",

"DMA.read_write_addr_offchip"], ["DMA.read_data_offchip", "DRAM.write_data_0", "DRAM.write_addr_0",
"DRAM.read_addr_0"])

↩→
↩→

25 dfg.add_edges(["DMA.read_enable_offchip", "DMA.write_enable_offchip", "DMA.read_enable_onchip",
"DMA.write_enable_onchip"], ["DRAM.read_enable_0", "DRAM.write_enable_0", "NBout.read_enable_0",
"NBout.write_enable_0"])

↩→
↩→

26

27 # DMA inputs, outputs, and control signals
28 dfg.add_edges(["NBout.read_data_0", "DMA.write_data_onchip", "DMA.read_write_addr_onchip"],

["DMA.read_data_onchip", "demux1.input_data", "demux2.input_data"])↩→
29 dfg.add_edges(["DMA.out_dest_onchip", "DMA.out_dest_onchip"], ["demux1.select", "demux2.select"])
30

31 # L2 (shared) buffers: inputs, outputs, and control signals
32 dfg.add_edges([f"BufferController_assemble.read_data_0"], [f"NBout.write_data_0"])
33 dfg.add_edges(["demux1.output_data_0", "demux2.output_data_0"], ["NBin.write_data_0", "NBin.write_addr_0"])
34 for i in range(num_PEs):
35 dfg.add_edges([f"demux1.output_data_{i+1}"], [f"SB_{i+1}.write_data_0"])
36 dfg.add_edges([f"demux2.output_data_{i+1}"], [f"SB_{i+1}.write_addr_0"])
37

38 # Connect indexing subunits with L2 buffer, their outputs to PEs, and connect datapath in PEs
39 for i in range(num_PEs):
40 dfg.add_edges([f"NBin.read_data_{i}"], [f"BufferController_{i+1}_indexing.input_data"])
41 dfg.add_edges([f"BufferController_{i+1}_indexing.output_data"], [f"synchronizer.input_data_{i}"])
42 dfg.add_edges([f"synchronizer.output_data_{i}"], [f"PEFU_{i+1}.input_data_0"])
43 dfg.add_edges([f"SB_{i+1}.read_data_0"], [f"PEFU_{i+1}.input_data_1"])
44 dfg.add_edges([f"PEFU_{i+1}.output_data"], [f"BufferController_assemble.write_data_{i}"])
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Figure 8: Pseudo-code listing for defining mapping of SpMV operator on a Cambricon-X like DSA. Mapping embeds
the machine code routines for configuring inputs to the DSA via controller interface at different intervals.

1 def SpMV(myDSA, J, K, neuron_vector, weights_matrix, output_vector):
2 # Inputs: 1xK input neurons, JxK weights, 1xJ output neurons
3 # DSA has 8kB NBin, 2B data, double buffered, 2k elements
4 # DSA has 2kB SBs, 2B data, double buffered, 512 elements
5 tc_j_S = largest_factor_within_threshold(J, num_PEs) # Number of active PEs
6 tc_k_L1 = largest_factor_within_threshold(K, 512) # Iterations for processing data from weight

buffer in PEs (L1)↩→
7 tc_k_L2 = largest_factor_within_threshold(K // tc_k_L1, 4) # Iterations for processing elements from shared

(L2) buffer↩→
8 tc_k_L3 = K // (tc_k_L1 * tc_k_L2) # Iterations for off-chip memory (L3) accesses
9 tc_j_L3 = J // tc_j_S # Iterations for off-chip memory (L3) accesses
10

11 for k_L3 in range(tc_k_L3):
12 # DMA transfers for input neurons
13 start_address, burst_size = get_neuron_indices_L3(K, tc_k_L3, k_L3)
14 read_dma(myDSA, neuron_vector, start_address, burst_size)
15 # DMA transfers for weights (multiple accesses due to non-contiguous bursts for different PEs)
16 for j_L3 in range(tc_j_L3):
17 start_address, burst_size, offset, num_invocations = get_weights_indices_L3(J, K, tc_j_L3, j_L3, tc_k_L3,

k_L3)↩→
18 for access in num_invocaitions:
19 read_dma(myDSA, weights_matrix, start_address + access*offset, burst_size)
20 for k_L2 in range(tc_k_L2):
21 address_neurons = get_neuron_address_L2(K, tc_k_L3, tc_k_L2, k_L2)
22 read_buffer_NBin(myDSA, address_nuerons)
23 for j_S in range(tc_j_S):
24 address_synapes = get_weights_address_L1(J, K, tc_k_L3, tc_k_L2, tc_j_S)
25 # No L1 loop. Execution for a PE's data processing from synapse buffer is modeled in one shot.
26 read_buffer_SB(myDSA, address_synapses)
27 address_outputs = get_outputs_address_L2(J, tc_J_L3, j_S)
28 write_buffer_NBout(myDSA, address_outputs)
29

30 # DMA transfers for output neurons
31 start_address, burst_size = get_outputs_indices_L3(J, tc_j_L3, j_L3)
32 write_dma(myDSA, output_vector, start_address, burst_size)

Figure 9: Pseudo-code listing for configuring outputs from the controller for setting a DMA transfer.

1 def set_DMA_transfer(controller_obj, read_write_addr_offchip, read_write_addr_onchip, write_enable_n,

burst_size, onchip_dest=0):↩→
2 controller_obj['DMA.write_enable_n'] = write_enable_n
3 controller_obj['DMA.burst_size'] = burst_size
4 controller_obj['DMA.read_write_addr_offchip'] = read_write_addr_offchip
5 controller_obj['DMA.read_write_addr_onchip'] = read_write_addr_onchip
6 if write_enable_n == True:
7 controller_obj['DMA.in_dest_onchip'] = onchip_dest
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