
Design Space Description Language for Automated and
Comprehensive Exploration of Next-Gen Hardware Accelerators

Shail Dave
Arizona State University

USA

Aviral Shrivastava
Arizona State University

USA

ABSTRACT
Exploration of accelerators typically involves an architectural tem-
plate specified in architecture description language (ADL). It can
limit the design space that can be explored, reusability and automa-
tion of system stack, explainability, and exploration efficiency. We
envision Design Space Description Language (DSDL) for comprehen-
sive, reusable, explainable, and agile DSE. We describe how its flow
graph abstraction enables comprehensive DSE of modular designs,
with architectural components organized in various hierarchies and
groups. We discuss automation of characterizing, simulating, and
programming new architectures. Lastly, we describe how DSDL
flow graphs facilitate bottleneck analysis, yielding explainability of
costs and selected designs and super-fast exploration.

1 NEED FOR DESIGN SPACE DESCRIPTION
Design space exploration (DSE) of accelerators, especially for ma-
chine learning [5, 10], require efficient HW/SW codesigns that meet
strict execution constraints [20, 21, 23]. The need for a single accel-
erator for multiple workloads necessitates bottom-up exploration.
ADL-based design approach: Recent frameworks explore designs
of a certain architecture (e.g., systolic arrays, PEs sharing unified
buffer that is filled by DMAs) [12, 19, 33, 35]. They describe architec-
tural template in the ADL [4, 15, 17]. So, design process focuses on
specific architectural organization (i.e., specific types of computa-
tional and memory units interconnected in certain ways and hierar-
chy), and hardware design space is limited to values of architecture’s
hyperparameters [16, 37]. Execution costs are provided by either
expert-maneuvered analytical models for the architecture [7, 34]
or synthesizing each design (which is time-consuming). Space of
algorithm-to-accelerator mappings is also formulated based on the
template [7, 19]. Thus, DSE frameworks lack following capabilities:
• Exploring efficient solutions from broad design space: Since
design space gets restricted to the template architecture (e.g., con-
sider one-level, shared buffer as a memory), a vast space of architec-
tures is left unexplored (multi-level buffers, unified buffers, DMA
ports instead of buffers), even if some can be more effective.
• Reusability of design flow for novel, wide range of architec-
tures: Since design tools are developed for a single template, they
can be incompatible with architectures from a broad space, which
impacts their reusability. Because, when design space is broadened,
such as by integrating new functionality or novel implementation of

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
LATTE ’22, March 1, 2022, Virtual, Earth
© 2022 Copyright held by the owner/author(s).

off-chip
memory

controller
input

neuron
buffer

output
neuron
buffer

PE2 PE3 PE4PE1

PE.FU.
Adder_

tree

PE.FU.
Multiplier

_array

PE.
synapse_

buffer

FU

PE

super-
node

super-node

buffer

compute

special function

control logic

Unicast NoC

nbin nbout

index

SB

MAC
Tree

offchip

ctrl

nonzero
Indexing

assemble
output

AsyncDMA

P2P links

e1

e1

e2

e2

e3 e4

e5

e6

e7

e8 e9

e10

e5

e6

e11

e12

Types of
components

Figure 1: Flow graph of Cambricon-X [36] like accelerator.

existing architectural components, previously maneuvered tools—
execution cost models, simulators, and algorithm-to-architecture
compilers are incompatible with enhanced architectures.
• Explainability of explored designs: Execution cost models
and simulators [7, 8, 14, 19, 32] typically do not provide designers
insights about obtained costs. Also, recent approaches for acceler-
ator designs (e.g. [2–4, 11, 16, 17, 22, 25, 26]) use non-feedback or
black-box optimization. It makes challenging to reason about the
efficacy of the acquisition mechanism of DSE for lowering costs.
• Quick DSE for dynamic invocations: In addition to obtaining
an efficient solution that meets tight constraints on execution costs,
DSE needs to be quick when it is dynamic, e.g., deploying a new
DNN on a reconfigurable platform (cloud and end-user). However,
due to underlying non-feedback or black-box optimization, DSE
requires thousands of trials (or several days) for vast design space.

2 ENVISIONED APPROACH: DSDL
2.1 Specifying Architectural Design Space
Comprehensive DSE needs an abstraction that can allow describing
various architectures. So, we envision design space of accelerators
as flow graphs, which are specified and explored through Design
Space Description Language (DSDL). In the flow graph of an archi-
tecture, each node represents an object from primary components
for computation, buffer, and control logic [5, 18, 24, 28–30], user-
defined special functionality, or even a sub-graph consisting of
such components (Fig. 1 illustrates an example). Edges represent
interconnects of various bandwidths for a fixed or configurable com-
munication from X source nodes to Y destinations; communication
can be concurrent, sequential, or asynchronous. The node corre-
sponding to the beginning and termination of execution (memory,
storage, or I/O) is denoted as the root. Such abstraction allows build-
ing compute/buffer/communication hierarchy of arbitrary levels,
integrating special functionality like for sparsity [5], formulating
workgroups for synchronization and load balancing, and specifying

LATTE ’22, March 1, 2022, Virtual, Earth Shail Dave and Aviral Shrivastava

super-nodes (top-level modules) for better interpretability. Plus, as
algorithms are compiled as data flow graphs [1, 4, 6, 13, 30, 31],
they can be conveniently mapped on flow graphs of accelerators.

Designers can specify the architectural space in DSDL (Fig. 2a)
with: (1) set of components for nodes and edges; (2) parameters,
which are counts of each component and lists of values of hyper-
parameters of the components; (3) legality constraints that specify,
when formulating architecture, which kind of component must
(not) be connected with which component and how. Designers can
also specify constraints between hyperparameters of components
(e.g., sizes of the buffers should double for a buffer-hierarchy to-
wards the root); (4) optimization constraints for meaningful and
optimized exploration, e.g., homogeneous architectures through
alike child super-nodes, hierarchy (specific counts and intercon-
nection of units); (5) IRs or dataflow graphs of target workloads.
Moreover, like conventional DSE with ADL [16, 17, 27], DSDL users
should specify (6) constraints on execution costs; (7) DSE objectives.

Flow graphs can be described with a library and APIs for modu-
lar construction of architectures (Fig. 2c). For reusable, automated
system stack, architectural components are supplied with their
definitions for various tools through a library (Fig. 2b). For each
component class, different subroutines define various design flow
steps (e.g., analytical cost, simulation functionality, program rep-
resentation). Then, DSDL can construct these tools for each flow
graph, as needed. Developers can extend the library with new com-
ponents for special-purpose or high-level architectures to enable
DSE of new architectures. Following principles drive our approach:
•Modularity: An accelerator or a multi-accelerator architecture
can be described with pre-defined or user-specified components.
• Design Flexibility: Users can specify a comprehensive design
space with various hierarchies and grouping of components.
• Extensibility: Extending support for new components or new
implementations of existing components should be possible.
• Explainability: Users can reason about contributions of compo-
nents to overall execution costs and selection of optimal solutions.
• Easy-to-Use: Users can specify, characterize, simulate, program,
and explore designs with a few mouse clicks or lines of code (LOC).
• Compatibility: Generated outputs (e.g., program representa-
tions) should be compatible with relevant tools (LLVM/MLIR).

2.2 Comprehensive DSE with DSDL
DSDL framework enables comprehensive DSE of accelerators by
exploring various flow graphs for target functionalities. It invokes
DSE with inputs from the designers, and it outputs an HW/SW
codesign with minimized objective cost (or a Pareto front) while
satisfying all constraints. Besides enforcing specified legality and
optimization constraints, it uses in-built legality constraints, such
as ensuring that a candidate architecture is suitable for target func-
tionality. DSE is dual-mode: vertical DSE yields new architectures,
and horizontal DSE optimizes hyperparameters of each. Explainable
DSE with bottleneck analysis can enable smooth joint exploration.

2.3 Full-stack Automation for a Flow Graph
In-built methods for flow graphs (Fig. 2d) can automate visualiza-
tion, performance/area/power characterization, program represen-
tation and mapping space generation, functionality simulation, and

def accelerator():

G = accel_graph().dfg

G.add_node('offchip’, DRAM, 32G)
G.add_node('nbin’, buffer, 8k)
G.add_node('nbout’, buffer, 8k)
G.add_node('SB’, buffer, 2k)
G.add_node('FU’, MACTree, 16)
G.add_node('index’, indexNZs, 16)
G.add_node(‘ctrl’,controller)

edge1 = edge(DMA, BW=256)
G.add_edge('offchip','nbin’,edge1)
G.add_edge('nbout','offchip’,edge1)
...
Define a new super-node ‘PE’
G.add_supernode(‘PE’, [‘SB’, ‘FU’])

Create PE1 … PE16
G.replicate_nodes(‘PE’, range(16))

accel=
accelerator().G

Invoke in-built
methods

accel.get_
visualize(file)

exec_time=accel.
get_latency(
obj_exec_info)

data_out = accel.
get_sim(data_in)

accel.
get_mapspace()

accel.get_synth()

class MAC:
def __init__
(data_A, data_B):
in[0]= data_A;
in[1]= data_B
out = 0

def latency():
return 2

def sim():
out+= in[0]*in[1]
return out

def mapspace():
return “
out+=in_0+in_1;“

def synth():
...
out <= out_temp;

(d) Design
Automation

(c) Flow graph of
accelerator of Fig. 1

(b) Library of primary
components

set: {

nodes:{MAC,BUF,DMA}

edges:{P2P,Unicast}
}

params: {

MAC:[4,8,16],

BUF:range(4,20)

BUF.size:[256,1024]

}

constr_legal: {...}

constr_opt: {...}

IRs: { IR1: {
ld %0, %in1
mul %1, %0, 2
st %out1, %1 }}

dse_constr: [tdp<4W]

dse_obj: [latency]

(a) Specifying design
space in DSDL

Figure 2: (a)-(b) Specifying design space in DSDL. (c)-(d) Flow
graph specification of an architecture and its automation.

synthesis of an accelerator design. Some methods may require addi-
tional information, such as invocation of components (for analytical
characterization), actual data (simulation), and an algorithm to be
executed (compilation). DSDL automates a tool’s construction by
parsing the flow graph and invoking subroutines module-wise.
Automating Execution Cost Modeling. For a flow graph, execution
costs can be generated automatically from costs consumed by un-
derlying nodes during execution. A parent’s cost is an aggregation
of the costs of children. Aggregation depends on cost functions of
edges (e.g., maximum/addition of latency, for concurrent/sequential
execution over parallel paths; addition for area or power). After
propagating costs through parents, the root provides the total cost.
Automating Mapping Space Generation, Code Generation, and Simu-
lation. Each node can be associated with program representation,
and edges can be associated with invoking subroutines for com-
munication (e.g., DMA). For instance, a buffer represents memory
accesses, and a computational unit represents an arithmetic/logical
operation(s) on a data stream (Fig. 2b). Combining such represen-
tations meaningfully can realize a collective code representation,
transforming to which becomes necessary for executing any algo-
rithm on the accelerator. For instance, consider accelerating matrix
multiplication (triply nested loop) on an architecture with PEs shar-
ing a unified buffer where PEs have a local buffer, and DMA fills
data in the shared buffer from DRAM. The DSDL-generated map-
ping space contains all possible transformations (e.g., 12 tiled loops
with (3!)4 orderings [7, 19]). Simulation of an accelerator occurs as
a dataflow through the flow graph. Control triggers for a looped ex-
ecution and live-in/out data are communicated through a synthetic
controller, which also simulates non-accelerator functionality.

2.4 Explaining Costs by Bottleneck Analysis
Execution cost models get available by processing a flow graph.
Such processing can provide information about the costs consumed
by different datapaths of a design’s graph (e.g., computation time
vs. DMA time [5, 9]) and relevant execution characteristics (e.g.,
total loop iterations invoked, size of transferred data, data reuse).
Thus, it facilitates a systematic and accurate bottleneck analysis of
the design, improving reasoning about the design’s efficacy.

2.5 Dynamic DSE Empowered by Explainability
Explainability informs bottlenecks behind the high costs of a design
and how to mitigate them. DSE using bottleneck analysis iteratively
explores among effectual candidates and avoids arbitrary trials.
Hence, it can be super-fast, especially for optimizing an architecture.

Design Space Description Language for Automated and Comprehensive Exploration of Next-Gen Hardware Accelerators LATTE ’22, March 1, 2022, Virtual, Earth

ACKNOWLEDGMENTS
This work was supported in part by NSF under Grant CCF 1723476
— NSF/Intel Joint Research Center for Computer Assisted Program-
ming for Heterogeneous Architectures (CAPA).

REFERENCES
[1] Tal Ben-Nun, Johannes de Fine Licht, Alexandros N Ziogas, Timo Schneider, and

Torsten Hoefler. 2019. Stateful dataflow multigraphs: A data-centric model for
performance portability on heterogeneous architectures. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis. 1–14.

[2] Oliver Bringmann, Wolfgang Ecker, Ingo Feldner, Adrian Frischknecht, Christoph
Gerum, Timo Hämäläinen, Muhammad Abdullah Hanif, Michael J Klaiber, Daniel
Mueller-Gritschneder, Paul Palomero Bernardo, et al. 2021. Automated HW/SW
Co-design for Edge AI: State, Challenges and Steps Ahead: Special Session Pa-
per. In 2021 International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ ISSS). IEEE, 11–20.

[3] Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang, Thierry Moreau, Luis
Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. Learning to Optimize
Tensor Programs. Advances in Neural Information Processing Systems 31 (2018).

[4] S Alexander Chin, Noriaki Sakamoto, Allan Rui, Jim Zhao, Jin Hee Kim, Yuko
Hara-Azumi, and Jason Anderson. 2017. CGRA-ME: A unified framework for
CGRA modelling and exploration. In 2017 IEEE 28th international conference on
application-specific systems, architectures and processors (ASAP). IEEE, 184–189.

[5] Shail Dave, Riyadh Baghdadi, Tony Nowatzki, Sasikanth Avancha, Aviral Shrivas-
tava, and Baoxin Li. 2021. Hardware acceleration of sparse and irregular tensor
computations of ml models: A survey and insights. Proc. IEEE 109, 10 (2021),
1706–1752.

[6] Shail Dave, Mahesh Balasubramanian, and Aviral Shrivastava. 2018. RAMP:
Resource-aware mapping for CGRAs. In 2018 55th ACM/ESDA/IEEE Design Au-
tomation Conference (DAC). IEEE, 1–6.

[7] Shail Dave, Youngbin Kim, Sasikanth Avancha, Kyoungwoo Lee, and Aviral
Shrivastava. 2019. Dmazerunner: Executing perfectly nested loops on dataflow
accelerators. ACM Transactions on Embedded Computing Systems (TECS) 18, 5s
(2019), 1–27.

[8] Shail Dave and Aviral Shrivastava. 2018. Ccf: A cgra compilation framework.
[9] Shail Dave, Aviral Shrivastava, Youngbin Kim, Sasikanth Avancha, and Kyoung-

woo Lee. 2020. dmazerunner: Optimizing convolutions on dataflow accelerators.
In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 1544–1548.

[10] Jeff Dean, David Patterson, and Cliff Young. 2018. A new golden age in computer
architecture: Empowering the machine-learning revolution. IEEEMicro 38 (2018).

[11] Sheng-Chun Kao, Geonhwa Jeong, and Tushar Krishna. 2020. Confuciux: Au-
tonomous hardware resource assignment for dnn accelerators using reinforce-
ment learning. In 2020 53rd Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO). IEEE, 622–636.

[12] Yi-Hsiang Lai, Hongbo Rong, Size Zheng, Weihao Zhang, Xiuping Cui, Yunshan
Jia, Jie Wang, Brendan Sullivan, Zhiru Zhang, Yun Liang, et al. 2020. Susy: A
programming model for productive construction of high-performance systolic
arrays on fpgas. In 2020 IEEE/ACM International Conference On Computer Aided
Design (ICCAD). IEEE, 1–9.

[13] Zhaoying Li, Dhananjaya Wijerathne, Xianzhang Chen, Anuj Pathania, and
Tulika Mitra. 2021. ChordMap: Automated Mapping of Streaming Applications
onto CGRA. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems (2021).

[14] Jason Lowe-Power et al. 2020. The gem5 simulator: Version 20.0+. arXiv preprint
arXiv:2007.03152 (2020).

[15] Prabhat Mishra, Aviral Shrivastava, and Nikil Dutt. 2004. Architecture description
language (ADL)-driven software toolkit generation for architectural exploration
of programmable SOCs. ACM Transactions on Design Automation of Electronic
Systems (TODAES) 11, 3 (2004), 626–658.

[16] Luigi Nardi, David Koeplinger, and Kunle Olukotun. 2019. Practical design space
exploration. In 2019 IEEE 27th International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunication Systems (MASCOTS). IEEE.

[17] Julio Oliveira Filho, Stephan Masekowsky, Thomas Schweizer, and Wolfgang
Rosenstiel. 2009. CGADL: An architecture description language for coarse-
grained reconfigurable arrays. IEEE transactions on very large scale integration
(VLSI) systems 17, 9 (2009), 1247–1259.

[18] Subhankar Pal, Siying Feng, Dong-hyeon Park, Sung Kim, Aporva Amarnath,
Chi-Sheng Yang, Xin He, Jonathan Beaumont, Kyle May, Yan Xiong, et al. 2020.
Transmuter: Bridging the efficiency gap using memory and dataflow reconfigura-
tion. In Proceedings of the ACM International Conference on Parallel Architectures
and Compilation Techniques. 175–190.

[19] Angshuman Parashar, Priyanka Raina, Yakun Sophia Shao, Yu-Hsin Chen,
Victor A Ying, Anurag Mukkara, Rangharajan Venkatesan, Brucek Khailany,

Stephen W Keckler, and Joel Emer. 2019. Timeloop: A systematic approach to
dnn accelerator evaluation. In 2019 IEEE international symposium on performance
analysis of systems and software (ISPASS). IEEE, 304–315.

[20] Antonio Pullini, Davide Rossi, Igor Loi, Giuseppe Tagliavini, and Luca Benini.
2019. Mr. Wolf: An energy-precision scalable parallel ultra low power SoC for
IoT edge processing. IEEE Journal of Solid-State Circuits 54, 7 (2019), 1970–1981.

[21] Alexander Ratner, Dan Alistarh, Gustavo Alonso, David G Andersen, Peter Bailis,
Sarah Bird, Nicholas Carlini, Bryan Catanzaro, Jennifer Chayes, Eric Chung,
et al. 2019. Mlsys: The new frontier of machine learning systems. arXiv preprint
arXiv:1904.03257 (2019).

[22] Brandon Reagen, José Miguel Hernández-Lobato, Robert Adolf, Michael Gelbart,
Paul Whatmough, Gu-Yeon Wei, and David Brooks. 2017. A case for efficient
accelerator design space exploration via bayesian optimization. In 2017 IEEE/ACM
International Symposium on Low Power Electronics and Design (ISLPED). IEEE.

[23] Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson, Guenther
Schmuelling, Carole-Jean Wu, Brian Anderson, Maximilien Breughe, Mark
Charlebois, William Chou, et al. 2020. Mlperf inference benchmark. In 2020
ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA).
IEEE, 446–459.

[24] Stephanie Soldavini and Christian Pilato. 2021. Compiler Infrastructure for
Specializing Domain-Specific Memory Templates. In Proceedings of the Workshop
on Languages, Tools, and Techniques for Accelerator Design (LATTE’21).

[25] Naveen Suda, Vikas Chandra, Ganesh Dasika, Abinash Mohanty, Yufei Ma, Sarma
Vrudhula, Jae-sun Seo, and Yu Cao. 2016. Throughput-optimized OpenCL-based
FPGA accelerator for large-scale convolutional neural networks. In Proceedings
of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays. ACM, 16–25.

[26] Fengbin Tu, Weiwei Wu, Yang Wang, Hongjiang Chen, Feng Xiong, Man Shi,
Ning Li, Jinyi Deng, Tianbao Chen, Leibo Liu, et al. 2020. Evolver: A deep learning
processor with on-device quantization–voltage–frequency tuning. IEEE Journal
of Solid-State Circuits 56, 2 (2020), 658–673.

[27] Stylianos I Venieris and Christos-Savvas Bouganis. 2016. fpgaConvNet: A frame-
work for mapping convolutional neural networks on FPGAs. In 2016 IEEE 24th
Annual International Symposium on Field-Programmable Custom Computing Ma-
chines (FCCM). IEEE, 40–47.

[28] Swagath Venkataramani, Ashish Ranjan, Subarno Banerjee, Dipankar Das,
Sasikanth Avancha, Ashok Jagannathan, Ajaya Durg, Dheemanth Nagaraj, Bharat
Kaul, Pradeep Dubey, et al. 2017. Scaledeep: A scalable compute architecture
for learning and evaluating deep networks. In Proceedings of the 44th Annual
International Symposium on Computer Architecture. 13–26.

[29] Jian Weng, Vidushi Dadu, Sihao Liu, and Tony Nowatzki. 2021. Generality is
the Key Dimension in Accelerator Design. In Proceedings of the Workshop on
Languages, Tools, and Techniques for Accelerator Design (LATTE’21).

[30] Jian Weng, Sihao Liu, Vidushi Dadu, Zhengrong Wang, Preyas Shah, and Tony
Nowatzki. 2020. Dsagen: Synthesizing programmable spatial accelerators. In
2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture
(ISCA). IEEE, 268–281.

[31] Lisa Wu, Andrea Lottarini, Timothy K Paine, Martha A Kim, and Kenneth A
Ross. 2014. Q100: the architecture and design of a database processing unit.
In Proceedings of the 19th international conference on Architectural support for
programming languages and operating systems. 255–268.

[32] Yannan Nellie Wu, Joel S Emer, and Vivienne Sze. 2019. Accelergy: An
architecture-level energy estimation methodology for accelerator designs. In 2019
IEEE/ACM International Conference on Computer-Aided Design (ICCAD). IEEE.

[33] Pengfei Xu, Xiaofan Zhang, Cong Hao, Yang Zhao, Yongan Zhang, Yue Wang,
Chaojian Li, Zetong Guan, Deming Chen, and Yingyan Lin. 2020. AutoDNNchip:
An automated dnn chip predictor and builder for both FPGAs and ASICs. In The
2020 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays.

[34] Xuan Yang, Mingyu Gao, Qiaoyi Liu, Jeff Setter, Jing Pu, Ankita Nayak, Steven
Bell, Kaidi Cao, Heonjae Ha, Priyanka Raina, et al. 2020. Interstellar: Using
halide’s scheduling language to analyze dnn accelerators. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems. 369–383.

[35] Dan Zhang, Safeen Huda, Ebrahim Songhori, Quoc Le, Anna Goldie, and Azalia
Mirhoseini. 2021. A full-stack accelerator search technique for vision applications.
arXiv preprint arXiv:2105.12842 (2021).

[36] Shijin Zhang, Zidong Du, Lei Zhang, Huiying Lan, Shaoli Liu, Ling Li, Qi Guo,
Tianshi Chen, and Yunji Chen. 2016. Cambricon-x: An accelerator for sparse
neural networks. In The 49th Annual IEEE/ACM International Symposium on
Microarchitecture. IEEE Press, 20.

[37] Yanqi Zhou, Xuanyi Dong, Berkin Akin, Mingxing Tan, Daiyi Peng, Tianjian
Meng, Amir Yazdanbakhsh, Da Huang, Ravi Narayanaswami, and James Laudon.
2021. Rethinking co-design of neural architectures and hardware accelerators.
arXiv preprint arXiv:2102.08619 (2021).

	Abstract
	1 Need for Design Space Description
	2 Envisioned Approach: DSDL
	2.1 Specifying Architectural Design Space
	2.2 Comprehensive DSE with DSDL
	2.3 Full-stack Automation for a Flow Graph
	2.4 Explaining Costs by Bottleneck Analysis
	2.5 Dynamic DSE Empowered by Explainability

	Acknowledgments
	References

