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ABSTRACT
Exploration of accelerators typically involves an architectural tem-
plate specified in architecture description language (ADL). It can
limit the design space that can be explored, reusability and automa-
tion of system stack, explainability, and exploration efficiency. We
envision Design Space Description Language (DSDL) for comprehen-
sive, reusable, explainable, and agile DSE. We describe how its flow
graph abstraction enables comprehensive DSE of modular designs,
with architectural components organized in various hierarchies and
groups. We discuss automation of characterizing, simulating, and
programming new architectures. Lastly, we describe how DSDL
flow graphs facilitate bottleneck analysis, yielding explainability of
costs and selected designs and super-fast exploration.

1 NEED FOR DESIGN SPACE DESCRIPTION
Design space exploration (DSE) of accelerators, especially for ma-
chine learning [5, 10], require efficient HW/SW codesigns that meet
strict execution constraints [20, 21, 23]. The need for a single accel-
erator for multiple workloads necessitates bottom-up exploration.
ADL-based design approach: Recent frameworks explore designs
of a certain architecture (e.g., systolic arrays, PEs sharing unified
buffer that is filled by DMAs) [12, 19, 33, 35]. They describe architec-
tural template in the ADL [4, 15, 17]. So, design process focuses on
specific architectural organization (i.e., specific types of computa-
tional and memory units interconnected in certain ways and hierar-
chy), and hardware design space is limited to values of architecture’s
hyperparameters [16, 37]. Execution costs are provided by either
expert-maneuvered analytical models for the architecture [7, 34]
or synthesizing each design (which is time-consuming). Space of
algorithm-to-accelerator mappings is also formulated based on the
template [7, 19]. Thus, DSE frameworks lack following capabilities:
• Exploring efficient solutions from broad design space: Since
design space gets restricted to the template architecture (e.g., con-
sider one-level, shared buffer as a memory), a vast space of architec-
tures is left unexplored (multi-level buffers, unified buffers, DMA
ports instead of buffers), even if some can be more effective.
• Reusability of design flow for novel, wide range of architec-
tures: Since design tools are developed for a single template, they
can be incompatible with architectures from a broad space, which
impacts their reusability. Because, when design space is broadened,
such as by integrating new functionality or novel implementation of

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
LATTE ’22, March 1, 2022, Virtual, Earth
© 2022 Copyright held by the owner/author(s).

off-chip 
memory

controller
input 

neuron 
buffer

output 
neuron 
buffer

PE2 PE3 PE4PE1

PE.FU. 
Adder_

tree

PE.FU. 
Multiplier

_array

PE. 
synapse_   

buffer

FU

PE

super-
node

super-node

buffer

compute

special function

control logic

Unicast NoC

nbin nbout

index

SB

MAC
Tree

offchip

ctrl

nonzero 
Indexing

assemble
output

AsyncDMA

P2P links

e1

e1

e2

e2

e3 e4

e5

e6

e7

e8 e9

e10

e5

e6

e11

e12

Types of 
components

Figure 1: Flow graph of Cambricon-X [36] like accelerator.

existing architectural components, previously maneuvered tools—
execution cost models, simulators, and algorithm-to-architecture
compilers are incompatible with enhanced architectures.
• Explainability of explored designs: Execution cost models
and simulators [7, 8, 14, 19, 32] typically do not provide designers
insights about obtained costs. Also, recent approaches for acceler-
ator designs (e.g. [2–4, 11, 16, 17, 22, 25, 26]) use non-feedback or
black-box optimization. It makes challenging to reason about the
efficacy of the acquisition mechanism of DSE for lowering costs.
• Quick DSE for dynamic invocations: In addition to obtaining
an efficient solution that meets tight constraints on execution costs,
DSE needs to be quick when it is dynamic, e.g., deploying a new
DNN on a reconfigurable platform (cloud and end-user). However,
due to underlying non-feedback or black-box optimization, DSE
requires thousands of trials (or several days) for vast design space.

2 ENVISIONED APPROACH: DSDL
2.1 Specifying Architectural Design Space
Comprehensive DSE needs an abstraction that can allow describing
various architectures. So, we envision design space of accelerators
as flow graphs, which are specified and explored through Design
Space Description Language (DSDL). In the flow graph of an archi-
tecture, each node represents an object from primary components
for computation, buffer, and control logic [5, 18, 24, 28–30], user-
defined special functionality, or even a sub-graph consisting of
such components (Fig. 1 illustrates an example). Edges represent
interconnects of various bandwidths for a fixed or configurable com-
munication from X source nodes to Y destinations; communication
can be concurrent, sequential, or asynchronous. The node corre-
sponding to the beginning and termination of execution (memory,
storage, or I/O) is denoted as the root. Such abstraction allows build-
ing compute/buffer/communication hierarchy of arbitrary levels,
integrating special functionality like for sparsity [5], formulating
workgroups for synchronization and load balancing, and specifying
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super-nodes (top-level modules) for better interpretability. Plus, as
algorithms are compiled as data flow graphs [1, 4, 6, 13, 30, 31],
they can be conveniently mapped on flow graphs of accelerators.

Designers can specify the architectural space in DSDL (Fig. 2a)
with: (1) set of components for nodes and edges; (2) parameters,
which are counts of each component and lists of values of hyper-
parameters of the components; (3) legality constraints that specify,
when formulating architecture, which kind of component must
(not) be connected with which component and how. Designers can
also specify constraints between hyperparameters of components
(e.g., sizes of the buffers should double for a buffer-hierarchy to-
wards the root); (4) optimization constraints for meaningful and
optimized exploration, e.g., homogeneous architectures through
alike child super-nodes, hierarchy (specific counts and intercon-
nection of units); (5) IRs or dataflow graphs of target workloads.
Moreover, like conventional DSE with ADL [16, 17, 27], DSDL users
should specify (6) constraints on execution costs; (7) DSE objectives.

Flow graphs can be described with a library and APIs for modu-
lar construction of architectures (Fig. 2c). For reusable, automated
system stack, architectural components are supplied with their
definitions for various tools through a library (Fig. 2b). For each
component class, different subroutines define various design flow
steps (e.g., analytical cost, simulation functionality, program rep-
resentation). Then, DSDL can construct these tools for each flow
graph, as needed. Developers can extend the library with new com-
ponents for special-purpose or high-level architectures to enable
DSE of new architectures. Following principles drive our approach:
•Modularity: An accelerator or a multi-accelerator architecture
can be described with pre-defined or user-specified components.
• Design Flexibility: Users can specify a comprehensive design
space with various hierarchies and grouping of components.
• Extensibility: Extending support for new components or new
implementations of existing components should be possible.
• Explainability: Users can reason about contributions of compo-
nents to overall execution costs and selection of optimal solutions.
• Easy-to-Use: Users can specify, characterize, simulate, program,
and explore designs with a few mouse clicks or lines of code (LOC).
• Compatibility: Generated outputs (e.g., program representa-
tions) should be compatible with relevant tools (LLVM/MLIR).

2.2 Comprehensive DSE with DSDL
DSDL framework enables comprehensive DSE of accelerators by
exploring various flow graphs for target functionalities. It invokes
DSE with inputs from the designers, and it outputs an HW/SW
codesign with minimized objective cost (or a Pareto front) while
satisfying all constraints. Besides enforcing specified legality and
optimization constraints, it uses in-built legality constraints, such
as ensuring that a candidate architecture is suitable for target func-
tionality. DSE is dual-mode: vertical DSE yields new architectures,
and horizontal DSE optimizes hyperparameters of each. Explainable
DSE with bottleneck analysis can enable smooth joint exploration.

2.3 Full-stack Automation for a Flow Graph
In-built methods for flow graphs (Fig. 2d) can automate visualiza-
tion, performance/area/power characterization, program represen-
tation and mapping space generation, functionality simulation, and

def accelerator():

G = accel_graph().dfg

G.add_node('offchip’, DRAM, 32G)
G.add_node('nbin’, buffer, 8k)
G.add_node('nbout’, buffer, 8k)
G.add_node('SB’, buffer, 2k)
G.add_node('FU’, MACTree, 16)
G.add_node('index’, indexNZs, 16)
G.add_node(‘ctrl’,controller)

edge1 = edge(DMA, BW=256)
G.add_edge('offchip','nbin’,edge1)
G.add_edge('nbout','offchip’,edge1)
...
# Define a new super-node ‘PE’
G.add_supernode(‘PE’, [‘SB’, ‘FU’])

# Create PE1 … PE16
G.replicate_nodes(‘PE’, range(16))

accel=
accelerator().G 

# Invoke in-built 
# methods

accel.get_
visualize(file)

exec_time=accel.
get_latency(
obj_exec_info)

data_out = accel.
get_sim(data_in)

accel.
get_mapspace()

accel.get_synth()

class MAC:
def __init__
(data_A, data_B):
in[0]= data_A;
in[1]= data_B
out = 0

def latency():
return 2

def sim():
out+= in[0]*in[1]
return out

def mapspace():
return “
out+=in_0+in_1;“

def synth():
...
out <= out_temp;

(d) Design 
Automation

(c) Flow graph of 
accelerator of Fig. 1

(b) Library of primary 
components

set: {

nodes:{MAC,BUF,DMA}

edges:{P2P,Unicast}
}

params: {

MAC:[4,8,16],

BUF:range(4,20)

BUF.size:[256,1024] 

}

constr_legal: {...}

constr_opt: {...}

IRs: { IR1: { 
ld %0, %in1
mul %1, %0, 2
st %out1, %1 }}

dse_constr: [tdp<4W]

dse_obj: [latency] 

(a) Specifying design 
space in DSDL

Figure 2: (a)-(b) Specifying design space in DSDL. (c)-(d) Flow
graph specification of an architecture and its automation.

synthesis of an accelerator design. Some methods may require addi-
tional information, such as invocation of components (for analytical
characterization), actual data (simulation), and an algorithm to be
executed (compilation). DSDL automates a tool’s construction by
parsing the flow graph and invoking subroutines module-wise.
Automating Execution Cost Modeling. For a flow graph, execution
costs can be generated automatically from costs consumed by un-
derlying nodes during execution. A parent’s cost is an aggregation
of the costs of children. Aggregation depends on cost functions of
edges (e.g., maximum/addition of latency, for concurrent/sequential
execution over parallel paths; addition for area or power). After
propagating costs through parents, the root provides the total cost.
Automating Mapping Space Generation, Code Generation, and Simu-
lation. Each node can be associated with program representation,
and edges can be associated with invoking subroutines for com-
munication (e.g., DMA). For instance, a buffer represents memory
accesses, and a computational unit represents an arithmetic/logical
operation(s) on a data stream (Fig. 2b). Combining such represen-
tations meaningfully can realize a collective code representation,
transforming to which becomes necessary for executing any algo-
rithm on the accelerator. For instance, consider accelerating matrix
multiplication (triply nested loop) on an architecture with PEs shar-
ing a unified buffer where PEs have a local buffer, and DMA fills
data in the shared buffer from DRAM. The DSDL-generated map-
ping space contains all possible transformations (e.g., 12 tiled loops
with (3!)4 orderings [7, 19]). Simulation of an accelerator occurs as
a dataflow through the flow graph. Control triggers for a looped ex-
ecution and live-in/out data are communicated through a synthetic
controller, which also simulates non-accelerator functionality.

2.4 Explaining Costs by Bottleneck Analysis
Execution cost models get available by processing a flow graph.
Such processing can provide information about the costs consumed
by different datapaths of a design’s graph (e.g., computation time
vs. DMA time [5, 9]) and relevant execution characteristics (e.g.,
total loop iterations invoked, size of transferred data, data reuse).
Thus, it facilitates a systematic and accurate bottleneck analysis of
the design, improving reasoning about the design’s efficacy.

2.5 Dynamic DSE Empowered by Explainability
Explainability informs bottlenecks behind the high costs of a design
and how to mitigate them. DSE using bottleneck analysis iteratively
explores among effectual candidates and avoids arbitrary trials.
Hence, it can be super-fast, especially for optimizing an architecture.
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